
The xdoc package — experimental

reimplementations of features from doc,

second prototype

Lars Hellström∗

2003/07/07

Abstract

The xdoc package contains reimplementations of some of the features
found in the standard LATEX doc package [5] by Mittelbach et al. The ul-
timate goals for these reimplementations are that the commands should be
better, easily configurable, and be easy to extend, but this is only a second
prototype implementation and nothing in it is guaranteed to be the same in
the third prototype.1

Contents

1 Usage 2
1.1 Changes to old features . 3
1.2 Some notable new features . 3
1.3 The docindex package . 5
1.4 A note on command names . 5
1.5 docstrip modules . 6

2 Initial stuff 7

3 Character strings 9
3.1 Typesetting problematic characters 10
3.2 Rendering character strings harmless 12
3.3 Interaction with mechanisms that make characters problematic . . 17

4 Indexing 19
4.1 New basic indexing commands . 19
4.2 Making good sort keys . 21
4.3 Reimplementations of doc indexing commands 23

5 Cross-referencing 26
5.1 Scanning macrocode for TEX control sequences 26
5.2 The index exclude list . 27
5.3 External cross-referencing . 30

∗E-mail: Lars.Hellstrom@math.umu.se
1But there are no guarantees there will ever be a third prototype either.

1

6 Two-sided printing 34

7 The list of changes 39

8 macro-like environments 42
8.1 Grabbing arguments . 42
8.2 The \XD@m@cro and \NewMacroEnvironment commands 47
8.3 Reimplementing macro and environment 52
8.4 Further examples of macro-like environments 53

9 Describing macros and the like 55

10 The \DocInclude command 61
10.1 Old implementation . 61
10.2 New implementation . 62

11 Miscellanea 67
11.1 Some LATEX2ε∗ stuff . 67
11.2 The \meta command . 67
11.3 The checksum feature . 68
11.4 The \theCodelineNo situation . 69

12 Problems and things to do 70

1 Usage

When I began working on this package I thought that there would be no need
for a usage section (at least on the prototype stage)—either you are interested
in using the new features and then you might just as well read the descriptions
of the commands in the implementation part of this document (they are writ-
ten as specifications of what the commands do), or else you can simply insert a
\usepackage{xdoc2} in the preamble and see how things work a little better than
when you simply use doc—but with some features it became natural to introduce
incompatible changes and some new features ought to be mentioned. Hence I
wrote a short section on usage after all.

It is my intention that this document will eventually evolve into the source
for a package xdoc2 which will either build on the doc package and provide better
implementations of many of its features, or replace it completely, but this docu-
ment is still only the source for a prototype for that package. As I believe that
the need for some improvement in this area is rather large however, I have decided
to release this prototype so that other people can use it in their documents or
create packages that are based on it. In doing so, one must of course bear in mind
that this prototype needs not be compatible with the final xdoc package, and to
overcome most incompatibility problems I therefore release it under the variant
name xdoc2. This way, documents based on this prototype can still be typeset
using the package they were written for long after the next xdoc prototype (or
final version) is released.

Thus although this document frequently speaks of xdoc, you might just as well
read it as xdoc2.

2The name doc2 has also been discussed; we’ll see when we get there.

2

1.1 Changes to old features

Whereas doc more or less assumes that all pages have the same layout, xdoc takes
measures to ensure that the doc features support two-sided document designs.
If the left margin has been widened to better accommodate long macro names
however (like for example the ltxdoc document class does), then you may find that
the outer margin on right (odd) pages is too narrow for printing macro names
in. The remedy for this is the dolayout option; in two-sided mode it causes xdocdolayout option

to recompute the \oddsidemargin so that the outer margin has the same size
on right pages as it previously did on left pages. In documents which are not
processed in two-sided mode the dolayout option has no effect.

\DocInput has been changed to not make percent a comment character upon
return unless it was before the \DocInput. This makes \DocInput nestable and I
recommend that .dtx files which input other .dtx files use \DocInput for this.

The \DocInclude command, which is defined by the ltxdoc document class
rather than doc, is also by default redefined in an incompatible manner by xdoc,
but you can stop xdoc from making incompatible changes if you pass it the option
olddocinclude. The main incompatibility lies in that the default redefinition ofolddocinclude option

\DocInclude behaves purely as an \include command which \DocInputs a .dtx
file rather than merely \inputting a .tex file—you must pass the fileispartfileispart option

option to xdoc to get the \part headings etc. for each new file—but there are also
minor changes in the appearance of these headings, in how page styles are set, and
in how the information presented in the page footer is obtained.

Other changes are as far as I can tell minor and within the bounds of expected
behaviour, but code that relies on the implementation of some feature in doc
may of course behave differently or break completely. Note in particular that
the formats of the internal doc variables \saved@macroname, \macro@namepart,
and \index@excludelist have changed completely (see Section 7, Subsection 5.1,
and Subsection 5.2 respectively)—hence any hack involving one of these must be
revised before it is used with xdoc. These are however exceptions; in my experience
the most noticeable changes not listed above are that the index exclude mechanism
actually works for control sequences whose names consist of a single non-letter and
that symbols get sorted in a different order.

1.2 Some notable new features

The main new feature is the \NewMacroEnvironment command, which defines a\NewMacroEnvironment

new macro-like environment. The command offers complete control of the ar-
gument structure, the formatting of the marginal heading, the code for making
index entries, and the change entry sorting and formatting, but the syntax is too
complex to explain here. Those who are interested in using it should read Sec-
tion 8. In particular, Subsections 8.3–8.4 contain several examples of how it can
be used. In addition to using \NewMacroEnvironment for redefining the macromacro

and environment environments, xdoc also defines an option environment (whichenvironment

option is intended for document class and package options) and a switch environment
switch (which is intended for switches defined using \newif; the argument should not

include the \if).
There is also a companion command \NewDescribeCommand which defines new\NewDescribeCommand

commands similar to \DescribeMacro and \DescribeEnv. The syntax of \New-
DescribeCommand is also too complex to explain here, so I have to refer readers who

3

want to use it to Section 9. Two more commands which are defined in that section
are \describeoption, which is the describe. . . companion of the option envi-\describeoption

ronment, and \describecsfamily which is meant for describing control sequence\describecsfamily

families (see the table on page 58 for examples of what I mean). The argument of
this latter command is simply the material you would put between \csname and
\endcsname. Variant parts are written as \meta{〈text〉} and print as one would
expect them to (but notice that the 〈text〉 is a moving argument) whereas most
other characters can be written verbatim without any special quoting (but \, {,
}, and % need quoting; see the comments to the definition of \describecsfamily
for information on how to do that).

The \DoNotIndexBy command tells the commands that make index entries for\DoNotIndexBy

macros to ignore a certain character sequence when the index entries are sorted.
The \DoNotIndexBy command takes one argument: the character sequence to
ignore. If \DoNotIndexBy is used more than once then the indexing commands
will look for, and if it finds it ignore, each of the character sequences given to it,
starting with the one specified last.

It has already been mentioned that the \DocInclude command has been
changed. What has not been mentioned is its companion \setfileinfo, which\setfileinfo

the partfiles should use for setting the date and version information presented in
the page footer, but that is explained in detail in Subsection 10.2.

Finally there is a new variant of the \changes command which is intended
for changes that, although not limited to a single macro and thus being “general”
changes in the doc terminology, affect only a few (probably widely dispersed)
macros (or whatever). The basic idea is that you can define a change with a specific
version, date, and text using the \definechange command and then recall those\definechange

parameters later using the \usechange command. Primarily this ensures that the\usechange

entry texts are identical so that makeindex will combine them into one entry, but
it is also specified which macro was changed at which page. See Section 7 for more
details. Another new feature concerning \changes is that there is now support
for sorting version numbers according to mathematical order rather than ASCII
order. Traditionally the version numbers 2, 11, and 100 would have been sorted
so that 100 < 11 < 2, but if they are entered as \uintver{2}, \uintver{11},\uintver

and \uintver{100} then they will be sorted as 2 < 11 < 100. The argument of
\uintver must be a TEX 〈number〉.

xdoc also contains several features which are of little use as direct user com-
mands, but which can simplify the definitions of other commands. The foremost
of these are the ‘harmless character strings’, which can be seen as a datatype
for (short pieces of) verbatim text. TEX typesets a harmless character string in
pretty much the same way as the corresponding string of ‘other’ tokens, but the
harmless character string can also be written to file and read back arbitrarily
many times without getting garbled, it doesn’t make makeindex choke, and it sur-
vives being fed to a \protected@edef. The most important commands related to
harmless character strings are \PrintChar, which is used for representing prob-\PrintChar

lematic characters, and \MakeHarmless, which converts arbitrary TEX code to the\MakeHarmless

corresponding harmless character string.
The superfluity of indexing commands in doc has been replaced by the single

command \IndexEntry, which has been designed with the intention that it should\IndexEntry

provide a clear interface between the user level macros and the index sorting
program. It takes three arguments: the index entry specification, the name of the

4

encapsulation scheme that should be used, and the number to put in the index.
The index entry specification is a sequence of \LevelSame and/or \LevelSorted
commands, which have the respective syntaxes

\LevelSame{〈text〉}\LevelSame

\LevelSorted{〈sort key〉}{〈text〉}\LevelSorted

Each such command specifies one level of the index entry. In the case of
\LevelSorted, the 〈text〉 is what will be written in the sorted index at that level
and 〈sort key〉 is what the index-sorting program should look at when sorting the
entry (at that level). In the case of \LevelSame, the 〈text〉 is used both as sort
key and contents of entry in the sorted index. The first command is for the top-
most level and each subsequent command is for the next sublevel. The complete
description appears in Subsection 4.1.

xdoc also contains support for external cross-referencing programs (see Subsec-
tion 5.3 for details) and a system for determining whether a piece of text falls on
an even or an odd page (see Section 6 for details). I expect that the latter system
will eventually migrate out of xdoc, either to a package of its own, or into oblivion
because the LATEX2ε∗ output routine makes it obsolete.

1.3 The docindex package

As of prototype version 2.2, the xdoc package has a companion package docindex [2]
which provides improved formatting of the index and list of changes. xdoc works
fine without docindex, however.

1.4 A note on command names

The doc package defines several commands with mixed-case names which (IMHO)
should really have all-lower-case names (according to the rule of thumb spelled
out in [4, Ssec. 2.4]) since people use them in the capacity of being the author of
a .dtx file rather than in the capacity of being the writer of a class or package.
The names in question are

Name in doc Better (?) name
\AlsoImplementation \alsoimplementation
\CharacterTable \charactertable
\CharTableChanges \chartablechanges
\CheckModules \checkmodules
\CheckSum \checksum
\CodelineIndex \codelineindex
CodelineNo (counter) codelineno
\CodelineNumbered \codelinenumbered
\DeleteShortVerb \deleteshortverb
\DescribeEnv \describeenv
\DescribeMacro \describemacro
\DisableCrossrefs \disablecrossrefs
\DocInput \docinput
\DoNotIndex \donotindex
\DontCheckModules \dontcheckmodules
\EnableCrossrefs \enablecrossrefs

5

Name in doc Better (?) name
\Finale \finale
GlossaryColumns (counter) glossarycolumns
\GlossaryPrologue \glossaryprologue
IndexColumns (counter) indexcolumns
\IndexInput \indexinput
\IndexPrologue \indexprologue
\MakePrivateLetters \makeprivateletters
\MakeShortVerb \makeshortverb
\OnlyDescription \onlydescription
\PageIndex \pageindex
\PrintChanges \printchanges
\PrintIndex \printindex
\RecordChanges \recordchanges
\SortIndex \sortindex
\SpecialEscapechar \specialescapechar
StandardModuleDepth (counter) standardmoduledepth
\StopEventually \stopeventually

With the exception for CodelineNo,3 I haven’t changed any of the doc names in
this xdoc prototype, nor introduced any of the “better names” as alternatives, but
I think the matter should be given a bit of thought during the future development
of doc/xdoc.

For completeness, I should also remark that there are several macros that doc
gives mixed-case names which I haven’t listed above. The logo command names
have special capitalizing rules by tradition. Some macros and named registers—
for example \DocstyleParms, \IndexParms, \MacroFont, \MacroTopsep, \Make-
PercentIgnore, and \PrintMacroName—are part of the package or document
class writer’s interface to doc, although I cannot claim it to be obvious that for
example \IndexParms and the IndexColumns counter should belong to differ-
ent classes here (but several of these control sequences will probably disappear
from the interface in LATEX2ε∗ anyway, so the problem isn’t that important).
The \Special. . . Index commands (and their even more special variants, such as
\LeftBraceIndex) are internal commands rather than user level commands. Fi-
nally there is the \GetFileInfo command, which I doubt there is any point in
having.

1.5 docstrip modules

The docstrip modules in xdoc2.dtx are:

pkg This module directive surrounds the code for the xdoc package.

driver The driver.

internals This module contains an alternative replacement text for the \Print-
VisibleChar command that uses “LATEX internal character representation”
(i.e., as much as possible encoding-specific commands—\text. . . commands

3Where I recommend using codelineno instead of CodelineNo, \PrintCodelineNo instead of
\theCodelineNo, and \thecodelineno instead of \number\c@CodelineNo; see Subsection 11.4.

6

and the like) rather than the primitive \char command for typesetting vis-
ible characters. It is provided as a separate module mainly for compability
with prototype version 2.0, as this alternative definition can (as of prot. 2.1)
be chosen by passing the option notrawchar to xdoc.notrawchar option

economical There is little point in storing the harmless representations of the 161
non-visible-ASCII characters as these representations are always the same
and can be formed on the fly whenever they are needed. The economical
modules contain some alternative code which makes use of this fact to re-
duce the number of control sequences used for storing the table of harmless
representations. The 〈economical〉 module appears inside the 〈pkg〉 module.

xdoc2 This module contains code for compability with previous releases of xdoc2.
It will not be included in xdoc3 or xdoc (whichever is the next major version).

enccmds This module contains the code for defining two macro-like environments
for encoding-specific commands. These are not included in the xdoc package
since so few .dtx files define encoding-specific commands.

rsrccmd Similar to the enccmds module, but demonstrates the \NewDescribe-
Command command instead.

example This surrounds some code which to docstrip looks like it should be copied,
but isn’t meant to.

2 Initial stuff

First there’s the usual \NeedsTeXFormat and \ProvidesPackage.
1 〈∗pkg〉
2 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

3 \ProvidesPackage{xdoc2}[2003/07/06 prot2.5 doc reimplementation package]

Options

The first option has to do with the page layout. Although doc itself doesn’t
modify any of the main layout parameters, it is well known that using it does
tend to restrict one’s choices in terms of document layout. In particular the macro
and environment environments require a rather large left margin since they will
otherwise print long macro names partially outside the paper. It is furthermore
hard to decrease the \textwidth as it should be wide enough to contain about
70 columns of \MacroFont text. Thus the only solution is to do as the ltxdoc [1]
document class and enlarge the left margin at the expense of the right.

The resulting layout has a left–right asymmetry with the main galley (the text
rectangle) on the right and a very wide left margin (in which marginal headings
and marginal notes appears). Although this layout is not uncommon in technical
manuals, it is inappropriate for two-sided designs since the vertical line at which
the two pages of a spread meet becomes the natural vertical symmetry axis for
the entire spread and it breaks this symmetry to let the left margin be the widest
on all pages. It would look better to always let the outer margin be the largest.

7

dolayout option

\oddsidemargin

The dolayout option modifies \oddsidemargin so that spreads are symmetric
around the center in two-sided mode. As size of the outer margin is taken the size
of the left margin on left (even) pages, i.e., \evensidemargin + 1 in.

In one-sided mode, the dolayout option does nothing.
4 \DeclareOption{dolayout}{%

5 \if@twoside

6 \setlength\oddsidemargin{\paperwidth}

7 \addtolength\oddsidemargin{-\textwidth}

8 \addtolength\oddsidemargin{-\evensidemargin}

9 \addtolength\oddsidemargin{-2in}

10 \fi

11 }

olddocinclude option

fileispart option

The olddocinclude and fileispart options are related to the \DocInclude com-
mand defined by the ltxdoc document class. Some of the code related to that com-
mand relies on modifying the doc internal macro \codeline@wrindex, but that
has no effect with xdoc so in order to get the expected results one has to reimple-
ment the \DocInclude command as well. The olddocinclude and fileispart
options control how this should be done.

If the olddocinclude option is passed to xdoc then only the parts of the
implementation of \DocInclude which must be altered to make the command
work with the xdoc implementation of indexing and cross-referencing are changed.
These redefinitions will furthermore only be made if the ltxdoc document class has
been loaded; nothing is done if the olddocinclude option is passed and ltxdoc
hasn’t been loaded. Passing the olddocinclude option can be considered as
requesting a “compatibility mode” for \DocInclude.

If the olddocinclude option is not passed then the \DocInclude command is
reimplemented from scratch, regardless of whether some definition of it has already
been given or not. The basis of this reimplementation is the observation that the
\DocInclude command of ltxdoc really does two quite distinct things at once—it
is an \include command which \DocInputs files rather than \inputting them,
but it also starts a new \part, sets the pagestyle, and changes how the values of
some counters are typeset. This latter function is by default disabled in the xdoc
implementation of \DocInclude, but passing the fileispart option enables it.

There is no code for these two options here, as it is rather long; instead that
code appears in Section 10. The \PassOptionsToPackage commands make sure
that these options are registered as local options for xdoc, so that one can test for
them using \@ifpackagewith below.
12 \DeclareOption{olddocinclude}{%

13 \PassOptionsToPackage{\CurrentOption}{xdoc2}%

14 }

15 \DeclareOption{fileispart}{%

16 \PassOptionsToPackage{\CurrentOption}{xdoc2}%

17 }

notrawchar option The notrawchar option controls how the \PrintVisibleChar command is de-
fined, and thereby what method is used for typesetting visible characters in e.g.
macro names. The default is to use the \char primitive (which is better for T1-
encoded fonts and non-italic OT1-encoded typewriter fonts), but the notrawchar
option causes things to go via the “LATEX internal character representation” in-
stead (which is necessary for e.g. OT1-encoded non-typewriter fonts).

8

There is no code for this option here; instead that code is found in the definition
of \PrintVisibleChar.
18 \DeclareOption{notrawchar}{%

19 \PassOptionsToPackage{\CurrentOption}{xdoc2}%

20 }

Then options are processed.
21 \ProcessOptions\relax

And finally the doc package is loaded.
22 \RequirePackage{doc}

3 Character strings

A source of much of the complexity in doc is that it has to be able to deal with
rather arbitrary strings of characters (mainly the names of control sequences).
Once the initial problems with characters having troublesome catcodes have been
overcome however, it is usually no problem to manage such things in TEX. doc
does however complicate things considerably by also putting these things in the
index and list of changes. Not only must they then be formatted so that the
makeindex program doesn’t choke on them, but they must also be wrapped up in
code that allows TEX to make sense of them when they are read back. doc manages
the makeindex problems mainly by allowing the user to change what characters
are used as makeindex metacharacters and the reading back problem by making
abundant use of \verb.

All this relies on that the author of a document is making sure that the
metacharacters aren’t used for anything else. If for example the \verbatimchar
(by default +) is one of the “private letters” then names of control sequences con-
taining that character will be typeset incorrectly because the \verb used to typeset
it is terminated prematurely—control sequence names such as ‘\lost+found’ will
be typeset as ‘\lostfound+’. On top of that, one also has to make sure that the
font used for typesetting these \verb sections contains all the characters needed.

For xdoc, I have chosen a completely different approach. Instead of allowing the
strings (after they have converted to the internal format) to contain TEX character
tokens with arbitrary character codes, they may only contain TEX character tokens
which are unproblematic—the normal catcode should be 11 (letter) or 12 (other),
they should not be outside visible ASCII, and they may not be one of the makeindex
metacharacters. All other characters are represented using a robust command
which takes the character code (in decimal) as the argument. This takes care of
all “moving argument” type problems that may occur.

An important observation about these character strings is that they are strings
of input characters. This means that rather than using the characters in some spe-
cial font for typesetting control sequences like \^^M (recall that the ^^ substitutions
take place before tokenization), one should typeset them using only visible ASCII
characters. (After all, that’s the only way they are written in TEX code.) The
default definition is to typeset invisible characters as precisely the ^^-sequences
that TEX normally uses for these characters when they are written to a file.

9

3.1 Typesetting problematic characters

\PrintChar

\XD@threedignum

The \PrintChar command has the syntax

\PrintChar{〈8-bit number〉}

where 〈8-bit number〉 is a TEX number in the range 0–255. For arguments in the
range 0–31, \PrintChar prints ‘^^@ ’–‘^^_ ’. For an argument in the range 32–126,
\PrintChar calls \PrintVisibleChar which by default simply does \char on that
argument (but which can be redefined if the font set-up requires it); in particu-
lar, \PrintChar{32} should print a “visible space” character. \PrintChar{127}
prints ‘^^? ’. For arguments in the range 128–255, \PrintChar prints ‘^^80 ’–
‘^^ff ’.

\PrintChar is robust. \PrintChar also has a special behaviour when it is
written to a file (when \protect is \noexpand): it makes sure that the argument
consists of three decimal digits, to ensure external sorting gets it right.
23 \@ifundefined{PrintChar}{}{%

24 \PackageInfo{xdoc2}{Redefining \protect\PrintChar}%

25 }

26 \def\PrintChar{%

27 \ifx \protect\@typeset@protect

28 \expandafter\XD@PrintChar

29 \else\ifx \protect\noexpand

30 \string\PrintChar

31 \expandafter\expandafter \expandafter\XD@threedignum

32 \else

33 \noexpand\PrintChar

34 \fi\fi

35 }

\XD@threedignum does a \number on its argument, possibly prepends a 0 or
two, and wraps it all up in a “group” (the braces have category other, not beginning
and end of group).
36 \edef\XD@threedignum#1{%

37 \string{%

38 \noexpand\ifnum #1<100 %

39 \noexpand\ifnum #1<10 0\noexpand\fi

40 0%

41 \noexpand\fi

42 \noexpand\number#1%

43 \string}%

44 }

\XD@PrintChar

\InvisibleCharPrefix

\InvisibleCharSuffix

\XD@PrintChar manages the typesetting for \PrintChar. It distinguishes between
visible characters (code 32–126) and invisible characters. The visible characters
are typeset directly using \PrintVisibleChar, whereas the invisible characters
are typeset as ^^-sequences.

The macros \InvisibleCharPrefix and \InvisibleCharSuffix begin and
end a ^^-sequence. \InvisibleCharPrefix should print the actual ^^, but it
may also for example select a new font for the ^^-sequence (such font changes are
restored at the end of \XD@PrintChar).
45 \def\XD@PrintChar#1{%

46 \leavevmode

10

47 \begingroup

48 \count@=#1\relax

49 \ifnum \@xxxii>\count@

50 \advance \count@ 64%

51 \InvisibleCharPrefix

52 \PrintVisibleChar\count@

53 \InvisibleCharSuffix

54 \else\ifnum 127>\count@

55 \PrintVisibleChar\count@

56 \else

57 \InvisibleCharPrefix

58 \ifnum 127=\count@ \PrintVisibleChar{63}\else

59 \@tempcnta=\count@

60 \divide \count@ \sixt@@n

61 \@tempcntb=\count@

62 \multiply \count@ \sixt@@n

63 \advance \@tempcnta -\count@

64 \advance \@tempcntb \ifnum 9<\@tempcntb 87\else 48\fi

65 \advance \@tempcnta \ifnum 9<\@tempcnta 87\else 48\fi

66 \char\@tempcntb \char\@tempcnta

67 \fi

68 \InvisibleCharSuffix

69 \fi\fi

70 \endgroup

71 }

72 \newcommand\InvisibleCharPrefix{%

73 \/\em

74 \PrintVisibleChar{‘\^}\PrintVisibleChar{‘\^}%

75 }

76 \newcommand\InvisibleCharSuffix{\/}

There are some alternative methods for making hexadecimal numbers which should
perhaps be mentioned. The LATEX kernel contains a macro \hexnumber@ which
uses \ifcase to produce one hexadecimal digit, but that uses upper case let-
ters, and things like ‘8E’ look extremely silly if the upper case letters doesn’t
line with the digits. Applying \meaning to a 〈chardef token〉 or 〈mathchardef
token〉 expands to \char"〈hex 〉 and \mathchar"〈hex 〉 respectively, where 〈hex 〉 is
the corresponding number in hexadecimal, but that too has upper case A–F and
leading zeros are removed.

\PrintVisibleChar The \PrintVisibleChar command should print the visible ASCII character whose
character code is given in the argument. There are currently two definitions of
this command: one which uses the TEX primitive \char and one which goes via
the “LATEX internal character representation” for the character. By default xdoc
uses the former definition, but if xdoc is passed the notrawchar option then it
will use the latter.

The reason there are two definitions is a deficiency in how the NFSS encod-
ing attribute has been assigned to fonts; even though the encodings of Computer
Modern Roman and Computer Modern Typewriter are quite different, LATEX2ε
uses the OT1 encoding for both. As a result of this, the LATEX internal representa-
tion will in some important cases use characters from non-typewriter fonts despite
the fact that typewriter forms are immediately available. Since the cases in which
the \char primitive produces results as least as good as those made through the

11

LATEX internal character representation includes those that the current font is T1-
encoded or an OT1-encoded nonitalic typewriter font, the shorter \char primitive
defintion has been made the default.

For compability with prototype version 2.0 of xdoc, the replacement text for
\PrintVisibleChar that uses LATEX internal character representation can alter-
natively be extracted by docstripping xdoc2.dtx with the option 〈internals〉.
77 \@ifpackagewith{xdoc2}{notrawchar}{%

78 \newcommand\PrintVisibleChar[1]{%

79 〈/pkg〉
80 〈∗pkg | internals〉
81 \ifcase #1%

82 \or\or\or\or\or\or\or\or \or\or\or\or\or\or\or\or

83 \or\or\or\or\or\or\or\or \or\or\or\or\or\or\or\or

84 % "20

85 \textvisiblespace \or!\or\textquotedbl \or\#\or\textdollar

86 \or\%\or\&\or\textquoteright\or(\or)\or*\or+\or,\or-\or.\or/%

87 \or % "30

88 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or:\or;\or

89 \textless\or=\or\textgreater\or?%

90 \or % "40

91 @\or A\or B\or C\or D\or E\or F\or G\or

92 H\or I\or J\or K\or L\or M\or N\or O%

93 \or % "50

94 P\or Q\or R\or S\or T\or U\or V\or W\or X\or Y\or Z\or [\or

95 \textbackslash \or]\or\textasciicircum \or\textunderscore

96 \or % "60

97 \textquoteleft \or a\or b\or c\or d\or e\or f\or g\or h\or

98 i\or j\or k\or l\or m\or n\or o%

99 \or % "70

100 p\or q\or r\or s\or t\or u\or v\or w\or x\or y\or z\or

101 \textbraceleft \or\textbar \or\textbraceright \or

102 \textasciitilde

103 \fi

104 }%

105 〈/pkg | internals〉
106 〈∗pkg〉
107 }{%

108 \newcommand\PrintVisibleChar[1]{\char #1\relax}%

109 }

\Bslash It turns out that it is very common to say \PrintChar{92} (backslash), so a macro
which expands to that reduces typing.

110 \newcommand\Bslash{\PrintChar{92}}

3.2 Rendering character strings harmless

Replacing all problematic characters with \PrintChar calls certainly makes the
strings easier to manage, but actually making those replacements is a rather com-
plicated task. Therefore this subsection contains the macros necessary for doing
these replacements.

The first problem is how to efficiently recognise the problematic characters.
A first solution which gets rather far is to mainly look in the \catcode register

12

for that character and keep the character as it is if the category found there is
11 or 12, but replace it with a \PrintChar command if the category is anything
else. Two extra tests can be performed to take care of invisible ASCII, and the
makeindex metacharacters can be cared for by locally changing their catcodes for
when the string is processed. Unfortunately this doesn’t work inside macrocode
environments (where one would like to use it for the macro cross-referencing) since
that environment changes the catcodes of several characters from being problem-
atic to being unproblematic and vice versa.4 As furthermore harmless character
strings should be possible to move to completely different parts of the document,
the test used for determining whether a character is problematic should yield the
same result throughout the document.

Because of this, I have chosen a brute strength solution: build a table (indexed
by character code) that gives the harmless form of every character. This table is
stored in the \XD@harmless@〈code〉 family of control sequences, where the 〈code〉\XD@harmless@〈code〉
is in the range 0–255. Assignments to this table are global. In principle, the table
should not change after the preamble, but there is a command \SetHarmState
which can be used at any time for setting a single table entry. This could be
useful for documents which, like for example [3], have nonstandard settings of
\catcodes.

\SetHarmState The \SetHarmState command takes three arguments:

\SetHarmState{〈type〉}{〈char〉}{〈harm〉}

〈char〉 is the character whose entry should be set. 〈type〉 is a flag which specifies
what format 〈char〉 is given in. If 〈type〉 is \BooleanTrue then 〈char〉 is the TEX
〈number〉 of the table entry to set, and if 〈type〉 is \BooleanFalse then 〈char〉
is something which expands to a single character token whose entry should be
set. The expansion is carried out by an \edef, so it needs not be only one level.
〈harm〉 is \BooleanTrue if the character is problematic and \BooleanFalse if it
is not.

The 〈type〉 and 〈harm〉 arguments are currently not subject to any expansion.
In the future they probably should be, but I don’t want to make assumptions
about the actual definitions of \BooleanTrue and \BooleanFalse at this point.

111 \begingroup

112 \catcode\z@=12

113 \@ifdefinable\SetHarmState{

114 \gdef\SetHarmState#1#2#3{%

115 \begingroup

116 \ifx #1\BooleanTrue

117 \count@=#2\relax

118 \else

119 \protected@edef\@tempa{#2}%

120 \count@=\expandafter‘\@tempa\relax

121 \fi

122 \ifx #3\BooleanTrue

123 \edef\@tempa{\noexpand\PrintChar{\the\count@}}%

124 \else

125 \uccode\z@=\count@

4As the entire macrocode environment is tokenized by the expansion of \xmacro@code one
could alternatively solve this problem by reimplementing the macrocode environment so that
normal catcodes are in force when the contents are being typeset.

13

126 \uppercase{\def\@tempa{^^@}}%

127 \fi

128 \global\expandafter\let

129 \csname XD@harmless@\the\count@ \endcsname \@tempa

130 \endgroup

131 }%

132 }

133 \endgroup

Initializing the \XD@harmless@〈code〉 table is a straightforward exercise of \loop\XD@harmless@〈code〉
. . . \repeat.

134 〈∗!economical〉
135 \count@=\z@

136 \loop

137 \expandafter\xdef \csname XD@harmless@\the\count@ \endcsname

138 {\noexpand\PrintChar{\the\count@}}%

139 \advance \count@ \@ne

140 \ifnum 33>\count@ \repeat

141 〈/!economical〉
142 〈economical〉\count@=\@xxxii
143 \begingroup

144 \catcode\z@=12\relax

145 \@firstofone{%

146 \endgroup

147 \loop

148 \if \ifnum 11=\catcode\count@ 1\else \ifnum 12=\catcode\count@

149 1\else 0\fi\fi 1%

150 \uccode\z@=\count@

151 \uppercase{\def\@tempa{^^@}}%

152 \else

153 \edef\@tempa{\noexpand\PrintChar{\the\count@}}%

154 \fi

155 \global\expandafter\let

156 \csname XD@harmless@\the\count@ \endcsname \@tempa

157 \advance \count@ \@ne

158 \ifnum 127>\count@ \repeat

159 }

160 〈∗!economical〉
161 \loop

162 \expandafter\xdef \csname XD@harmless@\the\count@ \endcsname

163 {\noexpand\PrintChar{\the\count@}}%

164 \ifnum \@cclv>\count@

165 \advance \count@ \@ne

166 \repeat

167 〈/!economical〉
Marking the makeindex metacharacters as harmful is deferred until \begin
{document}, since it is not unreasonable that these are changed in the pream-
ble.

168 \AtBeginDocument{%

169 \SetHarmState\BooleanFalse\actualchar\BooleanTrue

170 \SetHarmState\BooleanFalse\encapchar\BooleanTrue

171 \SetHarmState\BooleanFalse\levelchar\BooleanTrue

172 \SetHarmState\BooleanFalse\quotechar\BooleanTrue

14

173 }

doc’s \verbatimchar is not harmful, since it isn’t used at all in xdoc.

\MakeHarmless To render a character string harmless, you do

\MakeHarmless{〈macro〉}{〈string〉}

This locally assigns to 〈macro〉 the harmless character string which corresponds
to 〈string〉. During the conversion the converted part of the string is stored in
\toks@, but that is local to \MakeHarmless.

174 \def\MakeHarmless#1#2{%

175 \begingroup

176 \toks@={}%

177 \escapechar=‘\\%

178 \XD@harmless@#2\XD@harmless@

179 \expandafter\endgroup \expandafter\def \expandafter#1%

180 \expandafter{\the\toks@}%

181 }

\XD@harmless@iii

\XD@harmless@iv

\XD@harmless@v

\XD@harmless@vi

What one has to be most careful about when rendering strings harmless are the
space tokens, since many of TEX’s primitives gladly snatches an extra space (or
more) where you don’t want them to in this case. Macro parameters can be
particularly dangerous, as TEX will skip any number of spaces while looking for
the replacement text for an undelimited macro argument. Therefore the algo-
rithm for rendering a character token harmless begins (\XD@harmless@iii) with
\stringing the next token in the string—this preserves the character code and sets
the category to 12 for all characters except the ASCII space, which gets category
10 (space)—and then \futurelet is used to peek at the next token. If it is a space
token (\XD@harmless@iv) then the character code is 32 and the actual space can
be gobbled (\XD@harmless@v), and if it isn’t then the next token can be grabbed
in an undelimited macro argument (\XD@harmless@vi). In either case, the harm-
less form is given by the \XD@harmless@〈code〉 table entry (in \XD@harmless@v
or \XD@harmless@vi).

182 \def\XD@harmless@iii{%

183 \expandafter\futurelet \expandafter\@let@token

184 \expandafter\XD@harmless@iv \string

185 }

186 \def\XD@harmless@iv{%

187 \ifx \@let@token\@sptoken

188 \expandafter\XD@harmless@v

189 \else

190 \expandafter\XD@harmless@vi

191 \fi

192 }

193 \begingroup

194 \catcode‘3=\catcode‘a

195 \catcode‘2=\catcode‘a

196 \@firstofone{\gdef\XD@harmless@v} {%

197 \toks@=\expandafter{\the \expandafter\toks@ \XD@harmless@32}%

198 \XD@harmless@

199 }

200 \endgroup

15

In the 〈economical〉 (with hash table space) variant implementation the \XD@harmless@〈code〉
table has entries only for the characters in visible ASCII. Thus the harmless forms
of characters outside visible ASCII must be constructed on the fly.

201 \def\XD@harmless@vi#1{%

202 〈∗economical〉
203 \if \ifnum ‘#1<\@xxxii 1\else \ifnum ‘#1>126 1\else 0\fi\fi 1%

204 \toks@=\expandafter{\the\expandafter\toks@

205 \expandafter\PrintChar \expandafter{\number‘#1}%

206 }%

207 \else

208 〈/economical〉
209 \toks@=\expandafter{\the\expandafter\expandafter\expandafter\toks@

210 \csname XD@harmless@\number‘#1\endcsname}%

211 〈economical〉 \fi

212 \XD@harmless@

213 }

\XD@harmless@

\XD@harmless@i

\XD@harmless@ii

But that is not all \MakeHarmless can do. In some cases (as for example when one
is describing a family of control sequences) one might want to include things in
the string that are not simply characters, but more complex items—such as for ex-
ample \meta constructions like 〈code〉. To accommodate for this, \XD@harmless@
(which is the first step in converting a token) always begins by checking whether
the next token to render harmless is a control sequence. If it is then it is checked
(in \XD@harmless@ii) whether the control sequence \XD@harmless\〈cs-name〉,\XD@harmless\〈cs-name〉
where 〈cs-name〉 is the name without \ of the control sequence encountered, is
defined. If it isn’t then the encountered control sequence is \stringed and conver-
sion continues as above, but if it is defined then the encountered control sequence
begins such a more complex item.

214 \def\XD@harmless@{\futurelet\@let@token \XD@harmless@i}

215 \def\XD@harmless@i{%

216 \ifcat \noexpand\@let@token \noexpand\XD@harmless@

217 \expandafter\XD@harmless@ii

218 \else

219 \expandafter\XD@harmless@iii

220 \fi

221 }

222 \def\XD@harmless@ii#1{%

223 \@ifundefined{XD@harmless\string#1}{%

224 \expandafter\XD@harmless@vi \string#1%

225 }{\csname XD@harmless\string#1\endcsname}%

226 }

\XD@harmless\XD@harmless@ A control sequence \XD@harmless\〈cs-name〉 is responsible for interpreting the
string item that begins with the control sequence \〈cs-name〉 and appending a
harmless representation of it to \toks@. Harmless representations should only
contain robust control sequences and they must not rely on changing any catcodes.
Normal \XD@harmless\〈cs-name〉 control sequences must also end by inserting
\XD@harmless@ in front of what remains of the string after the complex string
item has been removed. This sees to that the rest of the string is also rendered
harmless. The only such control sequence which does not insert \XD@harmless@
is \XD@harmless\XD@harmless@, but that is as it should be since \MakeHarmless

16

itself appends a \XD@harmless@ to every character string it should convert to mark
the end of it.

227 \expandafter\let

228 \csname XD@harmless\string\XD@harmless@\endcsname \@empty

\XD@harmless\PrintChar It is occasionally convenient to use a \PrintChar command as part of a string
that is to be rendered harmless instead of using the raw character. The definition
is very similar to that of \XD@harmless@vi.

229 \@namedef{XD@harmless\string\PrintChar}#1{%

230 〈∗economical〉
231 \if \ifnum #1<\@xxxii 1\else \ifnum #1>126 1\else 0\fi\fi 1%

232 \toks@=\expandafter{\the\expandafter\toks@

233 \expandafter\PrintChar \expandafter{\number#1}%

234 }%

235 \else

236 〈/economical〉
237 \toks@=\expandafter{\the\expandafter\expandafter\expandafter\toks@

238 \csname XD@harmless@\number#1\endcsname}%

239 〈economical〉 \fi

240 \XD@harmless@

241 }

3.3 Interaction with mechanisms that make characters prob-
lematic

If additional visible characters are made problematic after the initial \XD@harmless@〈code〉
table is formed then problems may indeed arise, because some character which is
expected to be unproblematic when read from (for example) an .ind file will ac-
tually not be. In fortunate cases this will only lead to that characters will print
strangely or not at all, but it can quite conceivably lead to errors that prevent
further typesetting and it should therefore be prevented if possible.

Right now, I can think of two mechanisms that make characters problematic,
and both do that by making them active. One is the shorthand mechanism of
babel, but I think I’ll delay implementing any interaction with that until some
later prototype; I don’t know it well enough and anyway I don’t think it is that
likely to cause any problems. The other mechanism is the short verb mechanism
of doc itself, and this should be taken care of right away.

The main difficulty is that the \XD@harmless@〈code〉 table should be the same
throughout the document body (otherwise you may get more than one index entry
for the same thing, with index references arbitrarily distributed between the two)
whereas short verb characters can be made and deleted at any time. It would
actually be wrong to always have the \XD@harmless@〈code〉 table entry mirroring
the current state of the character! Instead a character will be considered as prob-
lematic even if it is only made problematic temporarily (with the exception for
characters that are made problematic in verbatim environments and the like—the
index file isn’t being read in while those catcodes are active). Since it is impossible
to know in the beginning of a document whether a character will be made a short
verb character at some later point, the modifications to the \XD@harmless@〈code〉
table that will be made because of short verb characters will (at least partially)
be based on which characters were made short verbs on the previous run.

17

\SetCharProblematic The \SetCharProblematic command should be called by commands which make
a character problematic (e.g. makes it active) in the general context (commands
which make some character problematic only in some very special context, such
as the verbatim environment, need not call \SetCharProblematic). The syntax
is

\SetCharProblematic{〈code〉}

and it sets the “harm state” of the character whose code is 〈code〉 to problematic.
When \SetCharProblematic is called in the preamble, it sets the harm state

on the current run. When it is called in the document body however, it sets the
harm state on the next run by writing a \SetHarmState command to the .aux
file. This is done to ensure that the contents of the \XD@harmless@〈code〉 table
doesn’t change during the body of a document.

242 \newcommand\SetCharProblematic[1]{%

243 \SetHarmState\BooleanTrue{#1}\BooleanTrue

244 }

245 \AtBeginDocument{%

246 \gdef\SetCharProblematic#1{%

247 \if@filesw

248 \immediate\write\@auxout{\string\SetHarmState

249 \string\BooleanTrue {\number#1}\string\BooleanTrue}%

250 \fi

251 }%

252 }

\add@specials \MakeShortVerb’s call to \SetCharProblematic is put in the \add@specials
macro, which anyway already adds the character to the \dospecials and
\@sanitize lists. Only familiar definitions of \add@special are changed.

253 \def\@tempa#1{%

254 \rem@special{#1}%

255 \expandafter\gdef\expandafter\dospecials\expandafter

256 {\dospecials \do #1}%

257 \expandafter\gdef\expandafter\@sanitize\expandafter

258 {\@sanitize \@makeother #1}}

259 \ifx \@tempa\add@special

260 \def\add@special#1{%

261 \rem@special{#1}%

262 \expandafter\gdef\expandafter\dospecials\expandafter

263 {\dospecials \do #1}%

264 \expandafter\gdef\expandafter\@sanitize\expandafter

265 {\@sanitize \@makeother #1}%

266 \SetCharProblematic{‘#1}%

267 }

268 \else

269 \PackageWarningNoLine{xdoc2}{Unfamiliar definition of

270 \protect\add@special;\MessageBreak the macro was not patched}

271 \fi

18

4 Indexing

Each type of index entry doc produces is implemented through a different in-
dexing command.5 This might be manageable when there are only macros and
environments to distinguish between, but it soon gets unmanageable if more en-
vironments of this type are added. Therefore all xdoc index entries are made with
a single command—\IndexEntry.

4.1 New basic indexing commands

\IndexEntry

\LevelSame

\LevelSorted

\XD@if@index

The \IndexEntry command writes one index entry to the .idx file. It takes three
arguments:

\IndexEntry{〈entry text〉}{〈encap〉}{〈thenumber〉}

The 〈entry text〉 contains the text for the entry. It is a nonempty sequence of
commands in which each item is one of

\LevelSame{〈text〉}
\LevelSorted{〈sort key〉}{〈text〉}

Each such item specifies one level of the entry that is to be written. In the case of
\LevelSorted, the 〈text〉 is what will be written in the sorted index at that level
and 〈sort key〉 is a key which the index-sorting program should use for sorting
that entry at that level. In the case of \LevelSame, the 〈text〉 is used both as sort
key and contents of entry in the sorted index. The first item is for the topmost
level and each subsequent item is for the next sublevel. The 〈entry text〉 will be
fully expanded by the \IndexEntry command.

〈thenumber〉 is the number (if any) that the index entry refers to. It can con-
sist of explicit characters, but it can also be a \the〈counter〉 control sequence
or a macro containing such control sequences. 〈thenumber〉 is fully expanded by
the \IndexEntry command, with the exception for occurrences of \thepage—
expansion of \thepage will instead be delayed until the page is shipped out,
so that the page numbers will be right. Note: 〈thenumber〉 must not contain
any formatting that will upset the index-sorting program. doc’s default def-
inition of \theCodelineNo contains such formatting, so one must instead use
\thecodelineno as 〈thenumber〉 in that case.

〈encap〉 is the name of the encapsulation scheme that should be applied to
〈thenumber〉. All encapsulation schemes that have been implemented instruct the
index sorting program to wrap up 〈thenumber〉 in some code that gives it special
formatting when the sorted index is written, but one could also use the 〈encap〉 to
specify ‘beginning of range’ and ‘end of range’ index entries. Use none as 〈encap〉none

if you don’t want any special formatting.
Note: \IndexEntry uses \@tempa internally, so you cannot use that in argu-

ment #2 or #3. Using it in argument #1 presents no problems, though.
272 \newcommand\IndexEntry[3]{%

273 \@bsphack

274 \begingroup

275 \def\LevelSame##1{\levelchar##1}%

5Sometimes there are even more than one command per entry type—the \SpecialIndex,
\LeftBraceIndex, \RightBraceIndex, and \PercentIndex commands all generate entries of the
same type.

19

276 \def\LevelSorted##1##2{\levelchar##1\actualchar##2}%

277 \protected@edef\@tempa{#1}%

278 \protected@edef\@tempa{\expandafter\@gobble\@tempa\@empty}%

279 \@ifundefined{XD@idxencap@#2}{%

280 \PackageError{xdoc2}{Index entry encap ‘#2’ unknown}\@eha

281 }{%

282 \XD@if@index{%

283 \csname XD@idxencap@#2\endcsname\@tempa{#3}%

284 }{}%

285 }%

286 \endgroup

287 \@esphack

288 }

\IndexEntry does (like \index) not contribute any material to the current list if
indices aren’t being made.

\XD@if@index is \@firstoftwo if index entries are being written and \@second-
oftwo if they are not.

289 \let\XD@if@index=\@secondoftwo

In LATEX2ε∗, the \IndexEntry command should probably be implemented
using templates, e.g. the 〈encap〉s could be names of instances.

\levelsame

\levelsorted

These names were used for \LevelSame and \LevelSorted respectively in proto-
type version 2.0, but the macros should belong to the same capitalization class
as \IndexEntry so their names were changed in prototype version 2.1. The old
names \levelsame and \levelsorted will continue to work in xdoc2, though.

290 〈∗xdoc2〉
291 \newcommand*\levelsame{\LevelSame}

292 \newcommand*\levelsorted{\LevelSorted}

293 〈/xdoc2〉

Macros in the family \XD@idxencap@〈encap〉 takes two arguments as follows\XD@idxencap@〈encap〉

\XD@idxencap@〈encap〉 {〈entry〉} {〈thenumber〉}

They should write an entry with the 〈encap〉 encapsulation of the 〈thenumber〉 to
the index file. They need not check whether index generation is on or not, but
they must be subject to the LATEX kernel @filesw switch. They must expand both
arguments fully at the time of the command, with the exception for the control
sequence \thepage, which should not be expanded until the page on which the
write appears is output. Both these conditions are met if the macro is implemented
using \protected@write.

\XD@idxencap@none

\XD@idxencap@main

\XD@idxencap@usage

These macros implement the encapsulation schemes that are used in doc.
294 \def\XD@idxencap@none#1#2{%

295 \protected@write\@indexfile{}{\XD@index@keyword{#1}{#2}}%

296 }

297 \def\XD@idxencap@main#1#2{%

298 \protected@write\@indexfile{}%

299 {\XD@index@keyword{#1\encapchar main}{#2}}%

300 }

20

301 \def\XD@idxencap@usage#1#2{%

302 \protected@write\@indexfile{}%

303 {\XD@index@keyword{#1\encapchar usage}{#2}}%

304 }

\XD@index@keyword The \XD@index@keyword is a hook for changing the index entry keyword (the text
that is put in front of every index entry in the .idx file). It is changed by e.g. the
docindex package [2].

305 \@ifundefined{XD@index@keyword}{%

306 \edef\XD@index@keyword{\@backslashchar indexentry}%

307 }{}

\CodelineIndex

\PageIndex

\TheXDIndexNumber

The \CodelineIndex and \PageIndex commands do the same things as in doc,
but work with the xdoc internals instead of the doc ones. \TheXDIndexNumber is
used as 〈thenumber〉 argument to \IndexEntry by all indexing commands that
would have used \special@index in doc.

308 \renewcommand\CodelineIndex{%

309 \makeindex

310 \let\XD@if@index=\@firstoftwo

311 \codeline@indextrue

312 \def\TheXDIndexNumber{\thecodelineno}%

313 }

314 \renewcommand\PageIndex{%

315 \makeindex

316 \let\XD@if@index=\@firstoftwo

317 \codeline@indexfalse

318 \def\TheXDIndexNumber{\thepage}%

319 }

320 \def\TheXDIndexNumber{??}

4.2 Making good sort keys

A common nuisance in doc indices is that many macros are sorted by parts of the
name that do not carry any interesting information. In the LATEX kernel many
macro names begin with a silent @, whereas the names of private macros in many
packages (including this one) begin with some fixed abbreviation of the package
name. Since such prefixes usually are harder to remember than the rest of the
macro name, it is not uncommon that the index position one thinks of first isn’t
the one where the macro actually is put. Hence a mechanism for removing such
annoying prefixes from the macro names might be useful, and that is presicely
what is defined below.

The actual mechanism is based on having a set of macros called operators
which operate on the harmless character string that is to become the sort key.
Each operator has a specific prefix string which it tries to match against the
beginning of the to-be sort key, and if they match then the prefix is moved to the
end of the sort key. Automatically constructed operators (see below) have names
of the form \XD@operatorA@〈prefix 〉, but operators can be given arbitrary names.\XD@operatorA@〈prefix 〉

\XD@operators@list The \XD@operators@list macro contains the list of all currently active operators.
321 \let\XD@operators@list\@empty

21

The operators do all their work at expand-time. When an operator macro is
expanded, it is in the context

〈operator〉 〈subsequent operators〉 \@firstofone 〈sort key text〉 \@empty

There may not be any \@emptys or \@firstofones amongst the 〈subsequent
operators〉 or in the 〈sort key text〉. This should expand to

〈subsequent operators〉 \@firstofone 〈operated-on sort key text〉 \@empty

The purpose of the \@firstofone after the 〈subsequent operators〉 is to remove
any spaces that some operator might have put in front of the sort key. This
happens if the entire sort key text has been ignored by some operator.

\MakeSortKey The \MakeSortKey command is called to make the acutal sort key. The syntax of
this command is

\MakeSortKey{〈macro〉}{〈text〉}{〈extras〉}

This locally defines 〈macro〉 to be the sort key that the currently active operators
manufacture from 〈text〉. The 〈extras〉 argument can contain additional assign-
ments needed for handling macros with special harmless forms, such as \meta.

322 \newcommand\MakeSortKey[3]{%

323 \begingroup

324 \def\PrintChar{\string\PrintChar\XD@threedignum}%

325 #3%

326 \unrestored@protected@xdef\@gtempa{#2}%

327 \endgroup

328 \protected@edef#1{%

329 \expandafter\XD@operators@list \expandafter\@firstofone

330 \@gtempa\@empty

331 }%

332 }

\XD@make@operator The \XD@make@operator macro takes a harmless character sequence as argument,
constructs the corresponding operator, and returns the operator control sequence
in the \toks@ token list register.

More precisely, given a harmless character string 〈string〉, \XD@make@operator
will construct a sequence of other tokens 〈text〉 from 〈string〉 by replacing all
\PrintChar commands in the same way as \MakeSortKey does. Then it defines
the macro \XD@operatorA@〈text〉 to be

#1 \@firstofone#2 \@empty → \XD@operatorB@〈text〉
\@firstofone#2 \@firstofone 〈text〉 \@firstofone \relax#1
\@empty

and the macro \XD@operatorB@〈text〉 to do

#1 \@firstofone 〈text〉#2 \@firstofone#3 \relax#4 \@empty →

#4
{

\@firstofone#2 〈text〉 \@empty if #1 is empty
#1 \@empty otherwise

333 \def\XD@make@operator#1{%

334 \begingroup

335 \def\PrintChar{\string\PrintChar\XD@threedignum}%

22

336 \let\protect\@gobble

337 \xdef\@gtempa{#1}%

338 \endgroup

339 \expandafter\edef \csname XD@operatorA@\@gtempa\endcsname

340 ##1\@firstofone##2\@empty{%

341 \expandafter\noexpand \csname XD@operatorB@\@gtempa\endcsname

342 \noexpand\@firstofone ##2\noexpand\@firstofone \@gtempa

343 \noexpand\@firstofone \relax##1\noexpand\@empty

344 }%

345 \expandafter\edef \csname XD@operatorB@\@gtempa \expandafter\endcsname

346 \expandafter##\expandafter1\expandafter\@firstofone \@gtempa

347 ##2\@firstofone##3\relax##4\@empty{%

348 \noexpand\ifx $##1$%

349 \noexpand\expandafter \noexpand\@firstoftwo

350 \noexpand\else

351 \noexpand\expandafter \noexpand\@secondoftwo

352 \noexpand\fi{%

353 ##4\noexpand\@firstofone ##2 \@gtempa

354 }{##4##1}%

355 \noexpand\@empty

356 }%

357 \toks@=\expandafter{\csname XD@operatorA@\@gtempa\endcsname}%

358 }

\DoNotIndexBy The \DoNotIndexBy command has the syntax

\DoNotIndexBy{〈morpheme〉}

It causes the 〈morpheme〉 to be put last in the index sort key for each macro name
which begins by 〈morpheme〉. This can be used to ignore e.g. “silent” @s at the
beginning of a macro name.

359 \newcommand\DoNotIndexBy[1]{%

360 \MakeHarmless\@tempa{#1}%

361 \XD@make@operator\@tempa

362 \expandafter\def \expandafter\XD@operators@list \expandafter{%

363 \the\expandafter\toks@ \XD@operators@list

364 }%

365 }

4.3 Reimplementations of doc indexing commands

The doc indexing commands aren’t that interesting in xdoc, since they take ‘raw’
control sequences as arguments rather than the harmless strings that the xdoc
commands will want to put in the index. But it can be instructive to see how they
would be implemented in this context.

\SortIndex The \SortIndex takes a sort key and an entry text as argument, and writes a
one-level index entry for that.

366 \renewcommand*\SortIndex[2]{%

367 \IndexEntry{\LevelSorted{#1}{#2}}{none}{\thepage}%

368 }

\SpecialIndex

\SpecialMainIndex

\SpecialUsageIndex

The \SpecialIndex, \SpecialMainIndex, and \SpecialUsageIndex commands
take a control sequence (or more often something which looks like a \stringed

23

control sequence) as their only argument. The entry text is that item verbatim,
and the initial backslash is ignored in sorting (\SpecialIndex always ignores
the first character regardless of whether it is a backslash or not, the other two
checks first). \SpecialIndex has none formatting, \SpecialMainIndex has main
formatting, and \SpecialUsageIndex has usage formatting of the index number.

Although these definitions will (or at least are supposed to) yield the same
typeset results as the doc definitions in the mainstream cases, I doubt that they
will do so in all cases. At any rate, they shouldn’t perform worse.

369 \renewcommand\SpecialIndex[1]{%

370 \expandafter\MakeHarmless \expandafter\@tempa

371 \expandafter{\string#1}%

372 \IndexEntry{%

373 \LevelSorted{%

374 \expandafter\XD@unbackslash \@tempa\@empty

375 }{\texttt{\@tempa}}%

376 }{none}{\TheXDIndexNumber}%

377 }

378 \renewcommand\SpecialMainIndex[1]{%

379 \expandafter\MakeHarmless \expandafter\@tempa

380 \expandafter{\string#1}%

381 \IndexEntry{%

382 \LevelSorted{%

383 \expandafter\XD@unbackslash \@tempa\@empty

384 }{\texttt{\@tempa}}%

385 }{main}{\TheXDIndexNumber}%

386 }

387 \renewcommand\SpecialUsageIndex[1]{%

388 \expandafter\MakeHarmless \expandafter\@tempa

389 \expandafter{\string#1}%

390 \IndexEntry{%

391 \LevelSorted{%

392 \expandafter\XD@unbackslash \@tempa\@empty

393 }{\texttt{\@tempa}}%

394 }{usage}{\thepage}%

395 }

\XD@unbackslash

\XD@unbackslash@

\XD@unbackslash is a utility macro which removes the first character from a harm-
less character string if that character is a backslash (i.e., if it is \PrintChar{92}).
The doc commands have traditionally used \@gobble for doing this, but the
\@SpecialIndexHelper@ macro that was comparatively recently added tries to
do better.

396 \def\XD@unbackslash#1{%

397 \ifx \PrintChar#1%

398 \expandafter\XD@unbackslash@

399 \else

400 \expandafter#1%

401 \fi

402 }

403 \def\XD@unbackslash@#1{\ifnum #1=92 \else \PrintChar{#1}\fi}

\SpecialMainEnvIndex

\SpecialEnvIndex

These are similar to the above, but doc thinks that the arguments don’t need any
special care, and it produces two index entries per command. \SpecialEnvIndex

24

should really have been called \SpecialUsageEnvIndex.
404 \renewcommand\SpecialMainEnvIndex[1]{%

405 \IndexEntry{\LevelSorted{#1}{\texttt{#1} (environment)}}{main}%

406 {\TheXDIndexNumber}%

407 \IndexEntry{\LevelSame{environments:}\LevelSorted{#1}{\texttt{#1}}}%

408 {main}{\TheXDIndexNumber}%

409 }

410 \renewcommand\SpecialEnvIndex[1]{%

411 \IndexEntry{\LevelSorted{#1}{\texttt{#1} (environment)}}{usage}%

412 {\thepage}%

413 \IndexEntry{\LevelSame{environments:}\LevelSorted{#1}{\texttt{#1}}}%

414 {usage}{\thepage}%

415 }

\it@is@a

\XD@special@index

The \it@is@a macro is a specialized version of \SpecialIndex, but the format
of its argument is quite different. After full expansion the argument will become
a single category 12 token (〈t〉, say), and the control sequence for which an entry
should be made is \〈t〉. doc uses \it@is@a for control sequences with one-character
names. Note: The following definition should really have special code for the
〈economical〉 docstrip module, but I don’t think that is necessary since the doc
macros which used \it@is@a will be redefined so that they don’t.

\XD@special@index does the same thing as \SpecialIndex, but it does it
with xdoc datatypes—the argument must be a harmless character string that does
not include the initial escape (backslash).

416 \def\it@is@a#1{%

417 \edef\@tempa{#1}%

418 \XD@special@index{\csname XD@harmless@\number

419 \expandafter‘\@tempa\endcsname}%

420 }

421 \def\XD@special@index#1{%

422 \MakeSortKey\@tempa{#1}{}%

423 \IndexEntry{\LevelSorted{\@tempa}{\texttt{\Bslash#1}}}{none}%

424 {\TheXDIndexNumber}%

425 }

\LeftBraceIndex

\RightBraceIndex

\PercentIndex

\OldMakeIndex

More specialised forms of \SpecialIndex. The \OldMakeIndex command can
safely be made a no-op.

426 \renewcommand\LeftBraceIndex{\XD@special@index{\PrintChar{123}}}

427 \renewcommand\RightBraceIndex{\XD@special@index{\PrintChar{125}}}

428 \renewcommand\PercentIndex{\XD@special@index{\PrintChar{37}}}

429 \let\OldMakeIndex\relax

\@wrindex Finally, while we’re at redefining indexing commands, let’s redefine \@wrindex as
well to ensure that the index entry keyword is the same for all indexing commands.

430 \def\@wrindex#1{%

431 \protected@write\@indexfile{}{\XD@index@keyword{#1}{\thepage}}%

432 \endgroup

433 \@esphack

434 }

25

5 Cross-referencing

5.1 Scanning macrocode for TEX control sequences

The cross-referencing mechanism in doc isn’t problematic in the same way as the
indexing mechanism is, so one could pretty much leave it as it is, but there are
things that are better done differently when the basic indexing commands are
based on harmless character strings. Rather than storing control sequence names
(without escape character) as sequences of category 11 tokens, they will be stored
as the equivalent harmless character strings.

\macro@switch As in doc, \macro@switch determines whether the control sequence name
that follows consists of letters (call \macro@name) or a single non-letter (call
\short@macro). Unlike doc, xdoc accumulates the characters from a multiple-
letter control sequence name in a token register (\@toks), which is why that is
cleared here.

435 \def\macro@switch{%

436 \ifcat\noexpand\next a%

437 \toks@={}%

438 \expandafter\macro@name

439 \else

440 \expandafter\short@macro

441 \fi

442 }

\scan@macro Since \macro@namepart isn’t used as in doc, I might as well remove the command
that cleared it from \scan@macro.

443 \def\scan@macro{%

444 \special@escape@char

445 \step@checksum

446 \ifscan@allowed

447 \def\next{\futurelet\next\macro@switch}%

448 \else \let\next\@empty \fi

449 \next}

\short@macro This macro will be invoked (with a single character as parameter) when a single-
character macro name has been spotted whilst scanning within the macrocode
environment. It will produce an index entry for that macro, unless that macro has
been excluded from indexing, and it will also typeset the character that constitutes
the name of the macro.

450 \def\short@macro#1{%

451 \protected@edef\macro@namepart{%

452 〈∗economical〉
453 \ifnum ‘#1<\@xxxii

454 \noexpand\PrintChar{\number‘#1}%

455 \else\ifnum ‘#1>126

456 \noexpand\PrintChar{\number‘#1}%

457 \else

458 〈/economical〉
459 \csname XD@harmless@\number‘#1\endcsname

460 〈economical〉 \fi\fi

461 }%

462 \ifnot@excluded \XD@special@index{\macro@namepart}\fi

26

The cross-referencing mechanism is disabled for when the actual character is
printed, as it could be the escape character. The index entry must be gener-
ated before the character is printed to ensure that no page break intervenes (recall
that a ^^M will start a new line).

463 \scan@allowedfalse #1\scan@allowedtrue

464 }

There is one mechanism in \TeX’s control sequence tokenization that \short@
macro doesn’t cover, and that is the ^^ sequence substitution—\^^M is (with
default catcodes) seen as the three tokens \^, ^, and M, not as the single control
sequence token that TEX will make out of it. But this is the way it is done in doc.

\macro@name

\more@macroname

\macro@finish

Then there’s the macros for assembling a control sequence name which consists
of one or more letters (category 11 tokens). (This includes both the characters
which are normally letters in the document and those that are made letters by
\MakePrivateLetters.) They’re pretty straightforward.

465 \def\macro@name#1{%

466 〈∗economical〉
467 \if \ifnum ‘#1<\@xxxii 1\else \ifnum ‘#1>126 1\else 0\fi\fi 1%

468 \toks@=\expandafter{\the\expandafter\toks@

469 \expandafter\PrintChar \expandafter{\number‘#1}%

470 }%

471 \else

472 〈/economical〉
473 \toks@=\expandafter{\the\expandafter\expandafter\expandafter\toks@

474 \csname XD@harmless@\number‘#1\endcsname}%

475 〈economical〉 \fi

476 \futurelet\next\more@macroname}

477 \def\more@macroname{%

478 \ifcat\noexpand\next a%

479 \expandafter\macro@name

480 \else

481 \macro@finish

482 \fi

483 }

484 \def\macro@finish{%

485 \edef\macro@namepart{\the\toks@}%

486 \ifnot@excluded \XD@special@index{\macro@namepart}\fi

487 \macro@namepart

488 }

5.2 The index exclude list

The index exclude list mechanisms are not quite as simple to convert for use with
harmless character strings as the construction of macro names are. This is because
the trick used for searching the exclude list for a certain string doesn’t work if the
string one is looking for contains tokens with category 1 or 2 (beginning and end
of group), as the 〈parameter text〉 of a \def cannot contain such tokens. On the
other hand the only groups that can appear in the harmless character strings one
will be looking for are the ones around the argument of some \PrintChar, and
these can easily be converted to something else. Therefore an item in the index
exclude list of xdoc will have the format

27

\do 〈string〉

where the 〈string〉 is different from a harmless character string only in that all
\PrintChar{〈num〉} have been replaced by \PrintChar(〈num〉). The 〈string〉
does not include an escape character. The \do serves only to separate the item
from the one before, but it could in principle be used for other purposes as well
(such as in typesetting the entire exclude list).

\XD@paren@PrintChar \XD@paren@PrintChar is a definition of \PrintChar which, when it is used in
an \edef, merely replaces the group around the argument by a parenthesis and
normalizes the number in the argument.

489 \def\XD@paren@PrintChar#1{\noexpand\PrintChar(\number#1)}

\DoNotIndex

\do@not@index

\XD@do@not@index

These are the macros which add elements to the index exclude list. \DoNotIndex
is pretty much as in doc, but I have added resetting of the catcodes of ‘,’ (since
\XD@do@not@index relies on it) and ‘#’ (since it can otherwise mess things up for
the \def\@tempa in \do@not@index).

490 \renewcommand\DoNotIndex{%

491 \begingroup

492 \MakePrivateLetters

493 \catcode‘\#=12\catcode‘\\=12\catcode‘,=12\catcode‘\%=12

494 \expandafter\endgroup \do@not@index

495 }

\do@not@index, on the other hand, is quite different, as it more or less has
to convert the argument from the format used in doc to that of xdoc. The bulk
of the work is done by \XD@do@not@index, which grabs one of the elements in
the argument of \do@not@index and converts it (minus the initial backslash)
to a harmless character string. That harmless character string is then con-
verted by \XD@paren@PrintChar, so that the string can be searched for using
\expanded@notin.

The reason for using a special loop structure here, as opposed to using for
example \@for, is that one cannot use either of \ or , alone as item separa-
tors, as they may both be part of control sequence names (consider for example
\DoNotIndex{\a,\\,\b,\,,\c}), but they should be sufficient when combined.

The reason for storing new elements in \toks@ until the end of the loop and
only then inserting them into the index exclude list is speed; the index exclude
list can get rather large, so you don’t want to expand it more often than you have
to. I don’t know if the difference is noticeable, though.

496 \begingroup

497 \catcode‘\|=0

498 \catcode‘\,=12

499 \catcode‘\\=12

500 |gdef|do@not@index#1{%

501 |def|@tempa{#1}%

502 |ifx |@empty|@tempa |else

503 |toks@={}%

504 |expandafter|XD@do@not@index |@gobble #1,\|XD@do@not@index,\%

505 |fi

506 }

507 |gdef|XD@do@not@index#1,\{%

508 |ifx |XD@do@not@index#1%

28

509 |index@excludelist=|expandafter{%

510 |the|expandafter|index@excludelist |the|toks@

511 }%

512 |expandafter|@gobble

513 |else

514 |MakeHarmless|@tempa{#1}%

515 |begingroup

516 |let|PrintChar|XD@paren@PrintChar

517 |unrestored@protected@xdef|@gtempa{|noexpand|do|@tempa}%

518 |endgroup

519 |toks@=|expandafter{|the|expandafter|toks@ |@gtempa}%

520 |fi

521 |XD@do@not@index

522 }

523 |endgroup

\DoNotIndexHarmless The \DoNotIndexHarmless command takes a harmless character string as argu-
ment and locally adds the control sequence whose name is that character string
to the index exclude list.

524 \newcommand\DoNotIndexHarmless[1]{%

525 \begingroup

526 \let\PrintChar\XD@paren@PrintChar

527 \unrestored@protected@xdef\@gtempa{\noexpand\do#1}%

528 \endgroup

529 \index@excludelist=\expandafter{%

530 \the\expandafter\index@excludelist \@gtempa

531 }%

532 }

\index@excludelist In case the index exclude list is not empty, its contents are converted to xdoc
format.

533 \edef\@tempa{\the\index@excludelist}

534 \index@excludelist{}

535 \ifx \@tempa\@empty \else

536 \def\@tempb#1,\@nil{\do@not@index{#1}}

537 \expandafter\@tempb \@tempa \@nil

538 \let\@tempa\@empty

539 \let\@tempb\@empty

540 \fi

The fact that the \XD@harmless@〈code〉 table has not yet reached its final form
means that some of these control sequences listed in the exclude list might get a
different form here than they actually should, but there isn’t much that can be
done about that. It is furthermore unusual that control sequence are given such
names that they would be affected by this.

\ifnot@excluded The \ifnot@excluded macro ultimately boils down to an if, which evaluates to
true if and only if the string in \macro@namepart is not one of the items in the
index exclude list. Before \expanded@notin gets to carry out the actual test, the
\PrintChar calls in \macro@namepart are converted by \XD@paren@PrintChar
(it’s OK to use an unprotected \edef for this, since \PrintChar is the only control
sequence that can appear in \macro@namepart) so that \expanded@notin can be
used to test for its presence.

29

541 \def\ifnot@excluded{%

542 \begingroup

543 \let\PrintChar\XD@paren@PrintChar

544 \edef\@tempa{\macro@namepart}%

545 \expandafter\endgroup \expandafter\expanded@notin

546 \expandafter{\expandafter\do \@tempa\do}%

547 {\the\index@excludelist}%

548 }

5.3 External cross-referencing

(This subsection is a bit speculatory, but I think the structures it describes may
come in handy.)

It’s rather easy to write macros for scanning TEX code for the names of control
sequences—just look for the escape (category 0) character, and whatever follows
is the name of a control sequence. Doing the same thing for other languages
may lay anywhere between “a tricky exercise in advanced TEX programming” and
“possible in theory”,6 but in most cases the available solutions turn out to be too
complicated and/or slow to be of practical use. When that happens, one might
instead want to use some external piece of software for doing the cross-referencing.

The commands in this subsection implement basic support for such an external
cross-referencing program (or XXR,7 for short). The idea is that an XXR should
communicate with LATEX like BibTEX does—scan the .aux file (or files, if we’re
\includeing things) for certain “commands” and use them to locate the files
to cross-reference, get parameter settings (like for example entries for the index
exclude list), and so on. It should then cross-reference the file(s) and write the
index entries in a suitable format to some file (appending them to the .idx file
is probably the easiest solution). This way, it is (almost) as simple to use as the
built-in cross-referencing and the extra work for supporting it is (in comparison
to not supporting it) negligible.

ExternalXRefMsg XXR-command

\SendExternalXRefMsg

It’s hardly possible to predict all kinds of information that one might want to
give to an XXR, and neither can one assume that there is only one XXR program
that will read the .aux file. A complicated project might involve code in several
languages, and each language might have its own XXR. Therefore the general
XXR-command (text in an .aux file which is used for communicating information
to an XXR) simply has the syntax

%%ExternalXRefMsg {〈who〉} {〈what〉}

〈who〉 identifies the XXR this message is meant for. It must be balanced text to
TEX and may not contain any whitespace, but can otherwise be rather arbitrary.
〈what〉 is the actual message. It too must be balanced text to TEX and it may not
contain any newlines, but it is otherwise arbitrary. The reason for these restrictions
on the contents of 〈who〉 and 〈what〉 is that many (maybe even most) scripting
languages (which is what at least the .aux-scanning part of an XXR will probably
be written in) are much better at recognising words on a line than they are at

6I.e., you know it can be implemented as a computer program (in some language), you
know that any computer program can be translated to a Turing machine (or if you prefer that,
expressed in lambda calculus), and you know that a Turing machine can be emulated by TEX,
but that’s the closest thing to a solution you’ve managed to come up with.

7Maybe not the most logical name, but it looks much cooler than ECR.

30

recognising a brace-delimited group. By accepting these restrictions, one can make
sure that all XXRs can correctly determine whether a message is for them, even
if they see the .aux file as a sequence of lines composed of whitespace-delimited
words.

\SendExternalXRefMsg is the basic command for writing ExternalXRefMsgs
to the .aux file, but it might be recommendable that XXR writers provide users
with a set of commands that have more specific purposes. The syntax of the
\SendExternalXRefMsg command is (hardly surprising)

\SendExternalXRefMsg{〈who〉}{〈what〉}

\SendExternalXRefMsg does a protected full expansion (like \protected@edef)
of its arguments at the time it is called.

549 \newcommand\SendExternalXRefMsg[2]{%

550 \begingroup

551 \if@filesw

552 \let\protect\@unexpandable@protect

553 \immediate\write\@auxout{\@percentchar\@percentchar

554 ExternalXRefMsg {#1} {#2}}%

555 \fi

556 \endgroup

557 }

The remaining commands in this subsection address complications that exist
because of how .dtx files are generally written, and thus constitutes difficulties
that all XXRs will have to face.

ExternalXRefFile XXR-command The usual way to write .dtx files is to include a driver—a short piece of un-
commented LATEX code which contains the necessary preamble material and a
document body which mainly contains a \DocInput for the .dtx file itself—but it
is also usually understood that this driver may be copied to another file if neces-
sary and larger projects usually have a completely separate driver file. Therefore
an XXR cannot be expected to be able to find the file(s) to cross-reference simply
by changing suffix on the name of the .aux file it reads its commands from. A
more intricate method must be used.

To tell the XXR that “here I input the file . . . ”, one includes an External-
XRefFile XXR-command in the .aux file. Its syntax is

%%ExternalXRefFile {〈cmd〉} {〈file〉} {〈what〉}

〈file〉 is the name (as given to \input or the like) of the file to input. 〈cmd〉 is
either begin (begin of 〈file〉) or end (end of 〈file〉). 〈what〉 is a declaration of what
is in the file; XXRs should use it to determine whether they should process this
file or not. 〈what〉 is empty if all XXRs should process the file, but for example
\IndexInput will put TeX here to declare that the contents of this file are TEX
code and only XXRs that cross-reference TEX code need to process this file.

In connection to this, it should be mentioned that XXRs must also look for
(and act on) \@input{〈auxfile〉} commands that \include or \DocInclude has
written to the .aux file, since these 〈auxfile〉s can also contain commands for
the XXR that should result in output to the same .idx file. In particular, the
ExternalXRefFile XXR-commands that are written because of a \DocInclude
will be written to such an 〈auxfile〉.

31

ExternalXRefSync XXR-command Most XXRs will probably find it an unreasonable task to keep exact track of all
codelines in all documents, i.e., they will sometimes think that a piece of code
contains more or fewer numbered codelines than it actually does. If for example
a document contains code such as

% \iffalse

% \begin{macrocode}

Etaoin Shrldu

% \end{macrocode}

% \fi

then all reasonable XXRs will probably be fooled into thinking that the Etaoin
Shrldu line is a numbered codeline. This would of course be very bad if an XXR
thought it should cross-reference the contents of this line, but that shouldn’t usu-
ally be a problem since the specifications8 of what code should be cross-referenced
will probably make it clear that the above line should not be cross-referenced.
Code such as the above will still be problematic however, as it will cause the XXR
to believe that the codelineno counter has another value on any following line
that is indexed than it actually has in the typeset document. This will cause index
entries to refer to another line than it actually should.

To overcome this, the ExternalXRefSync XXR-command can be used to tell
the XXR what the corresponding values of \inputlineno and codelineno are.
Its syntax is

%%ExternalXRefSync {〈inputlineno〉} {〈codelineno〉}

where 〈inputlineno〉 is the expansion of \the\inputlineno and 〈codelineno〉 is the
expansion of \thecodelineno, both expanded at the same point in the program.
Note here that the first line of a file is line number 1, that line number 0 is
used to denote “just before the first line”, and that codelineno gets increased
immediately before the number is typeset (i.e., codelineno contains the number
of the last numbered codeline).

This doesn’t support external cross-referencing by pages, since doing that re-
quires that the document outputs a lot more information to the .aux file. In
principle, one could put a \mark{\thecodelineno} in \PrintCodelineNo and a
\write in the page header which outputs to the .aux file which range of codelines
correspond to a given page, but the LATEX2ε sectioning commands’ use of marks
tends to interfere with this. The LATEX2ε∗ package xmarks will probably solve
that problem, though.

\syncexternalxref The \syncexternalxref command writes an ExternalXRefSync XXR-command
for the current line number and value of the codelineno counter to .aux file. It
is used for synchronizing the numbered codeline counter that an XXR maintains
with the codelineno counter that is used for numbering codelines in the typeset
document after a piece of code in the document that some XXR is likely to mis-
interpret. \syncexternalxref shouldn’t be used inside macrocode environments
(or the like) as they tend to read ahead in the file—instead it is best placed shortly
after such an environment. \syncexternalxref has no arguments.

558 \newcommand\syncexternalxref{%

8I imagine these specifications will consist of a list of docstrip options (modules), possibly
used in combination with restrictions on the names of surrounding environments.

32

559 \if@filesw

560 \immediate\write\@auxout{\@percentchar\@percentchar

561 ExternalXRefSync {\the\inputlineno} {\thecodelineno}%

562 }%

563 \fi

564 }

ExternalXRefWrap XXR-command The \DocInclude command complicates matters for XXRs by redefining things so
that the codelineno counter only makes up a part of the line numbers appearing
in the index. The purpose of the ExternalXRefWrap XXR-command is to inform
XXRs about such changes. The command

%%ExternalXRefWrap {〈prefix 〉} {〈suffix 〉}

means that codeline numbers written to the index should have the form

〈prefix 〉〈codelineno〉〈suffix 〉

This setting takes effect from the next ExternalXRefSync and stays in effect
until the end of the document or until another ExternalXRefWrap overrides it.
The state at the beginning of the document is to have both 〈prefix 〉 and 〈suffix 〉
empty.

\XD@input The \XD@input command is a version of \input which takes care to inform XXRs
that another file is being \inputted. Its syntax is

\XD@input{〈file〉}{〈what〉}

where 〈file〉 is the name of the file to \input and 〈what〉 is the contents of the file,
as specified in ExternalXRefFile commands.

565 \def\XD@input#1#2{%

566 \if@filesw

567 \immediate\write\@auxout{\@percentchar\@percentchar

568 ExternalXRefFile {begin} {#1} {#2}%

569 }%

570 \immediate\write\@auxout{\@percentchar\@percentchar

571 ExternalXRefSync {0} {\thecodelineno}%

572 }%

573 \fi

574 \input{#1}%

575 \if@filesw

576 \immediate\write\@auxout{\@percentchar\@percentchar

577 ExternalXRefFile {end} {#1} {#2}%

578 }%

579 \immediate\write\@auxout{\@percentchar\@percentchar

580 ExternalXRefSync {\the\inputlineno} {\thecodelineno}%

581 }%

582 \fi

583 }

\DocInput The \DocInput command is redefined so that it writes ExternalXRefFile and
ExternalXRefSync XXR-commands to the .aux file. Furthermore, with xdoc
one should always use the \DocInput command (or some command based on it,
like \DocInclude) for inputting a file where percent is an ‘ignore’ character—
even when one such file inputs another. (Doing that didn’t work with the doc

33

definition, as it always called \MakePercentComment upon return, but the xdoc
definition contains code for dealing with that.)

584 \renewcommand\DocInput[1]{%

585 \relax

586 \ifnum \catcode‘\%=14

587 \expandafter\@firstoftwo

588 \else

589 \expandafter\@secondoftwo

590 \fi{%

591 \MakePercentIgnore\XD@input{#1}{}\MakePercentComment

592 }{\XD@input{#1}{}}%

593 }

\IndexInput The \IndexInput command also needs to be redefined to write XXR-commands to
the .aux file. It would probably be enough here to write an ExternalXRefSync af-
ter the file has been \input since no external cross-referencing of \IndexInputted
files is needed, but I do the more verbose variant here just to exemplify how these
things would look for other languages.

594 \renewcommand\IndexInput[1]{%

595 \begingroup

596 \macro@code

597 \frenchspacing

598 \@vobeyspaces

599 \XD@input{#1}{TeX}%

600 \endmacrocode

601 \endgroup

602 }

6 Two-sided printing

The main problem one faces when reimplementing doc so that the marginal ma-
terial always appears in the outer margin in two-sided documents is that the
justification of doc’s marginal material is asymmetric; it always extends outwards.
This means that the justification to use when typesetting the marginal material
must depend on whether it is to be put on a left or a right page—something which
cannot be determined for sure when the material is typeset! This is a minor diffi-
culty if the marginal material is put in place using LATEX’s \marginpar command,
as that allows the user to supply different versions of the marginal paragraph for
left and right margin placements. It is however a major difficulty if the marginal
material is displaced out into the margin from within the main galley (like the
macro environment of doc does), since the output routine is never involved.

Even though this difficulty provides arguments for using a \marginpar mecha-
nism for all text that is put in the margin, that will not be done in xdoc (but maybe
it will in some successor). Instead xdoc contains a general mechanism which uses
data written to the .aux file for determining whether a piece of text was put on an
odd or even numbered page the last time the document was typeset. By the usual
convergence of page breaks in a LATEX document, this will eventually produce a
typeset document with the marginal material consistently in the outer margin.

The mechanism works as follows. The places in the document (the document
source) at which it is necessary to determine whether something is going to appear

34

on an even (left) or an odd (right) page are called “page situations”9 or just “sit-
uations”. In each situation, a relatively simple test (is the page counter currently
even or odd?) which is right more often than not is used as a first guess, and
both the guess, the placement actually used, and the correct answer (determined
from the value of page when the piece of text is shipped out) are recorded in
the .aux file. If the guess (for the current situation) coincided with the correct
answer the last time the document was typeset then the guess determined now is
used, otherwise the opposite of the guess determined now is used. Finally, when at
\end{document} the .aux file is inputted to check for changed labels, the place-
ments used are also checked and the user is given a suitable warning if there was
an incorrect one.

\IfOddPageSituation The \IfOddPageSituation macro is the user level test for whether the current
page situation appears on an odd or an even page. It has the syntax

\IfOddPageSituation{〈odd〉}{〈even〉}

and this will expand to 〈odd〉 if the current situation is expected to end up on
an odd page (based on how correct it was to look at the value of page last time)
and to 〈even〉 otherwise. In single-sided mode, it always expands to 〈even〉. In
two-sided mode, \IfOddPageSituation is redefined for the new situation each
time \StepPageSituation is called.

603 \let\IfOddPageSituation=\@secondoftwo

\StepPageSituation

\macro@cnt

\XD@next@wrong

\XD@wrongs@list

The \StepPageSituation command is called to inform the page situation mech-
anism that a new situation has begun. The rule for when you need to use \Step-
PageSituation is simple: if you use \IfOddPageSituation in two places which
may end up on different pages, then there must be a \StepPageSituation between
them. There is no code which automatically calls \StepPageSituation—not even
\clearpage or other macros which force page breaks do this—hence macros which
use the page situation mechanism must always call \StepPageSituation explicitly
when a new situation begins.

Since the \macro@cnt count register isn’t used for stacking marginal headings
(“macro” names) anymore (see below), it is employed for enumerating page situa-
tion. \XD@next@wrong is a macro which contains the number of the next situation
in which the guess was wrong last time. Unless \XD@next@wrong = \macro@cnt,
the guess was right last time. All assignments to \macro@cnt and \XD@next@wrong
are global.

\XD@wrongs@list is a list of all the wrong guesses. It has the syntax

\@elt{〈guess no.〉}\@elt{〈guess no.〉}. . . \@elt{〈guess no.〉}

where the 〈guess no.〉s are the numbers of the wrong guesses, in increasing order.
The contents of \XD@wrongs@list are collected when the .aux file is inputted at
\begin{document}, and they are removed again as TEX passes the situation in
the document that they apply to. All assignments to \XD@wrong@list are global.

Calling \StepPageSituation increases \macro@cnt by one, updates \XD@
next@wrong and \XD@wrong@list appropriately, and sets \IfOddPageSituation
to \@firstoftwo or \@secondoftwo (whichever is correct for this situation).
\@next is a list management macro from the LATEX kernel.

9I know it’s not a particularly good name. Suggestions for better names are gracefully ac-
cepted.

35

604 \if@twoside

605 \def\StepPageSituation{%

606 \global\advance \macro@cnt \@ne

607 \ifnum \XD@next@wrong<\macro@cnt

608 \global\@next\XD@next@wrong\XD@wrongs@list{}{%

609 \let\XD@next@wrong\maxdimen

610 }%

611 \fi

612 \ifnum \ifodd\c@page -\fi \@ne=%

613 \ifnum \XD@next@wrong=\macro@cnt -\fi \@ne

614 \global\let\IfOddPageSituation\@secondoftwo

615 \else

616 \global\let\IfOddPageSituation\@firstoftwo

617 \fi

618 }

619 \def\XD@next@wrong{-\maxdimen}

620 \let\XD@wrongs@list\@empty

621 \else

622 \let\StepPageSituation=\relax

623 \fi

\RecordPageSituation The \RecordPageSituation command generates a \write whatsit node which
records the outcome of the current page situation. It is the location of this whatsit
node that determines on which page a certain situation is considered to occur. If
you don’t execute this macro for a certain page situation, the first guess will always
be used for that situation and no warnings will be given if that guess is incorrect.
In single-sided mode, this is a no-op (thus you should better place it somewhere
where it doesn’t affect spacing). Furthermore you must make sure that TEX does
not change the value of the page counter between a \StepPageSituation and its
corresponding \RecordPageSituation, since the \ifodd test must yield the same
result in both cases.

624 \if@twoside

625 \def\RecordPageSituation{%

626 \if@filesw

627 \edef\@tempa{%

628 \string\XD@situation{\the\macro@cnt}{%

629 \ifodd\c@page 1\else 0\fi

630 }{\IfOddPageSituation{1}{0}}%

631 }%

632 \write\@auxout\expandafter{\@tempa{\ifodd\c@page 1\else 0\fi}}%

633 \fi

634 }%

635 \else

636 \let\RecordPageSituation=\relax

637 \fi

\XD@situation

\XD@check@situation

\XD@situation is the command that will be written to the .aux file with the data
about how the situation turned out. Its syntax is

\XD@situation{〈number〉}{〈guess〉}{〈did〉}{〈correct〉}

where 〈number〉 is the number of the situation, and 〈guess〉, 〈did〉, and 〈correct〉
describe what the guess, the actual action done, and what the correct action to do

36

respectively was. 〈guess〉, 〈did〉, and 〈correct〉 are either 0 (denoting even page)
or 1 (denoting odd page).

The definition for \XD@situation set here is the one which will be in force
when the .aux file is inputted at \begin{document}; its purpose is to build the
\XD@wrongs@list. \XD@check@situation is the definition for \XD@situation
which will be in force when the .aux file is inputted at \end{document}; its
purpose is to check if anything was incorrectly placed.

The main problem \XD@situation has to face is that text in the .dvi file
needs not appear in exactly the same order as it was typeset, and it is therefore
possible that \XD@situations in the .aux file do not appear in increasing 〈number〉
order. Because of this, \XD@situation must sort the \XD@wrongs@list while
constructing it. The only reasonable algorithm for this seems to be insertion sort,
but as the items to insert are almost surely almost sorted, a special check is done
in the beginning to see if that is the case. \XD@next@wrong is used in this to
store the number of the last item so far inserted into the \XD@wrongs@list. By
only assigning \XD@next@wrong locally here, one is relieved of having to reset it
in \AtBeginDocument code.

When sorting is actually applied, a new item \@elt{〈insert〉} is inserted
through expanding the list. When doing that, the \@elt macro has the syntax

\@elt 〈flag〉 {〈number〉} 〈next〉

where 〈flag〉 is \BooleanTrue or \BooleanFalse, 〈number〉 is the item that the
\@elt belong to, and 〈next〉 is either the next \@elt or \@gobble (if this is the
last). The 〈flag〉 specifies whether the item has been inserted; \BooleanTrue
means that it has. The above \@elt-sequence will expand to

\noexpand \@elt {〈number〉} 〈next〉 \BooleanTrue

if 〈flag〉 is \BooleanTrue, or 〈flag〉 is \BooleanFalse and 〈number〉 is equal to
〈insert〉. It will expand to

\noexpand \@elt {〈number〉} 〈next〉 \BooleanFalse

if 〈flag〉 is \BooleanFalse and 〈number〉 is less than 〈insert〉. It expands to

\noexpand \@elt {〈insert〉} \noexpand \@elt {〈number〉}
〈next〉 \BooleanTrue

if 〈flag〉 is \BooleanFalse and 〈number〉 is greater than 〈insert〉.
638 \if@twoside

639 \def\XD@situation#1#2#3#4{%

640 \if #2#4\else

641 \ifnum #1<\XD@next@wrong

642 \begingroup

643 \def\@elt##1##2##3{%

644 \noexpand\@elt

645 \ifcase

646 \ifx ##1\BooleanTrue 0%

647 \else\ifnum ##2<#1 1%

648 \else\ifnum ##2>#1 2%

649 \else 0%

650 \fi\fi\fi

37

651 \space

652 {##2}\expandafter\@secondoftwo

653 \or

654 {##2}\expandafter\@firstoftwo

655 \else

656 {#1}\noexpand\@elt{##2}\expandafter\@secondoftwo

657 \fi{##3\BooleanFalse}{##3\BooleanTrue}%

658 }%

659 \xdef\XD@wrongs@list{%

660 \expandafter\expandafter \expandafter\@elt

661 \expandafter\@firstoftwo \expandafter\BooleanFalse

662 \XD@wrongs@list \@gobble

663 }%

664 \endgroup

665 \else\ifnum #1>\XD@next@wrong

666 \def\XD@next@wrong{#1}%

667 \expandafter\gdef \expandafter\XD@wrongs@list

668 \expandafter{\XD@wrongs@list \@elt{#1}}%

669 \fi\fi

670 \fi

671 }

672 \def\XD@check@situation#1#2#3#4{%

673 \if #3#4\else

674 \PackageWarningNoLine{xdoc2}{Page breaks may have changed.%

675 \MessageBreak Rerun to get marginal material right}%

676 \let\XD@situation\@gobblefour

677 \fi

678 }

679 \AtBeginDocument{\global\let\XD@situation\XD@check@situation}

680 \else

681 \let\XD@situation\@gobblefour

682 \fi

\XD@set@situation

\XD@write@situation@ckpt

\cl@@ckpt

The page situation counter \macro@cnt is closely related to the page counter
and it needs to be among the counters whose values are recorded in \include
checkpoints, since the enumeration of situations will otherwise change when files
are added to or removed from the \@partlist. It is not sufficient to simply
set the value of \macro@cnt however; one must also advance to the correct po-
sition in the \XD@wrongs@list list and set \XD@next@wrong accordingly. The
\XD@set@situation command has the syntax

\XD@set@situation{〈number〉}

It sets \macro@cnt to 〈number〉 and updates \XD@wrongs@list and \XD@next@
wrong accordingly.

683 \if@twoside

684 \def\XD@set@situation#1{%

685 \global\macro@cnt=#1\relax

686 \loop \ifnum \XD@next@wrong<\macro@cnt

687 \global\@next\XD@next@wrong\XD@wrongs@list{}{%

688 \let\XD@next@wrong\maxdimen

689 }%

690 \repeat

691 }

38

692 \else \let\XD@set@situation=\@gobble \fi

The \XD@write@situation@ckpt macro writes an \XD@set@situation com-
mand to the .aux file in the way that \@wckptelt writes \setcounter commands
for normal counters. A problem for \XD@write@situation@ckpt is that it will
have to appear in a macro which is regularly subjected to the \xdef in \@cons.
For that reason, it will simply expand to itself whenever \@elt isn’t \@wckptelt.

693 \if@twoside

694 \def\XD@write@situation@ckpt{%

695 \ifx \@elt\@wckptelt

696 \immediate\write\@partaux{%

697 \string\XD@set@situation{\the\macro@cnt}%

698 }%

699 \else

700 \noexpand\XD@write@situation@ckpt

701 \fi

702 }

703 \expandafter\def \expandafter\cl@@ckpt

704 \expandafter{\cl@@ckpt \XD@write@situation@ckpt}

705 \fi

7 The list of changes

Reimplementations elsewhere have required a few modifications related to the
\changes command. There are a lot of other things that could and perhaps
should be done with these mechanisms, though.

\saved@macroname The contents of the \saved@macroname macro now have the syntax

{〈sort key〉}{〈text〉}

i.e., exactly like the argument sequence of \LevelSorted. It’s not fed to that
macro right now, but it is not unlikely that it will in the future. The default
definition corresponds to the default definition in doc.

706 \def\saved@macroname{{ }{\generalname}}

Unlike the case in doc, the formatting of the text in \saved@macroname must be
included.

\if@version@key@ The @version@key@ switch is used for supporting intelligent sorting of version
numbers. It is normally false, but at times where the version number argument of
\changes is being expanded because it will be used as a sort key then it is true.
This is used by the \uintver macro. Assignments to this switch are as a rule
global, since it is never true for any longer time.

707 \newif\if@version@key@

708 \@version@key@false

\uintver The \uintver command can be used in the 〈version〉 argument of \changes to
ensure that (unsigned) integers are sorted in mathematical rather than ASCII
order by makeindex. Thus if for example version 1.10 is later than version 1.9
then one should write this as

\changes{1.\uintver{10}}{. . .

39

The general syntax is

\uintver{〈number〉}

and this expands completely in TEX’s mouth.
The idea is that 0–9 are compared as 0–9, whereas 10–99 are compared as

A10–A99, 100–999 are compared as B100-B999, and so on. The comparisons are
correct up to 99999, but it could easily be extended further.

709 \newcommand*\uintver[1]{%

710 \if@version@key@

711 \ifnum #1>9

712 \ifnum #1<100

713 A%

714 \else\ifnum #1<\@m

715 B%

716 \else\ifnum #1<\@M

717 C%

718 \else

719 D%

720 \fi\fi\fi

721 \fi

722 \fi

723 \expandafter\@firstofone \expandafter{\number#1}%

724 }

\changes@ This \changes@ is a simple redefinition of the doc macro with the same name.
The main difference is that all formatting of the second entry level has been taken
out—it is supposed to be provided in \saved@macroname—but in addition to that
the date is being used as a third level sort key and \uintver may be used in the
version number to correct the data.

The former makes more sense for projects where the date is increased faster
than the version number and it doesn’t change anything relevant in the remaining
cases. The latter is necessary if version numbers are assigned for example by CVS.

725 \def\changes@#1#2#3{%

726 \global\@version@key@true

727 \protected@edef\@tempa{#1}%

728 \global\@version@key@false

729 \protected@edef\@tempa{%

730 \noexpand\glossary{%

731 \@tempa\actualchar#1\levelchar

732 \expandafter\@firstoftwo\saved@macroname\actualchar

733 \expandafter\@secondoftwo\saved@macroname:\levelchar

734 #2\actualchar#3%

735 }%

736 }%

737 \@tempa

738 \endgroup

739 \@esphack

740 }

\@wrglossary

\XD@glossary@keyword

The \@wrglossary macro is the one which actually writes entries to the .glo file.
It is redefined by xdoc to put the contents of \XD@glossary@keyword, rather than a

40

hardwired \glossaryentry, in front of the glossary entry. \XD@glossary@keyword
is redefined by the docindex package [2].

741 \def\@wrglossary#1{%

742 \protected@write\@glossaryfile{}%

743 {\XD@glossary@keyword{#1}{\thepage}}%

744 \endgroup

745 \@esphack

746 }

747 \@ifundefined{XD@glossary@keyword}{%

748 \edef\XD@glossary@keyword{\@backslashchar glossaryentry}%

749 }{}

\definechange

\XD@definechange

The \definechange command has the syntax

\definechange{〈name〉}{〈version〉}{〈date〉}{〈text〉}

The three last arguments are precisely like the arguments of \changes, but
\definechange doesn’t write the change to the .glo file; instead it stores them
away as the “named change” 〈name〉, for later use in the \usechange command.

750 \newcommand\definechange{%

751 \begingroup\@sanitize

752 \catcode‘\\\z@ \catcode‘\ 10 \MakePercentIgnore

753 \expandafter\endgroup \XD@definechange

754 }

755 \def\XD@definechange#1#2#3#4{\@namedef{XD@ch-#1}{{#2}{#3}{#4}}}

The named changes are stored in the \XD@ch-〈name〉 family of control se-\XD@ch-〈name〉
quences. These are parameterless macros with replacement texts of the form

{〈version〉}{〈date〉}{〈text〉}

\usechange

\XD@usechange

To use a named change defined earlier, one of course uses the command
\usechange, which has the syntax

\usechange{〈name〉}

The effect of this is similar to that of a general \changes (i.e., it appears outside
all macro-like environments) with the arguments specified in the \definechange,
but this also includes the macro (or whatever) name with the page number, using
the encapsulation mechanism in makeindex.

756 \newcommand*\usechange[1]{%

757 \@ifundefined{XD@ch-#1}{%

758 \PackageError{xdoc2}{Named change ‘#1’ undefined}\@eha

759 }{%

760 \expandafter\expandafter \expandafter\XD@usechange

761 \csname XD@ch-#1\endcsname

762 }%

763 }

764 \def\XD@usechange#1#2#3{%

765 \def\@tempa{{ }{\generalname}}%

766 \ifx \@tempa\saved@macroname

767 \let\@tempa\@empty

768 \else

769 \protected@edef\@tempa{%

41

770 \encapchar labelednumber%

771 {\expandafter\@secondoftwo\saved@macroname}%

772 }

773 \fi

774 \global\@version@key@true

775 \protected@edef\@tempb{#1}%

776 \global\@version@key@false

777 \glossary{%

778 \@tempb\actualchar #1\levelchar

779 \space\actualchar\generalname:\levelchar

780 #2\actualchar#3\@tempa

781 }%

782 }

\labelednumber The \labelednumber macro belongs to the same category as the \main and \usage
macros, but it takes an extra argument. The syntax is

\labelednumber{〈extra〉}{〈number〉}

which typesets as

〈number〉 (〈extra〉)

783 \newcommand*\labelednumber[2]{#2\nolinebreak[2] (#1)}

8 macro-like environments

There are several reasons one might want to improve the macro and environment
environments.

• The code in them cannot be reused if you want to define other things than
TEX macros or LATEX environments. (During the last year or so, I have
defined macro-like environments for over a dozen different things.)

• They always put the macro/environment name to the left of the current
column. This is inappropriate for two-sided printing, as there should be a
symmetry over an entire spread in that case.

• The vertical extent of a macro/environment name must not exceed that of
the \strut, since they will otherwise overprint each other when stacked. In
particular this makes it impossible to make line breaks in macro names—
something which would otherwise be of interest in projects (such as for ex-
ample [3]) where some names are very long and obvious breakpoints are
available.

(I’m quite sure there are more things that have annoyed me, but I can’t remember
which they are right now.) The redefinitions below take care of the all these
problems.

8.1 Grabbing arguments

A special feature of the macro-like environments is that (at least some) of their
arguments must be given rather special treatment. This special treatment usually
consists of making temporary \catcode changes for the time these arguments are

42

Grabber Arg. type Catcodesa Post-processing
\XD@grab@marg Mandatory — None
\XD@grab@oarg Optional — None
\XD@grab@sarg{〈char〉} 1-char optional — Returns \BooleanTrue if

the character was present
and \BooleanFalse

otherwise.
\XD@grab@withprivate Mandatory PL None

\XD@grab@asmacrob Mandatory OB+PL None
\XD@grab@harmless〈proc〉 Mandatory — \MakeHarmless followed

by 〈proc〉
\XD@grab@harmless@oarg Optional — \MakeHarmless

\XD@grab@harmless@asmacro

Mandatory OB+PL \MakeHarmless followed
by \XD@unbackslash

\XD@grab@harmless@cs Mandatoryc PL \string whilst
\escapechar is set to –1,
followed by
\MakeHarmless

\XD@grab@harmless@withprivate{〈proc〉}
Mandatory PL \MakeHarmless followed

by 〈proc〉

aCatcode settings key: — = no change, PL = changes made by \MakePrivateLetters, OB
= set the catcode of backslash to ordinary.

bThis grabber is probably obsolete; it is included because it grabs the argument in precisely
the way that the macro environment of doc does.

cThe argument is normally precisely one control sequence.

Table 2: Grabbers currently defined by xdoc

tokenized—since the standard \catcodes for some important characters tend to
be unsatisfactory in these cases—but there are other possibilities as well. For that
reason, the xdoc package employs a mechanism that is very similar to that used
in the Mittelbach–Rowley–Carlisle xparse package [6], although it does not share
any code with that. I call this mechanism the argument grabber.

The heart of the argument grabber is the macro \XD@grab@arguments, which
has the following syntax:

\XD@grab@arguments{〈call〉}{〈grabber sequence〉}〈arguments to grab〉

〈call〉 is something which will eventually be placed in front of all the arguments
grabbed. It can simply be a single macro, but it can also contain some arguments
for that macro. 〈grabber sequence〉 is a sequence of grabbers. A grabber is typically
a macro which grabs the next argument and stores it in a token list together with
the arguments that were grabbed before. A grabber could however be some more
complex piece of code that performs a similar action.

When arguments are being grabbed, the 〈call〉 is stored in \toks@ and the
arguments are appended to \toks@ as they are grabbed. For that reason, a grab-
ber may not itself call \XD@grab@arguments, nor may it use a command defined
through xparse’s \DeclareDocumentCommand or anything else which uses this token
register in a bad way.

When a grabber is expanded, it is in the context

43

〈grabber〉 〈following grabbers〉 \XD@endgrab 〈ungrabbed arguments〉

After it has grabbed its argument, everything of the above should be put back
except for the 〈grabber〉 and the argument it grabbed. The argument itself should
be wrapped in a group and appended to \toks@.

Note: In prototype 2 the format in which the argument grabber returns the
grabbed arguments was changed so that it can now be unified with argument
grabbing mechanisms of xparse. I think this should be done some time in the
future, but for the moment it seems best not to rely on LATEX2ε∗ packages like
xparse.

\XD@grab@arguments

\XD@endgrab

The \XD@grab@arguments and \XD@endgrab macros set up and finish off argument
grabbing.

784 \def\XD@grab@arguments#1#2{%

785 \toks@={#1}%

786 #2\XD@endgrab

787 }

788 \def\XD@endgrab{\the\toks@}

\XD@grab@marg A grabber for ordinary arguments, like the m arguments of xparse.
789 \long\def\XD@grab@marg#1\XD@endgrab#2{%

790 \addto@hook\toks@{{#2}}%

791 #1\XD@endgrab

792 }

\XD@grab@oarg

\XD@grab@oarg@

A grabber for optional arguments (o arguments in xparse). It looks ahead for an
optional argument and grabs that argument if there was one. If it doesn’t find
anything which looks like an optional argument (i.e., if the next character isn’t a
[), then the grabber will not grab anything (although it may have tokenized the
next argument), but it will still append \NoValue to \toks@.

793 \def\XD@grab@oarg#1\XD@endgrab{%

794 \@ifnextchar[{\XD@grab@oarg@{#1}}{%

795 \addto@hook\toks@\NoValue

796 #1\XD@endgrab

797 }%

798 }

\XD@grab@oarg@ is a helper to remove the brackets around the optional argument.
799 \long\def\XD@grab@oarg@#1[#2]{%

800 \addto@hook\toks@{{#2}}%

801 #1\XD@endgrab

802 }

\XD@grab@sarg A grabber for ‘star’-type arguments (s arguments in xparse). The syntax is

\XD@grab@sarg{〈char〉}

It looks ahead to see if the next character is the 〈char〉. In that case it gob-
bles it and adds a \BooleanTrue to the grabbed arguments, otherwise it adds a
\BooleanFalse to the grabbed arguments.

803 \def\XD@grab@sarg#1#2\XD@endgrab{%

804 \@ifnextchar#1{%

805 \addto@hook\toks@\BooleanTrue

44

806 \@firstoftwo{#2\XD@endgrab}%

807 }{%

808 \addto@hook\toks@\BooleanFalse

809 #2\XD@endgrab

810 }%

811 }

\XD@grab@withprivate \XD@grab@withprivate is like \XD@grab@marg but grabs the argument when the
catcodes are as set by \MakePrivateLetters.

812 \def\XD@grab@withprivate{%

813 \begingroup\MakePrivateLetters\relax\expandafter\endgroup

814 \XD@grab@marg

815 }

To think about: Perhaps things like \XD@grab@withprivate should rather be
considered a modifier for a grabber? Instead of having \XD@grab@withprivate
be the entire grabber, one could let the grabber be something like

\XD@grab@withprivate\XD@grab@marg

where the \XD@grab@withprivate should only expand to

\begingroup\MakePrivateLetters\relax\expandafter\endgroup

\XD@grab@asmacro \XD@grab@asmacro is very similar to \XD@grab@withprivate, but it sees to that
the catcode settings are exactly those used by doc’s macro environment.

816 \def\XD@grab@asmacro{%

817 \begingroup

818 \catcode‘\\=12 \MakePrivateLetters\relax

819 \expandafter\endgroup

820 \XD@grab@marg

821 }

\XD@grab@harmless

\XD@grab@harmless@oarg

\XD@grab@harmless@oarg@

The \XD@grab@harmless grabber grabs one mandatory argument and converts it
to a harmless character string, which it contributes to the list of arguments. The
syntax is

\XD@grab@harmless{〈post-processing〉}

where 〈post-processing〉 are commands that will be performed after the grabbed
argument has been made harmless, but before it is contributed to the list of
arguments. Thus the 〈post-processing〉 can modify the argument some more, but
〈post-processing〉 can just as well be empty.

822 \def\XD@grab@harmless#1#2\XD@endgrab#3{%

823 \MakeHarmless\@tempa{#3}%

824 #1%

825 \toks@=\expandafter{\the\expandafter\toks@ \expandafter{\@tempa}}%

826 #2\XD@endgrab

827 }

The \XD@grab@harmless@oarg grabber grabs one optional argument and con-
verts it to a harmless character string. This string is contributed to the list of
arguments if the optional argument, or else the token \NoValue is contributed
instead.

828 \def\XD@grab@harmless@oarg#1\XD@endgrab{%

45

829 \@ifnextchar[{\XD@grab@harmless@oarg@{#1}}{%

830 \addto@hook\toks@\NoValue

831 #1\XD@endgrab

832 }%

833 }

\XD@grab@harmless@oarg@ is a helper to remove the brackets around the optional
argument.

834 \long\def\XD@grab@harmless@oarg@#1[#2]{%

835 \MakeHarmless\@tempa{#2}%

836 \toks@=\expandafter{\the\expandafter\toks@ \expandafter{\@tempa}}%

837 #1\XD@endgrab

838 }

\XD@grab@harmless@asmacro

\XD@grab@harmless@cs

\XD@grab@harmless@cs@

The \XD@grab@harmless@asmacro grabber combines the features of \XD@grab@
asmacro and \XD@grab@harmless, since when the argument to grab is tokenized
the catcode of \ is set to 12 and the catcode assignments in \MakePrivateLetters
are made. Then the grabbed argument is converted to a harmless character se-
quence, and finally the first character is removed if it is a backslash.

839 \def\XD@grab@harmless@asmacro{%

840 \begingroup

841 \catcode‘\\=12 \MakePrivateLetters\relax

842 \expandafter\endgroup

843 \XD@grab@harmless{%

844 \protected@edef\@tempa{%

845 \expandafter\XD@unbackslash\@tempa\@empty

846 }%

847 }%

848 }

The \XD@grab@harmless@cs grabber is for use with commands like doc’s
\DescribeMacro, which take an actual control sequence as the argument. It
grabs one argument while having catcodes changed as indicated by \MakePrivate-
Letters, \strings the argument while \escapechar is -1 (so that there is no
escape character inserted), and continues as \XD@grab@harmless.

849 \def\XD@grab@harmless@cs{%

850 \begingroup

851 \MakePrivateLetters\relax

852 \expandafter\endgroup \XD@grab@harmless@cs@

853 }

854 \long\def\XD@grab@harmless@cs@#1\XD@endgrab#2{%

855 \begingroup

856 \escapechar=\m@ne

857 \expandafter\endgroup

858 \expandafter\MakeHarmless \expandafter\@tempa

859 \expandafter{\string#2}%

860 \toks@=\expandafter{\the\expandafter\toks@ \expandafter{\@tempa}}%

861 #1\XD@endgrab

862 }

\XD@grab@harmless@withprivate \XD@grab@harmless@withprivate is like \XD@grab@harmless but grabs the ar-
gument when the catcodes are as set by \MakePrivateLetters. Like \XD@grab@
harmless, \XD@grab@harmless@withprivate takes an argument which can con-
tain code that modifies the harmless character string after it has been formed.

46

863 \def\XD@grab@harmless@withprivate{%

864 \begingroup\MakePrivateLetters\relax\expandafter\endgroup

865 \XD@grab@harmless

866 }

8.2 The \XD@m@cro and \NewMacroEnvironment commands

In doc the macro that contains most of the code for the macro and environment
environments is called \m@cro@. In xdoc the corresponding macro is \XD@m@cro.

At this point, it is helpful to recall what \m@cro@ actually does. It can be
summarized in the following four points:

• It starts a \trivlist.10

• It prints the name of the macro/environment that is about to be defined in
the margin.

• It writes an index entry (and inhibits cross-referencing of the macro inside
the environment).

• It sets \saved@macroname to the name of the macro/environment (for use
by \changes).

The first and fourth points are simple, and commands for the third were defined
in Section 4, but the second point needs a few helper macros.

\XDStackItemLabels

\XD@macro@dimen

The \XDStackItemLabels macro is a definition of \makelabel which is used in
the macro-like environments for stacking the names printed by subsequent envi-
ronments under each other. It makes a box which has zero height and depth (it
should have zero width as well, but that is left as a restriction on the argument)
and the printed names will be stacked if the reference points of the subsequent
boxes generated by \XDStackItemLabels coincide.

\XD@macro@dimen (always assigned globally) stores the vertical distance from
the reference point of the box that \XDStackItemLabels makes to the (bottom-
most) baseline of the previous printed name. \XD@macro@dimen is updated by
each new \XDStackItemLabels. The baseline of the next printed name will be
put one \baselineskip lower than that of the previous printed name, except for
when \XD@macro@dimen is -\maxdimen (see below). To avoid that printed names
clash into each other, this additional \baselineskip is generated as normal in-
terline glue where the upper box has the same depth as a strut and the new value
of \XD@macro@dimen is measured in such a way that the printed name’s depth
below the nominal baseline will not exceed the depth of a strut (that’s what the
\boxmaxdepth assignment is for). When \XD@macro@dimen is -\maxdimen the
(topmost) baseline of the printed name will instead go through the reference point
of the box. This case is intended for the first item label in a stack.

The reason \everypar is cleared is that that is where the list environments
put the commands which actually insert the item label into the paragraph. If that

10Seriously, can someone explain to me why it seems just about every non-math LATEX envi-
ronment that doesn’t start a \list starts a \trivlist? What good does all these \trivlists
do? Is it (a) that people just like the basic design, (b) that there’s some deep technical reason,
or (c) that people in general doesn’t have a clue but all other environments do that so it’s best
to include it just in case?

47

code gets executed inside \makelabel, the list environments get seriously confused
with not at all nice consequences.

867 \def\XDStackItemLabels#1{%

868 \setbox\z@=\vbox{%

869 \ifdim \XD@macro@dimen=-\maxdimen

870 \setbox\z@=\vtop{%

871 \color@begingroup

872 \everypar={}%

873 #1%

874 \color@endgroup

875 }%

876 \kern-\ht\z@

877 \unvbox\z@

878 \else

879 \color@begingroup

880 \everypar={}%

881 \kern\XD@macro@dimen

882 \setbox\z@=\copy\strutbox \ht\z@=\z@ \box\z@

883 #1%

884 \color@endgroup

885 \fi

886 \boxmaxdepth=\dp\strutbox

887 }%

888 \global\XD@macro@dimen=\ht\z@

889 \vtop to\z@{\unvbox\z@ \vss}%

890 }

891 \newdimen\XD@macro@dimen

\XDToMargin The \XDToMargin macro takes one argument, which is assumed to be some hor-
izontal material, and puts that material in a \hbox of width zero, horizontally
shifted out into the the outer margin, in such a way that longer arguments extend
further out. \marginparsep is used as the distance between the argument and the
main galley. All these placements assume that the \hbox will be put \labelsep
to the left of the beginning of a nonindented paragraph, since that is where it will
be put by the \item of a \trivlist.

A question is where the margin should be considered to start if the \@total-
leftmargin isn’t zero. The corresponding doc action would be to consider the
margin as everything outside the \linewidth width, but I don’t think that would
be appropriate here (especially not since doc always puts the codeline numbers at
the edge of the \textwidth width).

892 \newcommand\XDToMargin[1]{%

893 \hb@xt@\z@{%

894 \IfOddPageSituation{%

895 \dimen@=-\@totalleftmargin

896 \advance \dimen@ \labelsep

897 \advance \dimen@ \textwidth

898 \advance \dimen@ \marginparsep

899 \kern\dimen@

900 }\hss

901 #1%

902 \IfOddPageSituation\hss{%

903 \dimen@=\@totalleftmargin

48

904 \advance \dimen@ -\labelsep

905 \advance \dimen@ \marginparsep

906 \kern\dimen@

907 }%

908 }%

909 }

\XDParToMargin The \XDParToMargin command is in syntax and use similar to the \XDToMargin
command, but it will try to linebreak an argument that is too long rather than
letting it extend outside the paper.

The implementation first tries to break the argument without considering jus-
tification or positioning, but with a rather high \linepenalty. If the result of that
try is a single line paragraph then \XDToMargin will be called to actually typeset
the argument. Otherwise the argument is typeset as a paragraph which gets dis-
placed out into the outer margin by giving \leftskip and \rightskip nonzero
natural widths. The practical line width in the paragraph is the \marginparwidth,
but the hboxes containing the individual lines will have width zero. The first line
of the paragraph will be set flush outwards, the last line of the paragraph will be
set flush inwards, and the remaining lines will be centered.

910 \newcommand\XDParToMargin[1]{%

911 \parindent=\z@

912 \setbox\z@=\vbox{%

913 \leftskip=\z@skip

914 \rightskip=\z@\@plus 1fil%

915 \parfillskip=\z@skip

916 \hsize=\marginparwidth

917 \linepenalty=1000%

918 \color@begingroup

919 \noindent\ignorespaces #1\@@par

920 \color@endgroup

921 \expandafter}%

922 \expandafter\ifnum \the\prevgraf<\tw@

923 \XDToMargin{#1}%

924 \else

925 \hsize=\z@

926 \leftskip=\z@ \@plus \marginparwidth

927 \rightskip=\leftskip

928 \IfOddPageSituation{%

929 \dimen@=-\@totalleftmargin

930 \advance \dimen@ \labelsep

931 \advance \dimen@ \textwidth

932 \advance \dimen@ \marginparsep

933 \advance \leftskip \dimen@

934 \advance \rightskip -\dimen@ \@minus \p@

935 \advance \rightskip -\marginparwidth

936 \parfillskip=\z@ \@plus 1fil%

937 }{%

938 \dimen@=\@totalleftmargin

939 \advance \dimen@ -\labelsep

940 \advance \dimen@ \marginparsep

941 \advance \leftskip -\dimen@ \@minus \p@

942 \advance \leftskip -\marginparwidth

943 \advance \rightskip \dimen@

49

944 \parfillskip=\z@ \@plus -\marginparwidth%

945 }

946 \noindent\nobreak\hskip\parfillskip

947 \ignorespaces #1\@@par

948 \fi

949 }

In the following I exploit the implementation of the \item command in a
slightly hackish way. Instead of starting a new paragraph with the item label
(which is what one at first would believe \item does), \item actually puts the
label in the box \@labels register, and stores code in \everypar that inserts
that box into the new paragraph. Therefore I can make sure that various \write
whatsits that need to be as the same page as an \item label will be there by
adding them to the contents of the \@labels box. This seems more reliable to
me than putting them on the vertical list followed by a \nobreak as doc does, but
that would probably work as well.

[A funny thing in that which confused me a while was the question of whether
the \box command that inserts the box into the paragraph and simultaneously
clears the register acted globally or locally. It turns out that the question was
ill-posed, as the distinction between local and global assignments is determined
by what restore items they put on TEX’s save stack. The \box command doesn’t
put anything there, so the assignment it makes will essentially appear at the same
grouping level as the \setbox command that set the contents of the box register.
As all \setboxes for the \@labels box register are global, the box register will be
globally void after \box\@labels.]

\XD@m@cro This is the workhorse of all the macro-like environments. It calls \trivlist and
sets related parameters, prints the “macro” name in the proper place, updates
the representation of the “macro” name that \changes will use, and writes ap-
propriate index entries (possibly making temporary changes in cross-referencing).
Exactly what these tasks consist of can vary quite a lot between different macro-
like environments, and therefore the \XD@m@cro macro has the following syntax:

\XD@m@cro{〈print〉}{〈index 〉}{〈changes〉}{〈assign〉}

〈print〉, 〈index 〉, and 〈assign〉 are simply the commands for printing the “macro”
name as it should appear in the margin, generating the index entries for this
macro-like environment, and making whatever additional local assignments that
are needed for this environment (usually a couple of \DoNotIndexHarmless
commands, if anything at all) respectively. At the time 〈index 〉 is executed,
codelineno holds the number of the next codeline. 〈changes〉, finally, is code
that will be put in the context

\protected@edef\saved@macroname{〈changes〉}

to set the \saved@macroname macro (for \changes).
950 \def\XD@m@cro#1#2#3#4{%

951 \topsep\MacroTopsep

952 \trivlist

953 \global\setbox\@labels=\hbox{%

954 \unhbox\@labels

955 \if@inlabel \else

956 \global\XD@macro@dimen=-\maxdimen

50

957 \StepPageSituation

958 \RecordPageSituation

959 \fi

960 \advance \c@codelineno \@ne

961 #2%

962 }%

963 \let\makelabel\XDStackItemLabels

964 \item[#1]%

965 \protected@edef\saved@macroname{#3}%

966 #4%

967 \ignorespaces

968 }

In the first xdoc prototype, the macro-like environments were implemented
so that each new environment only used two control sequences (\〈env〉 and
\end〈env〉), which is the absolute minimum. This implementation worked fine
for single argument environments, but the number of helper macros that would
have to be introduced to deal with multiple argument environments exceeded
what could be considered reasonable. Therefore the second prototype claims a
third control sequence for the implementation of a macro-like environment 〈env〉,
namely \\〈env〉, which is also used by normal LATEX2ε environments which take
an optional argument.

It should also be mentioned that the implementation in the first prototype
required that most of the code in \〈env〉 had to be written in a very special way.
Instead of using the #〈digit〉 notation for the arguments and write straightfor-
ward LATEX code, one had to express everything using macros which operate on
arguments “up ahead” (immediately after the code you can specify). This curi-
ous coding model made it out of the question to create a class designer interface
for defining new macro-like environments, but in the second xdoc prototype it
is quite simple to do something of that sort: the command name is \NewMacro-
Environment.

\NewMacroEnvironment

\XD@NewMacroEnvironment

\XD@NewMacroEnvironment@

The \NewMacroEnvironment command is used for defining new macro-like envi-
ronments. It has the syntaxes

\NewMacroEnvironment{〈name〉}{〈grabbers〉}{〈numargs〉}
{〈unjust-print〉}{〈index 〉}{〈changes〉}{〈assign〉}

\NewMacroEnvironment*{〈name〉}{〈grabbers〉}{〈numargs〉}
{〈print〉}{〈index 〉}{〈changes〉}{〈assign〉}

where 〈name〉 is the name of the environment to define, 〈grabbers〉 is a sequence
of argument grabbers, 〈numargs〉 is the number of arguments that the grabbers
will grab, and 〈print〉, 〈index 〉, 〈changes〉, and 〈assign〉 are code that will be put
in the respective arguments of \XD@m@cro. In the four last arguments, argument
specifiers #1 to #〈numargs〉 inclusive can be used do mean the arguments that
were grabbed by the sequence of grabbers.

The argument grabbers that are currently made available by the xdoc package
are listed in Table 2 on page 43.

The 〈print〉 code will be executed while TEX is in internal vertical mode and it
should put one or several hboxes of width zero onto the vertical list. The contents
of these boxes should be some amount of text which will appear displaced out
into the outer margin on the page when the reference point of the box appears

51

\labelsep to the left of the left edge of the line. The easiest way of achieveing
this is to use a 〈print〉 of the form

\XDToMargin{〈unjust-print〉}

and this is exactly what the non-star form of \NewMacroEnvironment does by
default.

969 \newcommand\NewMacroEnvironment{%

970 \@ifstar\XD@NewMacroEnvironment\XD@NewMacroEnvironment@

971 }

972 \def\XD@NewMacroEnvironment@#1#2#3#4{%

973 \XD@NewMacroEnvironment{#1}{#2}{#3}{\XDToMargin{#4}}%

974 }

975 \def\XD@NewMacroEnvironment#1#2#3#4#5#6#7{%

976 \expandafter\@ifdefinable\csname#1\endcsname{%

977 \expandafter\def \csname#1\expandafter\endcsname

978 \expandafter{\expandafter\XD@grab@arguments

979 \csname\@backslashchar#1\endcsname{#2}}%

980 \let\l@ngrel@x\relax

981 \expandafter\@yargdef \csname\@backslashchar#1\endcsname \@ne

982 {#3}{\XD@m@cro{#4}{#5}{#6}{#7}}%

983 \expandafter\let \csname end#1\endcsname \endtrivlist

984 }%

985 }

The 〈grabbers〉 argument—in which one specifies a list of internal macros—is not
how the interface should really look, but I think it will have to do for now. The final
interface will probably use something like the argument specifications of \Declare-
DocumentCommand, but there is little point in implementing that before xparse has
gotten its final form.

The macro \@yargdef used above should perhaps be checked so that its
syntax hasn’t changed, but since \@yargdef quite recently (ltdefn.dtx v 1.3c,
1999/01/18) was completely reimplemented without any change in the syntax
(despite the fact that the syntax is afterwards rather peculiar), I think it can be
assumed that the syntax will not change in LATEX2ε.

8.3 Reimplementing macro and environment

Well, then how does one reimplement the macro and environment environments
using \XD@m@cro? We shall soon see, but first it is convenient to define a utility
macro.

\XDMainIndex The \XDMainIndex macro is an abbreviation to save a couple of tokens in a very
frequent call to \IndexEntry. It has the syntax

\XDMainIndex{〈argument〉}

and that expands to

\IndexEntry{〈argument〉}{main}{\TheXDIndexNumber}

986 \newcommand\XDMainIndex[1]{\IndexEntry{#1}{main}{\TheXDIndexNumber}}

52

macro

environment

It is very easy to implement macro and environment environments which behave
pretty much as in doc using the \NewMacroEnvironment command. The important
difference is that in doc everything that distinguished the two environments was
to be found in various helper macros, but here all that code is in the \\macro
and \\environment macros. Thus to define one new macro-like environment, one
doesn’t have to define six or so new macros—everything can be handled in one
definition.

The reason for the \let commands below is of course that macro and
environment are already defined, and there is no \RenewMacroEnvironment com-
mand. It could perhaps have been better if \NewMacroEnvironment had behaved
like \DeclareRobustCommand, but I don’t think that is an important problem for
the moment.

987 \let\macro=\relax

988 \let\endmacro=\relax

989 \NewMacroEnvironment{macro}{\XD@grab@harmless@asmacro}{1}

990 {\MacroFont\Bslash#1}

991 {\MakeSortKey\@tempa{#1}{}%

992 \XDMainIndex{\LevelSorted{\@tempa}{\texttt{\Bslash#1}}}}

993 {{#1}{\texttt{\Bslash#1}}}

994 {\DoNotIndexHarmless{#1}}

995 \let\environment=\relax

996 \let\endenvironment=\relax

997 \NewMacroEnvironment{environment}{\XD@grab@harmless@asmacro}{1}

998 {\MacroFont#1}

999 {\XDMainIndex{\LevelSorted{#1}{\texttt{#1} (environment)}}%

1000 \XDMainIndex{%

1001 \LevelSame{environments:}\LevelSorted{#1}{\texttt{#1}}%

1002 }}%

1003 {{#1}{\texttt{#1}}}

1004 {}%

8.4 Further examples of macro-like environments

option The option environment is for class/package options. IMHO, something like this
environment should have been added to doc years ago!

1005 \NewMacroEnvironment{option}{\XD@grab@harmless\relax}{1}

1006 {\MacroFont#1 \normalfont option}

1007 {\XDMainIndex{\LevelSorted{#1}{\texttt{#1} option}}%

1008 \XDMainIndex{%

1009 \LevelSame{options:}\LevelSorted{#1}{\texttt{#1}}%

1010 }}%

1011 {{#1 option}{\texttt{#1} option}}

1012 {}%

switch The switch environment is for switches created by \newif (Plain TEX style).
1013 \NewMacroEnvironment{switch}{\XD@grab@harmless\relax}{1}

1014 {\MacroFont#1 \normalfont switch}%

What makes switches different from the other macro-like environments defined
here is the large number of index entries it makes. For a switch 〈sw〉 it first makes
one under the ‘switches:’ heading:

1015 {%

53

1016 \MakeSortKey\XD@last@key{#1}{}%

1017 \XDMainIndex{%

1018 \LevelSame{switches:}\LevelSorted{\XD@last@key}{\texttt{#1}}%

1019 }%

Second it makes a ‘〈sw〉 switch’ entry:
1020 \XDMainIndex{\LevelSorted{\XD@last@key}{\texttt{#1} switch}}%

Third it makes an entry for the macro \if〈sw〉. The sort key for this entry is
not subjected to \MakeSortKey because no reasonable operator will act on the
if prefix (an operator which acts on if could do rather strange things to e.g.
\ifnum).

1021 \XDMainIndex{\LevelSorted{if#1}{\texttt{\Bslash if#1}}}%

Fourth it makes an entry for the macro \〈sw〉false:
1022 \MakeSortKey\@tempa{#1false}{}%

1023 \XDMainIndex{\LevelSorted{\@tempa}{\texttt{\Bslash#1false}}}%

Finally it makes an entry for the macro \〈sw〉true:
1024 \MakeSortKey\@tempa{#1true}{}%

1025 \XDMainIndex{\LevelSorted{\@tempa}{\texttt{\Bslash#1true}}}%

1026 }%

The \changes heading, on the other hand, is trivial.
1027 {{#1}{\texttt{#1} switch}}

Finally, switch should turn off indexing of the three macros it makes main entries
for, since makeindex will otherwise complain.

1028 {\DoNotIndexHarmless{if#1}%

1029 \DoNotIndexHarmless{#1false}%

1030 \DoNotIndexHarmless{#1true}}%

1031 〈/pkg〉

To end this section, there now follows two examples which are not part of the
package as they are very specific, but which have been included here because they
illustrate that macro-like environments may have several arguments.

enccommand

enccomposite

The enccommand and enccomposite environments can be used for marking up
sources for encoding definition files and the like. enccommand is for encoding-
specific commands and has the syntax

\begin{enccommand}{〈command〉}[〈encoding〉]

where 〈command〉 is the encoding-specific command and 〈encoding〉 is the encod-
ing that this definition is for. If the 〈encoding〉 is omitted then the enccommand is
assumed to be for the default definition of the command.

enccomposite is for composites of encoding-specific commands (defined for
example using \DeclareTextComposite). It has the syntax

\begin{enccomposite}{〈command〉}{〈encoding〉}{〈argument〉}

where 〈command〉 and 〈encoding〉 are as for enccommand and 〈argument〉 is the
argument with which the command is being composed.

The marginal headings these commands print are the actual control sequences
in which the definitions are stored.

1032 〈∗enccmds〉

54

1033 \NewMacroEnvironment{enccommand}{%

1034 \XD@grab@harmless@asmacro \XD@grab@oarg

1035 }{2}{\MacroFont\Bslash \ifx\NoValue#2?\else#2\fi \Bslash #1}{%

1036 \XDMainIndex{%

1037 \LevelSorted{#1}{\texttt{\Bslash#1}}%

1038 \ifx \NoValue#2%

1039 \LevelSame{default}%

1040 \else

1041 \LevelSorted{#2}{\texttt{#2} encoding}%

1042 \fi

1043 }%

1044 }{{#1}{\texttt{\Bslash#1}}}{\DoNotIndexHarmless{#1}}

1045 \NewMacroEnvironment{enccomposite}{%

1046 \XD@grab@harmless@asmacro \XD@grab@marg \XD@grab@harmless\relax

1047 }{3}{\MacroFont\Bslash#2\Bslash#1-#3}{%

1048 \XDMainIndex{%

1049 \LevelSorted{#1}{\texttt{\Bslash#1}}%

1050 \LevelSorted{#2}{\texttt{#2} encoding}%

1051 \LevelSorted{\XD@unbackslash#3\@empty}{\texttt{#3} composite}%

1052 }%

1053 }{{#1}{\texttt{\Bslash#1}}}{\DoNotIndexHarmless{#1}}

1054 〈/enccmds〉

In the file cyoutenc.dtx the definitions of many encoding-specific commands
are written so that the same line of code can work is all four files t2aenc.def,
t2benc.def, t2cenc.def, and x2enc.def. Therefore the 〈encoding〉 argument
of the enccommand and enccomposite environments should perhaps rather be a
comma-separated list of encodings than a single encoding, but that would make
this example unnecessarily complicated.

9 Describing macros and the like

\if@mparswitch

\if@reversemargin

In two-sided mode, marginal notes should appear in the outer margin. The fol-
lowing code takes care of that.

1055 〈∗pkg〉
1056 \if@twoside

1057 \@mparswitchtrue

1058 \normalmarginpar

1059 \fi

\GenericDescribePrint The \GenericDescribePrint macro is a utility macro for use in commands like
\DescribeMacro. Its syntax is

\GenericDescribePrint{〈text〉}

and it puts 〈text〉 in a marginal paragraph, giving it the appropriate justification
for appearing in that margin.

The first part simply tests whether the argument fits on a single line.
1060 \newcommand\GenericDescribePrint[1]{%

1061 \setbox\z@=\vbox{%

1062 \parindent=\z@

1063 \leftskip=\z@skip

55

1064 \rightskip=\z@\@plus 1fil%

1065 \parfillskip=\z@skip

1066 \hsize=\marginparwidth

1067 \linepenalty=\@m

1068 \color@begingroup

1069 \noindent\ignorespaces #1\@@par

1070 \color@endgroup

1071 \expandafter}%

1072 \expandafter\ifnum \the\prevgraf<\tw@

Then comes the actual typesetting. First the single-line format. The braces in the
optional argument are there to prevent trouble in case #1 contains a right brace;
they will be stripped off when the argument is grabbed.

1073 \if@twoside

1074 \marginpar[{\raggedleft\strut #1}]{\raggedright\strut #1}%

1075 \else

1076 \marginpar{\raggedleft\strut#1}%

1077 \fi

1078 \else

1079 \if@twoside

1080 \marginpar[{%

1081 \leftskip=\z@ \@plus \marginparwidth

1082 \rightskip=\leftskip

1083 \parfillskip=\z@ \@plus -\marginparwidth

1084 \noindent\nobreak\hskip\parfillskip

1085 \ignorespaces #1%

1086 }]{%

1087 \leftskip=\z@ \@plus \marginparwidth

1088 \rightskip=\leftskip

1089 \parfillskip=\z@ \@plus 1fil%

1090 \noindent\nobreak\hskip\parfillskip

1091 \ignorespaces #1%

1092 }%

1093 \else

1094 \marginpar{%

1095 \leftskip=\z@ \@plus \marginparwidth

1096 \rightskip=\leftskip

1097 \parfillskip=\z@ \@plus -\marginparwidth

1098 \noindent\nobreak\hskip\parfillskip

1099 \ignorespaces #1%

1100 }%

1101 \fi

1102 \fi

1103 }

The describe-commands are supposed to be invisible—only leave a single
space even when there are spaces both before and after them—but there are prob-
lems with the mechanisms for this. I get the impression that they have never
worked perfectly, but that seems to be mainly due to that certain macros in the
LATEX kernel never did either, and I suspect that the general problem has been
thrashed over many times before.

doc’s \DescribeMacro and \DescribeEnv are wrapped up in a \@bsphack
. . . \@esphack “group” to become invisible, but the \marginpar and various in-
dex commands they are built on are themselves already invisible, so one would

56

suspect that there is no need for additional invisibility. There are however two
factors which create this need. One is that it doesn’t do the right thing at be-
ginning of lines; here it seems like what the describe-commands would need
is the \@vbsphack macro (whose definition appears in ltspace.dtx, but which
has been commented out) since they should start a new paragraph and leave
no following space if they are used in vertical mode. The other factor is that
the standard \@bsphack–\@esphack can only suppress every second intermediate
space if several invisible commands appear in sequence, as is quite common for
the describe-commands.11

Instead the doc implementations of \DescribeMacro and \DescribeEnv begin
with \leavevmode and end with \ignorespaces, which means that they are only
“invisible” if they appear on on the left of visible material, but that’s how it has
been for over a decade now.

\NewDescribeCommand The \NewDescribeCommand command is a relative to the \NewMacroEnvironment
command which defines commands analogous to \DescribeMacro rather than
macro-like environments. Its syntax is

\NewDescribeCommand{〈command〉}{〈grabbers〉}{〈numargs〉}{〈definition〉}

〈command〉 is the control sequence to define. 〈grabbers〉 and 〈numargs〉 are as for
the \NewMacroEnvironment command. 〈definition〉 is the command definition.
In addition to the definition given in the 〈definition〉 argument and the code for
grabbing the arguments, the command actually defined by \NewDescribeCommand
will contain a \leavevmode at the start and an \ignorespaces at the end.

The \NewDescribeCommand command should really just be a call to xparse’s
\DeclareDocumentCommand, but that will have to wait until xdoc becomes based
on the xparse package.

1104 \newcommand\NewDescribeCommand[4]{%

1105 \@ifdefinable#1{%

1106 \expandafter\def \expandafter#1\expandafter{%

1107 \expandafter\XD@grab@arguments \csname\string#1\endcsname{#2}%

1108 }%

1109 \let\l@ngrel@x\relax

1110 \expandafter\@yargdef \csname\string#1\endcsname \@ne {#3}%

1111 {\leavevmode#4\ignorespaces}%

1112 }%

1113 }

\DescribeMacro

\DescribeEnv

The \DescribeMacro and \DescribeEnv commands are as in doc. The argument
of \DescribeMacro is supposed to be the actual control sequence to describe (not
as with the macro environment something which looks like the control sequence
after being \stringed).

1114 \let\DescribeMacro=\relax

1115 \NewDescribeCommand\DescribeMacro{\XD@grab@harmless@cs}{1}{%

1116 \GenericDescribePrint{\MacroFont\Bslash#1}%

1117 \MakeSortKey\@tempa{#1}{}%

1118 \IndexEntry{%

1119 \LevelSorted{\@tempa}{\texttt{\Bslash#1}}%

11It would seem that a simple fix for this is to have \@esphack insert \nobreak \hskip-\@savsk

\hskip\@savsk before it executes \ignorespaces, but since that fix hasn’t been incorporated into
the kernel or the fixltx2e package there probably is some problem with it.

57

1120 }{usage}{\thepage}%

1121 }

The argument of \DescribeEnv, on the other hand, is treated like that of the
environment environment, but backslash isn’t given catcode 12—only the catcode
assignments in \MakePrivateLetters are made.

1122 \let\DescribeEnv=\relax

1123 \NewDescribeCommand\DescribeEnv{%

1124 \XD@grab@harmless@withprivate\relax

1125 }{1}{%

1126 \GenericDescribePrint{\MacroFont#1}%

1127 \IndexEntry{%

1128 \LevelSame{environments:}\LevelSorted{#1}{\texttt{#1}}%

1129 }{usage}{\thepage}%

1130 \IndexEntry{%

1131 \LevelSorted{#1}{\texttt{#1} (environment)}%

1132 }{usage}{\thepage}%

1133 }

\describeoption The \describeoption command is the describe-companion to the option envi-
ronment.

1134 \NewDescribeCommand\describeoption{\XD@grab@harmless\relax}{1}{%

1135 \GenericDescribePrint{\MacroFont#1 \normalfont option}%

1136 \IndexEntry{%

1137 \LevelSame{options:}\LevelSorted{#1}{\texttt{#1}}%

1138 }{usage}{\thepage}%

1139 \IndexEntry{%

1140 \LevelSorted{#1}{\texttt{#1} option}%

1141 }{usage}{\thepage}%

1142 }

\describecsfamily The \describecsfamily command is for marking out sections in text where a
particular family of control sequences is described—just like \DescribeMacro does
for individual commands. To clarify what I mean by a control sequence family,
here are a couple of examples:

\c@〈counter〉 countdef token for the \count register
storing the LATEX counter 〈counter〉

\ps@〈pagestyle〉 macro storing settings for the pagestyle
〈pagestyle〉

\〈enc〉/〈fam〉/〈ser〉/〈sh〉/〈sz 〉 the fontdef token for the font which has
encoding 〈enc〉, family 〈fam〉, series 〈ser〉,
shape 〈sh〉, and size 〈sz 〉 under NFSS

\〈enc〉\〈cmd〉 the macro containing the definition for
encoding 〈enc〉 of the encoding-specific
LATEX command \〈cmd〉

\fps@〈type〉 the default placement specifier for LATEX
floats of type 〈type〉

\l@〈name〉 a macro which formats table of contents
entries for items of type 〈name〉 (chapter,
section, etc.)

58

\l@〈language〉 the \language number babel has allocated
for the language 〈language〉 (english,
french, etc.)

\i-〈int〉 the control sequence (either a mathchardef
token or a macro) which stores the value of
the fontinst integer 〈int〉

The syntax for \describecsfamily is

\describecsfamily{〈cs-fam specification〉}

The 〈cs-fam specification〉 includes only what would be put between \csname and
\endcsname; the \describecsfamily command will add a backslash when print-
ing the name. No special catcodes will be in force in the argument, but the #,
$, &, _, ^, and ~ characters present no problems even if they have their ordi-
nary catcodes. All spaces are seen as ASCII space and TEX is skipping spaces as
usual. Characters with catcode 0, 1, 2, 5, 9, 14, or 15 may however be problem-
atic. If you need to specify such a problematic character then you can do so by
writing \PrintChar{〈code〉}, where 〈code〉 is the ASCII code for the character,
as a valid TEX number in the range 0–255. In case you do not remember the
ASCII code for some character 〈c〉, there is no harm in specifying it as ‘\〈c〉, e.g.
\PrintChar{‘\}} for a right brace. It is even possible to write \PrintChar com-
mands for characters outside visible ASCII (but those are typeset as ^^-sequences).

The variant parts in the control sequence names are specified as

\meta{〈text〉}

and these will be typeset exactly as in normal text. The arguments of \metas
appearing in a 〈cs-fam specification〉 are moving. All control sequences other than
\PrintChar and \meta in a 〈cs-fam specification〉 (and which do not appear in the
argument of a \PrintChar or \meta) are essentially treated as if they had been
\stringed.

Apart from the above differences in treatment of the argument, the \describe-
csfamily command is similar to \DescribeMacro—it prints the control sequence
name in the margin and makes a usage index entry.

1143 \NewDescribeCommand\describecsfamily{\XD@grab@harmless{}}{1}{%

1144 \GenericDescribePrint{%

1145 \MetaNormalfont\MacroFont\Bslash#1%

1146 }%

1147 \MakeSortKey\@tempa{#1}{\def\meta##1{(##1)}}%

1148 \IndexEntry{%

1149 \LevelSorted{\@tempa}{\texttt{\protect\MetaNormalfont\Bslash#1}}%

1150 }{usage}{\thepage}%

1151 }

1152 〈/pkg〉

As for \NewMacroEnvironment, I also give an example of an application of
\NewDescribeCommand which is much too special for including in xdoc in general
and therefore the code is placed in a special module. I had originally written the
code as part of another package, but I removed it because I thought it was a bit
too special even for that context. The commentry below is kept unchanged.

59

I believe this feature is primarily of interest for MacOS programs,
but there might be sufficiently similar structures in other operating
systems to make it useful even in other contexts. Be as it may, what
the feature described here does is that it allows the user to put an entry
in the index for each resource in the code. This gives an easy way of
checking that no two resources are assigned the same id, even though
there is no mechanism for especially warning for such collisions.

\DescribeResource The main command available is

\DescribeResource{〈type〉}{〈id〉}{〈text〉}
〈type〉 is a four-character string. Most special characters are treated
as ordinary ones (very useful for #s), but the visible ASCII characters
%, {, \, and } retain their usual meaning. To use such a troublesome
character 〈c〉 in a resource type, write it as \PrintChar{‘\〈c〉}. 〈id〉
is a TEX number; it will be used as the number of the resource. 〈text〉
is normal text that will be put in the index entry to describe the
resource; it seems a good idea to use the name of the resource for this.
〈id〉 and 〈text〉 are read with normal LATEX catcodes. Note that 〈text〉
is a moving argument.

\DescribeResource does two things—it prints the 〈type〉 and 〈id〉
of the resource in the margin, and it writes an entry

〈type〉 resources:
〈id〉

〈text〉
(plus a lot of formatting not shown here) to the .idx file. The reference
is for the page.

The idea with advancing \count@ like that when constructing the
index entry is to get a sort key for which lexicographic order equals the
wanted order. This would not be the case if the number was simply
written down. The current code maps numbers to six-digit positive
integers, but five-digits integers would be sufficient (a resource 〈id〉 is
a signed 16-bits integer). The construction chosen here furthermore
puts the negative numbers after the positive ones.

1153 〈∗rsrccmd〉
1154 \NewDescribeCommand\DescribeResource{%

1155 \XD@grab@harmless\relax \XD@grab@marg \XD@grab@marg

1156 }{3}{%

1157 \GenericDescribePrint{#1%

1158 \textnormal{:\ifnum#2<\z@ \textminus\number-\else\number\fi#2}%

1159 }%

1160 \count@=#2\relax

1161 \advance \count@ 100000\ifnum \count@<\z@ 0\fi \relax

1162 \protected@edef\@tempa{%

1163 \noexpand\LevelSorted{\the\count@}{%

1164 \ifnum #2<\z@ \string\textminus \number-\else\number\fi#2%

1165 }%

1166 }%

1167 \IndexEntry{%

1168 \LevelSorted{#1 resources:}{\texttt{#1} resources:}%

1169 \@tempa

60

1170 \LevelSame{#3}%

1171 }{usage}{\thepage}%

1172 }

1173 〈/rsrccmd〉

10 The \DocInclude command

The code in this section is based on code from the ltxdoc document class [1]
and it implements a command called \DocInclude. Two implementations of this
command are given: one which is essentially that of ltxdoc (preserving all its
peculiarities), and one which is a reimplementation from scratch. The default is
to use the latter, but passing the olddocinclude option to xdoc selects the former.

10.1 Old implementation

It should be observed that this is not a complete implementation of the \Doc-
Include command—it only redefines the ltxdoc macros that need to be changed
if the \DocInclude command is to work with xdoc (it doesn’t for example change
the definition of \DocInclude itself). Furthermore it doesn’t define anything if the
ltxdoc document class hasn’t been loaded, since then the details of the definition
of \DocInclude (even if it would be defined) are unknown.

\CodelineIndex

\filesep

\@docinclude

ltxdoc redefines \codeline@wrindex so that \filesep is prepended to each code-
line number that is written to the index file. That redefinition has no effect unless
the \CodelineIndex command is executed afterwards however, so there is no
harm in having \CodelineIndex itself apply the corresponding change.

1174 〈∗pkg〉
1175 \@ifpackagewith{xdoc2}{olddocinclude}{%

1176 \@ifclassloaded{ltxdoc}{%

1177 \renewcommand\CodelineIndex{%

1178 \makeindex

1179 \let\XD@if@index=\@firstoftwo

1180 \codeline@indextrue

1181 \def\TheXDIndexNumber{\filesep\thecodelineno}%

1182 }%

The \filesep macro is redefined so that the docindex package [2] can use
a page_compositor string different from the default - simply by redefining
\XD@page@compositor. This redefinition has to be put in \docincludeaux since
that macro redefines \filesep too.

1183 \expandafter\def \expandafter\docincludeaux \expandafter{%

1184 \docincludeaux

1185 \gdef\filesep{\thepart\XD@page@compositor}%

1186 }

The change to \@docinclude merely consists of inserting code for writing an
ExternalXRefWrap to the .aux file to record the new value of the part counter.

1187 \def\@docinclude#1 {%

1188 \clearpage

1189 \if@filesw

1190 \immediate\write\@mainaux{\string\@input{#1.aux}}%

1191 \fi

61

1192 \@tempswatrue

1193 \if@partsw

1194 \@tempswafalse

1195 \edef\@tempb{#1}%

1196 \@for\@tempa:=\@partlist\do{%

1197 \ifx\@tempa\@tempb\@tempswatrue\fi

1198 }%

1199 \fi

1200 \if@tempswa

1201 \let\@auxout\@partaux

1202 \if@filesw

1203 \immediate\openout\@partaux #1.aux

1204 \immediate\write\@partaux{\relax}%

1205 \fi

1206 \part{#1.dtx}%

1207 \if@filesw

1208 \immediate\write\@partaux{\@percentchar\@percentchar

1209 ExternalXRefWrap {\filesep} {}%

1210 }%

1211 \fi

1212 {%

1213 \let\ttfamily\relax

1214 \xdef\filekey{%

1215 \filekey, \thepart={\ttfamily\currentfile}%

1216 }%

1217 }%

1218 \DocInput{#1.dtx}%

1219 \clearpage

1220 \@writeckpt{#1}%

1221 \if@filesw \immediate\closeout\@partaux \fi

1222 \else

1223 \@nameuse{cp@#1}%

1224 \fi

1225 \let\@auxout\@mainaux

1226 }

1227 }{}

1228 }{}

10.2 New implementation

The default action of the second implementation is to be precisely an \include
variant of \DocInput, but in addition to that it also has a (one-argument) hook
called \docincludeaux which is executed before a file is actually \DocInputted,
but after it has been determined that it should be included, and this hook is
only executed for the files which should be \included. This hook is normally
\@gobble, but passing the fileispart option to xdoc redefines it to start a new
part and set the pagestyle.

\DocInclude

\@docinclude

Most of the code for the \DocInclude command is put in the \@docinclude macro;
\DocInclude simply checks that it hasn’t been nested. The main difference to
\include is that a nested \DocInclude becomes an error plus the corresponding
\DocInput, whereas a nested \include simply becomes an error. The rationale
for this is that it is probably closer to what was intended.

62

The argument of \@docinclude is, oddly enough, space-delimited. This is
inherited from the \@include macro in the LATEX kernel, where it is a hack to
make sure that the part .aux file that is opened for writing really gets the suffix
.aux (in the worst case, TEX could start overwriting a .tex file instead).

1229 \@ifpackagewith{xdoc2}{olddocinclude}{}{%

1230 \def\DocInclude#1{%

1231 \ifnum\@auxout=\@partaux

1232 \@latexerr{\string\include\space cannot be nested}{%

1233 Your \protect\DocInclude\space will be reduced to a

1234 \protect\DocInput.%

1235 }%

1236 \DocInput{#1.dtx}%

1237 \else \@docinclude#1 \fi

1238 }%

The only things in this \@docinclude that are not precisely as in \@include are
the \docincludeaux and \DocInput commands.

1239 \def\@docinclude#1 {%

1240 \clearpage

1241 \if@filesw

1242 \immediate\write\@mainaux{\string\@input{#1.aux}}%

1243 \fi

1244 \@tempswatrue

1245 \if@partsw

1246 \@tempswafalse

1247 \edef\@tempb{#1}%

1248 \@for\@tempa:=\@partlist\do{%

1249 \ifx\@tempa\@tempb \@tempswatrue \fi

1250 }%

1251 \fi

1252 \if@tempswa

1253 \let\@auxout\@partaux

1254 \if@filesw

1255 \immediate\openout\@partaux #1.aux

1256 \immediate\write\@partaux{\relax}%

1257 \fi

1258 \docincludeaux{#1.dtx}%

1259 \DocInput{#1.dtx}%

1260 \clearpage

1261 \@writeckpt{#1}%

1262 \if@filesw \immediate\closeout\@partaux \fi

1263 \else

1264 \deadcycles\z@

1265 \@nameuse{cp@#1}%

1266 \fi

1267 \let\@auxout\@mainaux

1268 }%

1269 }{}

fileispart option

\docincludeaux

The fileispart option works by (re)defining a couple of macros, of which the
\docincludeaux macro is the most important. Its syntax is

\docincludeaux{〈filename〉}

63

where 〈filename〉 is the name of a file that will be inputted. The fileispart defi-
nition of this is to set \currentfile to the harmless character string of 〈filename〉,
produce a \part heading whose text is that 〈filename〉, add the 〈filename〉
to the \filekey macro, set the page style to docpart, clear the \filedate,
\fileversion, and \fileinfo macros, and write an ExternalXRefWrap XXR-
command to the .aux file to record the new codeline number prefix.

1270 \@ifpackagewith{xdoc2}{olddocinclude}{\iffalse}{

1271 \@ifpackagewith{xdoc2}{fileispart}{\iftrue}{

1272 \let\docincludeaux=\@gobble

1273 \iffalse

1274 }

1275 } % If fileispart and not olddocinclude then

1276 \def\docincludeaux#1{%

1277 \MakeHarmless\currentfile{#1}%

1278 \part{\texttt{\currentfile}}%

1279 \pagestyle{docpart}%

1280 \let\filedate\@empty

1281 \let\fileversion\@empty

1282 \let\fileinfo\@empty

1283 \protected@xdef\filekey{%

1284 \filekey, \thepart=\texttt{\currentfile}%

1285 }%

1286 \if@filesw

1287 \immediate\write\@partaux{\@percentchar\@percentchar

1288 ExternalXRefWrap {\thepart\XD@page@compositor} {}%

1289 }%

1290 \fi

1291 }%

\CodelineIndex The fileispart option also adds the codelineno counter to the reset list for
part and changes the format of codeline numbers written to the index.

1292 \@ifclassloaded{ltxdoc}{}{\@addtoreset{codelineno}{part}}%

1293 \renewcommand\CodelineIndex{%

1294 \makeindex

1295 \let\XD@if@index=\@firstoftwo

1296 \codeline@indextrue

1297 \def\TheXDIndexNumber{\thepart\XD@page@compositor\thecodelineno}%

1298 }%

\partname

\thepart

\IndexParms

Finally there are a couple of macros which are redefined for aesthetic rather than
technical reasons. Passing the fileispart option sets \partname to File, sets
\thepart to \aalph{part}, and adds a setting of pagestyle to \IndexParms. (The
pagestyle setting is added to \index@prologue by ltxdoc, but I think \IndexParms
is more appropriate.)

1299 \def\partname{File}

1300 \def\thepart{\aalph{part}}

1301 \expandafter\def \expandafter\IndexParms

1302 \expandafter{\IndexParms \pagestyle{docindex}}

In case the index formatting is handled by the docindex package [2] (or its
LATEX2ε incarnation docidx2e), the above addition to \IndexParms won’t have
any effect. Therefore xdoc also passes the usedocindexps option on to these
packages.

64

1303 \PassOptionsToPackage{usedocindexps}{docindex}

1304 \PassOptionsToPackage{usedocindexps}{docidx2e}

1305 \fi

\ps@docpart

\setfileinfo

\XD@set@file@info

The docpart pagestyle is for pages made from the \DocIncluded files. The page
footers contain the page number, the part (file) number, and the current file name.
It also contains the file date and version if that information is available.

ltxdoc uses \GetFileInfo to get the date and version information, but that’s
a very peculiar practice. The data one wants to present are about the file being
typeset—typically the version of the package that is documented in this file—
whereas the \GetFileInfo command really extracts information about unpacked
classes, packages, and similar files—files that contribute to the typesetting by
defining commands, not by containing text. Such information may be of interest
for documents which contain alternative code for incompatible versions of for
example a package, but it is of no use for printing version information as above
since the version of a package used for typesetting a .dtx file need not be the
version actually contained in that .dtx file. Thus the only way to make this work
is by doing as the LATEX kernel source and include \ProvidesFile commands for
the .dtx file in each such file, which is a rather peculiar use of the \ProvidesFile
command.

The \setfileinfo command provides an equivalent feature in a less round-
about way. It has the syntax

\setfileinfo[〈date〉 〈version〉 〈info〉]

and it sets \filedate to 〈date〉, \fileversion to 〈version〉, and \fileinfo to
〈info〉 if the optional argument is present; if the optional argument is missing or
contains fewer than three words then the missing fields are set to ?.

1306 \@ifpackagewith{xdoc2}{olddocinclude}{}{%

1307 \def\ps@docpart{%

1308 \def\@oddfoot{%

1309 File: \texttt{\currentfile}%

1310 \ifx \filedate\@empty \else \ Date: \filedate\fi

1311 \ifx \fileversion\@empty \else \ Version: \fileversion\fi

1312 \hfill\thepage

1313 }%

1314 \if@twoside

1315 \def\@evenfoot{%

1316 \thepage\hfill

1317 File: \texttt{\currentfile}%

1318 \ifx \filedate\@empty \else \ Date: \filedate\fi

1319 \ifx \fileversion\@empty \else \ Version: \fileversion\fi

1320 }%

1321 \else \let\@evenfoot\@oddfoot \fi

1322 }

The corresponding definition in ltxdoc (there it appears in \docincludeaux) is
peculiar in that the odd page footer is set globally but the even page footer only
locally.

The definition of \setfileinfo follows that of \GetFileInfo except for the
fact that the \relaxes have been replaced by \@emptys.

1323 \newcommand\setfileinfo[1][]{%

65

1324 \edef\@tempa{#1}%

1325 \expandafter\XD@set@file@info \@tempa\@empty? ? \@empty\@empty

1326 }

1327 \def\XD@set@file@info#1 #2 #3\@empty#4\@empty{%

1328 \def\filedate{#1}%

1329 \def\fileversion{#2}%

1330 \def\fileinfo{#3}%

1331 }

1332 }{}

The reason for making the argument of \setfileinfo optional is that with the
\ProvidesFile practice one can (potentially) put all date and version information
in one place through tricks like

% \begin{macrocode}

\ProvidesPackage{foobar}

% \end{macrocode}

% \ProvidesFile{foobar.dtx}

[2000/02/02 v1.0 Silly example package]

%

By making the argument of \setfileinfo optional, I make sure that people who
have used such tricks only have to replace the \ProvidesFile{foobar.dtx} by
\setfileinfo.

\ps@docindex

\filekey

The docindex pagestyle is for the index in fileispart documents. It prints a file
key, which is a list of all the included files and their corresponding part letters,
at the bottom of every page. The file key is stored in the macro \filekey, which
should have been constructed file by file as they are included. To add a file to the
file key, it is recommended that you do

\protected@xdef\filekey{\filekey, 〈entry for new file〉}

The fileispart version of \docincludeaux already does this. The initial value
of \filekey is \@gobble so that the comma before the first entry is removed. The
\@empty below is there in case no entry has been inserted.

1333 % \@ifpackagewith{xdoc2}{olddocinclude}{}{%

1334 \def\ps@docindex{%

1335 \def\@oddfoot{%

1336 \parbox{\textwidth}{%

1337 \strut\footnotesize\raggedright

1338 \textbf{File Key:} \filekey\@empty

1339 }%

1340 }%

1341 \let\@evenfoot\@oddfoot

1342 }%

1343 \let\filekey\@gobble

1344 % }

It should be observed that since \ps@docindex only sets the page style locally,
the page style will revert to its previous setting at the end of the theindex en-
vironment. As that previous setting is probably that of the docpart page style,
you might have to set the page style manually.

66

\aalph

\@aalph

\aalph is a variant of \alph which continues with the upper case letters for 27–52.
It is defined by ltxdoc, so it is merely provided here.

1345 \providecommand*\aalph[1]{\@aalph{\csname c@#1\endcsname}}

1346 \providecommand*\@aalph[1]{%

1347 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or

1348 j\or k\or l\or m\or n\or o\or p\or q\or r\or s\or

1349 t\or u\or v\or w\or x\or y\or z\or A\or B\or C\or

1350 D\or E\or F\or G\or H\or I\or J\or K\or L\or M\or

1351 N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or

1352 X\or Y\or Z\else\@ctrerr\fi

1353 }

In source2e.tex one can see that doc’s standard gind.ist index style file won’t
sort the 35th file (part I) correctly since it causes makeindex to read an I as “upper
case Roman numeral one”, but I doubt very many people encounter that problem
in their projects.

\XD@page@compositor The \XD@page@compositor macro contains the string which is put between the
parts of a composite number in the index; it corresponds to the page_compositor
parameter of makeindex.

1354 \providecommand*\XD@page@compositor{-}

11 Miscellanea

11.1 Some LATEX2ε∗ stuff

\BooleanFalse

\BooleanTrue

\NoValue

These three macros are borrowed from the xparse package [6], where they work as
the three values boolean false, boolean true, and absence of value respectively. The
definitions are taken from xparse v 0.17 (1999/09/10).

1355 \@ifundefined{BooleanFalse}{\def\BooleanFalse{TF}}{}

1356 \@ifundefined{BooleanTrue}{\def\BooleanTrue{TT}}{}

1357 \@ifundefined{NoValue}{\def\NoValue{-NoValue-}}{}

By using these macros (rather than some homegrown set of macros or tokens) for
denoting these values here I hopefully simplify a transition to LATEX2ε∗, but I
don’t want to rely on LATEX2ε∗ since it hasn’t been released yet.

11.2 The \meta command

A reimplementation which has already (as of v 2.0k) found its way into the doc
package is the one that the \meta command is made robust, but since some peo-
ple might still have older versions of doc and since that feature is needed for
\describecsfamily, I apply it here too. First I check whether the definition of
\meta is the old non-robust definition, and only apply the fix if it is.

1358 \begingroup

1359 \obeyspaces%

1360 \catcode‘\^^M\active%

1361 \gdef\@gtempa{\begingroup\obeyspaces\catcode‘\^^M\active%

1362 \let^^M\do@space\let \do@space%

1363 \def\-{\egroup\discretionary{-}{}{}\hbox\bgroup\itshape}%

1364 \m@ta}%

1365 \endgroup

1366 \ifx \meta\@gtempa

67

\l@nohyphenation The new implementation needs a \language without any hyphenation patterns.
By switching to that language, one can inhibit hyphenation in a piece of text re-
gardless of what line-breaking parameter settings are in force when the paragraph
is actually broken. This new language will be called nohyphenation and it is only
allocated if it isn’t already known (since some babel settings files already defines
this \language).

1367 \@ifundefined{l@nohyphenation}{\newlanguage\l@nohyphenation}{}

\meta

\meta@font@select

This is the definition of \meta from doc v 2.0m. For an explanation of the imple-
mentation, se a doc.dtx at least that new or entry latex/3170 in the LATEX bugs
database.

1368 \DeclareRobustCommand\meta[1]{%

1369 \ensuremath\langle

1370 \ifmmode \expandafter \nfss@text \fi

1371 {%

1372 \meta@font@select

1373 \edef\meta@hyphen@restore

1374 {\hyphenchar\the\font\the\hyphenchar\font}%

1375 \hyphenchar\font\m@ne

1376 \language\l@nohyphenation

1377 #1\/%

1378 \meta@hyphen@restore

1379 }\ensuremath\rangle

1380 }

1381 \let\meta@font@select=\itshape

1382 \fi

\MetaNormalfont The \MetaNormalfont command redefines \meta@font@select to do a \normal-
font before the \itshape. It is useful if \meta is going to be used to make
\rmfamily interjections in \ttfamily text.

1383 \newcommand\MetaNormalfont{\def\meta@font@select{\normalfont\itshape}}

\XD@harmless\meta This macro is needed for making \meta behave as described in the argument of
\describecsfamily, i.e., in text which is going to be converted into a harmless
character string.

1384 \@namedef{XD@harmless\string\meta}#1{%

1385 \toks@=\expandafter{\the\toks@ \meta{#1}}%

1386 \XD@harmless@

1387 }

11.3 The checksum feature

The checksum mechanism in doc is a remnant from the times when file truncation
was a common problem and a mechanism for detecting this was a great help.12

Today its main usefulness seems to lie in that it distinguishes versions of a file
that are “being worked on” (where the checksum probably doesn’t match) from
versions of a file that are “polished and ready for upload” (someone has bothered
to fix the checksum), and as it exists it might as well stay. There is a problem

12Even though I suspect that the recommended use of it—to put the checking \Finale at the
end of the .dtx file—may have reduced its usefulness dramatically, as that \Finale would have
been the one thing that surely disappears if the file is truncated.

68

however with files which do not contain TEX code, as simply counting backslashes
quite probably isn’t a good (or even reasonable) way of forming a checksum for
these files (if the checksum turns out to be zero, doc will complain no matter what
you do).

\check@checksum For that reason, the \check@checksum macro is redefined to only write the “no
checksum” warning to the log file if the checksum hasn’t been set.

1388 \renewcommand\check@checksum{%

1389 \relax

1390 \ifnum \check@sum=\z@

1391 \PackageInfo{doc}{This macro file has no checksum!\MessageBreak

1392 The checksum should be \the\bslash@cnt}%

1393 \else\ifnum \check@sum=\bslash@cnt

1394 \typeout{*******************}%

1395 \typeout{* Checksum passed *}%

1396 \typeout{*******************}%

1397 \else

1398 \PackageError{doc}{Checksum not passed (\the\check@sum

1399 <>\the\bslash@cnt)}{The file currently documented seems

1400 to be wrong.\MessageBreak Try to get a correct version.}%

1401 \fi\fi

1402 \global\check@sum\z@

1403 }

11.4 The \theCodelineNo situation

doc incorporates formatting of the value of the CodelineNo counter in the
\theCodelineNo macro, which is a bit awkward since it prevents using this macro
in making e.g. index entries. To get around this, xdoc introduces the alternative
name codelineno for this counter so that \thecodelineno can produce the value
representation without formatting.

\c@codelineno

\cl@codelineno

\p@codelineno

\thecodelineno

The control sequences connected to the codelineno counter are \let so that
they refer to the same \count register as the CodelineNo counter. Note that
CodelineNo isn’t a proper LATEX counter, so the macros \cl@CodelineNo and
\p@CodelineNo are undefined. \thecodelineno is set to the default value for a
new counter.

1404 \@ifundefined{c@codelineno}{}{%

1405 \PackageInfo{xdoc2}{Overwriting codelineno counter}%

1406 }

1407 \let\c@codelineno=\c@CodelineNo

1408 \let\cl@codelineno=\@empty

1409 \let\p@codelineno=\@empty

1410 \def\thecodelineno{\@arabic\c@codelineno}

\PrintCodelineNo The \PrintCodelineNo command is the new recommended command for print-
ing the formatted form of the codeline number counter. People who write their
own macrocode-like environments should use \PrintCodelineNo instead of doc’s
\theCodelineNo.

1411 \newcommand\PrintCodelineNo{\reset@font\scriptsize\thecodelineno}

69

\theCodelineNo Finally \theCodelineNo is redefined to reference \PrintCodelineNo. This is done
for the sake of backwards compability; I didn’t feel like redefining \macro@code
just for the sake of changing the \theCodelineNo into a \PrintCodelineNo).

1412 \def\theCodelineNo{\PrintCodelineNo}

1413 〈/pkg〉

12 Problems and things to do

This section lists some problems that exist with the current implementations of
commands in xdoc. The list is rather unstable—items are added as I realize there
is a problem and removed when I find a solution—an in parts it is rather esoteric
since most of the problems have only been found theoretically.

One of the less well-known features of the \verb command is that it auto-
matically inhibits the known syntactic ligatures. There is no such mechanism
implemented for the harmless character strings, so some (in TEX macrocode un-
common) character sequences (such as !‘) may produce unwanted results. The
quick hack to circumvent this is to use the \SetHarmState command to mark one
of the characters involved as problematic, as the \PrintChar command is imple-
mented so that the character it prints will not be involved in ligaturing or kerning.
On the other hand, doc does nothing to suppress syntactic ligatures in macro or
environment names when they are printed in the margin, so for that material the
xdoc implementation might actually improve things, although it could perform
worse for verbatim material in the index and list of changes.

Things to do and/or think about:

• Examine how complicated it would be to convert the \PrintChar commands
for visible characters in a harmless character string back to explicit charac-
ters, for possible use in sort keys. (This could be used to ensure that visible
characters are sorted in strict ASCII order.)

• Should those “letters” which are commonly used as word separators—in
LATEX code mainly @—be ignored when sort keys are being formed (just like
the backslash is)? (This would require a change in the implementation of
the macro environment.)

A mechanism for doing this is included as of prototype version 2.1.

• Examine how much more efficient it would be to put temporary additions
to the index exclude list in a separate list instead of the main list. This
could be advantageous for deeply nested macro environments, as TEX will
otherwise store as many (almost identical and often rather long) copies of
the exclude list as there are nested environments.

When asked about it, Frank Mittelbach didn’t think there was any gains
worth mentioning in this. On the other hand it might be worth investigating
reimplementations that avoid calling \trivlist at the beginning of each
macro-like environment when they are nested, since \trivlist does quite a
lot of assignments.

70

• In an automatically generated index one often faces the problem that the
entries at the innermost level are best formatted in one way when there is
only one, but in a completely different way when there are several of them.
To get optimal formatting in both cases, one would like to let the \item,
\subitem, \subsubitem or corresponding macros detect the situation in this
respect and choose the optimal formatting at each case.

A mechanism for this is implemented by the docindex package.

References

[1] David Carlisle: The file ltxdoc.dtx for use with LATEX2ε, The LATEX3
Project; ctan: macros/latex/base/ltxdoc.dtx.

[2] Lars Hellström: The docindex package, 2001, ctan: macros/latex/exptl/
xdoc/docindex.dtx.

[3] Alan Jeffrey, Sebastian Rahtz, Ulrik Vieth (and as of v 1.9 Lars Hell-
ström): The fontinst utility, v 1.8 ff., documented source code, ctan: fonts/
utilities/fontinst/source/

[4] The LATEX3 Project: LATEX2ε for class and package writers, The LATEX3
Project; ctan: macros/latex/base/clsguide.tex.

[5] Frank Mittelbach, B. Hamilton Kelly, Andrew Mills, Dave Love, and Joachim
Schrod: The doc and shortvrb Packages, The LATEX3 Project; ctan: macros/
latex/base/doc.dtx.

[6] Frank Mittelbach, Chris Rowley, and David Carlisle: The xparse package, The
LATEX3 Project, 1999. Currently not available by anonymous FTP, but avail-
able by HTTP from www.latex-project.org (look for “experimental code”).

Change History

prot1

General: Started writing first pro-
totype. (LH) 1

prot2

General: Began work on the second
prototype. (LH) 1

Lots of utility macros were
removed: \XDWrapText,
\XDAltWrapText, \XDSortAndText,
\MultipleApply, \ApplicableUsageIndex,
and \XD@index@family. (LH) 52

I finally decided that it would
be better to make the XXR-
commands look like comments
to TEX. (LH) 30

\add@specials: Redefinition
added. (LH) 18

\describecsfamily: Renamed
\DescribeCSFamily and in-
corporated the code from
\XD@index@family. (LH) . . . 58

\describeoption: Command
added—I realised that the need
to describe options is probably
as large as that to mark out
their definition. (LH) 58

\GenericDescribePrint: \leavevmode
and \ignorespaces moved to
\NewDescribeCommand. (LH) . 55

Added \strut. Removed
it from arguments passed
to \GenericDescribePrint.
(LH) 55

\MetaNormalfont: Removed ro-

71

bustness; protected it explicitly
wherever needed instead. (LH) 68

\NewDescribeCommand: Command
added. (LH) 57

\NewMacroEnvironment: Command
added. (LH) 51

Changed syntax in conformity
with the syntax change in
\XD@m@cro. (LH) 51

\SendExternalXRefMsg: Added
\if@filesw test. (LH) 30

\SetCharProblematic: Command
added. (LH) 18

\syncexternalxref: New name for
\SendExternalXRefSync. Also
added \if@filesw test. (LH) 32

\XD@endgrab: The grabbed argu-
ments are no longer returned
wrapped up in a group. There is
no longer a need for storing the
base call separately in \toks 2.
(LH) 44

\XD@harmless@v: Moved code for
adding to \toks@ here and
changed it to append the con-
tents of \XD@harmless@32, not
necessarily a \PrintChar. (LH) 15

\XD@m@cro: Put the 〈changes〉 ar-
gument before the 〈assign〉 ar-
gument. Executing the 〈assign〉
code after the 〈changes〉 \edef.
Changed the descriptions of
these arguments a little. (LH) 50

\XD@situation: Changed to allow
multiple \XD@situation com-
mands for the same situa-
tion. This is necessary for
coping with documents which
\include files. (LH) 36

Made redefinition at begin docu-
ment global. (LH) 36

\XDMainIndex: New name and syn-
tax for \ApplicableMainIndex.
(LH) 52

\XDStackItemLabels: Made it
work like a \vtop (but hide the
height) if \XD@macro@dimen is
-\maxdimen. (LH) 47

prot2.1

General: Additional \NewDescribeCommand
code example added. (LH) . . 59

\theCodelineNo situation
cleared up. (LH) 69

Sort key making commands
added. (LH) 21

\check@checksum: Redefinition
added. (LH) 69

\CodelineIndex: Using
\thecodelineno. (LH) 21, 61, 64

\describecsfamily: Using
\MakeSortKey. (LH) 58

\DescribeMacro: Using
\MakeSortKey. (LH) 57

\DoNotIndex: Also changing cat-
code of %. (LH) 28

\LevelSame: New name for
\levelsame. (LH) 19

\LevelSorted: New name for
\levelsorted. (LH) 19

macro: Using \MakeSortKey to
make index entry. (LH) 53

\NewMacroEnvironment: Intro-
duced star form with dif-
ferent semanics for the
〈print〉 argument. This
uses the helper macros
\XD@NewMacroEnvironment and
\XD@NewMacroEnvironment@.
(LH) 51

\PrintVisibleChar: Made
it possible to select the
alternative defintion of
\PrintVisibleChar through an
xdoc package option. (LH) . . 11

\StepPageSituation: Now also
setting \IfOddPageSituation,
instead of having that macro
performing the test each time
it is used. This fixes a rarely
occuring bug which occurs
when a page is shipped out
between \StepPageSituation

and a corresponding
\IfOddPageSituation. (LH) . 35

switch: Using \MakeSortKey.
(LH) 53

\XD@grab@harmless@oarg: Macro
added. (LH) 45

\XD@grab@harmless@oarg@: Macro
added. (LH) 45

\XD@m@cro: Removed \XDToMargin

from the argument of \item. It
should now be included in #1
instead. (LH) 50

\XD@paren@PrintChar: \number

added. (LH) 28

72

\XD@special@index: Using
\MakeSortKey to make the sort
key. (LH) 25

\XD@threedignum: Braces inserted
by \XD@threedignum are given
catcode other. (LH) 10

\XDParToMargin: Command
added. (LH) 49

\XDToMargin: New name for
\XD@to@margin. (LH) 48

prot2.2
\@wrglossary: Redefinition added.

(LH) 40
\@wrindex: Redefinition added.

(LH) 25
\filesep: Redefined to use

\XD@page@compositor. (LH) . 61
\SortIndex: Redefinition added.

(LH) 23
\XD@glossary@keyword: Macro

added. (LH) 40
\XD@index@keyword: Macro added

and 〈encap〉 macros changed to
use it. (LH) 21

\XD@page@compositor: Macro
added, other macros changed
to use it. (LH) 67

prot2.3
\GenericDescribePrint: Changed

formatting to match that of
\XDParToMargin. (LH) 55

\XD@grab@sarg: Macro added.
(LH) 44

prot2.4
\changes@: Added support for

\uintver. (LH) 40
\if@version@key@: Switch added.

(LH) 39
\uintver: Command added. (LH) 40
\XD@usechange: Added support for

\uintver. (LH) 41
prot2.5

General: Reregeristing options in
case they were global. (LH) . . 8

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

A
\aalph 1300, 1345
\@aalph . 1345
\actualchar

. 169, 276, 731, 732, 734, 778–780
\add@special 259, 260, 270
\add@specials 253
\@arabic 1410

B
\@backslashchar . . . 306, 748, 979, 981
\BooleanFalse

. . . 169–172, 657, 661, 808, 1355
\BooleanTrue 116, 122, 169–

172, 243, 249, 646, 657, 805, 1355
\Bslash 110,

423, 990, 992, 993, 1021, 1023,
1025, 1035, 1037, 1044, 1047,
1049, 1053, 1116, 1119, 1145, 1149

\bslash@cnt 1392, 1393, 1399

C
\c@CodelineNo 1407
\c@codelineno 960, 1404

\c@page 612, 629, 632
\XD@ch-〈name〉 41
\changes@ 725
\check@checksum 1388
\XD@check@situation 638
\check@sum 1390, 1393, 1398, 1402
\cl@@ckpt 683
\cl@codelineno 1404
\codeline@indexfalse 317
\codeline@indextrue . . 311, 1180, 1296
\CodelineIndex 308, 1174, 1292
\count@ 48–50, 52, 54, 55, 58–

63, 117, 120, 123, 125, 129, 135,
137–140, 142, 148, 150, 153,
156–158, 162–165, 1160, 1161, 1163

\currentfile
1215, 1277, 1278, 1284, 1309, 1317

\CurrentOption 13, 16, 19

D
\definechange 4, 750
\XD@definechange 750
\describecsfamily 4, 1143
\DescribeEnv 1114

73

\DescribeMacro 1114
\describeoption 4, 1134
\DescribeResource 1153
\dimen@ 895–899,

903–906, 929–934, 938–941, 943
\do . 256, 263, 517, 527, 546, 1196, 1248
\do@not@index 490, 536
\XD@do@not@index 490
\DocInclude 1229
\@docinclude 1174, 1229
\docincludeaux . 1183, 1184, 1258, 1270
\DocInput . 584, 1218, 1234, 1236, 1259
dolayout option 3, 4
\DoNotIndex 490
\DoNotIndexBy 4, 359
\DoNotIndexHarmless

. 524, 994, 1028–1030, 1044, 1053
\dospecials 255, 256, 262, 263

E
\@elt 643, 644, 656, 660, 668, 695
\encapchar 170, 299, 303, 770
enccommand (environment) 1032
enccomposite (environment) 1032
\endenvironment 996
\XD@endgrab 784, 789, 791,

793, 796, 801, 803, 806, 809,
822, 826, 828, 831, 837, 854, 861

\endmacro 988
\endmacrocode 600
\endtrivlist 983
\environment 995
environment (environment) 3, 987
environments:

enccommand 1032
enccomposite 1032
environment 3, 987
macro 3, 987
option 3, 1005
switch 3, 1013

\evensidemargin 8
\expanded@notin 545
ExternalXRefFile (XXR-command) 558
ExternalXRefMsg (XXR-command) . 549
ExternalXRefSync (XXR-command) 558
ExternalXRefWrap (XXR-command) 565

F
\filedate 1280, 1310, 1318, 1328
\fileinfo 1282, 1330
fileispart option 3, 12, 1270
\filekey . 1214, 1215, 1283, 1284, 1333
\filesep 1174
\fileversion . . . 1281, 1311, 1319, 1329

G
\generalname 706, 765, 779
\GenericDescribePrint

1060, 1116, 1126, 1135, 1144, 1157
\glossary 730, 777
\XD@glossary@keyword 741
\@glossaryfile 742
\XD@grab@arguments 784, 978, 1107
\XD@grab@asmacro 816
\XD@grab@harmless . 822, 843, 865,

1005, 1013, 1046, 1134, 1143, 1155
\XD@grab@harmless@asmacro

. 839, 989, 997, 1034, 1046
\XD@grab@harmless@cs 839, 1115
\XD@grab@harmless@cs@ 839
\XD@grab@harmless@oarg 822
\XD@grab@harmless@oarg@ 822
\XD@grab@harmless@withprivate . .

. 863, 1124
\XD@grab@marg 789, 814, 820, 1046, 1155
\XD@grab@oarg 793, 1034
\XD@grab@oarg@ 793
\XD@grab@sarg 803
\XD@grab@withprivate 812
\@gtempa 326, 330, 337,

339, 341, 342, 345, 346, 353,
357, 517, 519, 527, 530, 1361, 1366

H
\XD@harmless@

178, 198, 212, 214, 228, 240, 1386
\XD@harmless@〈code〉 13
\XD@harmless@32 197
\XD@harmless@i 214
\XD@harmless@ii 214
\XD@harmless@iii 182, 219
\XD@harmless@iv 182
\XD@harmless@v 182
\XD@harmless@vi 182, 224
\XD@harmless\〈cs-name〉 16
\XD@harmless\meta 1384
\XD@harmless\PrintChar 229
\XD@harmless\XD@harmless@ 227
\hsize 916, 925, 1066
\hskip 946, 1084, 1090, 1098

I
\XD@idxencap@〈encap〉 20
\XD@idxencap@main 294
\XD@idxencap@none 294
\XD@idxencap@usage 294
\XD@if@index . 272, 310, 316, 1179, 1295
\if@mparswitch 1055
\if@reversemargin 1055

74

\if@twoside 5, 604, 624, 638,
683, 693, 1056, 1073, 1079, 1314

\if@version@key@ 707, 710
\ifdim . 869
\@ifnextchar 794, 804, 829
\ifnot@excluded 462, 486, 541
\IfOddPageSituation

603, 614, 616, 630, 894, 902, 928
\ifscan@allowed 446
\@ifstar . 970
\index@excludelist

. . . . 509, 510, 529, 530, 533, 547
\XD@index@keyword

. 295, 299, 303, 305, 431
\IndexEntry 4,

272, 367, 372, 381, 390, 405,
407, 411, 413, 423, 986, 1118,
1127, 1130, 1136, 1139, 1148, 1167

\@indexfile 295, 298, 302, 431
\IndexInput 594
\IndexParms 1299
\XD@input 565, 591, 592, 599
\InvisibleCharPrefix 45
\InvisibleCharSuffix 45
\it@is@a . 416

L
\l@ngrel@x 980, 1109
\l@nohyphenation 1367, 1376
\labelednumber 783
\@labels 953, 954
\XD@last@key 1016, 1018, 1020
\LeftBraceIndex 426
\leftskip 913,

926, 927, 933, 941, 942, 1063,
1081, 1082, 1087, 1088, 1095, 1096

\@let@token 183, 187, 214, 216
\levelchar

171, 275, 276, 731, 733, 778, 779
\LevelSame 5, 272, 291, 407, 413, 1001,

1009, 1018, 1039, 1128, 1137, 1170
\levelsame 290
\LevelSorted 5,

272, 292, 367, 373, 382, 391,
405, 407, 411, 413, 423, 992,
999, 1001, 1007, 1009, 1018,
1020, 1021, 1023, 1025, 1037,
1041, 1049–1051, 1119, 1128,
1131, 1137, 1140, 1149, 1163, 1168

\levelsorted 290
\linepenalty 917, 1067

M
\@M . 716

\@m 714, 1067

\XD@m@cro 950, 982

\macro . 987

macro (environment) 3, 987

\macro@cnt . . . 604, 628, 685, 686, 697

\macro@code 596

\XD@macro@dimen 867, 956

\macro@finish 465

\macro@name 438, 465

\macro@namepart 451, 462, 485–487, 544

\macro@switch 435, 447

\MacroFont . . 990, 998, 1006, 1014,
1035, 1047, 1116, 1126, 1135, 1145

\MacroTopsep 951

\XD@make@operator 333, 361

\MakeHarmless . . . 4, 174, 360, 370,
379, 388, 514, 823, 835, 858, 1277

\makeindex 309, 315, 1178, 1294

\@makeother 258, 265

\MakePercentComment 591

\MakePercentIgnore 591, 752

\MakePrivateLetters
. . . . 492, 813, 818, 841, 851, 864

\MakeSortKey 322, 422,
991, 1016, 1022, 1024, 1117, 1147

\marginparwidth
. . . . 916, 926, 935, 942, 944,

1066, 1081, 1083, 1087, 1095, 1097

\meta 1147, 1366, 1368, 1384, 1385

\meta@font@select 1368, 1383

\meta@hyphen@restore 1373, 1378

\MetaNormalfont 1145, 1149, 1383

\@minus 934, 941

\more@macroname 465

N

\NewDescribeCommand 3,
1104, 1115, 1123, 1134, 1143, 1154

\newif . 707

\NewMacroEnvironment 3, 969,
989, 997, 1005, 1013, 1033, 1045

\XD@NewMacroEnvironment 969

\XD@NewMacroEnvironment@ 969

\next 436, 447–449, 476, 478

\XD@next@wrong
. . . . 604, 641, 665, 666, 686–688

\nobreak 946, 1084, 1090, 1098

\noindent
. 919, 946, 1069, 1084, 1090, 1098

\nolinebreak 783

none . 19

notrawchar option 7, 11, 18

\NoValue . . . 795, 830, 1035, 1038, 1355

75

O
\oddsidemargin 4
olddocinclude option 3, 12
\OldMakeIndex 426
\XD@operatorA@〈prefix 〉 21
\XD@operators@list . 321, 329, 362, 363
option (environment) 3, 1005
options:

dolayout 4
fileispart 12, 1270
notrawchar 7, 18
olddocinclude 12

P
\p@ . 934, 941
\p@codelineno 1404
\XD@page@compositor

. 1185, 1288, 1297, 1354
\PageIndex 308
\@@par 919, 947, 1069
\XD@paren@PrintChar 489, 516, 526, 543
\parfillskip 915, 936, 944, 946, 1065,

1083, 1084, 1089, 1090, 1097, 1098
\parindent 911, 1062
\partname 1299
\PassOptionsToPackage

. 13, 16, 19, 1303, 1304
\@percentchar 553,

560, 567, 570, 576, 579, 1208, 1287
\PercentIndex 426
\@plus . . . 914, 926, 936, 944, 1064,

1081, 1083, 1087, 1089, 1095, 1097
\prevgraf 922, 1072
\PrintChar 4, 23, 110, 123,

138, 153, 163, 205, 229, 233,
324, 335, 397, 403, 426–428,
454, 456, 469, 489, 516, 526, 543

\XD@PrintChar 28, 45
\PrintCodelineNo 1411, 1412
\PrintVisibleChar . . 52, 55, 58, 74, 77
\providecommand 1345, 1346, 1354
\ps@docindex 1333
\ps@docpart 1306

Q
\quotechar 172

R
\RecordPageSituation 624, 958
\rem@special 254, 261
\reset@font 1411
\RightBraceIndex 426
\rightskip 914, 927, 934,

935, 943, 1064, 1082, 1088, 1096

S

\@sanitize . . . 257, 258, 264, 265, 751

\saved@macroname
. . . . 706, 732, 733, 766, 771, 965

\scan@allowedfalse 463

\scan@allowedtrue 463

\scan@macro 443

\scriptsize 1411

\SendExternalXRefMsg 549

\XD@set@file@info 1306

\XD@set@situation 683

\SetCharProblematic 242, 266

\setfileinfo 4, 1306

\SetHarmState . . 111, 169–172, 243, 248

\short@macro 440, 450

\XD@situation 628, 638

\SortIndex 366

\special@escape@char 444

\XD@special@index
. 416, 426–428, 462, 486

\SpecialEnvIndex 404

\SpecialIndex 369

\SpecialMainEnvIndex 404

\SpecialMainIndex 369

\SpecialUsageIndex 369

\step@checksum 445

\StepPageSituation 604, 957

switch (environment) 3, 1013

\syncexternalxref 558

T

\@tempa 119,
120, 123, 126, 129, 151, 153,
156, 253, 259, 277, 278, 283,
360, 361, 370, 374, 375, 379,
383, 384, 388, 392, 393, 417,
419, 422, 423, 501, 502, 514,
517, 533, 535, 537, 538, 544,
546, 627, 632, 727, 729, 731,
737, 765–767, 769, 780, 823,
825, 835, 836, 844, 845, 858,
860, 991, 992, 1022–1025, 1117,
1119, 1147, 1149, 1162, 1169,
1196, 1197, 1248, 1249, 1324, 1325

\@tempb 536, 537, 539,
775, 778, 1195, 1197, 1247, 1249

\@tempcnta 59, 63, 65, 66

\@tempcntb 61, 64, 66

\textminus 1158, 1164

\textnormal 1158

\theCodelineNo 1412

\thecodelineno 312, 561,
571, 580, 1181, 1297, 1404, 1411

76

\thepage 318, 367, 394, 412,
414, 431, 743, 1120, 1129, 1132,
1138, 1141, 1150, 1171, 1312, 1316

\thepart .
1185, 1215, 1284, 1288, 1297, 1299

\TheXDIndexNumber 308, 376,
385, 406, 408, 424, 986, 1181, 1297

\XD@threedignum 23, 324, 335
\toks@ 176, 180, 197,

204, 209, 232, 237, 357, 363,
437, 468, 473, 485, 503, 510,
519, 785, 788, 790, 795, 800,
805, 808, 825, 830, 836, 860, 1385

\ttfamily 1213, 1215
\typeout 1394–1396

U
\uintver 4, 709
\XD@unbackslash

. . . 374, 383, 392, 396, 845, 1051
\XD@unbackslash@ 396
\usechange 4, 756
\XD@usechange 756

V
\@version@key@false . . . 708, 728, 776
\@version@key@true 726, 774

W
\@wckptelt 695
whitespace restrictions 30
\@wrglossary 741
\@wrindex 430
\XD@write@situation@ckpt 683
\XD@wrongs@list

. . . . 604, 659, 662, 667, 668, 687

X
\XDMainIndex 986, 992,

999, 1000, 1007, 1008, 1017,
1020, 1021, 1023, 1025, 1036, 1048

\XDParToMargin 910
\XDStackItemLabels 867, 963
\XDToMargin 892, 923, 973
XXR-commands:

ExternalXRefFile 558
ExternalXRefMsg 549
ExternalXRefSync 558
ExternalXRefWrap 565

Y
\@yargdef 981, 1110

Z
\z@skip 913, 915, 1063, 1065

77

