/** From the author (Jeff Stuart) " Let me start by saying this file is pretty big. If you feel up to it, you can try making changes yourself, but you would be better off to just email me at stuart@cs.ucdavis.edu if you think there is a bug, or have something useful you would like added. This project is very "near and dear" to me, so I am fairly quick to make bug fixes. The header files for Pattern and Matcher are fairly well documented and the function names are pretty self-explanatory, but if you are having any trouble, feel free to email me at stuart@cs.ucdavis.edu. If you email me, make sure you put something like C++RE in the subject because I tend to delete email if I don't recognize the name and the subject is something like "I Need Your Help" or "Got A Second" or "I Found It". " */ /* Detailed documentation is provided in this class' header file @author Jeffery Stuart @since November 2004 @version 1.05.02 */ #include "Pattern.h" #include "Matcher.h" #include #include #include #include std::map Pattern::compiledPatterns; std::map > Pattern::registeredPatterns; const int Pattern::MIN_QMATCH = 0x00000000; const int Pattern::MAX_QMATCH = 0x7FFFFFFF; const unsigned long Pattern::CASE_INSENSITIVE = 0x01; const unsigned long Pattern::LITERAL = 0x02; const unsigned long Pattern::DOT_MATCHES_ALL = 0x04; const unsigned long Pattern::MULTILINE_MATCHING = 0x08; const unsigned long Pattern::UNIX_LINE_MODE = 0x10; #ifdef _WIN32 #define str_icmp stricmp #else #define str_icmp strcasecmp #endif Pattern::Pattern(const std::string & rhs) { matcher = NULL; pattern = rhs; curInd = 0; groupCount = 0; nonCapGroupCount = 0; error = 0; head = NULL; } // convenience function in case we want to add any extra debugging output void Pattern::raiseError() { switch (pattern[curInd - 1]) { case '*': case ')': case '+': case '?': case ']': case '}': fprintf(stderr, "%s\n%*c^\n", pattern.c_str(), curInd - 1, ' '); fprintf(stderr, "Syntax Error near here. Possible unescaped meta character.\n"); break; default: fprintf(stderr, "%s\n%*c^\n", pattern.c_str(), curInd - 1, ' '); fprintf(stderr, "Syntax Error near here. \n"); break; } error = 1; } NFANode * Pattern::registerNode(NFANode * node) { nodes[node] = 1; return node; } std::string Pattern::classUnion (std::string s1, std::string s2) const { char out[300]; std::sort(s1.begin(), s1.end()); std::sort(s2.begin(), s2.end()); *std::set_union(s1.begin(), s1.end(), s2.begin(), s2.end(), out) = 0; return out; } std::string Pattern::classIntersect (std::string s1, std::string s2) const { char out[300]; std::sort(s1.begin(), s1.end()); std::sort(s2.begin(), s2.end()); *std::set_intersection(s1.begin(), s1.end(), s2.begin(), s2.end(), out) = 0; return out; } std::string Pattern::classNegate (std::string s1) const { char out[300]; int i, ind = 0; std::map m; for (i = 0; i < (int)s1.size(); ++i) m[s1[i]] = 1; for (i = 0xFF; i >= 0; --i) if (m.find((char)i) == m.end()) out[ind++] = (char)i; out[ind] = 0; return std::string(out, ind); } std::string Pattern::classCreateRange(char low, char hi) const { char out[300]; int ind = 0; while (low != hi) out[ind++] = low++; out[ind++] = low; return std::string(out, ind); } int Pattern::getInt(int start, int end) { int ret = 0; for (; start <= end; ++start) ret = ret * 10 + (pattern[start] - '0'); return ret; } bool Pattern::quantifyCurly(int & sNum, int & eNum) { bool good = 1; int i, ci = curInd + 1; int commaInd = ci, endInd = ci, len = pattern.size(); sNum = eNum = 0; while (endInd < len && pattern[endInd ] != '}') ++endInd; while (commaInd < endInd && pattern[commaInd] != ',') ++commaInd; if (endInd >= len) { raiseError(); return 0; } for (i = ci; good && i < endInd; ++i) if (i != commaInd && !isdigit(pattern[i])) good = 0; if (!good && commaInd < endInd) { raiseError(); return 0; } if (!good) return 0; /* so now everything in here is either a comma (and there is at most one comma) or a digit */ if (commaInd == ci) // {,*} { if (endInd == commaInd + 1) { sNum = MIN_QMATCH; eNum = MAX_QMATCH; } // {,} = * else { sNum = MIN_QMATCH; eNum = getInt(commaInd + 1, endInd - 1); } // {,+} } else if (commaInd == endInd - 1) { sNum = getInt(ci, commaInd - 1); eNum = MAX_QMATCH; } // {+,} else if (commaInd == endInd) { sNum = getInt(ci, endInd - 1); eNum = sNum; } // {+} else { sNum = getInt(ci, commaInd - 1); eNum = getInt(commaInd + 1, endInd - 1); } // {+,+} curInd = endInd + 1; return 1; } NFANode * Pattern::quantifyGroup(NFANode * start, NFANode * stop, const int gn) { NFANode * newNode = NULL; int type = 0; if (curInd < (int)pattern.size()) { char ch = (curInd + 1 >= (int)pattern.size()) ? -1 : pattern[curInd + 1]; switch (pattern[curInd]) { case '*': ++curInd; switch (ch) { case '?': ++curInd; type = 1; break; case '+': ++curInd; type = 2; break; } newNode = registerNode(new NFAGroupLoopPrologueNode(gn)); newNode->next = registerNode(new NFAGroupLoopNode(start, MIN_QMATCH, MAX_QMATCH, gn, type)); stop->next = newNode->next; return newNode; case '?': ++curInd; switch (ch) { case '?': ++curInd; type = 1; break; case '+': ++curInd; type = 2; break; } newNode = registerNode(new NFAGroupLoopPrologueNode(gn)); newNode->next = registerNode(new NFAGroupLoopNode(start, MIN_QMATCH, 1, gn, type)); stop->next = newNode->next; return newNode; case '+': ++curInd; switch (ch) { case '?': ++curInd; type = 1; break; case '+': ++curInd; type = 2; break; } newNode = registerNode(new NFAGroupLoopPrologueNode(gn)); newNode->next = registerNode(new NFAGroupLoopNode(start, 1, MAX_QMATCH, gn, type)); stop->next = newNode->next; return newNode; case '{': { int s, e; if (quantifyCurly(s, e)) { ch = (curInd < (int)pattern.size()) ? pattern[curInd] : -1; switch (ch) { case '?': ++curInd; type = 1; break; case '+': ++curInd; type = 2; break; } newNode = registerNode(new NFAGroupLoopPrologueNode(gn)); newNode->next = registerNode(new NFAGroupLoopNode(start, s, e, gn, type)); stop->next = newNode->next; return newNode; } } default: break; } } return NULL; } NFANode * Pattern::quantify(NFANode * newNode) { if (curInd < (int)pattern.size()) { char ch = (curInd + 1 >= (int)pattern.size()) ? -1 : pattern[curInd + 1]; switch (pattern[curInd]) { case '*': ++curInd; switch (ch) { case '?': ++curInd; newNode = registerNode(new NFALazyQuantifierNode (this, newNode, MIN_QMATCH, MAX_QMATCH)); break; case '+': ++curInd; newNode = registerNode(new NFAPossessiveQuantifierNode(this, newNode, MIN_QMATCH, MAX_QMATCH)); break; default: newNode = registerNode(new NFAGreedyQuantifierNode (this, newNode, MIN_QMATCH, MAX_QMATCH)); break; } break; case '?': ++curInd; switch (ch) { case '?': ++curInd; newNode = registerNode(new NFALazyQuantifierNode (this, newNode, MIN_QMATCH, 1)); break; case '+': ++curInd; newNode = registerNode(new NFAPossessiveQuantifierNode(this, newNode, MIN_QMATCH, 1)); break; default: newNode = registerNode(new NFAGreedyQuantifierNode (this, newNode, MIN_QMATCH, 1)); break; } break; case '+': ++curInd; switch (ch) { case '?': ++curInd; newNode = registerNode(new NFALazyQuantifierNode (this, newNode, 1, MAX_QMATCH)); break; case '+': ++curInd; newNode = registerNode(new NFAPossessiveQuantifierNode(this, newNode, 1, MAX_QMATCH)); break; default: newNode = registerNode(new NFAGreedyQuantifierNode (this, newNode, 1, MAX_QMATCH)); break; } break; case '{': { int s, e; if (quantifyCurly(s, e)) { ch = (curInd < (int)pattern.size()) ? pattern[curInd] : -1; switch (ch) { case '?': ++curInd; newNode = registerNode(new NFALazyQuantifierNode (this, newNode, s, e)); break; case '+': ++curInd; newNode = registerNode(new NFAPossessiveQuantifierNode(this, newNode, s, e)); break; default: newNode = registerNode(new NFAGreedyQuantifierNode (this, newNode, s, e)); break; } } } break; default: break; } } return newNode; } std::string Pattern::parseClass() { std::string t, ret = ""; char ch, c1, c2; bool inv = 0, neg = 0, quo = 0; if (curInd < (int)pattern.size() && pattern[curInd] == '^') { ++curInd; neg = 1; } while (curInd < (int)pattern.size() && pattern[curInd] != ']') { ch = pattern[curInd++]; if (ch == '[') { t = parseClass(); ret = classUnion(ret, t); } /*else if (ch == '-') { raiseError(); curInd = pattern.size(); }*/ else if (ch == '&' && curInd < (int)pattern.size() && pattern[curInd] == '&') { if (pattern[++curInd] != '[') { raiseError(); curInd = pattern.size(); } else { ++curInd; t = parseClass(); ret = classIntersect(ret, t); } } else if (ch == '\\') { t = parseEscape(inv, quo); if (quo) { raiseError(); curInd = pattern.size(); } else if (inv || t.size() > 1) // cant be part of a range (a-z) { if (inv) t = classNegate(t); ret = classUnion(ret, t); } else if (curInd < (int)pattern.size() && pattern[curInd] == '-') // part of a range (a-z) { c1 = t[0]; ++curInd; if (curInd >= (int)pattern.size()) raiseError(); else { c2 = pattern[curInd++]; if (c2 == '\\') { t = parseEscape(inv, quo); if (quo) { raiseError(); curInd = pattern.size(); } else if (inv || t.size() > 1) raiseError(); else ret = classUnion(ret, classCreateRange(c1, c2)); } else if (c2 == '[' || c2 == ']' || c2 == '-' || c2 == '&') { raiseError(); curInd = pattern.size(); } else ret = classUnion(ret, classCreateRange(c1, c2)); } } else { ret = classUnion(ret, t); } } else if (curInd < (int)pattern.size() && pattern[curInd] == '-') { c1 = ch; ++curInd; if (curInd >= (int)pattern.size()) raiseError(); else { c2 = pattern[curInd++]; if (c2 == '\\') { t = parseEscape(inv, quo); if (quo) { raiseError(); curInd = pattern.size(); } else if (inv || t.size() > 1) raiseError(); else ret = classUnion(ret, classCreateRange(c1, c2)); } else if (c2 == '[' || c2 == ']' || c2 == '-' || c2 == '&') { raiseError(); curInd = pattern.size(); } else { ret = classUnion(ret, classCreateRange(c1, c2)); } } } else { ret += " "; ret[ret.size() - 1] = ch; } } if (curInd >= (int)pattern.size() || pattern[curInd] != ']') { raiseError(); ret = ""; } else { ++curInd; if (neg) ret = classNegate(ret); } return ret; } std::string Pattern::parsePosix() { std::string s7 = pattern.substr(curInd, 7); if (s7 == "{Lower}") { curInd += 7; return "abcdefghijklmnopqrstuvwxyz"; } if (s7 == "{Upper}") { curInd += 7; return "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; } if (s7 == "{Alpha}") { curInd += 7; return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; } if (s7 == "{Digit}") { curInd += 7; return "0123456789"; } if (s7 == "{Alnum}") { curInd += 7; return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; } if (s7 == "{Punct}") { curInd += 7; return "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"; } if (s7 == "{Graph}") { curInd += 7; return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"; } if (s7 == "{Print}") { curInd += 7; return "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"; } if (s7 == "{Blank}") { curInd += 7; return " \t"; } if (s7 == "{Space}") { curInd += 7; return " \t\n\x0B\f\r"; } if (s7 == "{Cntrl}") { int i; std::string s = " "; for (i = 0; i < 5; ++i) s += s; s += " "; for (i = 0; i <= 0x1F; ++i) s[i] = i; s[0x20] = 0x7F; curInd += 7; return s; } if (s7 == "{ASCII}") { std::string s(0x80, ' '); for (int i = 0; i < 0x80; ++i) s[i] = i; curInd += 7; return s; } if (pattern.substr(curInd, 8) == "{XDigit}") { curInd += 8; return "abcdefABCDEF0123456789"; } raiseError(); return ""; } NFANode * Pattern::parseBackref() { #define is_dig(x) ((x) >= '0' && (x) <= '9') #define to_int(x) ((x) - '0') int ci = curInd; int oldRef = 0, ref = 0; while (ci < (int)pattern.size() && is_dig(pattern[ci]) && (ref < 10 || ref < groupCount)) { oldRef = ref; ref = ref * 10 + to_int(pattern[ci++]); } if (ci == (int)pattern.size()) { oldRef = ref; ++ci; } if (oldRef < 0 || ci <= curInd) { raiseError(); return registerNode(new NFAReferenceNode(-1)); } curInd = ci; return registerNode(new NFAReferenceNode(ref)); #undef is_dig #undef to_int } std::string Pattern::parseOctal() { #define islowoc(x) ((x) >= '0' && (x) <= '3') #define isoc(x) ((x) >= '0' && (x) <= '7') #define fromoc(x) ((x) - '0') int ci = curInd; char ch1 = (ci + 0 < (int)pattern.size()) ? pattern[ci + 0] : -1; char ch2 = (ci + 1 < (int)pattern.size()) ? pattern[ci + 1] : -1; char ch3 = (ci + 2 < (int)pattern.size()) ? pattern[ci + 2] : -1; std::string s = " "; if (islowoc(ch1) && isoc(ch2)) { curInd += 2; s[0] = fromoc(ch1) * 8 + fromoc(ch2); if (isoc(ch3)) { ++curInd; s[0] = s[0] * 8 + fromoc(ch3); } } else if (isoc(ch1) && isoc(ch2)) { curInd += 2; s[0] = fromoc(ch1) * 8 + fromoc(ch2); } else raiseError(); return s; #undef islowoc #undef isoc #undef fromoc } std::string Pattern::parseHex() { #define to_low(x) (((x) >= 'A' && (x) <= 'Z') ? ((x) - 'A' + 'a') : (x)) #define is_dig(x) ((x) >= '0' && (x) <= '9') #define is_hex(x) (is_dig(x) || (to_low(x) >= 'a' && to_low(x) <= 'f')) #define to_int(x) ((is_dig(x)) ? ((x) - '0') : (to_low(x) - 'a' + 10)) int ci = curInd; char ch1 = (ci + 0 < (int)pattern.size()) ? pattern[ci + 0] : -1; char ch2 = (ci + 1 < (int)pattern.size()) ? pattern[ci + 1] : -1; std::string s = " "; if (is_hex(ch1) && is_hex(ch2)) { curInd += 2; s[0] = (to_int(ch1) << 4 & 0xF0) | (to_int(ch2) & 0x0F); } return s; #undef to_low #undef is_dig #undef is_hex #undef to_int } std::string Pattern::parseEscape(bool & inv, bool & quo) { char ch = pattern[curInd++]; std::string classes = ""; if (curInd > (int)pattern.size()) { raiseError(); return NULL; } quo = 0; inv = 0; switch (ch) { case 'p': classes = parsePosix(); break; case 'P': classes = "!!"; classes += parsePosix(); break; case 'd': classes = "0123456789"; break; case 'D': classes = "!!0123456789"; break; case 's': classes = " \t\r\n\f"; break; case 'S': classes = "!! \t\r\n\f"; break; case 'w': classes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; break; case 'W': classes = "!!abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; break; case '0': classes = parseOctal(); break; case 'x': classes = parseHex(); break; case 'Q': quo = 1; break; case 't': classes = "\t"; break; case 'r': classes = "\r"; break; case 'n': classes = "\n"; break; case 'f': classes = "\f"; break; case 'a': classes = "\a"; break; case 'e': classes = "\r"; break; default: classes = " "; classes[0] = ch; break; } if (classes.substr(0, 2) == "!!") { classes = classes.substr(2); inv = 1; } return classes; } NFANode * Pattern::parseRegisteredPattern(NFANode ** end) { int i, j; std::string s; NFANode * ret = NULL; for (i = curInd; i < (int)pattern.size() && pattern[i] != '}'; ++i) { } if (pattern[i] != '}') { raiseError(); return NULL; } if (i == curInd + 1) { raiseError(); return NULL; } // {} if ( !( (pattern[curInd] >= 'a' && pattern[curInd] <= 'z') || (pattern[curInd] >= 'A' && pattern[curInd] <= 'Z') || (pattern[curInd] == '_') ) ) { raiseError(); return NULL; } for (j = curInd; !error && j < i; ++j) { if ( !( (pattern[j] >= 'a' && pattern[j] <= 'z') || (pattern[j] >= 'A' && pattern[j] <= 'Z') || (pattern[j] >= '0' && pattern[j] <= '9') || (pattern[j] == '_') ) ) { raiseError(); return NULL; } } s = pattern.substr(curInd, i - curInd); if (registeredPatterns.find(s) == registeredPatterns.end()) raiseError(); else { unsigned long oflags = flags; std::string op = pattern; int ci = i + 1; pattern = registeredPatterns[s].first; curInd = 0; flags = registeredPatterns[s].second; --groupCount; ret = parse(0, 0, end); pattern = op; curInd = ci; flags = oflags; } if (error) { *end = ret = NULL; } return ret; } // look behind should interpret everything as a literal (except \\) since the // pattern must have a concrete length NFANode * Pattern::parseBehind(const bool pos, NFANode ** end) { std::string t = ""; while (curInd < (int)pattern.size() && pattern[curInd] != ')') { char ch = pattern[curInd++]; t += " "; if (ch == '\\') { if (curInd + 1 >= (int)pattern.size()) { raiseError(); return *end = registerNode(new NFACharNode(' ')); } ch = pattern[curInd++]; } t[t.size() - 1] = ch; } if (curInd >= (int)pattern.size() || pattern[curInd] != ')') raiseError(); else ++curInd; return *end = registerNode(new NFALookBehindNode(t, pos)); } NFANode * Pattern::parseQuote() { bool done = 0; std::string s = ""; while (!done) { if (curInd >= (int)pattern.size()) { raiseError(); done = 1; } else if (pattern.substr(curInd, 2) == "\\E") { curInd += 2; done = 1; } else if (pattern[curInd] == '\\') { s += " "; s[s.size() - 1] = pattern[++curInd]; ++curInd; } else { s += " "; s[s.size() - 1] = pattern[curInd++]; } } if ((flags & Pattern::CASE_INSENSITIVE) != 0) return registerNode(new NFACIQuoteNode(s)); return registerNode(new NFAQuoteNode(s)); } NFANode * Pattern::parse(const bool inParen, const bool inOr, NFANode ** end) { NFANode * start, * cur, * next = NULL; std::string t; int grc = groupCount++; bool inv, quo; bool ahead = 0, pos = 0, noncap = 0, indep = 0; if (inParen) { if (pattern[curInd] == '?') { ++curInd; --groupCount; if (pattern[curInd] == ':') { noncap = 1; ++curInd; grc = --nonCapGroupCount; } else if (pattern[curInd] == '=') { ++curInd; ahead = 1; pos = 1; } else if (pattern[curInd] == '!') { ++curInd; ahead = 1; pos = 0; } else if (pattern.substr(curInd, 2) == "<=") { curInd += 2; return parseBehind(1, end); } else if (pattern.substr(curInd, 2) == "') { ++curInd; indep = 1; } else { raiseError(); return NULL; } if (noncap) cur = start = registerNode(new NFAGroupHeadNode(grc)); else cur = start = registerNode(new NFASubStartNode); } else cur = start = registerNode(new NFAGroupHeadNode(grc)); } else cur = start = registerNode(new NFASubStartNode); while (curInd < (int)pattern.size()) { char ch = pattern[curInd++]; next = NULL; if (error) return NULL; switch (ch) { case '^': if ((flags & Pattern::MULTILINE_MATCHING) != 0) next = registerNode(new NFAStartOfLineNode); else next = registerNode(new NFAStartOfInputNode); break; case '$': if ((flags & Pattern::MULTILINE_MATCHING) != 0) next = registerNode(new NFAEndOfLineNode); else next = registerNode(new NFAEndOfInputNode(0)); break; case '|': --groupCount; cur->next = registerNode(new NFAAcceptNode); cur = start = registerNode(new NFAOrNode(start, parse(inParen, 1))); break; case '\\': if (curInd < (int)pattern.size()) { bool eoi = 0; switch (pattern[curInd]) { case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': next = parseBackref(); break; case 'A': ++curInd; next = registerNode(new NFAStartOfInputNode); break; case 'B': ++curInd; next = registerNode(new NFAWordBoundaryNode(0)); break; case 'b': ++curInd; next = registerNode(new NFAWordBoundaryNode(1)); break; case 'G': ++curInd; next = registerNode(new NFAEndOfMatchNode); break; case 'Z': eoi = 1; case 'z': ++curInd; next = registerNode(new NFAEndOfInputNode(eoi)); break; default: t = parseEscape(inv, quo); if (!quo) { if (t.size() > 1 || inv) { if ((flags & Pattern::CASE_INSENSITIVE) != 0) next = registerNode(new NFACIClassNode(t, inv)); else next = registerNode(new NFAClassNode(t, inv)); } else { next = registerNode(new NFACharNode(t[0])); } } else { next = parseQuote(); } } } else raiseError(); break; case '[': if ((flags & Pattern::CASE_INSENSITIVE) == 0) { NFAClassNode * clazz = new NFAClassNode(); std::string s = parseClass(); for (int i = 0; i < (int)s.size(); ++i) clazz->vals[s[i]] = 1; next = registerNode(clazz); } else { NFACIClassNode * clazz = new NFACIClassNode(); std::string s = parseClass(); for (int i = 0; i < (int)s.size(); ++i) clazz->vals[tolower(s[i])] = 1; next = registerNode(clazz); } break; case '.': { bool useN = 1, useR = 1; NFAClassNode * clazz = new NFAClassNode(1); if ((flags & Pattern::UNIX_LINE_MODE) != 0) useR = 0; if ((flags & Pattern::DOT_MATCHES_ALL) != 0) useN = useR = 0; if (useN) clazz->vals['\n'] = 1; if (useR) clazz->vals['\r'] = 1; next = registerNode(clazz); } break; case '(': { NFANode * end, * t1, * t2; t1 = parse(1, 0, &end); if (!t1) raiseError(); else if (t1->isGroupHeadNode() && (t2 = quantifyGroup(t1, end, grc)) != NULL) { cur->next = t2; cur = t2->next; } else { cur->next = t1; cur = end; } } break; case ')': if (!inParen) raiseError(); else if (inOr) { --curInd; cur = cur->next = registerNode(new NFAAcceptNode); return start; } else { if (ahead) { cur = cur->next = registerNode(new NFAAcceptNode); return *end = registerNode(new NFALookAheadNode(start, pos)); } else if (indep) { cur = cur->next = registerNode(new NFAAcceptNode); return *end = registerNode(new NFAPossessiveQuantifierNode(this, start, 1, 1)); } else // capping or noncapping, it doesnt matter { *end = cur = cur->next = registerNode(new NFAGroupTailNode(grc)); next = quantifyGroup(start, *end, grc); if (next) { start = next; *end = next->next; } return start; } } break; case '{': // registered pattern cur->next = parseRegisteredPattern(&next); if (cur->next) cur = next; break; case '*': case '+': case '?': case '}': case ']': raiseError(); break; default: if ((flags & Pattern::CASE_INSENSITIVE) != 0) next = registerNode(new NFACICharNode(ch)); else next = registerNode(new NFACharNode(ch)); break; } if (next) { cur = cur->next = quantify(next); } } if (inParen) raiseError(); else { if (inOr) cur = cur->next = registerNode(new NFAAcceptNode); if (end) *end = cur; } if (error) return NULL; return start; } Pattern * Pattern::compile(const std::string & pattern, const unsigned long mode) { Pattern * p = new Pattern(pattern); NFANode * end; p->flags = mode; if ((mode & Pattern::LITERAL) != 0) { p->head = p->registerNode(new NFAStartNode); if ((mode & Pattern::CASE_INSENSITIVE) != 0) p->head->next = p->registerNode(new NFACIQuoteNode(pattern)); else p->head->next = p->registerNode(new NFAQuoteNode(pattern)); p->head->next->next = p->registerNode(new NFAEndNode); } else { p->head = p->parse(0, 0, &end); if (!p->head) { delete p; p = NULL; } else { if (!(p->head && p->head->isStartOfInputNode())) { NFANode * n = p->registerNode(new NFAStartNode); n->next = p->head; p->head = n; } end->next = p->registerNode(new NFAEndNode); } } if (p != NULL) { p->matcher = new Matcher(p, ""); } return p; } Pattern * Pattern::compileAndKeep(const std::string & pattern, const unsigned long mode) { Pattern * ret = NULL; std::map::iterator it = compiledPatterns.find(pattern); if (it != compiledPatterns.end()) { ret = it->second; } else { ret = compile(pattern, mode); compiledPatterns[pattern] = ret; } return ret; } std::string Pattern::replace(const std::string & pattern, const std::string & str, const std::string & replacementText, const unsigned long mode) { std::string ret; Pattern * p = Pattern::compile(pattern, mode); if (p) { ret = p->replace(str, replacementText); delete p; } return ret; } std::vector Pattern::split(const std::string & pattern, const std::string & str, const bool keepEmptys, const unsigned long limit, const unsigned long mode) { std::vector ret; Pattern * p = Pattern::compile(pattern, mode); if (p) { ret = p->split(str, keepEmptys, limit); delete p; } return ret; } std::vector Pattern::findAll(const std::string & pattern, const std::string & str, const unsigned long mode) { std::vector ret; Pattern * p = Pattern::compile(pattern, mode); if (p) { ret = p->findAll(str); delete p; } return ret; } bool Pattern::matches(const std::string & pattern, const std::string & str, const unsigned long mode) { bool ret = 0; Pattern * p = compile(pattern, mode); if (p) { ret = p->matches(str); delete p; } return ret; } bool Pattern::registerPattern(const std::string & name, const std::string & pattern, const unsigned long mode) { Pattern * p = Pattern::compile(pattern, mode); if (!p) return 0; Pattern::registeredPatterns[name] = std::make_pair(pattern, mode); delete p; return 1; } void Pattern::unregisterPatterns() { registeredPatterns.clear(); } void Pattern::clearPatternCache() { std::map::iterator it; for (it = compiledPatterns.begin(); it != compiledPatterns.end(); ++it) { delete it->second; } compiledPatterns.clear(); } std::pair Pattern::findNthMatch(const std::string & pattern, const std::string & str, const int matchNum, const unsigned long mode) { std::pair ret; Pattern * p = Pattern::compile(pattern, mode); ret.second = -1; if (p) { int i = -1; p->matcher->setString(str); while (i < matchNum && p->matcher->findNextMatch()) { ++i; } if (i == matchNum && p->matcher->getStartingIndex() >= 0) { ret.first = p->matcher->getGroup(0); ret.second = p->matcher->getStartingIndex(); } delete p; } return ret; } Pattern::~Pattern() { /* nodes.clear(); if (head) head->findAllNodes(nodes); */ if (matcher) delete matcher; for (std::map::iterator it = nodes.begin(); it != nodes.end(); ++it) { delete it->first; } } std::string Pattern::replace(const std::string & str, const std::string & replacementText) { int li = 0; std::string ret = ""; matcher->setString(str); while (matcher->findNextMatch()) { ret += str.substr(li, matcher->getStartingIndex() - li); ret += matcher->replaceWithGroups(replacementText); li = matcher->getEndingIndex(); } ret += str.substr(li); return ret; } std::vector Pattern::split(const std::string & str, const bool keepEmptys, const unsigned long limit) { unsigned long lim = (limit == 0 ? MAX_QMATCH : limit); int li = 0; std::vector ret; matcher->setString(str); while (matcher->findNextMatch() && ret.size() < lim) { if (matcher->getStartingIndex() == 0 && keepEmptys) ret.push_back(""); if ((matcher->getStartingIndex() != matcher->getEndingIndex()) || keepEmptys) { ret.push_back(str.substr(li, matcher->getStartingIndex() - li)); li = matcher->getEndingIndex(); } } if (li != (int)str.size()) ret.push_back(str.substr(li)); return ret; } std::vector Pattern::findAll(const std::string & str) { matcher->setString(str); return matcher->findAll(); } bool Pattern::matches(const std::string & str) { matcher->setString(str); return matcher->matches(); } unsigned long Pattern::getFlags() const { return flags; } std::string Pattern::getPattern() const { return pattern; } Matcher * Pattern::createMatcher(const std::string & str) { return new Matcher(this, str); } // NFANode NFANode::NFANode() { next = NULL; } NFANode::~NFANode() { } void NFANode::findAllNodes(std::map & soFar) { if (soFar.find(this) == soFar.end()) return; soFar[this] = 1; if (next) next->findAllNodes(soFar); } // NFACharNode NFACharNode::NFACharNode(const char c) { ch = c; } int NFACharNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd < (int)str.size() && str[curInd] == ch) return next->match(str, matcher, curInd + 1); return -1; } // NFACICharNode NFACICharNode::NFACICharNode(const char c) { ch = tolower(c); } int NFACICharNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd < (int)str.size() && tolower(str[curInd]) == ch) return next->match(str, matcher, curInd + 1); return -1; } // NFAStartNode NFAStartNode::NFAStartNode() { } int NFAStartNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int ret = -1, ci = curInd; matcher->starts[0] = curInd; if ((matcher->getFlags() & Matcher::MATCH_ENTIRE_STRING) == (unsigned int)Matcher::MATCH_ENTIRE_STRING) { if (curInd != 0) { matcher->starts[0] = -1; return -1; } return next->match(str, matcher, 0); } while ((ret = next->match(str, matcher, ci)) == -1 && ci < (int)str.size()) { matcher->clearGroups(); matcher->starts[0] = ++ci; } if (ret < 0) matcher->starts[0] = -1; return ret; } // NFAEndNode NFAEndNode::NFAEndNode() { } int NFAEndNode::match(const std::string & str, Matcher * matcher, const int curInd) const { matcher->ends[0] = curInd; if ((matcher->getFlags() & Matcher::MATCH_ENTIRE_STRING) != 0) { if (curInd == (int)str.size()) return curInd; matcher->ends[0] = -1; return -1; } return curInd; } // NFAQuantifierNode void NFAQuantifierNode::findAllNodes(std::map & soFar) { inner->findAllNodes(soFar); NFANode::findAllNodes(soFar); } NFAQuantifierNode::NFAQuantifierNode(Pattern * pat, NFANode * internal, const int minMatch, const int maxMatch) { inner = internal; inner->next = pat->registerNode(new NFAAcceptNode); min = (minMatch < Pattern::MIN_QMATCH) ? Pattern::MIN_QMATCH : minMatch; max = (maxMatch > Pattern::MAX_QMATCH) ? Pattern::MAX_QMATCH : maxMatch; } int NFAQuantifierNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int i0, i1, i2 = 0; i0 = i1 = curInd; while (i2 < min) { ++i2; i1 = inner->match(str, matcher, i0); if (i1 <= i0) return i1; // i1 < i0 means i1 is -1 i0 = i1; } return i1; } // NFAGreedyQuantifierNode NFAGreedyQuantifierNode::NFAGreedyQuantifierNode(Pattern * pat, NFANode * internal, const int minMatch, const int maxMatch) : NFAQuantifierNode(pat, internal, minMatch, maxMatch) { } int NFAGreedyQuantifierNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int t = NFAQuantifierNode::match(str, matcher, curInd); if (t != -1) return matchInternal(str, matcher, t, min); return t; } int NFAGreedyQuantifierNode::matchInternal(const std::string & str, Matcher * matcher, const int curInd, const int soFar) const { if (soFar >= max) return next->match(str, matcher, curInd); int i, j; i = inner->match(str, matcher, curInd); if (i != -1) { j = matchInternal(str, matcher, i, soFar + 1); if (j != -1) return j; } return next->match(str, matcher, curInd); } // NFALazyQuantifierNode NFALazyQuantifierNode::NFALazyQuantifierNode(Pattern * pat, NFANode * internal, const int minMatch, const int maxMatch) : NFAQuantifierNode(pat, internal, minMatch, maxMatch) { } int NFALazyQuantifierNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int i, j, m = NFAQuantifierNode::match(str, matcher, curInd); if (m == -1) return -1; for (i = min; i < max; ++i) { j = next->match(str, matcher, m); if (j == -1) { j = inner->match(str, matcher, m); // if j < m, then j is -1, so we bail. // if j == m, then we would just go and call next->match on the same index, // but it already failed trying to match right there, so we know we can // just bail if (j <= m) return -1; m = j; } else return j; } return next->match(str, matcher, m); } // NFAPossessiveQuantifierNode NFAPossessiveQuantifierNode::NFAPossessiveQuantifierNode(Pattern * pat, NFANode * internal, const int minMatch, const int maxMatch) : NFAQuantifierNode(pat, internal, minMatch, maxMatch) { } int NFAPossessiveQuantifierNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int i, j, m = NFAQuantifierNode::match(str, matcher, curInd); if (m == -1) return -1; for (i = min; i < max; ++i) { j = inner->match(str, matcher, m); if (j <= m) return next->match(str, matcher, m); m = j; } return next->match(str, matcher, m); } // NFAAcceptNode NFAAcceptNode::NFAAcceptNode() { } int NFAAcceptNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (!next) return curInd; else return next->match(str, matcher, curInd); } // NFAClassNode NFAClassNode::NFAClassNode(const bool invert) { inv = invert; } NFAClassNode::NFAClassNode(const std::string & clazz, const bool invert) { inv = invert; for (int i = 0; i < (int)clazz.size(); ++i) vals[clazz[i]] = 1; } int NFAClassNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd < (int)str.size() && ((vals.find(str[curInd]) != vals.end()) ^ inv)) { return next->match(str, matcher, curInd + 1); } return -1; } // NFACIClassNode NFACIClassNode::NFACIClassNode(const bool invert) { inv = invert; } NFACIClassNode::NFACIClassNode(const std::string & clazz, const bool invert) { inv = invert; for (int i = 0; i < (int)clazz.size(); ++i) vals[tolower(clazz[i])] = 1; } int NFACIClassNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd < (int)str.size() && ((vals.find(tolower(str[curInd])) != vals.end()) ^ inv)) { return next->match(str, matcher, curInd + 1); } return -1; } #undef to_lower // NFASubStartNode NFASubStartNode::NFASubStartNode() { } int NFASubStartNode::match(const std::string & str, Matcher * matcher, const int curInd) const { return next->match(str, matcher, curInd); } // NFAOrNode NFAOrNode::NFAOrNode(NFANode * first, NFANode * second) : one(first), two(second) { } void NFAOrNode::findAllNodes(std::map & soFar) { if (one) one->findAllNodes(soFar); if (two) two->findAllNodes(soFar); NFANode::findAllNodes(soFar); } int NFAOrNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int ci = one->match(str, matcher, curInd); if (ci != -1) ci = next->match(str, matcher, ci); if (ci != -1) return ci; if (ci == -1) ci = two->match(str, matcher, curInd); if (ci != -1) ci = next->match(str, matcher, ci); return ci; } // NFAQuoteNode NFAQuoteNode::NFAQuoteNode(const std::string & quoted) : qStr(quoted) { } int NFAQuoteNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd + qStr.size() > str.size()) return -1; if (str.substr(curInd, qStr.size()) != qStr) return -1; return next->match(str, matcher, curInd + qStr.size()); } // NFACIQuoteNode NFACIQuoteNode::NFACIQuoteNode(const std::string & quoted) : qStr(quoted) { } int NFACIQuoteNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd + qStr.size() > str.size()) return -1; if (str_icmp(str.substr(curInd, qStr.size()).c_str(), qStr.c_str())) return -1; return next->match(str, matcher, qStr.size()); } // NFALookAheadNode NFALookAheadNode::NFALookAheadNode(NFANode * internal, const bool positive) : NFANode(), pos(positive), inner(internal) { } void NFALookAheadNode::findAllNodes(std::map & soFar) { if (inner) inner->findAllNodes(soFar); NFANode::findAllNodes(soFar); } int NFALookAheadNode::match(const std::string & str, Matcher * matcher, const int curInd) const { return ((inner->match(str, matcher, curInd) == -1) ^ pos) ? next->match(str, matcher, curInd) : -1; } // NFALookBehindNode NFALookBehindNode::NFALookBehindNode(const std::string & str, const bool positive) : pos(positive), mStr(str) { } int NFALookBehindNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (pos) { if (curInd < (int)mStr.size()) return -1; if (str.substr(curInd - mStr.size(), mStr.size()) == mStr) return next->match(str, matcher, curInd); } else { if (curInd < (int)mStr.size()) return next->match(str, matcher, curInd); if (str.substr(curInd - mStr.size(), mStr.size()) == mStr) return -1; return next->match(str, matcher, curInd); } return -1; } // NFAStartOfLineNode NFAStartOfLineNode::NFAStartOfLineNode() { } int NFAStartOfLineNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd == 0 || str[curInd - 1] == '\n' || str[curInd - 1] == '\r') { return next->match(str, matcher, curInd); } return -1; } // NFAEndOfLineNode NFAEndOfLineNode::NFAEndOfLineNode() { } int NFAEndOfLineNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd >= (int)str.size() || str[curInd] == '\n' || str[curInd] == '\r') { return next->match(str, matcher, curInd); } return -1; } // NFAReferenceNode NFAReferenceNode::NFAReferenceNode(const int groupIndex) : gi(groupIndex) { } int NFAReferenceNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int len = matcher->ends[gi] - matcher->starts[gi]; int ni = -1; if (gi < 1 || matcher->ends[gi] < matcher->starts[gi] || len == 0) ni = curInd; else if (curInd + len > (int)str.size()) return -1; else if (str.substr(curInd, len) != str.substr(matcher->starts[gi], len)) return -1; else ni = curInd + len; return next->match(str, matcher, ni); } // NFAStartOfInputNode NFAStartOfInputNode::NFAStartOfInputNode() { } int NFAStartOfInputNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd == 0) return next->match(str, matcher, curInd); return -1; } // NFAEndOfInputNode NFAEndOfInputNode::NFAEndOfInputNode(const bool lookForTerm) : term(lookForTerm) { } int NFAEndOfInputNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int len = (int)str.size(); if (curInd == len) return next->match(str, matcher, curInd); else if (term) { if (curInd == len - 1 && (str[curInd] == '\r' || str[curInd] == '\n')) { return next->match(str, matcher, curInd); } else if (curInd == len - 2 && str.substr(curInd, 2) == "\r\n") { return next->match(str, matcher, curInd); } } return -1; } // NFAWordBoundaryNode NFAWordBoundaryNode::NFAWordBoundaryNode(const bool positive) : pos(positive) { } int NFAWordBoundaryNode::match(const std::string & str, Matcher * matcher, const int curInd) const { #define is_alpha(x) (((x) >= 'a' && (x) <= 'z') || ((x) >= 'A' && (x) <= 'Z')) int len = (int)str.size(); bool ok = 0; char c1 = (curInd - 1 < len) ? str[curInd - 1] : -1; char c2 = (curInd < len) ? str[curInd ] : -1; if (curInd == len) return next->match(str, matcher, curInd); if (is_alpha(c1) ^ is_alpha(c2)) ok = 1; if (ok && pos) return next->match(str, matcher, curInd); return -1; #undef is_alpha } // NFAEndOfMatchNode NFAEndOfMatchNode::NFAEndOfMatchNode() { } int NFAEndOfMatchNode::match(const std::string & str, Matcher * matcher, const int curInd) const { if (curInd == matcher->lm) return next->match(str, matcher, curInd); return -1; } // NFAGroupHeadNode NFAGroupHeadNode::NFAGroupHeadNode(const int groupIndex) : gi(groupIndex) { } int NFAGroupHeadNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int ret, o = matcher->starts[gi]; matcher->starts[gi] = curInd; ret = next->match(str, matcher, curInd); if (ret < 0) matcher->starts[gi] = o; return ret; } // NFAGroupTailNode NFAGroupTailNode::NFAGroupTailNode(const int groupIndex) : gi(groupIndex) { } int NFAGroupTailNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int ret, o = matcher->ends[gi]; matcher->ends[gi] = curInd; ret = next->match(str, matcher, curInd); if (ret < 0) matcher->ends[gi] = o; return ret; } // NFAGroupLoopPrologueNode NFAGroupLoopPrologueNode::NFAGroupLoopPrologueNode(const int groupIndex) : gi(groupIndex) { } int NFAGroupLoopPrologueNode::match(const std::string & str, Matcher * matcher, const int curInd) const { int ret, o1 = matcher->groups[gi], o2 = matcher->groupPos[gi], o3 = matcher->groupIndeces[gi]; matcher->groups[gi] = 0; matcher->groupPos[gi] = 0; matcher->groupIndeces[gi] = -1; ret = next->match(str, matcher, curInd); if (ret < 0) { matcher->groups[gi] = o1; matcher->groupPos[gi] = o2; matcher->groupIndeces[gi] = o3; } return ret; } // NFAGroupLoopNode NFAGroupLoopNode::NFAGroupLoopNode(NFANode * internal, const int minMatch, const int maxMatch, const int groupIndex, const int matchType) { inner = internal; min = minMatch; max = maxMatch; gi = groupIndex; type = matchType; } void NFAGroupLoopNode::findAllNodes(std::map & soFar) { if (inner) inner->findAllNodes(soFar); NFANode::findAllNodes(soFar); } int NFAGroupLoopNode::match(const std::string & str, Matcher * matcher, const int curInd) const { bool b = (curInd > matcher->groupIndeces[gi]); if (b && matcher->groups[gi] < min) { ++matcher->groups[gi]; int o = matcher->groupIndeces[gi]; matcher->groupIndeces[gi] = curInd; int ret = inner->match(str, matcher, curInd); if (ret < 0) { matcher->groupIndeces[gi] = o; --matcher->groups[gi]; } return ret; } else if (!b || matcher->groups[gi] >= max) { return next->match(str, matcher, curInd); } else { switch (type) { case 0: return matchGreedy(str, matcher, curInd); case 1: return matchLazy(str, matcher, curInd); case 2: return matchPossessive(str, matcher, curInd); } } return -1; } int NFAGroupLoopNode::matchGreedy(const std::string & str, Matcher * matcher, const int curInd) const { int o = matcher->groupIndeces[gi]; // save our info for backtracking matcher->groupIndeces[gi] = curInd; // move along ++matcher->groups[gi]; int ret = inner->match(str, matcher, curInd); // match internally if (ret < 0) { // if we failed, then restore info and match next --matcher->groups[gi]; matcher->groupIndeces[gi] = o; ret = next->match(str, matcher, curInd); } return ret; } int NFAGroupLoopNode::matchLazy(const std::string & str, Matcher * matcher, const int curInd) const { int ret = next->match(str, matcher, curInd); // be lazy, just go on if (ret < 0) { int o = matcher->groupIndeces[gi]; // save info for backtracking matcher->groupIndeces[gi] = curInd; // advance our position ++matcher->groups[gi]; ret = inner->match(str, matcher, curInd); // match our internal stuff if (ret < 0) // if we failed, then restore the info { --matcher->groups[gi]; matcher->groupIndeces[gi] = o; } } return ret; } int NFAGroupLoopNode::matchPossessive(const std::string & str, Matcher * matcher, const int curInd) const { int o = matcher->groupIndeces[gi]; // save info for backtracking matcher->groupPos[gi] = matcher->groups[gi]; // set a flag stating we have matcher at least this much matcher->groupIndeces[gi] = curInd; // move along ++matcher->groups[gi]; int ret = inner->match(str, matcher, curInd); // try and match again if (ret < 0) { // if we fail, back off, but to an extent --matcher->groups[gi]; matcher->groupIndeces[gi] = o; if (matcher->groups[gi] == matcher->groupPos[gi]) ret = next->match(str, matcher, curInd); } return ret; }