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The main success of the

nuclear shell model

Nuclei with “magic numbers” of protons and
neutrons exhibit extra stability.

In the shell model these are interpreted as the
numbers of protons and neutrons in closed
shells, where nucleons are moving
independently in closely lying orbits in a common
central potential well.

In 1949, Maria G.Mayer and independently
Haxel, Jensen and Suess introduced a strong
spin-orbit interaction. This gave rise to the
observed magic numbers 28, 50, 82 and 126 as
well as to 8 and 20 which were well understood.



The need of an effective interaction
In the shell model

 In the Mayer-Jensen shell model, wave functions
of magic nuclei are well determined. So are
states with one valence nucleon or hole.

« States with several valence nucleons are
degenerate in the single nucleon Hamiltonian.
Mutual interactions remove degeneracies and
determine wave functions and energies of

states.

* In the early days, the rather mild potentials used
for the interaction between free nucleons, were
used in shell model calculations. The results
were only qualitative at best.



Theoretical derivation of the
effective interaction

A litle later, the bare interaction turned out to be too
singular for use with shell model wave functions. It
should be renormalized to obtain the effective
interaction. More than 50 years ago, Brueckner
introduced the G-matrix and was followed by many
authors who refined the nuclear many-body theory for
application to finite nuclei.

Starting from the shell model the aim is to calculate from
the bare interaction the effective interaction between
valence nucleons. Also other operators like
electromagnetic moments should be renormalized (e.g.
to obtain the neutron effective charge!)

Only recently this effort seems to yield some reliable

results like those obtained by Aldo Covello et al. This
does not solve the major problem - how independent
nucleon motion can be reconciled with the strong and
short ranged bare interaction.



The simple shell model

* |n the absence of reliable theoretical
calculations, matrix elements of the effective
interaction were determined from experimental

data in a consistent way.

* Restriction to two-body interactions leads to
matrix elements between n-nucleon states which
are linear combinations of two-nucleon matrix
elements.

* Nuclear energies may be calculated by using a
smaller set of two-nucleon matrix elements
determined consistently from experimental data.



The first successful calculation —
low lying levels of 4°K and 38Cl

In the simplest shell model configurations of these nuclei, the 12
neutrons outside the °O core, completely fill the 1d;,,, 2s,/,, 1d;,,
orbits while the proton 1d;,, and 2s,,, orbits are also closed.

The valence nucleons are
in 8Cl: one 1d,,, proton and a 1f,, neutron
in “9K: (1dj,,)°J,=3/2 proton configuration and
a 1f;,, neutron.

In each nucleus there are states with J=2, 3, 4, 5

Using levels of 38Cl, the 40K levels may be calculated and vice versa.



Comparison with 1954 data

only the spin 2-agreed with our prediction
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We were disappointed but not
surprized. Why?

* The assumption that the states belong to rather
pure Jj-coupling configurations may have been
far fetched. Also the restriction to two-body
interactions could not be justified a priori.

 There was no evidence that values of matrix
elements do not appreciably change when going
from one nucleus to the next.

» Naturally, we did not publish our results
but then...



Comparison of our
predictions with
experiment iIn 1955
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Conclusions from the relation
between the 38Cl and 4°K levels

* The restriction to two-body effective interaction
IS In good agreement with some experimental data.

« Matrix elements (or differences) do not change
appreciably when going from one nucleus to its
neighbors (Nature has been kind to us).

« Some shell model configurations in nuclei are very
simple. It may be stated that Z=16 is a proton magic
number (as long as the neutron number is N=21).



Effective interactions, no longer
restricted by the bare interactions, have
been adopted

This was the first successful calculation and it
was followed by more complicated ones carried
out in the same way.

The complete p-shell, p5, and p,,, orbits (Cohen
and Kurath), Zr isotopes %mostly e Argonne
group), the complete dz,,d;/,,S,/, shell

(Wildenthal, Alex Brown et al) and others.

This series culminated in more detailed
calculations including millions of shell model
states, with only two-body forces (Strasbourg
and Tokyo). Not all matrix elements determined.




General features of the effective
interaction extracted even from

simple cases

The T=1 interaction is strong and attractive
in J=0 states.

The T=1 interactions in other states are weak
and their average is repulsive.

It leads to a seniority type spectrum.

The average T=0 interaction, between protons
and neutrons, is strong and attractive.

It breaks seniority in a major way.



Consequences of these features

« The potential well of the shell model is created
by the attractive proton-neutron interaction
which determines its depth and its shape.

* Hence, energies of proton orbits are determined
by the occupation numbers of neutrons and vice versa.

* These conclusions were published in 1960 addressing
1"Be, and in more detail in a review article in 1962.



Neutron separation energies
from calcium isotopes
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A direct result of this behavior is
that magic nuclei are not more
tightly bound than their preceding
even-even neighbors.

Their magic properties (stability etc.) are

due to the fact that nuclei beyond them
are less tightly bound.



In semi-magic nuclei, with only
valence protons or neutrons
experiment shows features of
generalized seniority
Constant 0-2 spacings in Sn isotopes
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* The monopole part of the 7=0 interaction
affects positions of single nucleon
energies.

* The quadrupole-quadrupole part in the
T=0 interaction breaks seniority in a major

way.
* In nuclei with valence protons and valence
neutrons it leads to strong reduction of the

0-2 spacings — a clear signature of the
transition to rotational spectra and nuclear

deformation.




Levels of Sm (Z=56) isotopes

Drastic reduction of 0-2 spacings
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In this picture, the real wave functions may be very different from shell model ones.
They must have strong admixture of the latter. Still, there are experimental data
indicating the reality of shell model wave functions. They are still used in the
calculation of various observables. It seems as if the "wounds" inflicted on shell
model wave functions by the strong two-body correlations occupy only a rather small

volume.



Some exaples of using single nucleon wave
functions

* In the theory of direct reactions they are assumed to
take place near the boundary of the nucleus. The
value of the wave function of the single nucleon

which is removed or added in that region, is
Important.

* Electromagnetic moments and transitions are
calculated by using single nucleon wave functions. In
some of them, the actual shape of the radial part
plays an important role.

* How real are single nucleon wave functions?



Is the Shell-Model Concept Relevant for the Nuclear Interior?
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The 3s radial wave function R(7) has been determined by electron scattering from %pp

and *®T1, The shape of R(#) in the central region of the nucleus is used to test the valid-
ity of the independent-particle shell model at large nuclear density.
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* Coulomb energy differences between mirror
nuclei are usually calculated by using single
nucleon wave functions.

* Their values depend on the nature of the
single nucleon wave function.



Coulomb energy differences of 1d;,, and
25, ,, Orbits
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Origin of the difference

Consider various single particle wave functions in a
given potential well. If the bottom of the well is
raised, single particle energies are moved upwards.

Due to the centrifugal potential, the following rule
applies. The loss of binding energy is higher for states
with higher orbital angular momenta.

In the case of the Coulomb potential, this effect can
be directly calculated.

There are other ways to raise the bottom of the
potential well.



* The average effective interaction between
protons and neutrons is attractive.

* [t creates the potential well of the shell model.

* Removing proton pairs coupled to J=0 makes
the potential energy of valence neutrons less
attractive.
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The graphs shown before are not merely
extrapolations.

They are graphic solutions of exact, even
though simple, shell model problems.

The matrix elements were taken from energies
of nearby nuclei.

The simple argument is qualitative and yet
seems to agree with the more detailed
calculation.



A common prescription to determine the
wave function of a valence nucleon

* A potential well, like a Wood-Saxon one, is
chosen. Its radius is determined by

measurements of the charge distribution of
the nucleus considered.

 The depth of the well is chosen so that the
single nucleon energy is equal to its measured
separation energy E,,,-E, .

e What is the reason for this choice?



When the valence nucleon is bound, the energy of the system i1s
the binding energy of the nucleus with A+1 nucleons, £+
(binding energies in this paper are negative). When the valence
nucleon is adiabatically removed, for very large distances, the
core and the removed nucleon are independent of each other.
The core, the nucleus with 4 nucleons, is in its ground state
with energy £4. The valence nucleon has in this situation, the
energy FE=FEai- Ea . Its wave function is

| R/ r]Y (S, P) (D)

and, for very large r, it is the solution of the radial part of the
Schroedinger equation in which the interaction, as well as the
centrifugal potential, no longer appear

-(W*2m)R" =ER=(Ea.1- E\)R )

From this equation follows that the asymptotic form ofR is
given by

R(r)=Crfexp(-[Cm/H)|Ea.i- EA|]"?r) for r—
(3)

The values of C and of k£ are determined by the solution of the
equation for small values of 7.



* This prescription will be examined by looking
at Hartree-Fock theory in which the potential

well is determined by the mutual (effective)
interaction of the nucleons.

* The results will be applicable to the way single
nucleon wave functions are constructed.



For simplicity, consider a spherical nucleus whose
A nucleons occupy closed shells of protons and
neutrons. The single nucleon energy of a valence
orbit may be defined in three ways.

It may be defined by
EA+1 B EA

Another possibility is the energy of a nucleon in an
unoccupied orbit in the potential well created by
the A nucleons in their ground state.

The third possibility is to use the single valence
nucleon energy in the nucleus with 4+1 nucleons.
Even if the 4 nucleons in the core remain in closed
shells, their state 1s not the original one. The core is
polarized by the valence nucleon. Hence, it has less
binding which 1s more than compensated by a
stronger interaction with the valence nucleon.



The ground state energy of the nucleus with closed shells (core) is
given by the lowest value of the variational integral

Ex=[ ®a*(Zitt 2 V(i) @ ad()d(2)....d(A) “)
In (4), t; is the kinetic energy of the i-th nucleon and V(7)) is the

effective interaction between nucleonsi and j. The energy of the
lowest unoccup ied orbit in the (spherical) field of the core isgiven by

E°pnr=[ (@ aA%ug®)ol Z itit Z 5V /)) (P atg)ud(1)dQ). .. d(A)d(A+1)=
Ext [ (@ a*up*)a(tan+ 2 V(i A+ D)(P artg)ed(1)d(2). .. d(A)d(A+1)=

Ea+ € (5)
The single nucleon wave function i is the solution of the

Schroedinger equation where the potential energy is equal to the
expectation value

[ @ A% 2 V(G,A+ 1)) D Ad(1)d(2)...d(A) (6)
and the energy eigenvalue is € .
Since @ 4 1s not varied, the integral (5) is higher than the energy of

the nucleus with 4+1 nucleons, E’s.;=FEx.,. From (5) then follows
the inequality

€ 0 =2 Eav1- Ep (7



The relation
Eqg 2 Epv - Eq

was derived for HF energies. Naturally,
E A+ may be replaced by the experimental
binding energy.

Also £, may be replaced by the
experimental binding energy of the core.
The relation holds since the core wave
function is not varied. No matter how
well it could reproduce the core
experimental binding energy, the integral
is always higher than, or equal to, the
experimental £,,.

Next, the third choice of single nucleon
energy will be considered



Thus, we write
Exni=[ (@5 u*)o( Z it Z VEN) P a)od()d(2). .. d(A)d(A+1)=
[ @WK 2 it 2 V(i) @ 'ad()d(2). . d(A)+
[ (@ 5*u*)o tant 2 ian VAT D)@' su)d(1)d(2). ..d(A)d(A+1)=

Ep\'+ € (8)

The amount E' - Es 1s called the rearrangement energy. It will
be denoted RE and is always non negative, RE=0. Subtraction of Ex
leads to another inequality

E=FEpn - Ea t (Ea-EA) 9)
and hence,
€ = Ep- Ea (10)

The 1nequalities (7) and (10) may be combined into

& = EA+1' EA = 80 (11)



Koopmans Theorem

It follows that if and only if, the core is not
polarized by the valence nucleon, the
following equality is obtained

€ = Epn- Ep = &

Koopmans was well aware of this condition
unlike some authors of recent papers and
books.




It 1s clear that the choice of £, - £, as the single
nucleon energy 1s the exact one for a potential well
which 1s not changed by adding a valence nucleon.
The question 1s whether this is a reasonable model
for dynamic nuclel

A real nucleus 1s polarized by valence nucleons in
which case the expectation value of its Hamiltonian
in the state with 4+1 nucleons is higher than its
binding energy.



There 1s ample evidence for polarization of the core
by valence nucleons. For example, the change of
charge radil when neutrons are added to a nucleus
as well as electromagnetic transitions due to the
neutron effective charge.



The discussion started from the single nucleon
wave functions which are determined by a fixed
potential well. The depth of the potential 1s
determined by choosing the value of the single
nucleon energy. If it 1s made equal to the
sep aration energy, the wave function will have the
correct asymptotic tail. The main bulk of such a
wave function may be a rather poor approximation
of the exact wave function. This is due to the
polarization of the real core by the valence nucleon
and the resulting rearrangement energy.



From the discussion presented here,

1t follows that a better approximation

1s obtained by using a single nucleon

energy which 1s lower than the
separation energy.

€ =Fpxi- Ex + (Er-E))



Which wave functions gives a
better description?

* The one with the correct asymptotic tail
or

* The one whose main bulk is determined
by the interaction with the core nucleons

* | hope that | convinced you that it is the
second choice.



After all, it stands to reason that it is the dog who should wag his tail rather
than the tail wagging the whole body of the dog.




