Changes from V2 to V3: - check for empty pte before setting additional pte's in aggregate read The page fault handler for anonymous pages can generate significant overhead apart from its essential function which is to clear and setup a new page table entry for a never accessed memory location. This overhead increases significantly in an SMP environment. In the page table scalability patches, we addressed the issue by changing the locking scheme so that multiple fault handlers are able to be processed concurrently on multiple cpus. This patch attempts to aggregate multiple page faults into a single one. It does that by noting anonymous page faults generated in sequence by an application. If a fault occurred for page x and is then followed by page x+1 then it may be reasonable to expect another page fault at x+2 in the future. If page table entries for x+1 and x+2 would be prepared in the fault handling for page x+1 then the overhead of taking a fault for x+2 is avoided. However page x+2 may never be used and thus we may have increased the rss of an application unnecessarily. The swapper will take care of removing that page if memory should get tight. The following patch makes the anonymous fault handler anticipate future faults. For each fault a prediction is made where the fault would occur (assuming linear acccess by the application). If the prediction turns out to be right (next fault is where expected) then a number of pages is preallocated in order to avoid a series of future faults. The order of the preallocation increases by the power of two for each success in sequence. The first successful prediction leads to an additional page being allocated. Second successful prediction leads to 2 additional pages being allocated. Third to 4 pages and so on. The max order is 3 by default. In a large continous allocation the number of faults is reduced by a factor of 8. Patch against 2.6.10-rc3-bk7: Signed-off-by: Christoph Lameter Index: linux-2.6.9/include/linux/sched.h =================================================================== --- linux-2.6.9.orig/include/linux/sched.h 2004-12-13 15:14:40.000000000 -0800 +++ linux-2.6.9/include/linux/sched.h 2004-12-14 12:21:26.000000000 -0800 @@ -537,6 +537,8 @@ #endif struct list_head tasks; + unsigned long anon_fault_next_addr; /* Predicted sequential fault address */ + int anon_fault_order; /* Last order of allocation on fault */ /* * ptrace_list/ptrace_children forms the list of my children * that were stolen by a ptracer. Index: linux-2.6.9/mm/memory.c =================================================================== --- linux-2.6.9.orig/mm/memory.c 2004-12-13 15:14:40.000000000 -0800 +++ linux-2.6.9/mm/memory.c 2004-12-14 12:23:36.000000000 -0800 @@ -55,6 +55,7 @@ #include #include +#include #ifndef CONFIG_DISCONTIGMEM /* use the per-pgdat data instead for discontigmem - mbligh */ @@ -1432,52 +1433,103 @@ unsigned long addr) { pte_t entry; - struct page * page = ZERO_PAGE(addr); - - /* Read-only mapping of ZERO_PAGE. */ - entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); + unsigned long end_addr; + + addr &= PAGE_MASK; + + if (likely((vma->vm_flags & VM_RAND_READ) || current->anon_fault_next_addr != addr)) { + /* Single page */ + current->anon_fault_order = 0; + end_addr = addr + PAGE_SIZE; + } else { + /* Sequence of faults detect. Perform preallocation */ + int order = ++current->anon_fault_order; + + if ((1 << order) < PAGEVEC_SIZE) + end_addr = addr + (PAGE_SIZE << order); + else { + end_addr = addr + PAGEVEC_SIZE * PAGE_SIZE; + current->anon_fault_order = 3; + } - /* ..except if it's a write access */ + if (end_addr > vma->vm_end) + end_addr = vma->vm_end; + if ((addr & PMD_MASK) != (end_addr & PMD_MASK)) + end_addr &= PMD_MASK; + } if (write_access) { - /* Allocate our own private page. */ + + unsigned long a; + int i; + struct pagevec pv; + pte_unmap(page_table); spin_unlock(&mm->page_table_lock); + pagevec_init(&pv, 0); + if (unlikely(anon_vma_prepare(vma))) - goto no_mem; - page = alloc_page_vma(GFP_HIGHUSER, vma, addr); - if (!page) - goto no_mem; - clear_user_highpage(page, addr); + return VM_FAULT_OOM; + + /* Allocate the necessary pages */ + for(a = addr; a < end_addr ; a += PAGE_SIZE) { + struct page *p = alloc_page_vma(GFP_HIGHUSER, vma, a); + + if (likely(p)) { + clear_user_highpage(p, a); + pagevec_add(&pv, p); + } else { + if (a == addr) + return VM_FAULT_OOM; + break; + } + } spin_lock(&mm->page_table_lock); - page_table = pte_offset_map(pmd, addr); - if (!pte_none(*page_table)) { + for(i = 0; addr < a; addr += PAGE_SIZE, i++) { + struct page *p = pv.pages[i]; + + page_table = pte_offset_map(pmd, addr); + if (unlikely(!pte_none(*page_table))) { + /* Someone else got there first */ + pte_unmap(page_table); + page_cache_release(p); + continue; + } + + entry = maybe_mkwrite(pte_mkdirty(mk_pte(p, + vma->vm_page_prot)), + vma); + + mm->rss++; + lru_cache_add_active(p); + SetPageReferenced(p); + page_add_anon_rmap(p, vma, addr); + + set_pte(page_table, entry); pte_unmap(page_table); - page_cache_release(page); - spin_unlock(&mm->page_table_lock); - goto out; + + /* No need to invalidate - it was non-present before */ + update_mmu_cache(vma, addr, entry); + } + } else { + /* Read */ + entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); +nextread: + set_pte(page_table, entry); + pte_unmap(page_table); + update_mmu_cache(vma, addr, entry); + addr += PAGE_SIZE; + if (unlikely(addr < end_addr)) { + page_table = pte_offset_map(pmd, addr); + if (likely(pte_none(*page_table))) + goto nextread; } - mm->rss++; - entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, - vma->vm_page_prot)), - vma); - lru_cache_add_active(page); - mark_page_accessed(page); - page_add_anon_rmap(page, vma, addr); } - - set_pte(page_table, entry); - pte_unmap(page_table); - - /* No need to invalidate - it was non-present before */ - update_mmu_cache(vma, addr, entry); + current->anon_fault_next_addr = addr; spin_unlock(&mm->page_table_lock); -out: return VM_FAULT_MINOR; -no_mem: - return VM_FAULT_OOM; } /*