patch-2.3.16 linux/arch/sparc64/kernel/pci_sabre.c

Next file: linux/arch/sparc64/kernel/power.c
Previous file: linux/arch/sparc64/kernel/pci_psycho.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.15/linux/arch/sparc64/kernel/pci_sabre.c linux/arch/sparc64/kernel/pci_sabre.c
@@ -0,0 +1,1492 @@
+/* $Id: pci_sabre.c,v 1.1 1999/08/30 10:00:32 davem Exp $
+ * pci_sabre.c: Sabre specific PCI controller support.
+ *
+ * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
+ * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
+ * Copyright (C) 1999 Jakub Jelinek   (jj@ultra.linux.cz)
+ */
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/malloc.h>
+
+#include <asm/apb.h>
+#include <asm/pbm.h>
+#include <asm/iommu.h>
+#include <asm/irq.h>
+
+#include "pci_impl.h"
+
+/* All SABRE registers are 64-bits.  The following accessor
+ * routines are how they are accessed.  The REG parameter
+ * is a physical address.
+ */
+#define sabre_read(__reg) \
+({	u64 __ret; \
+	__asm__ __volatile__("ldxa [%1] %2, %0" \
+			     : "=r" (__ret) \
+			     : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
+			     : "memory"); \
+	__ret; \
+})
+#define sabre_write(__reg, __val) \
+	__asm__ __volatile__("stxa %0, [%1] %2" \
+			     : /* no outputs */ \
+			     : "r" (__val), "r" (__reg), \
+			       "i" (ASI_PHYS_BYPASS_EC_E))
+
+/* SABRE PCI controller register offsets and definitions. */
+#define SABRE_UE_AFSR		0x0030UL
+#define  SABRE_UEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
+#define  SABRE_UEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
+#define  SABRE_UEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
+#define  SABRE_UEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
+#define  SABRE_UEAFSR_SDTE	 0x0200000000000000UL	/* Secondary DMA Translation Error */
+#define  SABRE_UEAFSR_PDTE	 0x0100000000000000UL	/* Primary DMA Translation Error */
+#define  SABRE_UEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
+#define  SABRE_UEAFSR_OFF	 0x00000000e0000000UL	/* Offset (AFAR bits [5:3] */
+#define  SABRE_UEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
+#define SABRE_UECE_AFAR		0x0038UL
+#define SABRE_CE_AFSR		0x0040UL
+#define  SABRE_CEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
+#define  SABRE_CEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
+#define  SABRE_CEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
+#define  SABRE_CEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
+#define  SABRE_CEAFSR_ESYND	 0x00ff000000000000UL	/* ECC Syndrome */
+#define  SABRE_CEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
+#define  SABRE_CEAFSR_OFF	 0x00000000e0000000UL	/* Offset */
+#define  SABRE_CEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
+#define SABRE_UECE_AFAR_ALIAS	0x0048UL	/* Aliases to 0x0038 */
+#define SABRE_IOMMU_CONTROL	0x0200UL
+#define  SABRE_IOMMUCTRL_ERRSTS	 0x0000000006000000UL	/* Error status bits */
+#define  SABRE_IOMMUCTRL_ERR	 0x0000000001000000UL	/* Error present in IOTLB */
+#define  SABRE_IOMMUCTRL_LCKEN	 0x0000000000800000UL	/* IOTLB lock enable */
+#define  SABRE_IOMMUCTRL_LCKPTR	 0x0000000000780000UL	/* IOTLB lock pointer */
+#define  SABRE_IOMMUCTRL_TSBSZ	 0x0000000000070000UL	/* TSB Size */
+#define  SABRE_IOMMUCTRL_TBWSZ	 0x0000000000000004UL	/* TSB assumed page size */
+#define  SABRE_IOMMUCTRL_DENAB	 0x0000000000000002UL	/* Diagnostic Mode Enable */
+#define  SABRE_IOMMUCTRL_ENAB	 0x0000000000000001UL	/* IOMMU Enable */
+#define SABRE_IOMMU_TSBBASE	0x0208UL
+#define SABRE_IOMMU_FLUSH	0x0210UL
+#define SABRE_IMAP_A_SLOT0	0x0c00UL
+#define SABRE_IMAP_B_SLOT0	0x0c20UL
+#define SABRE_IMAP_SCSI		0x1000UL
+#define SABRE_IMAP_ETH		0x1008UL
+#define SABRE_IMAP_BPP		0x1010UL
+#define SABRE_IMAP_AU_REC	0x1018UL
+#define SABRE_IMAP_AU_PLAY	0x1020UL
+#define SABRE_IMAP_PFAIL	0x1028UL
+#define SABRE_IMAP_KMS		0x1030UL
+#define SABRE_IMAP_FLPY		0x1038UL
+#define SABRE_IMAP_SHW		0x1040UL
+#define SABRE_IMAP_KBD		0x1048UL
+#define SABRE_IMAP_MS		0x1050UL
+#define SABRE_IMAP_SER		0x1058UL
+#define SABRE_IMAP_UE		0x1070UL
+#define SABRE_IMAP_CE		0x1078UL
+#define SABRE_IMAP_PCIERR	0x1080UL
+#define SABRE_IMAP_GFX		0x1098UL
+#define SABRE_IMAP_EUPA		0x10a0UL
+#define SABRE_ICLR_A_SLOT0	0x1400UL
+#define SABRE_ICLR_B_SLOT0	0x1480UL
+#define SABRE_ICLR_SCSI		0x1800UL
+#define SABRE_ICLR_ETH		0x1808UL
+#define SABRE_ICLR_BPP		0x1810UL
+#define SABRE_ICLR_AU_REC	0x1818UL
+#define SABRE_ICLR_AU_PLAY	0x1820UL
+#define SABRE_ICLR_PFAIL	0x1828UL
+#define SABRE_ICLR_KMS		0x1830UL
+#define SABRE_ICLR_FLPY		0x1838UL
+#define SABRE_ICLR_SHW		0x1840UL
+#define SABRE_ICLR_KBD		0x1848UL
+#define SABRE_ICLR_MS		0x1850UL
+#define SABRE_ICLR_SER		0x1858UL
+#define SABRE_ICLR_UE		0x1870UL
+#define SABRE_ICLR_CE		0x1878UL
+#define SABRE_ICLR_PCIERR	0x1880UL
+#define SABRE_WRSYNC		0x1c20UL
+#define SABRE_PCICTRL		0x2000UL
+#define  SABRE_PCICTRL_MRLEN	 0x0000001000000000UL	/* Use MemoryReadLine for block loads/stores */
+#define  SABRE_PCICTRL_SERR	 0x0000000400000000UL	/* Set when SERR asserted on PCI bus */
+#define  SABRE_PCICTRL_ARBPARK	 0x0000000000200000UL	/* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
+#define  SABRE_PCICTRL_CPUPRIO	 0x0000000000100000UL	/* Ultra-IIi granted every other bus cycle */
+#define  SABRE_PCICTRL_ARBPRIO	 0x00000000000f0000UL	/* Slot which is granted every other bus cycle */
+#define  SABRE_PCICTRL_ERREN	 0x0000000000000100UL	/* PCI Error Interrupt Enable */
+#define  SABRE_PCICTRL_RTRYWE	 0x0000000000000080UL	/* DMA Flow Control 0=wait-if-possible 1=retry */
+#define  SABRE_PCICTRL_AEN	 0x000000000000000fUL	/* Slot PCI arbitration enables */
+#define SABRE_PIOAFSR		0x2010UL
+#define  SABRE_PIOAFSR_PMA	 0x8000000000000000UL	/* Primary Master Abort */
+#define  SABRE_PIOAFSR_PTA	 0x4000000000000000UL	/* Primary Target Abort */
+#define  SABRE_PIOAFSR_PRTRY	 0x2000000000000000UL	/* Primary Excessive Retries */
+#define  SABRE_PIOAFSR_PPERR	 0x1000000000000000UL	/* Primary Parity Error */
+#define  SABRE_PIOAFSR_SMA	 0x0800000000000000UL	/* Secondary Master Abort */
+#define  SABRE_PIOAFSR_STA	 0x0400000000000000UL	/* Secondary Target Abort */
+#define  SABRE_PIOAFSR_SRTRY	 0x0200000000000000UL	/* Secondary Excessive Retries */
+#define  SABRE_PIOAFSR_SPERR	 0x0100000000000000UL	/* Secondary Parity Error */
+#define  SABRE_PIOAFSR_BMSK	 0x0000ffff00000000UL	/* Byte Mask */
+#define  SABRE_PIOAFSR_BLK	 0x0000000080000000UL	/* Was Block Operation */
+#define SABRE_PIOAFAR		0x2018UL
+#define SABRE_PCIDIAG		0x2020UL
+#define  SABRE_PCIDIAG_DRTRY	 0x0000000000000040UL	/* Disable PIO Retry Limit */
+#define  SABRE_PCIDIAG_IPAPAR	 0x0000000000000008UL	/* Invert PIO Address Parity */
+#define  SABRE_PCIDIAG_IPDPAR	 0x0000000000000004UL	/* Invert PIO Data Parity */
+#define  SABRE_PCIDIAG_IDDPAR	 0x0000000000000002UL	/* Invert DMA Data Parity */
+#define  SABRE_PCIDIAG_ELPBK	 0x0000000000000001UL	/* Loopback Enable - not supported */
+#define SABRE_PCITASR		0x2028UL
+#define  SABRE_PCITASR_EF	 0x0000000000000080UL	/* Respond to 0xe0000000-0xffffffff */
+#define  SABRE_PCITASR_CD	 0x0000000000000040UL	/* Respond to 0xc0000000-0xdfffffff */
+#define  SABRE_PCITASR_AB	 0x0000000000000020UL	/* Respond to 0xa0000000-0xbfffffff */
+#define  SABRE_PCITASR_89	 0x0000000000000010UL	/* Respond to 0x80000000-0x9fffffff */
+#define  SABRE_PCITASR_67	 0x0000000000000008UL	/* Respond to 0x60000000-0x7fffffff */
+#define  SABRE_PCITASR_45	 0x0000000000000004UL	/* Respond to 0x40000000-0x5fffffff */
+#define  SABRE_PCITASR_23	 0x0000000000000002UL	/* Respond to 0x20000000-0x3fffffff */
+#define  SABRE_PCITASR_01	 0x0000000000000001UL	/* Respond to 0x00000000-0x1fffffff */
+#define SABRE_PIOBUF_DIAG	0x5000UL
+#define SABRE_DMABUF_DIAGLO	0x5100UL
+#define SABRE_DMABUF_DIAGHI	0x51c0UL
+#define SABRE_IMAP_GFX_ALIAS	0x6000UL	/* Aliases to 0x1098 */
+#define SABRE_IMAP_EUPA_ALIAS	0x8000UL	/* Aliases to 0x10a0 */
+#define SABRE_IOMMU_VADIAG	0xa400UL
+#define SABRE_IOMMU_TCDIAG	0xa408UL
+#define SABRE_IOMMU_TAG		0xa580UL
+#define  SABRE_IOMMUTAG_ERRSTS	 0x0000000001800000UL	/* Error status bits */
+#define  SABRE_IOMMUTAG_ERR	 0x0000000000400000UL	/* Error present */
+#define  SABRE_IOMMUTAG_WRITE	 0x0000000000200000UL	/* Page is writable */
+#define  SABRE_IOMMUTAG_STREAM	 0x0000000000100000UL	/* Streamable bit - unused */
+#define  SABRE_IOMMUTAG_SIZE	 0x0000000000080000UL	/* 0=8k 1=16k */
+#define  SABRE_IOMMUTAG_VPN	 0x000000000007ffffUL	/* Virtual Page Number [31:13] */
+#define SABRE_IOMMU_DATA	0xa600UL
+#define SABRE_IOMMUDATA_VALID	 0x0000000040000000UL	/* Valid */
+#define SABRE_IOMMUDATA_USED	 0x0000000020000000UL	/* Used (for LRU algorithm) */
+#define SABRE_IOMMUDATA_CACHE	 0x0000000010000000UL	/* Cacheable */
+#define SABRE_IOMMUDATA_PPN	 0x00000000001fffffUL	/* Physical Page Number [33:13] */
+#define SABRE_PCI_IRQSTATE	0xa800UL
+#define SABRE_OBIO_IRQSTATE	0xa808UL
+#define SABRE_FFBCFG		0xf000UL
+#define  SABRE_FFBCFG_SPRQS	 0x000000000f000000	/* Slave P_RQST queue size */
+#define  SABRE_FFBCFG_ONEREAD	 0x0000000000004000	/* Slave supports one outstanding read */
+#define SABRE_MCCTRL0		0xf010UL
+#define  SABRE_MCCTRL0_RENAB	 0x0000000080000000	/* Refresh Enable */
+#define  SABRE_MCCTRL0_EENAB	 0x0000000010000000	/* Enable all ECC functions */
+#define  SABRE_MCCTRL0_11BIT	 0x0000000000001000	/* Enable 11-bit column addressing */
+#define  SABRE_MCCTRL0_DPP	 0x0000000000000f00	/* DIMM Pair Present Bits */
+#define  SABRE_MCCTRL0_RINTVL	 0x00000000000000ff	/* Refresh Interval */
+#define SABRE_MCCTRL1		0xf018UL
+#define  SABRE_MCCTRL1_AMDC	 0x0000000038000000	/* Advance Memdata Clock */
+#define  SABRE_MCCTRL1_ARDC	 0x0000000007000000	/* Advance DRAM Read Data Clock */
+#define  SABRE_MCCTRL1_CSR	 0x0000000000e00000	/* CAS to RAS delay for CBR refresh */
+#define  SABRE_MCCTRL1_CASRW	 0x00000000001c0000	/* CAS length for read/write */
+#define  SABRE_MCCTRL1_RCD	 0x0000000000038000	/* RAS to CAS delay */
+#define  SABRE_MCCTRL1_CP	 0x0000000000007000	/* CAS Precharge */
+#define  SABRE_MCCTRL1_RP	 0x0000000000000e00	/* RAS Precharge */
+#define  SABRE_MCCTRL1_RAS	 0x00000000000001c0	/* Length of RAS for refresh */
+#define  SABRE_MCCTRL1_CASRW2	 0x0000000000000038	/* Must be same as CASRW */
+#define  SABRE_MCCTRL1_RSC	 0x0000000000000007	/* RAS after CAS hold time */
+#define SABRE_RESETCTRL		0xf020UL
+
+#define SABRE_CONFIGSPACE	0x001000000UL
+#define SABRE_IOSPACE		0x002000000UL
+#define SABRE_IOSPACE_SIZE	0x00000ffffUL
+#define SABRE_MEMSPACE		0x100000000UL
+#define SABRE_MEMSPACE_SIZE	0x07fffffffUL
+
+/* UltraSparc-IIi Programmer's Manual, page 325, PCI
+ * configuration space address format:
+ * 
+ *  32             24 23 16 15    11 10       8 7   2  1 0
+ * ---------------------------------------------------------
+ * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
+ * ---------------------------------------------------------
+ */
+#define SABRE_CONFIG_BASE(PBM)	\
+	((PBM)->parent->config_space | (1UL << 24))
+#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)	\
+	(((unsigned long)(BUS)   << 16) |	\
+	 ((unsigned long)(DEVFN) << 8)  |	\
+	 ((unsigned long)(REG)))
+
+static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
+				     unsigned char bus,
+				     unsigned int devfn,
+				     int where)
+{
+	if (!pbm)
+		return NULL;
+	return (void *)
+		(SABRE_CONFIG_BASE(pbm) |
+		 SABRE_CONFIG_ENCODE(bus, devfn, where));
+}
+
+static int sabre_out_of_range(unsigned char devfn)
+{
+	return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
+		((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
+		(PCI_SLOT(devfn) > 1));
+}
+
+static int __sabre_out_of_range(struct pci_pbm_info *pbm,
+				unsigned char bus,
+				unsigned char devfn)
+{
+	return ((pbm->parent == 0) ||
+		((pbm == &pbm->parent->pbm_B) &&
+		 (bus == pbm->pci_first_busno) &&
+		 PCI_SLOT(devfn) > 8) ||
+		((pbm == &pbm->parent->pbm_A) &&
+		 (bus == pbm->pci_first_busno) &&
+		 PCI_SLOT(devfn) > 8));
+}
+
+static int __sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u8 *addr;
+
+	*value = 0xff;
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+	pci_config_read8(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_read_word(struct pci_dev *dev, int where, u16 *value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u16 *addr;
+
+	*value = 0xffff;
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where & 0x01) {
+		printk("pcibios_read_config_word: misaligned reg [%x]\n",
+		       where);
+		return PCIBIOS_SUCCESSFUL;
+	}
+	pci_config_read16(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u32 *addr;
+
+	*value = 0xffffffff;
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where & 0x03) {
+		printk("pcibios_read_config_dword: misaligned reg [%x]\n",
+		       where);
+		return PCIBIOS_SUCCESSFUL;
+	}
+	pci_config_read32(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int sabre_read_byte(struct pci_dev *dev, int where, u8 *value)
+{
+	if (dev->bus->number)
+		return __sabre_read_byte(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn)) {
+		*value = 0xff;
+		return PCIBIOS_SUCCESSFUL;
+	}
+
+	if (where < 8) {
+		u16 tmp;
+
+		__sabre_read_word(dev, where & ~1, &tmp);
+		if (where & 1)
+			*value = tmp >> 8;
+		else
+			*value = tmp & 0xff;
+		return PCIBIOS_SUCCESSFUL;
+	} else
+		return __sabre_read_byte(dev, where, value);
+}
+
+static int sabre_read_word(struct pci_dev *dev, int where, u16 *value)
+{
+	if (dev->bus->number)
+		return __sabre_read_word(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn)) {
+		*value = 0xffff;
+		return PCIBIOS_SUCCESSFUL;
+	}
+
+	if (where < 8)
+		return __sabre_read_word(dev, where, value);
+	else {
+		u8 tmp;
+
+		__sabre_read_byte(dev, where, &tmp);
+		*value = tmp;
+		__sabre_read_byte(dev, where + 1, &tmp);
+		*value |= tmp << 8;
+		return PCIBIOS_SUCCESSFUL;
+	}
+}
+
+static int sabre_read_dword(struct pci_dev *dev, int where, u32 *value)
+{
+	u16 tmp;
+
+	if (dev->bus->number)
+		return __sabre_read_dword(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn)) {
+		*value = 0xffffffff;
+		return PCIBIOS_SUCCESSFUL;
+	}
+
+	sabre_read_word(dev, where, &tmp);
+	*value = tmp;
+	sabre_read_word(dev, where + 2, &tmp);
+	*value |= tmp << 16;
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_byte(struct pci_dev *dev, int where, u8 value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u8 *addr;
+
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+	pci_config_write8(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_word(struct pci_dev *dev, int where, u16 value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u16 *addr;
+
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where & 0x01) {
+		printk("pcibios_write_config_word: misaligned reg [%x]\n",
+		       where);
+		return PCIBIOS_SUCCESSFUL;
+	}
+	pci_config_write16(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int __sabre_write_dword(struct pci_dev *dev, int where, u32 value)
+{
+	struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number];
+	unsigned char bus = dev->bus->number;
+	unsigned int devfn = dev->devfn;
+	u32 *addr;
+
+	addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
+	if (!addr)
+		return PCIBIOS_SUCCESSFUL;
+
+	if (__sabre_out_of_range(pbm, bus, devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where & 0x03) {
+		printk("pcibios_write_config_dword: misaligned reg [%x]\n",
+		       where);
+		return PCIBIOS_SUCCESSFUL;
+	}
+	pci_config_write32(addr, value);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static int sabre_write_byte(struct pci_dev *dev, int where, u8 value)
+{
+	if (dev->bus->number)
+		return __sabre_write_byte(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where < 8) {
+		u16 tmp;
+
+		__sabre_read_word(dev, where & ~1, &tmp);
+		if (where & 1) {
+			value &= 0x00ff;
+			value |= tmp << 8;
+		} else {
+			value &= 0xff00;
+			value |= tmp;
+		}
+		return __sabre_write_word(dev, where & ~1, tmp);
+	} else
+		return __sabre_write_byte(dev, where, value);
+}
+
+static int sabre_write_word(struct pci_dev *dev, int where, u16 value)
+{
+	if (dev->bus->number)
+		return __sabre_write_word(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	if (where < 8)
+		return __sabre_write_word(dev, where, value);
+	else {
+		__sabre_write_byte(dev, where, value & 0xff);
+		__sabre_write_byte(dev, where + 1, value >> 8);
+		return PCIBIOS_SUCCESSFUL;
+	}
+}
+
+static int sabre_write_dword(struct pci_dev *dev, int where, u32 value)
+{
+	if (dev->bus->number)
+		return __sabre_write_dword(dev, where, value);
+
+	if (sabre_out_of_range(dev->devfn))
+		return PCIBIOS_SUCCESSFUL;
+
+	sabre_write_word(dev, where, value & 0xffff);
+	sabre_write_word(dev, where + 2, value >> 16);
+	return PCIBIOS_SUCCESSFUL;
+}
+
+static struct pci_ops sabre_ops = {
+	sabre_read_byte,
+	sabre_read_word,
+	sabre_read_dword,
+	sabre_write_byte,
+	sabre_write_word,
+	sabre_write_dword
+};
+
+static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
+{
+	unsigned int bus =  (ino & 0x10) >> 4;
+	unsigned int slot = (ino & 0x0c) >> 2;
+
+	if (bus == 0)
+		return SABRE_IMAP_A_SLOT0 + (slot * 8);
+	else
+		return SABRE_IMAP_B_SLOT0 + (slot * 8);
+}
+
+static unsigned long __onboard_imap_off[] = {
+/*0x20*/	SABRE_IMAP_SCSI,
+/*0x21*/	SABRE_IMAP_ETH,
+/*0x22*/	SABRE_IMAP_BPP,
+/*0x23*/	SABRE_IMAP_AU_REC,
+/*0x24*/	SABRE_IMAP_AU_PLAY,
+/*0x25*/	SABRE_IMAP_PFAIL,
+/*0x26*/	SABRE_IMAP_KMS,
+/*0x27*/	SABRE_IMAP_FLPY,
+/*0x28*/	SABRE_IMAP_SHW,
+/*0x29*/	SABRE_IMAP_KBD,
+/*0x2a*/	SABRE_IMAP_MS,
+/*0x2b*/	SABRE_IMAP_SER,
+/*0x2c*/	0 /* reserved */,
+/*0x2d*/	0 /* reserved */,
+/*0x2e*/	SABRE_IMAP_UE,
+/*0x2f*/	SABRE_IMAP_CE,
+/*0x30*/	SABRE_IMAP_PCIERR,
+};
+#define SABRE_ONBOARD_IRQ_BASE		0x20
+#define SABRE_ONBOARD_IRQ_LAST		0x30
+#define sabre_onboard_imap_offset(__ino) \
+	__onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
+
+#define sabre_iclr_offset(ino)					      \
+	((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) :  \
+			(SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
+
+/* PCI SABRE INO number to Sparc PIL level. */
+static unsigned char sabre_pil_table[] = {
+/*0x00*/0, 0, 0, 0,	/* PCI A slot 0  Int A, B, C, D */
+/*0x04*/0, 0, 0, 0,	/* PCI A slot 1  Int A, B, C, D */
+/*0x08*/0, 0, 0, 0,	/* PCI A slot 2  Int A, B, C, D */
+/*0x0c*/0, 0, 0, 0,	/* PCI A slot 3  Int A, B, C, D */
+/*0x10*/0, 0, 0, 0,	/* PCI B slot 0  Int A, B, C, D */
+/*0x14*/0, 0, 0, 0,	/* PCI B slot 1  Int A, B, C, D */
+/*0x18*/0, 0, 0, 0,	/* PCI B slot 2  Int A, B, C, D */
+/*0x1c*/0, 0, 0, 0,	/* PCI B slot 3  Int A, B, C, D */
+/*0x20*/3,		/* SCSI				*/
+/*0x21*/5,		/* Ethernet			*/
+/*0x22*/8,		/* Parallel Port		*/
+/*0x23*/13,		/* Audio Record			*/
+/*0x24*/14,		/* Audio Playback		*/
+/*0x25*/15,		/* PowerFail			*/
+/*0x26*/3,		/* second SCSI			*/
+/*0x27*/11,		/* Floppy			*/
+/*0x28*/2,		/* Spare Hardware		*/
+/*0x29*/9,		/* Keyboard			*/
+/*0x2a*/4,		/* Mouse			*/
+/*0x2b*/12,		/* Serial			*/
+/*0x2c*/10,		/* Timer 0			*/
+/*0x2d*/11,		/* Timer 1			*/
+/*0x2e*/15,		/* Uncorrectable ECC		*/
+/*0x2f*/15,		/* Correctable ECC		*/
+/*0x30*/15,		/* PCI Bus A Error		*/
+/*0x31*/15,		/* PCI Bus B Error		*/
+/*0x32*/1,		/* Power Management		*/
+};
+
+static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino)
+{
+	int ret;
+
+	ret = sabre_pil_table[ino];
+	if (ret == 0 && pdev == NULL) {
+		ret = 1;
+	} else if (ret == 0) {
+		switch ((pdev->class >> 16) & 0x0f) {
+		case PCI_BASE_CLASS_STORAGE:
+			ret = 4;
+
+		case PCI_BASE_CLASS_NETWORK:
+			ret = 6;
+
+		case PCI_BASE_CLASS_DISPLAY:
+			ret = 9;
+
+		case PCI_BASE_CLASS_MULTIMEDIA:
+		case PCI_BASE_CLASS_MEMORY:
+		case PCI_BASE_CLASS_BRIDGE:
+			ret = 10;
+
+		default:
+			ret = 1;
+		};
+	}
+	return ret;
+}
+
+static unsigned int __init sabre_irq_build(struct pci_controller_info *p,
+					   struct pci_dev *pdev,
+					   unsigned int ino)
+{
+	struct ino_bucket *bucket;
+	volatile unsigned int *imap, *iclr;
+	unsigned long imap_off, iclr_off;
+	int pil, inofixup = 0;
+
+	ino &= PCI_IRQ_INO;
+	if (ino < SABRE_ONBOARD_IRQ_BASE) {
+		/* PCI slot */
+		imap_off = sabre_pcislot_imap_offset(ino);
+	} else {
+		/* onboard device */
+		if (ino > SABRE_ONBOARD_IRQ_LAST) {
+			prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
+			prom_halt();
+		}
+		imap_off = sabre_onboard_imap_offset(ino);
+	}
+
+	/* Now build the IRQ bucket. */
+	pil = sabre_ino_to_pil(pdev, ino);
+	imap = (volatile unsigned int *)__va(p->controller_regs + imap_off);
+	imap += 1;
+
+	iclr_off = sabre_iclr_offset(ino);
+	iclr = (volatile unsigned int *)__va(p->controller_regs + iclr_off);
+	iclr += 1;
+
+	if ((ino & 0x20) == 0)
+		inofixup = ino & 0x03;
+
+	bucket = __bucket(build_irq(pil, inofixup, iclr, imap));
+	bucket->flags |= IBF_PCI;
+
+	/* XXX We still need to code up support for this in irq.c
+	 * XXX It's easy to code up since only one SIMBA can exist
+	 * XXX in a machine and this is where the sync register is. -DaveM
+	 */
+	if (pdev) {
+		struct pcidev_cookie *pcp = pdev->sysdata;
+		if (pdev->bus->number != pcp->pbm->pci_first_busno)
+			bucket->flags |= IBF_DMA_SYNC;
+	}
+	return __irq(bucket);
+}
+
+/* SABRE error handling support. */
+static void sabre_check_iommu_error(struct pci_controller_info *p,
+				    unsigned long afsr,
+				    unsigned long afar)
+{
+	unsigned long iommu_tag[16];
+	unsigned long iommu_data[16];
+	unsigned long flags;
+	u64 control;
+	int i;
+
+	spin_lock_irqsave(&p->iommu.lock, flags);
+	control = sabre_read(p->iommu.iommu_control);
+	if (control & SABRE_IOMMUCTRL_ERR) {
+		char *type_string;
+
+		/* Clear the error encountered bit.
+		 * NOTE: On Sabre this is write 1 to clear,
+		 *       which is different from Psycho.
+		 */
+		sabre_write(p->iommu.iommu_control, control);
+		switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
+		case 1:
+			type_string = "Invalid Error";
+			break;
+		case 3:
+			type_string = "ECC Error";
+			break;
+		default:
+			type_string = "Unknown";
+			break;
+		};
+		printk("SABRE%d: IOMMU Error, type[%s]\n",
+		       p->index, type_string);
+
+		/* Enter diagnostic mode and probe for error'd
+		 * entries in the IOTLB.
+		 */
+		control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
+		sabre_write(p->iommu.iommu_control,
+			    (control | SABRE_IOMMUCTRL_DENAB));
+		for (i = 0; i < 16; i++) {
+			unsigned long base = p->controller_regs;
+
+			iommu_tag[i] =
+				sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
+			iommu_data[i] =
+				sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
+			sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
+			sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
+		}
+		sabre_write(p->iommu.iommu_control, control);
+
+		for (i = 0; i < 16; i++) {
+			unsigned long tag, data;
+
+			tag = iommu_tag[i];
+			if (!(tag & SABRE_IOMMUTAG_ERR))
+				continue;
+
+			data = iommu_data[i];
+			switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
+			case 1:
+				type_string = "Invalid Error";
+				break;
+			case 3:
+				type_string = "ECC Error";
+				break;
+			default:
+				type_string = "Unknown";
+				break;
+			};
+			printk("SABRE%d: IOMMU TAG(%d)[error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
+			       p->index, i, type_string,
+			       ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
+			       ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
+			       ((tag & SABRE_IOMMUTAG_VPN) << PAGE_SHIFT));
+			printk("SABRE%d: IOMMU DATA(%d)[valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
+			       p->index, i,
+			       ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
+			       ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
+			       ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
+			       ((data & SABRE_IOMMUDATA_PPN) << PAGE_SHIFT));
+		}
+	}
+	spin_unlock_irqrestore(&p->iommu.lock, flags);
+}
+
+static void sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+	struct pci_controller_info *p = dev_id;
+	unsigned long afsr_reg = p->controller_regs + SABRE_UE_AFSR;
+	unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
+	unsigned long afsr, afar, error_bits;
+	int reported;
+
+	/* Latch uncorrectable error status. */
+	afar = sabre_read(afar_reg);
+	afsr = sabre_read(afsr_reg);
+
+	/* Clear the primary/secondary error status bits. */
+	error_bits = afsr &
+		(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
+		 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
+		 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
+	sabre_write(afsr_reg, error_bits);
+
+	/* Log the error. */
+	printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
+	       p->index,
+	       ((error_bits & SABRE_UEAFSR_PDRD) ?
+		"DMA Read" :
+		((error_bits & SABRE_UEAFSR_PDWR) ?
+		 "DMA Write" : "???")),
+	       ((error_bits & SABRE_UEAFSR_PDTE) ?
+		":Translation Error" : ""));
+	printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
+	       p->index,
+	       (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
+	       (afsr & SABRE_UEAFSR_OFF) >> 29UL,
+	       ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
+	printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
+	printk("SABRE%d: UE Secondary errors [", p->index);
+	reported = 0;
+	if (afsr & SABRE_UEAFSR_SDRD) {
+		reported++;
+		printk("(DMA Read)");
+	}
+	if (afsr & SABRE_UEAFSR_SDWR) {
+		reported++;
+		printk("(DMA Write)");
+	}
+	if (afsr & SABRE_UEAFSR_SDTE) {
+		reported++;
+		printk("(Translation Error)");
+	}
+	if (!reported)
+		printk("(none)");
+	printk("]\n");
+
+	/* Interrogate IOMMU for error status. */
+	sabre_check_iommu_error(p, afsr, afar);
+}
+
+static void sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+	struct pci_controller_info *p = dev_id;
+	unsigned long afsr_reg = p->controller_regs + SABRE_CE_AFSR;
+	unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR;
+	unsigned long afsr, afar, error_bits;
+	int reported;
+
+	/* Latch error status. */
+	afar = sabre_read(afar_reg);
+	afsr = sabre_read(afsr_reg);
+
+	/* Clear primary/secondary error status bits. */
+	error_bits = afsr &
+		(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
+		 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
+	sabre_write(afsr_reg, error_bits);
+
+	/* Log the error. */
+	printk("SABRE%d: Correctable Error, primary error type[%s]\n",
+	       p->index,
+	       ((error_bits & SABRE_CEAFSR_PDRD) ?
+		"DMA Read" :
+		((error_bits & SABRE_CEAFSR_PDWR) ?
+		 "DMA Write" : "???")));
+	printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
+	       "was_block(%d)\n",
+	       p->index,
+	       (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
+	       (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
+	       (afsr & SABRE_CEAFSR_OFF) >> 29UL,
+	       ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
+	printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
+	printk("SABRE%d: CE Secondary errors [", p->index);
+	reported = 0;
+	if (afsr & SABRE_CEAFSR_SDRD) {
+		reported++;
+		printk("(DMA Read)");
+	}
+	if (afsr & SABRE_CEAFSR_SDWR) {
+		reported++;
+		printk("(DMA Write)");
+	}
+	if (!reported)
+		printk("(none)");
+	printk("]\n");
+}
+
+static void sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
+{
+	struct pci_controller_info *p = dev_id;
+	unsigned long afsr_reg, afar_reg;
+	unsigned long afsr, afar, error_bits;
+	int reported;
+
+	afsr_reg = p->controller_regs + SABRE_PIOAFSR;
+	afar_reg = p->controller_regs + SABRE_PIOAFAR;
+
+	/* Latch error status. */
+	afar = sabre_read(afar_reg);
+	afsr = sabre_read(afsr_reg);
+
+	/* Clear primary/secondary error status bits. */
+	error_bits = afsr &
+		(SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
+		 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
+		 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
+		 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
+	sabre_write(afsr_reg, error_bits);
+
+	/* Log the error. */
+	printk("SABRE%d: PCI Error, primary error type[%s]\n",
+	       p->index,
+	       (((error_bits & SABRE_PIOAFSR_PMA) ?
+		 "Master Abort" :
+		 ((error_bits & SABRE_PIOAFSR_PTA) ?
+		  "Target Abort" :
+		  ((error_bits & SABRE_PIOAFSR_PRTRY) ?
+		   "Excessive Retries" :
+		   ((error_bits & SABRE_PIOAFSR_PPERR) ?
+		    "Parity Error" : "???"))))));
+	printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
+	       p->index,
+	       (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
+	       (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
+	printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
+	printk("SABRE%d: PCI Secondary errors [", p->index);
+	reported = 0;
+	if (afsr & SABRE_PIOAFSR_SMA) {
+		reported++;
+		printk("(Master Abort)");
+	}
+	if (afsr & SABRE_PIOAFSR_STA) {
+		reported++;
+		printk("(Target Abort)");
+	}
+	if (afsr & SABRE_PIOAFSR_SRTRY) {
+		reported++;
+		printk("(Excessive Retries)");
+	}
+	if (afsr & SABRE_PIOAFSR_SPERR) {
+		reported++;
+		printk("(Parity Error)");
+	}
+	if (!reported)
+		printk("(none)");
+	printk("]\n");
+
+	/* For the error types shown, scan both PCI buses for devices
+	 * which have logged that error type.
+	 */
+
+	/* If we see a Target Abort, this could be the result of an
+	 * IOMMU translation error of some sort.  It is extremely
+	 * useful to log this information as usually it indicates
+	 * a bug in the IOMMU support code or a PCI device driver.
+	 */
+	if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
+		sabre_check_iommu_error(p, afsr, afar);
+		pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
+		pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
+	}
+	if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
+		pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
+		pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
+	}
+	/* For excessive retries, SABRE/PBM will abort the device
+	 * and there is no way to specifically check for excessive
+	 * retries in the config space status registers.  So what
+	 * we hope is that we'll catch it via the master/target
+	 * abort events.
+	 */
+
+	if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
+		pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
+		pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
+	}
+}
+
+/* XXX What about PowerFail/PowerManagement??? -DaveM */
+#define SABRE_UE_INO		0x2e
+#define SABRE_CE_INO		0x2f
+#define SABRE_PCIERR_INO	0x30
+static void __init sabre_register_error_handlers(struct pci_controller_info *p)
+{
+	unsigned long base = p->controller_regs;
+	unsigned long irq, portid = p->portid;
+	u64 tmp;
+
+	/* We clear the error bits in the appropriate AFSR before
+	 * registering the handler so that we don't get spurious
+	 * interrupts.
+	 */
+	sabre_write(base + SABRE_UE_AFSR,
+		    (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
+		     SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
+		     SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
+	irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_UE_INO);
+	if (request_irq(irq, sabre_ue_intr,
+			SA_SHIRQ, "SABRE UE", p) < 0) {
+		prom_printf("SABRE%d: Cannot register UE interrupt.\n",
+			    p->index);
+		prom_halt();
+	}
+
+	sabre_write(base + SABRE_CE_AFSR,
+		    (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
+		     SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
+	irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_CE_INO);
+	if (request_irq(irq, sabre_ce_intr,
+			SA_SHIRQ, "SABRE CE", p) < 0) {
+		prom_printf("SABRE%d: Cannot register CE interrupt.\n",
+			    p->index);
+		prom_halt();
+	}
+
+	irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_PCIERR_INO);
+	if (request_irq(irq, sabre_pcierr_intr,
+			SA_SHIRQ, "SABRE PCIERR", p) < 0) {
+		prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
+			    p->index);
+		prom_halt();
+	}
+
+	tmp = sabre_read(base + SABRE_PCICTRL);
+	tmp |= SABRE_PCICTRL_ERREN;
+	sabre_write(base + SABRE_PCICTRL, tmp);
+}
+
+static void __init sabre_resource_adjust(struct pci_dev *pdev,
+					 struct resource *res,
+					 struct resource *root)
+{
+	struct pcidev_cookie *pcp = pdev->sysdata;
+	struct pci_controller_info *p = pcp->pbm->parent;
+	unsigned long base;
+
+	if (res->flags & IORESOURCE_IO)
+		base = p->controller_regs + SABRE_IOSPACE;
+	else
+		base = p->controller_regs + SABRE_MEMSPACE;
+
+	res->start += base;
+	res->end += base;
+}
+
+static void __init sabre_base_address_update(struct pci_dev *pdev, int resource)
+{
+	struct pcidev_cookie *pcp = pdev->sysdata;
+	struct pci_pbm_info *pbm = pcp->pbm;
+	struct pci_controller_info *p = pbm->parent;
+	struct resource *res = &pdev->resource[resource];
+	unsigned long base;
+	u32 reg;
+	int where, size;
+
+	if (res->flags & IORESOURCE_IO)
+		base = p->controller_regs + SABRE_IOSPACE;
+	else
+		base = p->controller_regs + SABRE_MEMSPACE;
+
+	where = PCI_BASE_ADDRESS_0 + (resource * 4);
+	size = res->end - res->start;
+	pci_read_config_dword(pdev, where, &reg);
+	reg = ((reg & size) |
+	       (((u32)(res->start - base)) & ~size));
+	pci_write_config_dword(pdev, where, reg);
+}
+
+static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
+{
+	struct pci_dev *pdev;
+	u32 dword;
+	u16 word;
+
+	for(pdev = pci_devices; pdev; pdev = pdev->next) {
+		if(pdev->vendor == PCI_VENDOR_ID_SUN &&
+		   pdev->device == PCI_DEVICE_ID_SUN_SABRE) {
+			sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
+			break;
+		}
+	}
+
+	for (pdev = sabre_bus->devices; pdev; pdev = pdev->sibling) {
+		if (pdev->vendor == PCI_VENDOR_ID_SUN &&
+		    pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
+			sabre_read_word(pdev, PCI_COMMAND, &word);
+			word |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
+				PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
+				PCI_COMMAND_IO;
+			sabre_write_word(pdev, PCI_COMMAND, word);
+
+			/* Status register bits are "write 1 to clear". */
+			sabre_write_word(pdev, PCI_STATUS, 0xffff);
+			sabre_write_word(pdev, PCI_SEC_STATUS, 0xffff);
+
+			sabre_read_word(pdev, PCI_BRIDGE_CONTROL, &word);
+			word = PCI_BRIDGE_CTL_MASTER_ABORT |
+			       PCI_BRIDGE_CTL_SERR |
+			       PCI_BRIDGE_CTL_PARITY;
+			sabre_write_word(pdev, PCI_BRIDGE_CONTROL, word);
+
+			sabre_read_dword(pdev, APB_PCI_CONTROL_HIGH, &dword);
+			dword = APB_PCI_CTL_HIGH_SERR |
+				APB_PCI_CTL_HIGH_ARBITER_EN;
+			sabre_write_dword(pdev, APB_PCI_CONTROL_HIGH, dword);
+
+			/* Systems with SIMBA are usually workstations, so
+			 * we configure to park to SIMBA not to the previous
+			 * bus owner.
+			 */
+			sabre_read_dword(pdev, APB_PCI_CONTROL_LOW, &dword);
+			dword = APB_PCI_CTL_LOW_ERRINT_EN | 0x0f;
+			sabre_write_dword(pdev, APB_PCI_CONTROL_LOW, dword);
+
+			/* Don't mess with the retry limit and PIO/DMA latency
+			 * timer settings.  But do set primary and secondary
+			 * latency timers.
+			 */
+			sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64);
+			sabre_write_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
+		}
+	}
+}
+
+static void __init sabre_scan_bus(struct pci_controller_info *p)
+{
+	static int once = 0;
+	struct pci_bus *sabre_bus, *pbus;
+
+	/* Unlike for PSYCHO, we can only have one SABRE
+	 * in a system.  Having multiple SABREs is thus
+	 * and error, and as a consequence we do not need
+	 * to do any bus renumbering but we do have to have
+	 * the pci_bus2pbm array setup properly.
+	 *
+	 * Also note that the SABRE host bridge is hardwired
+	 * to live at bus 0.
+	 */
+	if (once != 0) {
+		prom_printf("SABRE: Multiple controllers unsupported.\n");
+		prom_halt();
+	}
+	once++;
+
+	/* The pci_bus2pbm table has already been setup in sabre_init. */
+	sabre_bus = pci_scan_bus(p->pci_first_busno,
+				 p->pci_ops,
+				 &p->pbm_A);
+	apb_init(p, sabre_bus);
+
+	for (pbus = sabre_bus->children; pbus; pbus = pbus->next) {
+		struct pci_pbm_info *pbm;
+
+		if (pbus->number == p->pbm_A.pci_first_busno) {
+			pbm = &p->pbm_A;
+		} else if (pbus->number == p->pbm_B.pci_first_busno) {
+			pbm = &p->pbm_B;
+		} else
+			continue;
+
+		pbus->sysdata = pbm;
+		pbm->pci_bus = pbus;
+		pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
+		pci_record_assignments(pbm, pbus);
+		pci_assign_unassigned(pbm, pbus);
+		pci_fixup_irq(pbm, pbus);
+	}
+
+	sabre_register_error_handlers(p);
+}
+
+static void __init sabre_iommu_init(struct pci_controller_info *p, int tsbsize)
+{
+	struct linux_mlist_p1275 *mlist;
+	unsigned long tsbbase, i, n, order;
+	iopte_t *iopte;
+	u64 control;
+
+	/* Invalidate TLB Entries. */
+	control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
+	control |= IOMMU_CTRL_DENAB;
+	sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+
+	for(i = 0; i < 16; i++)
+		sabre_write(p->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
+
+	control &= ~(IOMMU_CTRL_DENAB);
+	sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+
+	for(order = 0;; order++)
+		if((PAGE_SIZE << order) >= ((tsbsize * 1024) * 8))
+			break;
+
+	tsbbase = __get_free_pages(GFP_DMA, order);
+	if (!tsbbase) {
+		prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
+		prom_halt();
+	}
+	iopte = (iopte_t *)tsbbase;
+
+	/* Initialize to "none" settings. */
+	for(i = 0; i < PCI_DVMA_HASHSZ; i++) {
+		pci_dvma_v2p_hash[i] = PCI_DVMA_HASH_NONE;
+		pci_dvma_p2v_hash[i] = PCI_DVMA_HASH_NONE;
+	}
+
+	n = 0;
+	mlist = *prom_meminfo()->p1275_totphys;
+	while (mlist) {
+		unsigned long paddr = mlist->start_adr;
+		unsigned long num_bytes = mlist->num_bytes;
+
+		if(paddr >= (((unsigned long) high_memory) - PAGE_OFFSET))
+			goto next;
+
+		if((paddr + num_bytes) >= (((unsigned long) high_memory) - PAGE_OFFSET))
+			num_bytes =
+				(((unsigned long) high_memory) -
+				 PAGE_OFFSET) - paddr;
+
+		/* Align base and length so we map whole hash table sized chunks
+		 * at a time (and therefore full 64K IOMMU pages).
+		 */
+		paddr &= ~((1UL << 24UL) - 1);
+		num_bytes = (num_bytes + ((1UL << 24UL) - 1)) & ~((1UL << 24) - 1);
+
+		/* Move up the base for mappings already created. */
+		while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr)] !=
+		      PCI_DVMA_HASH_NONE) {
+			paddr += (1UL << 24UL);
+			num_bytes -= (1UL << 24UL);
+			if(num_bytes == 0UL)
+				goto next;
+		}
+
+		/* Move down the size for tail mappings already created. */
+		while(pci_dvma_v2p_hash[pci_dvma_ahashfn(paddr + num_bytes - (1UL << 24UL))] !=
+		      PCI_DVMA_HASH_NONE) {
+			num_bytes -= (1UL << 24UL);
+			if(num_bytes == 0UL)
+				goto next;
+		}
+
+		/* Now map the rest. */
+		for (i = 0; i < ((num_bytes + ((1 << 16) - 1)) >> 16); i++) {
+			iopte_val(*iopte) = ((IOPTE_VALID | IOPTE_64K |
+					      IOPTE_CACHE | IOPTE_WRITE) |
+					     (paddr & IOPTE_PAGE));
+
+			if (!(n & 0xff))
+				set_dvma_hash(paddr, (n << 16));
+
+			if (++n > (tsbsize * 1024))
+				goto out;
+
+			paddr += (1 << 16);
+			iopte++;
+		}
+	next:
+		mlist = mlist->theres_more;
+	}
+out:
+	if (mlist) {
+		prom_printf("WARNING: not all physical memory mapped in IOMMU\n");
+		prom_printf("Try booting with mem=xxxM or similar\n");
+		prom_halt();
+	}
+
+	sabre_write(p->controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase));
+
+	control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL);
+	control &= ~(IOMMU_CTRL_TSBSZ);
+	control |= (IOMMU_CTRL_TBWSZ | IOMMU_CTRL_ENAB);
+	switch(tsbsize) {
+	case 8:
+		pci_dvma_mask = 0x1fffffffUL;
+		control |= IOMMU_TSBSZ_8K;
+		break;
+	case 16:
+		pci_dvma_mask = 0x3fffffffUL;
+		control |= IOMMU_TSBSZ_16K;
+		break;
+	case 32:
+		pci_dvma_mask = 0x7fffffffUL;
+		control |= IOMMU_TSBSZ_32K;
+		break;
+	default:
+		prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
+		prom_halt();
+		break;
+	}
+	sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control);
+}
+
+static void __init pbm_register_toplevel_resources(struct pci_controller_info *p,
+						   struct pci_pbm_info *pbm)
+{
+	char *name = pbm->name;
+	unsigned long ibase = p->controller_regs + SABRE_IOSPACE;
+	unsigned long mbase = p->controller_regs + SABRE_MEMSPACE;
+	unsigned int devfn;
+	unsigned long first, last, i;
+	u8 *addr, map;
+
+	sprintf(name, "SABRE%d PBM%c",
+		p->index,
+		(pbm == &p->pbm_A ? 'A' : 'B'));
+	pbm->io_space.name = pbm->mem_space.name = name;
+
+	devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
+	addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
+	map = 0;
+	pci_config_read8(addr, &map);
+
+	first = 8;
+	last = 0;
+	for (i = 0; i < 8; i++) {
+		if ((map & (1 << i)) != 0) {
+			if (first > i)
+				first = i;
+			if (last < i)
+				last = i;
+		}
+	}
+	pbm->io_space.start = ibase + (first << 21UL);
+	pbm->io_space.end   = ibase + (last << 21UL) + ((1 << 21UL) - 1);
+	pbm->io_space.flags = IORESOURCE_IO;
+
+	addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
+	map = 0;
+	pci_config_read8(addr, &map);
+
+	first = 8;
+	last = 0;
+	for (i = 0; i < 8; i++) {
+		if ((map & (1 << i)) != 0) {
+			if (first > i)
+				first = i;
+			if (last < i)
+				last = i;
+		}
+	}
+	pbm->mem_space.start = mbase + (first << 29UL);
+	pbm->mem_space.end   = mbase + (last << 29UL) + ((1 << 29UL) - 1);
+	pbm->mem_space.flags = IORESOURCE_MEM;
+
+	if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
+		prom_printf("Cannot register PBM-%c's IO space.\n",
+			    (pbm == &p->pbm_A ? 'A' : 'B'));
+		prom_halt();
+	}
+	if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
+		prom_printf("Cannot register PBM-%c's MEM space.\n",
+			    (pbm == &p->pbm_A ? 'A' : 'B'));
+		prom_halt();
+	}
+}
+
+static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node)
+{
+	char namebuf[128];
+	u32 busrange[2];
+	int node;
+
+	node = prom_getchild(sabre_node);
+	while ((node = prom_searchsiblings(node, "pci")) != 0) {
+		struct pci_pbm_info *pbm;
+		int err;
+
+		err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
+		if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
+			goto next_pci;
+
+		err = prom_getproperty(node, "bus-range",
+				       (char *)&busrange[0], sizeof(busrange));
+		if (err == 0 || err == -1) {
+			prom_printf("APB: Error, cannot get PCI bus-range.\n");
+			prom_halt();
+		}
+
+		if (busrange[0] == 1)
+			pbm = &p->pbm_B;
+		else
+			pbm = &p->pbm_A;
+		pbm->parent = p;
+		pbm->prom_node = node;
+		pbm->pci_first_busno = busrange[0];
+		pbm->pci_last_busno = busrange[1];
+		for (err = pbm->pci_first_busno;
+		     err <= pbm->pci_last_busno;
+		     err++)
+			pci_bus2pbm[err] = pbm;
+
+
+		prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
+		err = prom_getproperty(node, "ranges",
+				       (char *)pbm->pbm_ranges,
+				       sizeof(pbm->pbm_ranges));
+		if (err != -1)
+			pbm->num_pbm_ranges =
+				(err / sizeof(struct linux_prom_pci_ranges));
+		else
+			pbm->num_pbm_ranges = 0;
+
+		err = prom_getproperty(node, "interrupt-map",
+				       (char *)pbm->pbm_intmap,
+				       sizeof(pbm->pbm_intmap));
+		if (err != -1) {
+			pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
+			err = prom_getproperty(node, "interrupt-map-mask",
+					       (char *)&pbm->pbm_intmask,
+					       sizeof(pbm->pbm_intmask));
+			if (err == -1) {
+				prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
+				prom_halt();
+			}
+		} else {
+			pbm->num_pbm_intmap = 0;
+			memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
+		}
+
+		pbm_register_toplevel_resources(p, pbm);
+
+	next_pci:
+		node = prom_getsibling(node);
+		if (!node)
+			break;
+	}
+}
+
+void __init sabre_init(int pnode)
+{
+	struct linux_prom64_registers pr_regs[2];
+	struct pci_controller_info *p;
+	unsigned long flags;
+	int tsbsize, err;
+	u32 busrange[2];
+	u32 vdma[2];
+	u32 upa_portid;
+	int bus;
+
+	p = kmalloc(sizeof(*p), GFP_ATOMIC);
+	if (!p) {
+		prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
+		prom_halt();
+	}
+
+	upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
+
+	memset(p, 0, sizeof(*p));
+
+	spin_lock_irqsave(&pci_controller_lock, flags);
+	p->next = pci_controller_root;
+	pci_controller_root = p;
+	spin_unlock_irqrestore(&pci_controller_lock, flags);
+
+	p->portid = upa_portid;
+	p->index = pci_num_controllers++;
+	p->scan_bus = sabre_scan_bus;
+	p->irq_build = sabre_irq_build;
+	p->base_address_update = sabre_base_address_update;
+	p->resource_adjust = sabre_resource_adjust;
+	p->pci_ops = &sabre_ops;
+
+	/*
+	 * Map in SABRE register set and report the presence of this SABRE.
+	 */
+	err = prom_getproperty(pnode, "reg",
+			       (char *)&pr_regs[0], sizeof(pr_regs));
+	if(err == 0 || err == -1) {
+		prom_printf("SABRE: Error, cannot get U2P registers "
+			    "from PROM.\n");
+		prom_halt();
+	}
+
+	/*
+	 * First REG in property is base of entire SABRE register space.
+	 */
+	p->controller_regs = pr_regs[0].phys_addr;
+	printk("PCI: Found SABRE, main regs at %016lx\n", p->controller_regs);
+
+	/* Error interrupts are enabled later after the bus scan. */
+	sabre_write(p->controller_regs + SABRE_PCICTRL,
+		    (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
+		     SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
+
+	/* Now map in PCI config space for entire SABRE. */
+	p->config_space = p->controller_regs + SABRE_CONFIGSPACE;
+	printk("SABRE: PCI config space at %016lx\n", p->config_space);
+
+	err = prom_getproperty(pnode, "virtual-dma",
+			       (char *)&vdma[0], sizeof(vdma));
+	if(err == 0 || err == -1) {
+		prom_printf("SABRE: Error, cannot get virtual-dma property "
+			    "from PROM.\n");
+		prom_halt();
+	}
+
+	switch(vdma[1]) {
+		case 0x20000000:
+			tsbsize = 8;
+			break;
+		case 0x40000000:
+			tsbsize = 16;
+			break;
+		case 0x80000000:
+			tsbsize = 32;
+			break;
+		default:
+			prom_printf("SABRE: strange virtual-dma size.\n");
+			prom_halt();
+	}
+
+	pci_dvma_offset = vdma[0];
+	sabre_iommu_init(p, tsbsize);
+
+	printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
+
+	err = prom_getproperty(pnode, "bus-range",
+				       (char *)&busrange[0], sizeof(busrange));
+	if(err == 0 || err == -1) {
+		prom_printf("SABRE: Error, cannot get PCI bus-range "
+			    " from PROM.\n");
+		prom_halt();
+	}
+
+	p->pci_first_busno = busrange[0];
+	p->pci_last_busno = busrange[1];
+
+	/*
+	 * Handle config space reads through any Simba on APB.
+	 */
+	for (bus = p->pci_first_busno; bus <= p->pci_last_busno; bus++)
+		pci_bus2pbm[bus] = &p->pbm_A;
+
+	/*
+	 * Look for APB underneath.
+	 */
+	sabre_pbm_init(p, pnode);
+}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)