
Using kgdb, kdb and the
kernel debugger internals

Jason Wessel <jason.wessel@windriver.com>

Using kgdb, kdb and the kernel debugger internals
by Jason Wessel
Copyright © 2008,2010 Wind River Systems, Inc.
Copyright © 2004-2005 MontaVista Software, Inc.
Copyright © 2004 Amit S. Kale

This file is licensed under the terms of the GNU General Public License version 2. This program is licensed "as is" without any warranty of any
kind, whether express or implied.

Table of Contents
1. Introduction .. 1
2. Compiling a kernel .. 2

Kernel config options for kgdb .. 2
Kernel config options for kdb ... 2

3. Kernel Debugger Boot Arguments .. 4
Kernel parameter: kgdboc ... 4

kgdboc arguments ... 4
Kernel parameter: kgdbwait .. 6
Kernel parameter: kgdbcon ... 6
Run time parameter: kgdbreboot .. 6

4. Using kdb .. 8
Quick start for kdb on a serial port .. 8
Quick start for kdb using a keyboard connected console ... 9

5. Using kgdb / gdb ... 11
Connecting with gdb to a serial port ... 11

6. kgdb and kdb interoperability ... 13
Switching between kdb and kgdb ... 13

Switching from kgdb to kdb .. 13
Change from kdb to kgdb ... 13

Running kdb commands from gdb .. 13
7. kgdb Test Suite ... 15
8. Kernel Debugger Internals ... 16

Architecture Specifics .. 16
kgdboc internals .. 31

kgdboc and uarts ... 31
kgdboc and keyboards .. 32
kgdboc and kms .. 32

9. Credits ... 34

iii

Chapter 1. Introduction
The kernel has two different debugger front ends (kdb and kgdb) which interface to the debug core. It is
possible to use either of the debugger front ends and dynamically transition between them if you configure
the kernel properly at compile and runtime.

Kdb is simplistic shell-style interface which you can use on a system console with a keyboard or serial
console. You can use it to inspect memory, registers, process lists, dmesg, and even set breakpoints to stop
in a certain location. Kdb is not a source level debugger, although you can set breakpoints and execute some
basic kernel run control. Kdb is mainly aimed at doing some analysis to aid in development or diagnosing
kernel problems. You can access some symbols by name in kernel built-ins or in kernel modules if the
code was built with CONFIG_KALLSYMS.

Kgdb is intended to be used as a source level debugger for the Linux kernel. It is used along with gdb
to debug a Linux kernel. The expectation is that gdb can be used to "break in" to the kernel to inspect
memory, variables and look through call stack information similar to the way an application developer
would use gdb to debug an application. It is possible to place breakpoints in kernel code and perform some
limited execution stepping.

Two machines are required for using kgdb. One of these machines is a development machine and the other
is the target machine. The kernel to be debugged runs on the target machine. The development machine
runs an instance of gdb against the vmlinux file which contains the symbols (not a boot image such as
bzImage, zImage, uImage...). In gdb the developer specifies the connection parameters and connects to
kgdb. The type of connection a developer makes with gdb depends on the availability of kgdb I/O modules
compiled as built-ins or loadable kernel modules in the test machine's kernel.

1

Chapter 2. Compiling a kernel
• In order to enable compilation of kdb, you must first enable kgdb.

• The kgdb test compile options are described in the kgdb test suite chapter.

Kernel config options for kgdb
To enable CONFIG_KGDB you should look under "Kernel hacking" / "Kernel debugging" and select
"KGDB: kernel debugger".

While it is not a hard requirement that you have symbols in your vmlinux file, gdb tends not to be very
useful without the symbolic data, so you will want to turn on CONFIG_DEBUG_INFO which is called
"Compile the kernel with debug info" in the config menu.

It is advised, but not required, that you turn on the CONFIG_FRAME_POINTER kernel option which is
called "Compile the kernel with frame pointers" in the config menu. This option inserts code to into the
compiled executable which saves the frame information in registers or on the stack at different points which
allows a debugger such as gdb to more accurately construct stack back traces while debugging the kernel.

If the architecture that you are using supports the kernel option CONFIG_DEBUG_RODATA, you should
consider turning it off. This option will prevent the use of software breakpoints because it marks certain
regions of the kernel's memory space as read-only. If kgdb supports it for the architecture you are using, you
can use hardware breakpoints if you desire to run with the CONFIG_DEBUG_RODATA option turned
on, else you need to turn off this option.

Next you should choose one of more I/O drivers to interconnect debugging host and debugged target. Early
boot debugging requires a KGDB I/O driver that supports early debugging and the driver must be built
into the kernel directly. Kgdb I/O driver configuration takes place via kernel or module parameters which
you can learn more about in the in the section that describes the parameter "kgdboc".

Here is an example set of .config symbols to enable or disable for kgdb:

• # CONFIG_DEBUG_RODATA is not set

• CONFIG_FRAME_POINTER=y

• CONFIG_KGDB=y

• CONFIG_KGDB_SERIAL_CONSOLE=y

Kernel config options for kdb
Kdb is quite a bit more complex than the simple gdbstub sitting on top of the kernel's debug core. Kdb
must implement a shell, and also adds some helper functions in other parts of the kernel, responsible for
printing out interesting data such as what you would see if you ran "lsmod", or "ps". In order to build kdb
into the kernel you follow the same steps as you would for kgdb.

The main config option for kdb is CONFIG_KGDB_KDB which is called "KGDB_KDB: include kdb
frontend for kgdb" in the config menu. In theory you would have already also selected an I/O driver such
as the CONFIG_KGDB_SERIAL_CONSOLE interface if you plan on using kdb on a serial port, when
you were configuring kgdb.

2

Compiling a kernel

If you want to use a PS/2-style keyboard with kdb, you would select CONFIG_KDB_KEYBOARD which
is called "KGDB_KDB: keyboard as input device" in the config menu. The CONFIG_KDB_KEYBOARD
option is not used for anything in the gdb interface to kgdb. The CONFIG_KDB_KEYBOARD option
only works with kdb.

Here is an example set of .config symbols to enable/disable kdb:

• # CONFIG_DEBUG_RODATA is not set

• CONFIG_FRAME_POINTER=y

• CONFIG_KGDB=y

• CONFIG_KGDB_SERIAL_CONSOLE=y

• CONFIG_KGDB_KDB=y

• CONFIG_KDB_KEYBOARD=y

3

Chapter 3. Kernel Debugger Boot
Arguments

This section describes the various runtime kernel parameters that affect the configuration of the kernel
debugger. The following chapter covers using kdb and kgdb as well as providing some examples of the
configuration parameters.

Kernel parameter: kgdboc
The kgdboc driver was originally an abbreviation meant to stand for "kgdb over console". Today it is the
primary mechanism to configure how to communicate from gdb to kgdb as well as the devices you want
to use to interact with the kdb shell.

For kgdb/gdb, kgdboc is designed to work with a single serial port. It is intended to cover the circumstance
where you want to use a serial console as your primary console as well as using it to perform kernel
debugging. It is also possible to use kgdb on a serial port which is not designated as a system console.
Kgdboc may be configured as a kernel built-in or a kernel loadable module. You can only make use of
kgdbwait and early debugging if you build kgdboc into the kernel as a built-in.

Optionally you can elect to activate kms (Kernel Mode Setting) integration. When you use kms with
kgdboc and you have a video driver that has atomic mode setting hooks, it is possible to enter the debugger
on the graphics console. When the kernel execution is resumed, the previous graphics mode will be re-
stored. This integration can serve as a useful tool to aid in diagnosing crashes or doing analysis of memory
with kdb while allowing the full graphics console applications to run.

kgdboc arguments
Usage: kgdboc=[kms][[,]kbd][[,]serial_device][,baud]

The order listed above must be observed if you use any of the optional configurations together.

Abbreviations:

• kms = Kernel Mode Setting

• kbd = Keyboard

You can configure kgdboc to use the keyboard, and/or a serial device depending on if you are using kdb
and/or kgdb, in one of the following scenarios. The order listed above must be observed if you use any of
the optional configurations together. Using kms + only gdb is generally not a useful combination.

Using loadable module or built-in

1. As a kernel built-in:

Use the kernel boot argument: kgdboc=<tty-device>,[baud]

2. As a kernel loadable module:

Use the command: modprobe kgdboc kgdboc=<tty-device>,[baud]

Here are two examples of how you might format the kgdboc string. The first is for an x86 target using
the first serial port. The second example is for the ARM Versatile AB using the second serial port.

4

Kernel Debugger Boot Arguments

a. kgdboc=ttyS0,115200

b. kgdboc=ttyAMA1,115200

Configure kgdboc at runtime with sysfs

At run time you can enable or disable kgdboc by echoing a parameters into the sysfs. Here are two ex-
amples:

1. Enable kgdboc on ttyS0

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

2. Disable kgdboc

echo "" > /sys/module/kgdboc/parameters/kgdboc

NOTE: You do not need to specify the baud if you are configuring the console on tty which is already
configured or open.

More examples

You can configure kgdboc to use the keyboard, and/or a serial device depending on if you are using kdb
and/or kgdb, in one of the following scenarios.

1. kdb and kgdb over only a serial port

kgdboc=<serial_device>[,baud]

Example: kgdboc=ttyS0,115200

2. kdb and kgdb with keyboard and a serial port

kgdboc=kbd,<serial_device>[,baud]

Example: kgdboc=kbd,ttyS0,115200

3. kdb with a keyboard

kgdboc=kbd

4. kdb with kernel mode setting

kgdboc=kms,kbd

5. kdb with kernel mode setting and kgdb over a serial port

kgdboc=kms,kbd,ttyS0,115200

NOTE: Kgdboc does not support interrupting the target via the gdb remote protocol. You must manually
send a sysrq-g unless you have a proxy that splits console output to a terminal program. A console proxy
has a separate TCP port for the debugger and a separate TCP port for the "human" console. The proxy can
take care of sending the sysrq-g for you.

When using kgdboc with no debugger proxy, you can end up connecting the debugger at one of two entry
points. If an exception occurs after you have loaded kgdboc, a message should print on the console stating
it is waiting for the debugger. In this case you disconnect your terminal program and then connect the

5

Kernel Debugger Boot Arguments

debugger in its place. If you want to interrupt the target system and forcibly enter a debug session you
have to issue a Sysrq sequence and then type the letter g. Then you disconnect the terminal session and
connect gdb. Your options if you don't like this are to hack gdb to send the sysrq-g for you as well as on
the initial connect, or to use a debugger proxy that allows an unmodified gdb to do the debugging.

Kernel parameter: kgdbwait
The Kernel command line option kgdbwait makes kgdb wait for a debugger connection during booting
of a kernel. You can only use this option if you compiled a kgdb I/O driver into the kernel and you specified
the I/O driver configuration as a kernel command line option. The kgdbwait parameter should always
follow the configuration parameter for the kgdb I/O driver in the kernel command line else the I/O driver
will not be configured prior to asking the kernel to use it to wait.

The kernel will stop and wait as early as the I/O driver and architecture allows when you use this option.
If you build the kgdb I/O driver as a loadable kernel module kgdbwait will not do anything.

Kernel parameter: kgdbcon
The kgdbcon feature allows you to see printk() messages inside gdb while gdb is connected to the kernel.
Kdb does not make use of the kgdbcon feature.

Kgdb supports using the gdb serial protocol to send console messages to the debugger when the debugger
is connected and running. There are two ways to activate this feature.

1. Activate with the kernel command line option:

kgdbcon

2. Use sysfs before configuring an I/O driver

echo 1 > /sys/module/kgdb/parameters/kgdb_use_con

NOTE: If you do this after you configure the kgdb I/O driver, the setting will not take effect until the
next point the I/O is reconfigured.

IMPORTANT NOTE: You cannot use kgdboc + kgdbcon on a tty that is an active system console. An
example of incorrect usage is console=ttyS0,115200 kgdboc=ttyS0 kgdbcon

It is possible to use this option with kgdboc on a tty that is not a system console.

Run time parameter: kgdbreboot
The kgdbreboot feature allows you to change how the debugger deals with the reboot notification. You
have 3 choices for the behavior. The default behavior is always set to 0.

1. echo -1 > /sys/module/debug_core/parameters/kgdbreboot

Ignore the reboot notification entirely.

2. echo 0 > /sys/module/debug_core/parameters/kgdbreboot

Send the detach message to any attached debugger client.

3. echo 1 > /sys/module/debug_core/parameters/kgdbreboot

6

Kernel Debugger Boot Arguments

Enter the debugger on reboot notify.

7

Chapter 4. Using kdb

Quick start for kdb on a serial port
This is a quick example of how to use kdb.

1. Configure kgdboc at boot using kernel parameters:

• console=ttyS0,115200 kgdboc=ttyS0,115200

OR

Configure kgdboc after the kernel has booted; assuming you are using a serial port console:

• echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

2. Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can
enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled
CONFIG_MAGIC_SYSRQ=y in your kernel config.

• When logged in as root or with a super user session you can run:

echo g > /proc/sysrq-trigger

• Example using minicom 2.2

Press: Control-a

Press: f

Press: g

• When you have telneted to a terminal server that supports sending a remote break

Press: Control-]

Type in:send break

Press: Enter

Press: g

3. From the kdb prompt you can run the "help" command to see a complete list of the commands that
are available.

Some useful commands in kdb include:

• lsmod -- Shows where kernel modules are loaded

• ps -- Displays only the active processes

• ps A -- Shows all the processes

• summary -- Shows kernel version info and memory usage8

Using kdb

• bt -- Get a backtrace of the current process using dump_stack()

• dmesg -- View the kernel syslog buffer

• go -- Continue the system

4. When you are done using kdb you need to consider rebooting the system or using the "go" command
to resuming normal kernel execution. If you have paused the kernel for a lengthy period of time, appli-
cations that rely on timely networking or anything to do with real wall clock time could be adversely
affected, so you should take this into consideration when using the kernel debugger.

Quick start for kdb using a keyboard connect-
ed console

This is a quick example of how to use kdb with a keyboard.

1. Configure kgdboc at boot using kernel parameters:

• kgdboc=kbd

OR

Configure kgdboc after the kernel has booted:

• echo kbd > /sys/module/kgdboc/parameters/kgdboc

2. Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can
enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled
CONFIG_MAGIC_SYSRQ=y in your kernel config.

• When logged in as root or with a super user session you can run:

echo g > /proc/sysrq-trigger

• Example using a laptop keyboard

Press and hold down: Alt

Press and hold down: Fn

Press and release the key with the label: SysRq

Release: Fn

Press and release: g

Release: Alt

• Example using a PS/2 101-key keyboard

Press and hold down: Alt

Press and release the key with the label: SysRq

Press and release: g

9

Using kdb

Release: Alt

3. Now type in a kdb command such as "help", "dmesg", "bt" or "go" to continue kernel execution.

10

Chapter 5. Using kgdb / gdb
In order to use kgdb you must activate it by passing configuration information to one of the kgdb I/O
drivers. If you do not pass any configuration information kgdb will not do anything at all. Kgdb will only
actively hook up to the kernel trap hooks if a kgdb I/O driver is loaded and configured. If you unconfigure
a kgdb I/O driver, kgdb will unregister all the kernel hook points.

All kgdb I/O drivers can be reconfigured at run time, if CONFIG_SYSFS and CONFIG_MODULES are
enabled, by echo'ing a new config string to /sys/module/<driver>/parameter/<option>.
The driver can be unconfigured by passing an empty string. You cannot change the configuration while
the debugger is attached. Make sure to detach the debugger with the detach command prior to trying
to unconfigure a kgdb I/O driver.

Connecting with gdb to a serial port
1. Configure kgdboc

Configure kgdboc at boot using kernel parameters:

• kgdboc=ttyS0,115200

OR

Configure kgdboc after the kernel has booted:

• echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

2. Stop kernel execution (break into the debugger)

In order to connect to gdb via kgdboc, the kernel must first be stopped. There are several ways to stop
the kernel which include using kgdbwait as a boot argument, via a sysrq-g, or running the kernel until
it takes an exception where it waits for the debugger to attach.

• When logged in as root or with a super user session you can run:

echo g > /proc/sysrq-trigger

• Example using minicom 2.2

Press: Control-a

Press: f

Press: g

• When you have telneted to a terminal server that supports sending a remote break

Press: Control-]

Type in:send break

Press: Enter

Press: g

3. Connect from gdb

11

Using kgdb / gdb

Example (using a directly connected port):

 % gdb ./vmlinux
 (gdb) set remotebaud 115200
 (gdb) target remote /dev/ttyS0

Example (kgdb to a terminal server on TCP port 2012):

 % gdb ./vmlinux
 (gdb) target remote 192.168.2.2:2012

Once connected, you can debug a kernel the way you would debug an application program.

If you are having problems connecting or something is going seriously wrong while debugging, it will
most often be the case that you want to enable gdb to be verbose about its target communications. You
do this prior to issuing the target remote command by typing in: set debug remote 1

Remember if you continue in gdb, and need to "break in" again, you need to issue an other sysrq-g. It is
easy to create a simple entry point by putting a breakpoint at sys_sync and then you can run "sync"
from a shell or script to break into the debugger.

12

Chapter 6. kgdb and kdb
interoperability

It is possible to transition between kdb and kgdb dynamically. The debug core will remember which you
used the last time and automatically start in the same mode.

Switching between kdb and kgdb

Switching from kgdb to kdb
There are two ways to switch from kgdb to kdb: you can use gdb to issue a maintenance packet, or you
can blindly type the command $3#33. Whenever the kernel debugger stops in kgdb mode it will print
the message KGDB or $3#33 for KDB. It is important to note that you have to type the sequence
correctly in one pass. You cannot type a backspace or delete because kgdb will interpret that as part of
the debug stream.

1. Change from kgdb to kdb by blindly typing:

$3#33

2. Change from kgdb to kdb with gdb

maintenance packet 3

NOTE: Now you must kill gdb. Typically you press control-z and issue the command: kill -9 %

Change from kdb to kgdb
There are two ways you can change from kdb to kgdb. You can manually enter kgdb mode by issuing the
kgdb command from the kdb shell prompt, or you can connect gdb while the kdb shell prompt is active.
The kdb shell looks for the typical first commands that gdb would issue with the gdb remote protocol and
if it sees one of those commands it automatically changes into kgdb mode.

1. From kdb issue the command:

kgdb

Now disconnect your terminal program and connect gdb in its place

2. At the kdb prompt, disconnect the terminal program and connect gdb in its place.

Running kdb commands from gdb
It is possible to run a limited set of kdb commands from gdb, using the gdb monitor command. You don't
want to execute any of the run control or breakpoint operations, because it can disrupt the state of the
kernel debugger. You should be using gdb for breakpoints and run control operations if you have gdb
connected. The more useful commands to run are things like lsmod, dmesg, ps or possibly some of the
memory information commands. To see all the kdb commands you can run monitor help.

Example:

13

kgdb and kdb interoperability

(gdb) monitor ps
1 idle process (state I) and
27 sleeping system daemon (state M) processes suppressed,
use 'ps A' to see all.
Task Addr Pid Parent [*] cpu State Thread Command

0xc78291d0 1 0 0 0 S 0xc7829404 init
0xc7954150 942 1 0 0 S 0xc7954384 dropbear
0xc78789c0 944 1 0 0 S 0xc7878bf4 sh
(gdb)

14

Chapter 7. kgdb Test Suite
When kgdb is enabled in the kernel config you can also elect to enable the config parameter
KGDB_TESTS. Turning this on will enable a special kgdb I/O module which is designed to test the kgdb
internal functions.

The kgdb tests are mainly intended for developers to test the kgdb internals as well as a tool for developing
a new kgdb architecture specific implementation. These tests are not really for end users of the Linux
kernel. The primary source of documentation would be to look in the drivers/misc/kgdbts.c file.

The kgdb test suite can also be configured at compile time to run the core set of tests by setting the kernel
config parameter KGDB_TESTS_ON_BOOT. This particular option is aimed at automated regression
testing and does not require modifying the kernel boot config arguments. If this is turned on, the kgdb test
suite can be disabled by specifying "kgdbts=" as a kernel boot argument.

15

Chapter 8. Kernel Debugger Internals
Architecture Specifics

The kernel debugger is organized into a number of components:

1. The debug core

The debug core is found in kernel/debugger/debug_core.c. It contains:

• A generic OS exception handler which includes sync'ing the processors into a stopped state on an
multi-CPU system.

• The API to talk to the kgdb I/O drivers

• The API to make calls to the arch-specific kgdb implementation

• The logic to perform safe memory reads and writes to memory while using the debugger

• A full implementation for software breakpoints unless overridden by the arch

• The API to invoke either the kdb or kgdb frontend to the debug core.

• The structures and callback API for atomic kernel mode setting.

NOTE: kgdboc is where the kms callbacks are invoked.

2. kgdb arch-specific implementation

This implementation is generally found in arch/*/kernel/kgdb.c. As an example, arch/x86/kernel/kgdb.c
contains the specifics to implement HW breakpoint as well as the initialization to dynamically register
and unregister for the trap handlers on this architecture. The arch-specific portion implements:

• contains an arch-specific trap catcher which invokes kgdb_handle_exception() to start kgdb about
doing its work

• translation to and from gdb specific packet format to pt_regs

• Registration and unregistration of architecture specific trap hooks

• Any special exception handling and cleanup

• NMI exception handling and cleanup

• (optional) HW breakpoints

3. gdbstub frontend (aka kgdb)

The gdbstub is located in kernel/debug/gdbstub.c. It contains:

• All the logic to implement the gdb serial protocol

4. kdb frontend

The kdb debugger shell is broken down into a number of components. The kdb core is located in ker-
nel/debug/kdb. There are a number of helper functions in some of the other kernel components to make

16

Kernel Debugger Internals

it possible for kdb to examine and report information about the kernel without taking locks that could
cause a kernel deadlock. The kdb core contains implements the following functionality.

• A simple shell

• The kdb core command set

• A registration API to register additional kdb shell commands.

• A good example of a self-contained kdb module is the "ftdump" command for dumping the ftrace
buffer. See: kernel/trace/trace_kdb.c

• For an example of how to dynamically register a new kdb command you can build the kdb_hello.ko
kernel module from samples/kdb/kdb_hello.c. To build this example you can set CONFIG_SAM-
PLES=y and CONFIG_SAMPLE_KDB=m in your kernel config. Later run "modprobe kdb_hel-
lo" and the next time you enter the kdb shell, you can run the "hello" command.

• The implementation for kdb_printf() which emits messages directly to I/O drivers, bypassing the
kernel log.

• SW / HW breakpoint management for the kdb shell

5. kgdb I/O driver

Each kgdb I/O driver has to provide an implementation for the following:

• configuration via built-in or module

• dynamic configuration and kgdb hook registration calls

• read and write character interface

• A cleanup handler for unconfiguring from the kgdb core

• (optional) Early debug methodology
Any given kgdb I/O driver has to operate very closely with the hardware and must do it in such a way
that does not enable interrupts or change other parts of the system context without completely restoring
them. The kgdb core will repeatedly "poll" a kgdb I/O driver for characters when it needs input. The I/
O driver is expected to return immediately if there is no data available. Doing so allows for the future
possibility to touch watchdog hardware in such a way as to have a target system not reset when these
are enabled.

If you are intent on adding kgdb architecture specific support for a new architecture, the architecture
should define HAVE_ARCH_KGDB in the architecture specific Kconfig file. This will enable kgdb for the
architecture, and at that point you must create an architecture specific kgdb implementation.

There are a few flags which must be set on every architecture in their <asm/kgdb.h> file. These are:

• NUMREGBYTES: The size in bytes of all of the registers, so that we can ensure they will all fit into
a packet.

• BUFMAX: The size in bytes of the buffer GDB will read into. This must be larger than NUMREG-
BYTES.

• CACHE_FLUSH_IS_SAFE: Set to 1 if it is always safe to call flush_cache_range or flush_i-
cache_range. On some architectures, these functions may not be safe to call on SMP since we keep
other CPUs in a holding pattern.

17

Kernel Debugger Internals

There are also the following functions for the common backend, found in kernel/kgdb.c, that must be
supplied by the architecture-specific backend unless marked as (optional), in which case a default function
maybe used if the architecture does not need to provide a specific implementation.

18

Kernel Debugger Internals

Name
kgdb_skipexception — (optional) exit kgdb_handle_exception early

Synopsis

int kgdb_skipexception (int exception, struct pt_regs * regs);

Arguments

exception Exception vector number

regs Current struct pt_regs.

Description

On some architectures it is required to skip a breakpoint exception when it occurs after a breakpoint has
been removed. This can be implemented in the architecture specific portion of kgdb.

19

Kernel Debugger Internals

Name
kgdb_breakpoint — compiled in breakpoint

Synopsis

void kgdb_breakpoint (void);

Arguments

void no arguments

Description

This will be implemented as a static inline per architecture. This function is called by the kgdb core to
execute an architecture specific trap to cause kgdb to enter the exception processing.

20

Kernel Debugger Internals

Name
kgdb_arch_init — Perform any architecture specific initalization.

Synopsis

int kgdb_arch_init (void);

Arguments

void no arguments

Description

This function will handle the initalization of any architecture specific callbacks.

21

Kernel Debugger Internals

Name
kgdb_arch_exit — Perform any architecture specific uninitalization.

Synopsis

void kgdb_arch_exit (void);

Arguments

void no arguments

Description

This function will handle the uninitalization of any architecture specific callbacks, for dynamic registration
and unregistration.

22

Kernel Debugger Internals

Name
pt_regs_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void pt_regs_to_gdb_regs (unsigned long * gdb_regs, struct pt_regs *
regs);

Arguments

gdb_regs A pointer to hold the registers in the order GDB wants.

regs The struct pt_regs of the current process.

Description

Convert the pt_regs in regs into the format for registers that GDB expects, stored in gdb_regs.

23

Kernel Debugger Internals

Name
sleeping_thread_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void sleeping_thread_to_gdb_regs (unsigned long * gdb_regs, struct
task_struct * p);

Arguments

gdb_regs A pointer to hold the registers in the order GDB wants.

p The struct task_struct of the desired process.

Description

Convert the register values of the sleeping process in p to the format that GDB expects. This function is
called when kgdb does not have access to the struct pt_regs and therefore it should fill the gdb registers
gdb_regs with what has been saved in struct thread_struct thread field during switch_to.

24

Kernel Debugger Internals

Name
gdb_regs_to_pt_regs — Convert GDB regs to ptrace regs.

Synopsis

void gdb_regs_to_pt_regs (unsigned long * gdb_regs, struct pt_regs *
regs);

Arguments

gdb_regs A pointer to hold the registers we've received from GDB.

regs A pointer to a struct pt_regs to hold these values in.

Description

Convert the GDB regs in gdb_regs into the pt_regs, and store them in regs.

25

Kernel Debugger Internals

Name
kgdb_arch_handle_exception — Handle architecture specific GDB packets.

Synopsis

int kgdb_arch_handle_exception (int vector, int signo, int err_code,
char * remcom_in_buffer, char * remcom_out_buffer, struct pt_regs *
regs);

Arguments

vector The error vector of the exception that happened.

signo The signal number of the exception that happened.

err_code The error code of the exception that happened.

remcom_in_buffer The buffer of the packet we have read.

remcom_out_buffer The buffer of BUFMAX bytes to write a packet into.

regs The struct pt_regs of the current process.

Description

This function MUST handle the 'c' and 's' command packets, as well packets to set / remove a hardware
breakpoint, if used. If there are additional packets which the hardware needs to handle, they are handled
here. The code should return -1 if it wants to process more packets, and a 0 or 1 if it wants to exit from
the kgdb callback.

26

Kernel Debugger Internals

Name
kgdb_roundup_cpus — Get other CPUs into a holding pattern

Synopsis

void kgdb_roundup_cpus (unsigned long flags);

Arguments

flags Current IRQ state

Description

On SMP systems, we need to get the attention of the other CPUs and get them into a known state. This
should do what is needed to get the other CPUs to call kgdb_wait. Note that on some arches, the NMI
approach is not used for rounding up all the CPUs. For example, in case of MIPS, smp_call_function
is used to roundup CPUs. In this case, we have to make sure that interrupts are enabled before calling
smp_call_function. The argument to this function is the flags that will be used when restoring the
interrupts. There is local_irq_save call before kgdb_roundup_cpus.

On non-SMP systems, this is not called.

27

Kernel Debugger Internals

Name
kgdb_arch_set_pc — Generic call back to the program counter

Synopsis

void kgdb_arch_set_pc (struct pt_regs * regs, unsigned long pc);

Arguments

regs Current struct pt_regs.

pc The new value for the program counter

Description

This function handles updating the program counter and requires an architecture specific implementation.

28

Kernel Debugger Internals

Name
kgdb_arch_late — Perform any architecture specific initalization.

Synopsis

void kgdb_arch_late (void);

Arguments

void no arguments

Description

This function will handle the late initalization of any architecture specific callbacks. This is an optional
function for handling things like late initialization of hw breakpoints. The default implementation does
nothing.

29

Kernel Debugger Internals

Name
struct kgdb_arch — Describe architecture specific values.

Synopsis

struct kgdb_arch {
 unsigned char gdb_bpt_instr[BREAK_INSTR_SIZE];
 unsigned long flags;
 int (* set_breakpoint) (unsigned long, char *);
 int (* remove_breakpoint) (unsigned long, char *);
 int (* set_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
 int (* remove_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
 void (* disable_hw_break) (struct pt_regs *regs);
 void (* remove_all_hw_break) (void);
 void (* correct_hw_break) (void);
 void (* enable_nmi) (bool on);
};

Members

gdb_bpt_in-
str[BREAK_INSTR_SIZE]

The instruction to trigger a breakpoint.

flags Flags for the breakpoint, currently just KGDB_HW_BREAKPOINT.

set_breakpoint Allow an architecture to specify how to set a software breakpoint.

remove_breakpoint Allow an architecture to specify how to remove a software break-
point.

set_hw_breakpoint Allow an architecture to specify how to set a hardware breakpoint.

remove_hw_breakpoint Allow an architecture to specify how to remove a hardware break-
point.

disable_hw_break Allow an architecture to specify how to disable hardware break-
points for a single cpu.

remove_all_hw_break Allow an architecture to specify how to remove all hardware break-
points.

correct_hw_break Allow an architecture to specify how to correct the hardware debug
registers.

enable_nmi Manage NMI-triggered entry to KGDB

30

Kernel Debugger Internals

Name
struct kgdb_io — Describe the interface for an I/O driver to talk with KGDB.

Synopsis

struct kgdb_io {
 const char * name;
 int (* read_char) (void);
 void (* write_char) (u8);
 void (* flush) (void);
 int (* init) (void);
 void (* pre_exception) (void);
 void (* post_exception) (void);
 int is_console;
};

Members

name Name of the I/O driver.

read_char Pointer to a function that will return one char.

write_char Pointer to a function that will write one char.

flush Pointer to a function that will flush any pending writes.

init Pointer to a function that will initialize the device.

pre_exception Pointer to a function that will do any prep work for the I/O driver.

post_exception Pointer to a function that will do any cleanup work for the I/O driver.

is_console 1 if the end device is a console 0 if the I/O device is not a console

kgdboc internals

kgdboc and uarts
The kgdboc driver is actually a very thin driver that relies on the underlying low level to the hardware
driver having "polling hooks" to which the tty driver is attached. In the initial implementation of kgdboc
the serial_core was changed to expose a low level UART hook for doing polled mode reading and writing
of a single character while in an atomic context. When kgdb makes an I/O request to the debugger, kgdboc
invokes a callback in the serial core which in turn uses the callback in the UART driver.

When using kgdboc with a UART, the UART driver must implement two callbacks in the struct uar-
t_ops. Example from drivers/8250.c:

#ifdef CONFIG_CONSOLE_POLL
 .poll_get_char = serial8250_get_poll_char,
 .poll_put_char = serial8250_put_poll_char,
#endif

31

Kernel Debugger Internals

Any implementation specifics around creating a polling driver use the #ifdef CON-
FIG_CONSOLE_POLL, as shown above. Keep in mind that polling hooks have to be implemented in
such a way that they can be called from an atomic context and have to restore the state of the UART chip
on return such that the system can return to normal when the debugger detaches. You need to be very
careful with any kind of lock you consider, because failing here is most likely going to mean pressing
the reset button.

kgdboc and keyboards
The kgdboc driver contains logic to configure communications with an attached keyboard. The keyboard
infrastructure is only compiled into the kernel when CONFIG_KDB_KEYBOARD=y is set in the kernel
configuration.

The core polled keyboard driver driver for PS/2 type keyboards is in drivers/char/kdb_keyboard.c. This
driver is hooked into the debug core when kgdboc populates the callback in the array called kdb_pol-
l_funcs[]. The kdb_get_kbd_char() is the top-level function which polls hardware for single character
input.

kgdboc and kms
The kgdboc driver contains logic to request the graphics display to switch to a text context when you are
using "kgdboc=kms,kbd", provided that you have a video driver which has a frame buffer console and
atomic kernel mode setting support.

Every time the kernel debugger is entered it calls kgdboc_pre_exp_handler() which in turn calls con_de-
bug_enter() in the virtual console layer. On resuming kernel execution, the kernel debugger calls
kgdboc_post_exp_handler() which in turn calls con_debug_leave().

Any video driver that wants to be compatible with the kernel debugger and the atomic kms callbacks must
implement the mode_set_base_atomic, fb_debug_enter and fb_debug_leave operations. For the fb_de-
bug_enter and fb_debug_leave the option exists to use the generic drm fb helper functions or imple-
ment something custom for the hardware. The following example shows the initialization of the .mod-
e_set_base_atomic operation in drivers/gpu/drm/i915/intel_display.c:

static const struct drm_crtc_helper_funcs intel_helper_funcs = {
[...]
 .mode_set_base_atomic = intel_pipe_set_base_atomic,
[...]
};

Here is an example of how the i915 driver initializes the fb_debug_enter and fb_debug_leave functions to
use the generic drm helpers in drivers/gpu/drm/i915/intel_fb.c:

static struct fb_ops intelfb_ops = {
[...]
 .fb_debug_enter = drm_fb_helper_debug_enter,
 .fb_debug_leave = drm_fb_helper_debug_leave,
[...]
};

32

Kernel Debugger Internals

33

Chapter 9. Credits
The following people have contributed to this document:

1. Amit Kale<amitkale@linsyssoft.com>

2. Tom Rini<trini@kernel.crashing.org>

In March 2008 this document was completely rewritten by:

• Jason Wessel<jason.wessel@windriver.com>

In Jan 2010 this document was updated to include kdb.

• Jason Wessel<jason.wessel@windriver.com>

34

	Using kgdb, kdb and the kernel debugger internals
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Compiling a kernel
	Kernel config options for kgdb
	Kernel config options for kdb

	Chapter 3. Kernel Debugger Boot Arguments
	Kernel parameter: kgdboc
	kgdboc arguments
	Using loadable module or built-in
	Configure kgdboc at runtime with sysfs
	More examples

	Kernel parameter: kgdbwait
	Kernel parameter: kgdbcon
	Run time parameter: kgdbreboot

	Chapter 4. Using kdb
	Quick start for kdb on a serial port
	Quick start for kdb using a keyboard connected console

	Chapter 5. Using kgdb / gdb
	Connecting with gdb to a serial port

	Chapter 6. kgdb and kdb interoperability
	Switching between kdb and kgdb
	Switching from kgdb to kdb
	Change from kdb to kgdb

	Running kdb commands from gdb

	Chapter 7. kgdb Test Suite
	Chapter 8. Kernel Debugger Internals
	Architecture Specifics
	kgdb_skipexception
	kgdb_breakpoint
	kgdb_arch_init
	kgdb_arch_exit
	pt_regs_to_gdb_regs
	sleeping_thread_to_gdb_regs
	gdb_regs_to_pt_regs
	kgdb_arch_handle_exception
	kgdb_roundup_cpus
	kgdb_arch_set_pc
	kgdb_arch_late
	struct kgdb_arch
	struct kgdb_io

	kgdboc internals
	kgdboc and uarts
	kgdboc and keyboards
	kgdboc and kms

	Chapter 9. Credits

