The 802.11 subsystems
— for kernel developers

Explaining wireless 802.11 networking in the Linux kernel

Johannes Berg <j ohannes @i psol uti ons. net >
Copyright © 2007-2009 Johannes Berg

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Seethe GNU
General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this documentation; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.
Abstract

These books attempt to give a description of the various subsystems that play arole in 802.11 wireless networking
in Linux. Since these books are for kernel developers they attempts to document the structures and functions used in
the kernel aswell as giving a higher-level overview.

The reader is expected to be familiar with the 802.11 standard as published by the |[EEE in 802.11-2007 (or possibly
later versions). References to this standard will be given as"802.11-2007 8.1.5".

Table of Contents

The CfP802LL SUDSYSIEITui ittt et e et e ettt e e et e e e e et e e e eebaaeeees Vi
1. DEVICE IEQISIIBIION ... oeeeeii ettt et e e et e e et e e e et e e e e n e e e nb e eene 1
enUM 168680211 ANuiiii ettt aes 2
enum 1eeeB80211 channel_flagso.un i 3
struct ieee80211 ChaNNElc..eiii e e 5
enuM 1€e80211 rate flagS ...uuueeee it 7
SIUCE 1€EEB02LT FBEE ...eeve i eeee et ettt et et e e et e e e et e e et e e ea e e et e e e e eanaaes 8
struct ieee80211 Sta Nt CAP .ovvuiiei e 9
struct ieeeB0211 supported band ... 10
enumM CfB02LL SigNaAl_LYPE . .eeren ittt ettt 11
enum Wiphy_params flagscoouuuiiiii e 12
enUM WIPHY _FLaOS ...oovn e 13
SEUCE WIPRY e e e 15
SITUCE WITEIESS BV ..t e e e e e e e 20
WIPNY DB .ttt e ettt e et e e et e e e e e e e e e aeee 23
WIPNY _TEOISEEY ...ttt ettt ettt et e ettt b e e et eeeba s 24
WIPNY _UNFEOISIEN ettt e e e eer e e enaans 25
WIPNY T8 e e e et et 26
WIPNY _NBIME <.ttt e et e ettt e et e et e e e e et e e e era e eee 27
WIPNY OBV ...ttt e e e e e 28
WIPNY IV ettt 29
PIIV_TO WIPRY e 30
SEL WIPNY BV e 31
(L (< VA o L PP P PP UPPPTIN 32
struct ieeeB0211 iface lIMItcoeuniii e 33
struct ieee80211 iface coMbBINGLIONoieuiiiiie e 34
cfgB80211 cheCk COMDINGLIONSuiiiei i 36
2. Actions and CONFIQUIALIONccuuuieiiii et 37
SEFUCE CFPBO2LL 0PS .. eeevtieeeieti ettt ettt ettt ettt ettt e et e e b e e anan s 38
S LU To AV 0= =0 L PP 46
SIPUCE KBY PDAIEIMIS ... eeeiie ettt et e e e e et e e e et e e et e eanaaees 47
enuUM SUNVEY _iNFO_FlagS .. .coeeeiiieie e 48
SEPUCE SUNVEY TNFO et e e e e e e e eens 49
struct cfg80211 DEACON AAAuvvvn i 50
struct Cfg8021L 8P SEELINGS ...ovvneeit ettt 51
SEUCE SEAtiON. PAIAMELENS ... oeeieeee e et e et e e e e eeen 53
enUM rate iNfO_FlagS ...oeee e 55
S Vo = (= o (o T PR 56
SEPUCE SEALTON TNFO et e 57
ENUM MONITOT_FIBOSeveiiiii e 60
enum MPath_iNfO_flagSuuniiiii e 61
SErUCE MPEEN TNTO L. e 62
SIIUCE DSS PAraIMELEY'Se it e e e eaas 63
Struct 180880211 XU PAIAIMSuuueieitieeeeeii et et eeeet et et et et e e ene e e era e e eaans 64
struct cfg8021L_Crypto_SELINGS .. .ceevruneeeerieeieeie ettt ettt ee e eeeans 65
struct cfg80211 AUt FEOUESEoeee it e e eens 66
Struct Cfg80211 BSSOC FEOUESEvuieeieetieee it e et e et e e e e et e e e et e e e e eaeeeenns 67
struct cfg80211 _deauth reqUESEccuuieiiiii e e 68
struct cfg80211 diSASSOC FEOUESEu.ieveeeiieeii et e e e et e e e e e e e et e e e eees 69
Struct Cfg8021L iDSS PAIraMS ... ceeeveieieiii ettt ettt ettt 70
struct cfg80211 CONNECE_PAIEIMIScevvuneeietiieeeeti e e et e ettt e e e et eeeert e e eeereaeeeees 72

The 802.11 subsystems
—for kernel developers

LS LU To 01022 I o1 1 74
(oot 02 I o Q1211001 1010 0 1| SN 75
CfPB021L AUth tIMEOULuiiiieii e e e e e e e aens 76
(o0 o102 I Q=SS o Lo -~ o 77
(oot 02 I oS o T (] 3 T= o LU P 78
(oot S0 2 I vl 101 =T 10T o 79
oot 02 T o1 ST o 1 =1 N 80
oot 02 I o'o a0 T= vt A (== U | 81
oot 02 I (0= 011 o [P 82
oot 022 o [1S o]0 1= ox (= R 83
cfgB80211 ready ON ChanNElociiiii e 84
cfgB80211 remain_on channel eXPIredcccouuiiiiiiiiiii e e 85
Lox o 202220 I A = T - 86
(ox o =0 2220 I A TG 1111 0 0| S 87
(ox o o020 I I 00T 0| O = (1 88
(oot 024 M o [0 g T £ T 1) U1/ 89
cfgB80211 cam PKHIOSS NOLITY ...vvvniiiiiicii e 90
cfgB80211 michagl MIC fallureccocvvuiii i 91
3. Scanning and BSS list handlingccouuiiiiiiiiiii e 92
LS00 Tox 010220 I = o N 93
struct cfg8021L SCAN FEQUESE ...cvuieeeeiieee e e e e e e e e e e e e e anaeen 94
(oot 02 IS o= o 1o (o = 96
LS LU Tox 0110220 I T o1 97
struct cfg8021L INfOrM DSS ...vvicii e 99
cfgB80211 inform_bss frame dataccoeeviiiiiiiiiiii e 100
cfgB0211 infOrm_BSS dafaccuuiiviiiii e 101
oot 02 I 0 T G o1 102
(oxifot 1024 I 1o To 1= 103
186680211 DSS GEL 1€ .uuiiiiiiiii it 104
L 1] 11 VA 0 o 105
ieeeB0211 _channel tO frEQUENCYcovvniiii e e 106
ieeeB0211 frequency to ChannElccooiiiiiiiiiiii e 107
1€eeB0211 get ChanNElccovniiii i 108
166680211 gEL FESPONSE TALE ...uevvvneieieeeiteeeeieeee e e e e e e e e et eeeat e e et e e et e e eaneeaneenen 109
1S== 302 I oo 14 1= o PPN 110
ieeeB0211 get _hdrlen from SKbcoooiiiiiii 111
struct ieee80211 radiotap ITEratorcvvvuiiii e e 112
5. Data path DEIPES ...ouiii e e 114
1€ee80211_data t0 8023iiiiiiiii e 115
ieeeB0211 data from 8023cc.uiiiiiieiiii i 116
16680211 _amSaU O 8023Suuieiiiiiieeiiiii et e et e e aae 117
CfOB021L_ClasSifyB02Lduuueeiiiiiieee et 118
6. Regulatory enforcement infrastrUCtUrecooviiiiiiiii i 119
regulatory NNt ... 120
wiphy _apply CUSIOM FeQUIGLOIYccvueiiiieiii e e e e e e e e 121
Lo T (= o T) T 122
A 5 ST 1o = 1 o o S 123
WIphy IfKill_SBt hW_ SEate ...ceve e 124
Wiphy IfKill_start POHING ...coeeeric e 125
Wiphy IfKill_sStop POIING ..vvneiic e 126
S =~ R 110 o L= PP 127
cfgB80211 testmode aloc reply SKboovvviiiiiii 128
CfgB0211 teStMOdE FEPIY ..ovvniiiieei e 129
cfgB80211 testmode alloc_event SKbooeiiiiiiiiii 130

The 802.11 subsystems
—for kernel developers

(oot 02 I (== T SR =Y o | PN 131
The Mac8021L SUDSYSIEMoieiii e e e e e e e aeanas CXXXil
I. The basic mac80211 driver INtEIfACEcceuuuiiiiii i e 1
1. Basic hardware handlingcoovviiiiiiiii e 3
StrUCt 1€8E8021L N ..uviie i 4
enum 1eee80211 W _flagsoviiniei e 7
SET_IEEEBO211 DEV ...iiiiiiiiieeeiii ettt e s 11
SET_IEEE80211 PERM_ADDRouiiiiiiiieeiiii e 12
ST AT = S0 2 I o) o 1N 13
186680211 allOC NW ..viiicii e 24
166680211 register W ...cvveiiii e 25
1€6e80211 UNregiSter MWccvuiiii i 26
186680211 fre8 NW ..uiiie i 27

2. PHY CONfIQUIAiONouiiiiieci et e e e e e e e e e 28
ST T = S0 2 I o) 29
enum 1eee80211 CONf FlagSuivuue et 31

3. ViIrtUal INTEITACES ..o 32
Struct 18880211 Vit .veiiii i 33

4. Receive and tranSMit PrOCESSINGcuuueiineriieeiieeeiire e e et e e et e e e e e eat e e e eenas 35
What Should DB herecoee e 35
Frame fOIMELoouiiiiiiii e 35
Packet alignmentcoiiiii e 35
Calling into Mac80211 from INTEITUPLSuuevveeiiieiie e e e e e e 35
fUNCHONS/AEFINITIONSvuiiiii e 36

5. Frame filltering ...coueii e 67
enum 1eeeB80211 filter flagsoevviiiii i 68

6. The MacB021L WOIKQUEUEcvvueiiieeeieeei e e e e e e e e e e e e et e et e et e e ean e e ean s 69
166680211 QUEUE WOTK ...uuiiiiieii et e e e e e e e e e e e e e et e et e e ea e eeas 70
ieeeB0211 queue delayed WOrKooovvniiiiiiiiii e 71

[1. Advanced driver INEEITaCEuuuiieii e 72
D S T o] oo PP 74
ieeeB0211 get tX 160 NAMEuuiiii i 75
1€eeB0211 get rX _led NAMEivve i 76
ieeeB0211 get asSOC €0 NAME ... ccvuiiiii e 77
ieeeB0211 get radio led NAMEovviiii i 78
struct ieeeB0211 tpt bliNKoiiinii e 79
enum ieee80211 tpt led trigger flagscoooevviiiiiiiii e, 80
ieeeB0211 create tpt 1ed trgger ..uevee e 81

8. Hardware Crypto aCCEl€rationoviiuiiiiieiie e 82
ENUM SEL KEY CIM .oeiii e e e e e e aaaas 83
struct ieeeB0211 KEY CONFuiiiiicii e e e e 84
enum 16680211 KeY Flags ...ovvvniiiiiiii i 85
166680211 g6t tKIP PAK ..oeveniiii e 87
166680211 get tKIP PIK 1V covuiiiii i 88
166680211 gt tKIP P2K ..vvveiiii e 89

O. POWEISAVE SUPPON . vitiit ettt e e e e e e e e et e et e e en 90
10. BeACOoN filter SUPPOITuiii it e e e e e e e e eaas 91
[=== S 002 I o =7 o g 1 o= PN 92

11. Multiple queues and QOS SUPPOITcvvuneiiieeii e e e e e e ae 93
struct 1eee80211 tX_QUEUE PAIAIMSu.evvneirieeiieriteestneesieeesnaeeanaesaneesnaenens 94

12. AcCCeSS POINt MOUE SUPPOITcvveeiiieeieee e e e e e e e e e e e e et e e e eaneeeen 95
support for pOWersaving CHENEScc.uiiiiiiiiii e e e e e 95

13. Supporting multiple virtual interfacescoooviviiiiiiii 105
ieeeB0211 iterate active interfaCesocvviiiiiiii i 106

The 802.11 subsystems
—for kernel developers

ieeeB0211 iterate active interfaces alomicCccvveviieiiiiiiiii e 107

14, Station handliNgc.vueieiii e 108
SEUCE 1€8EB021L SEA ..vvuivvtiiiii et e e e e e e e e e 109
eNUM Sta NOLITY CM ... e 111
1502 S0 2 I 1o = - P 112
ieeeB0211 find sta by ifaddrcooviiiiiii 113

15. Hardware scan offloadcoooiiiiiiiiiiii e 114
ieeeB0211 scan COMPIELEAccovuiiiiiiiii e 115

S Ao o £ o - 1 o o PPN 116
TX A-MPDU aggregationccccuuieiuieiiiieeiii e e e e e e e et e e e eanes 116

RX A-MPDU aggregationcccuueeiieeiiiieeiie e e e e e s e e e e e s e ennas 116

17. Spatial Multiplexing Powersave (SMPS)ooviiiiiiiici e 118
[== = S 02 I = o TS s 10] 1 N 119
enum 1eeeB80211 SMPS MO .. .cuuuiiiiieii e e e e 120

[11. REtE CONIOl INEEITACE ..ivvvii et eeaanns 121
18. Rate CONtrol APl ...t e aaaen 123
i1eeeB0211 start tX_ha SESSIONuiiiiiicii e 124
ieeeB0211 start tX_ha Ch irgsafeovvvvvniiiiiiiiiii e 125
1€6e80211 StOp tX DA SESSION ...uuiivieiii i 126
ieeeB0211 stop tX ba €h irgsafeovevvuiiiii e 127

enum ieee80211 rate control_changedccocoeiiiiiiiiiiiicii e, 128
struct ieee80211 tX_rat€ CONIOlccuuiviieiii e e 129

rate control_SENA TOWcivniiii e 130

Y 14 11= 1 7= U 131
19. Key handlingcooviiiiiii e 133
Key handling DasiCscc.iiiiiiiiii e 133
YL =T S 133

20. RECEIVE PrOCESSING ..vturvrnettneeettierataeettteesteesteestre s e et e rateeetaestrerraerensns 134
b2 T I -0 0 T o 0o === T 135
22, Station info handlingocouuiiiiiiie e 136
Programming informationccoouiiiiiiieiii e e e e 136

STA information [Ifetime rUleSooiiiiiiiii e 141

PG T AN (o (=0 =[] o T 143
struct sta ampdu_MIMEui e 144
SEUCE tid AMPAU X Loniiic e 145

LS Ul 1o =00 oo LU o G 147

S g 0 0 1= 1 o P 149

The cfg80211 subsystem

The cfg80211 subsystem

Abstract
cfg80211 is the configuration API for 802.11 devices in Linux. It bridges userspace and drivers, and offers some
utility functionality associated with 802.11. cfg80211 must, directly or indirectly viamac80211, be used by all modern

wireless driversin Linux, so that they offer a consistent API through nl80211. For backward compatibility, cfg80211
also offers wireless extensions to userspace, but hides them from drivers completely.

Additionally, cfg80211 contains code to help enforce regulatory spectrum use restrictions.

Table of Contents

1. DEVICE FEQISIIAIIONcieetieeeet ettt ettt ettt ettt et e e et e e et e e e e e e eaaas 1
eNnUM 168880211 DANMi ittt et e a e 2
enum 1eee80211 ChannEl_flagscuuiiiuiiii e 3
struct ieee80211 ChaNNELoiii e 5
enuUM 166680211 rale FlagS . .uuiern i 7
S gl 1= == S0 2 N | (=T 8
Struct i€ee80211 StA Nt CAP ..ovvniiie e 9
struct 1eeeB0211_SUPPOrted ANocieeiiiiiii e 10
enUM CFOB02LL SIgNAl_ LY ...eeeii ettt et ettt e e e ene 11
enum Wiphy_Params FIagScooeuuniiiiii e 12
eNUM WIPNY _FLaOS ..ooee e e e 13
SEPUCE WIPRY e e e ettt e e e e aaa s 15
SIPUCE WITEIESS BV ..ottt e e e e e e ean s 20
WIPNY DWW .ottt ettt e ettt e et e et e e et e e e e e eean 23
WIPNY _TEOISEY ...ttt ettt ettt e et et e et e et e et e e s 24
WIPNY _UNFEOISIEN ettt ettt ettt et et et e et e e ean e e enaans 25
WY T e e e ettt 26
WIPNY _NBIME ..ottt e ettt e e et e et e et e et et e e e et e e enb e eeee 27
WIPNY OBV .ottt ettt et e e e aae 28
WIPNY _FTV ettt et 29
PIIV_TO WIPRY e e 30
SEL WIPNY BV e e 31
Lo (= VA o L PP P PP PP 32
struct ieeeB0211 iface lIMIL ... coeeeeie e 33
struct ieeeB0211 iface COMBDINGLIONooiuiiiiie e 34
cfgB80211 cheCk COMDINGALIONSiieiiiii e e e e e e ees 36

2. ACtions and CONFIGUIBLTIONeeuuieeiiiie ettt e e e e r e e e e s 37
LSV To A 0110 22 I i o o< PRI 38
SEFUCE VIT_DBIAIMIS ...ttt ettt e et e et e e e 46
SEFUCE KEY [DAIAIMIS ...ttt ettt ettt ettt ettt e et e e e e e e e nae e e eneas 47
eNnUM SUNVEY _iNFO_FlAOS .. oeeeei e e 48
SEFUCE SUIVEY INFO L.ttt e et e et e e e e 49
struct cfg80211 DEACON AALAuuieeieiit e e 50
Struct CfQ8021L 8P SEELINGS .. eeveeeii ettt ea s 51
SEPUCE SEAiON_ PAIAMELENS ...ttt e e e e e et et e e et e e e e eaenas 53
eNUM rate iNFO FIagS .. e 55
LS Vo = (= o (o T PR 56
SEPUCE SEALTON TNFO ettt e e e e et e eaeees 57
ENUM MONITOT_FIBOS ...evveieee e 60
enum MPath_INFO_FIBOSovvn i e 61
SEUCE MPEEN_TNTO e e e e e e 62
SIIUCE DSS PAraIMELEY'Se ittt e e e et e et e et e e e ean s 63
Struct 180880211 XU PDAIAIMSvueeeeitneeeett e e eett e et et e et et e e e et e et et e et eaa e e ena e enaans 64
Struct cfg8021L CrypPtO SELINGSeeevrneeierii ettt e et e e et e e et e e et e e e e e e eenens 65
struct cfg80211 AUt FEOUESEeei ittt e et e e et e et e eeaneas 66
Struct CfO8021L BSSOC FEOUESE ...evueeeneeetetet e e et e e et e et e et e e et e e e e e et e e e e e aa e eetn e eeenaaenns 67
struct cfg80211 deaUth FEOUESEccee i eens 68
struct cfg80211 diSASSOC FEOUESEuuieeneeii ettt e et et e et e e e e et e e e et e e e e aeannas 69
StruCt CfGB021L IDSS PAIAIMS ... ceeeti et ettt ettt e e et e et e e e e s 70
Struct cfg8021L CONNECL_PAIAITIScvvvieeeiiti e eeiti e e ettt e et eet e e e eet e e e eet s e e eentaaeeeentnaaeeenes 72
SEUCE CFGBO2LL PIMKSA ...ttt ettt e e 74

viii

The cfg80211 subsystem

(oot 02 A ot 121120 TS 11110 2 2| AP 75
(oot 02 I 0 11 T 10 1o LU | 76
(oo o0 2 A Q=SS o -~ o 77
(oot S0 2 I S o T {070 L 78
CFEB021L tX_ MIME MM .euiiit i e e e e e e e e e e e e et e e e e e aaanas 79
(oot S0z I T o1 ST o1 0= 80
(oot 02 I o 00 T= ot A == U | P 81
(oot 02 I (0= 011 o [N 82
(oot S0z o T o]0 1 ox (= 83
cfgB0211 ready ON ChaNNEloiiiiiii e e e 84
cfgB80211 remain_on _channel EXPIrEdoeeviiiiiiiiiiie e e 85
Lo o 1202220 I I 1= T - 86
Fox o =0 2220 I A TG 1101 0 | S 87
Fou o 12020 I A 0T 0| o = (1 88
(oot 02 o 0 T 4= T 1) 12N 89
cfgB80211 cOmM_PKHIOSS NOLITY ..oovuiiiiiiii e e e 90
cfgB80211 michael MIC FaAlUrecouiiiii e 91
3. Scanning and BSS list handlingcoouniiiiiiiii e 92
LS L Tox 010220 I = o 93
Struct Cfg8021L SCAN FEOUESE .. ovuiiieiieet et ee et et e et e e e e e e e e et e e e e e e e e e e e e e eaees 94
(oot S0z I o= 1o (o = 96
LS Lo 0110220 I o1 97
struct cfg8021L INfOrM DSS ...iivi i e e 99
cfgB80211 inform_bss frame datacccvveiiiiiiii e 100
cfgB0211L infOrm BSS daf@ccvuiiiiiii i 101
oot 020 I 01 g G o1 102
oot 1022 I I 1o To T =N 103
1= = S 02 I o1 Y o 1= = P 104
N 1] 11 VA 0 (o 105
ieeeB0211 channel tO FrEQUENCYcovvniiii e e e e e 106
ieeeB0211 frequency to ChanNElcccoouiiiiiiiiii e 107
166680211 gt ChanNElcoiieiii e 108
166680211 gEL FESPONSE TALEevvtieeeieeeteeet e e et e et e e et e eat e e et e e st e e eat e eaneeateesanaaeenaes 109
1=== 302 I 0T 11 1= o PP 110
ieeeB0211 get_hdrlen from SKb ... 111
struct ieee80211 radiotap ITEratOrcvvvuieii e e e e 112
5. Data Path NEIPELS ...vuiii e 114
10680211 _data t0 8023ieiiiiiiieei et 115
1eeeB0211 data from_ 8023c.uuiiiiieii e e 116
1€6680211_amSAU O 8023Suuuieiiiiiieiiiiii e e et e ettt e e e e e aae 117
o012 102 o = S] Y2 02 o PP 118
6. Regulatory enforcement iNfrastrUCIUNEovvuiiii e e e e e e eanes 119
FegUIAtOrY NNt ... e e 120
wiphy _apply CUSIOM TEQUIGLOTYciviiiii e e e e e e e e e e e e eaans 121
L= o T = o) T 122
A T 1 =io = 1 o o P 123
WIPhy ITKIll_SBt MW SEaEE ..eee e e 124
WIphy IfKIll_Start POHIING ...ccvecec e e e e e e 125
Wiphy IfKill_StOp POIING ..oovniie e e e 126
ST =~ R 110 o L= TSP 127
cfg80211 testmode aloc reply SKbooivniii s 128
CFPB021L teStMOAE FEPIY . ovvniiii e 129
cfgB80211 testmode alloc event SKboiiiiiiiii i 130
oot 02 M I (== 10T SR =Y/ o | P 131

Chapter 1. Device registration

In order for adriver to use cfg80211, it must register the hardware device with cfg80211. This happens
through a number of hardware capability structs described below.

The fundamental structure for each deviceisthe ‘'wiphy', of which each instance describes aphysical wire-
less device connected to the system. Each such wiphy can have zero, one, or many virtual interfaces asso-
ciated with it, which need to be identified as such by pointing the network interface'si eee80211_ptr
pointer to a struct wireless_dev which further describes the wireless part of the interface, normally this
struct is embedded in the network interface's private data area. Drivers can optionally allow creating or
destroying virtual interfaces on the fly, but without at least one or the ability to create some the wireless
deviceisn't useful.

Each wiphy structure contains device capability information, and also has a pointer to the various opera-
tions the driver offers. The definitions and structures here describe these capabilitiesin detail.

Deviceregistration

Name
enum ieee80211 band — supported frequency bands

Synopsis

enum i eee80211 band ({
| EEE80211_BAND 2GHZ,
| EEE80211_BAND 5GHZ,
| EEE80211_BAND 60GHZ,
| EEE80211_NUM BANDS

}i
Constants

IEEE80211 BAND 2GHZ ~ 2.4GHz ISM band
|IEEE80211 BAND 5GHZ around 5GHz band (4.9-5.7)
|IEEE80211_ BAND_60GHZ around 60 GHz band (58.32 - 64.80 GHz)

IEEE80211 NUM_BANDS number of defined bands

Device registration

The bands are assigned this way because the supported bitrates differ in these bands.

Deviceregistration

Name

enum ieee80211_channel_flags — channel flags

Synopsis

enum i eee80211 channel flags {
| EEE80211_CHAN_DI SABLED,

| EEE80211_CHAN NO I R
| EEES0211_CHAN_RADAR,

| EEES0211_CHAN_NO_HT40PLUS,
| EEES0211_CHAN_NO_HT40M NUS,

| EEES0211_CHAN_NO_OFDM

| EEES80211_CHAN_NO_80MHZ,

| EEES80211_CHAN_NO_160NMHZ,

| EEES0211_CHAN_| NDOOR_ONLY,

| EEES0211_CHAN_| R_CONCURRENT,
| EEE80211_CHAN_NO_20NMHZ,

| EEE80211_CHAN_NO_10MHZ

b
Constants

IEEE80211 CHAN_DISABLED

|EEES0211_CHAN_NO_IR

IEEES0211 CHAN_RADAR

This channel is disabled.

do not initiate radiation, thisincludes sending proberequests or bea-
coning.

Radar detection is required on this channel.

IEEE80211 CHAN_NO_HT40PLUS extension channel above this channel is not permitted.

IEEE80211 CHAN_NO_HT40MINU&tension channel below this channel is not permitted.

|EEE80211_CHAN_NO_OFDM

|EEES0211_CHAN_NO_S80MHZ

IEEE80211 CHAN_NO_160MHZ

IEEE80211 CHAN_IN-
DOOR_ONLY

|EEE80211_CHAN_IR_CON-
CURRENT

|EEES0211_CHAN_NO_20MHZ

I[EEES0211 CHAN_NO_10MHZ

OFDM is not alowed on this channel.

If the driver supports 80 MHz on the band, this flag indicates that
an 80 MHz channel cannot use this channel as the control or any
of the secondary channels. This may be due to the driver or due to
regulatory bandwidth restrictions.

If the driver supports 160 MHz on the band, this flag indicates that
an 160 MHz channel cannot use this channel as the control or any
of the secondary channels. This may be due to the driver or due to
regulatory bandwidth restrictions.

seeNL80211_FREQUENCY_ATTR_| NDOOR_ONLY

seeNL80211_FREQUENCY_ATTR | R_CONCURRENT

20 MHz bandwidth is not permitted on this channel.

10 MHz bandwidth is not permitted on this channel.

Deviceregistration

Description

Channel flags set by the regulatory control code.

Deviceregistration

Name
struct ieeeB0211 channel — channel definition

Synopsis

struct ieee80211 channel ({
enum i eee80211 band band,;
ulé center_freq
ulé hw val ue;
u32 fl ags;
i nt max_ant enna_gai n
i nt max_power;
i nt max_reg_power;
bool beacon_found;
u32 orig_flags;
int orig_mag;
int orig_mpw;
enum nl 80211 dfs_state dfs_state;
unsi gned | ong dfs_state_entered,;

unsi gned int dfs_cac_ns;

b
Members
band band this channel belongs to.
center_freq center frequency in MHz
hw_value hardware-specific value for the channel
flags channel flags from enum ieee80211_channel_flags.

max_antenna_gain

max_power

max_reg_power

maximum antenna gain in dBi
maximum transmission power (in dBm)

maximum regulatory transmission power (in dBm)

beacon_found helper to regulatory code to indicate when a beacon has been found on this
channel. User egul at ory_hi nt _f ound_beacon to enable this, thisis
useful only on 5 GHz band.

orig_flags channel flags at registration time, used by regulatory code to support devices
with additional restrictions

orig_mag internal use

orig_mpwr internal use

dfs state current state of this channel. Only relevant if radar is required on this channel.

dfs _state entered

dfs cac ms

timestamp (jiffies) when the dfs state was entered.

DFS CAC timein milliseconds, thisisvalid for DFS channels.

Deviceregistration

Description

This structure describes a single channel for use with cfg80211.

Deviceregistration

Name

enum ieee80211_rate flags — rate flags

Synopsis

enum i eee80211 rate_flags {
| EEE80211_RATE_SHORT_PREAMBLE,
| EEE80211_RATE_MANDATORY_A,
| EEE80211_RATE_MANDATORY_B,
| EEE80211_RATE_MANDATORY_G

| EEE80211_RATE_ERP_G

| EEE80211_RATE_SUPPORTS_5MHZ,
| EEE80211_RATE_SUPPORTS_10MHZ

b
Constants

|EEES0211_RATE_SHORT_PRE-
AMBLE

|EEE80211 RATE_MANDATO-
RY_A

|EEES0211_RATE_MANDATO-
RY B

|EEES0211_RATE_MANDATO-
RY G

|IEEE80211 RATE ERP G

|EEES0211_RATE_SUPPORT-
S 5MHZ

|EEES0211_RATE_SUPPORT-
S 10MHZ

Description

Hardware can send with short preamble on this bitrate; only rele-
vant in 2.4GHz band and with CCK rates.

This bitrate is a mandatory rate when used with 802.11a (on the 5
GHz band); filled by the core code when registering the wiphy.

Thishbitrate isamandatory rate when used with 802.11b (on the 2.4
GHz band); filled by the core code when registering the wiphy.

Thisbitrate isamandatory rate when used with 802.11g (on the 2.4
GHz band); filled by the core code when registering the wiphy.

Thisisan ERPratein 802.11g mode.

Rate can be used in 5 MHz mode

Rate can be used in 10 MHz mode

Hardware/specification flags for rates. These are structured in a way that allows using the same bitrate
structure for different bands/PHY modes.

Deviceregistration

Name
struct ieeeB0211 rate — hitrate definition

Synopsis

struct ieee80211 rate {
u32 fl ags;
ulé bitrate;
ulé hw val ue;
ulé hw val ue_short;

I
Members

flags rate-specific flags

bitrate bitrate in units of 100 Kbps

hw_value driver/hardware value for this rate

hw_value short driver/hardware value for this rate when short preamble is used
Description

This structure describes a bitrate that an 802.11 PHY can operate with. The two values hw_val ue and
hw_val ue_short areonly for driver use when pointers to this structure are passed around.

Deviceregistration

Name
struct ieeeB80211 sta ht cap — STA'sHT capabilities

Synopsis

struct ieee80211 sta_ht_cap {
ulé cap;
bool ht_support ed;
u8 ampdu_factor;
u8 anpdu_density;
struct ieee80211 nts_info nts;

I
Members
cap HT capabilities map as described in 802.11n spec
ht_supported isSHT supported by the STA
ampdu_factor Maximum A-MPDU length factor

ampdu_density Minimum A-MPDU spacing

mcs Supported MCS rates

Description

This structure describes most essential parameters needed to describe 802.11n HT capabilitiesfor an STA.

Deviceregistration

Name
struct ieeeB80211_supported_band — frequency band definition

Synopsis

struct ieee80211 supported_band {
struct ieee80211 channel * channels;
struct ieee80211 rate * bitrates;
enum i eee80211 band band,;
i nt n_channel s;
int n_bitrates;
struct ieee80211 sta ht_cap ht_cap;
struct ieee80211 sta_vht_cap vht_cap;

I
Members
channels Array of channels the hardware can operatein in this band.
bitrates Array of bitrates the hardware can operate with in this band. Must be sorted to give a
valid “supported rates’ |E, i.e. CCK ratesfirst, then OFDM.
band the band this structure represents
n_channels Number of channelsin channel s
n_bitrates Number of bitratesinbi t r at es
ht_cap HT capabilitiesin this band
vht_cap VHT capabilities in this band
Description

This structure describes a frequency band awiphy is able to operatein.

10

Deviceregistration

Name
enum cfg80211_signal_type — signal type

Synopsis

enum cf g80211 signal _type {
CFG30211_SI GNAL_TYPE_NONE,
CFG30211_SI GNAL_TYPE_MBM
CFG30211_SI GNAL_TYPE_UNSPEC

I

Constants

CFG80211_SIG- no signal strength information available
NAL_TYPE_NONE

CFG80211_SIG- signal strength in mBm (100* dBm)
NAL_TYPE_MBM

CFG80211_SIG- signal strength, increasing from O through 100
NAL_TYPE_UNSPEC

11

Deviceregistration

Name
enum wiphy_params flags— set_wiphy_params bitfield values

Synopsis

enum wi phy_parans_fl ags {
W PHY_PARAM RETRY_SHORT,
W PHY_PARAM RETRY_LONG,
W PHY_PARAM FRAG THRESHOLD,
W PHY_PARAM RTS_THRESHOLD,
W PHY_PARAM COVERAGE_CLASS,
W PHY_PARAM DYN_ACK

I

Constants

WI- wiphy->retry short has changed
PHY_PARAM_RETRY_SHORT

WIPHY_PARAM_RETRY_LONG wiphy->retry_long has changed

WiI- wiphy->frag_threshold has changed
PHY_PARAM_FRAG_THRESHOLD

WI- wiphy->rts_threshold has changed
PHY_PARAM_RTS THRESHOLD

WIPHY_PARAM_COVER- coverage class changed
AGE_CLASS

WIPHY_PARAM_DYN_ACK dynack has been enabled

12

Deviceregistration

Name

enum wiphy_flags — wiphy capability flags

Synopsis

enum wi phy flags {

W PHY_FLAG NETNS_OX,

W PHY_FLAG_PS_ON_BY_DEFAULT,

W PHY_FLAG 4ADDR_AP,

W PHY_FLAG 4ADDR_STATI ON,

W PHY_FLAG_CONTROL_PORT_PROTOCOL,
W PHY_FLAG | BSS_RSN,

W PHY_FLAG_MESH_AUTH,

W PHY_FLAG_SUPPORTS_SCHED_SCAN,
W PHY_FLAG_SUPPORTS_FW ROAM

W PHY_FLAG_AP_UAPSD,

W PHY_FLAG_SUPPORTS_TDLS,

W PHY_FLAG TDLS_EXTERNAL_SETUP,
W PHY_FLAG HAVE_AP_SME,

W PHY_FLAG_REPORTS_OBSS,

W PHY_FLAG_AP_PROBE_RESP_OFFLQAD,
W PHY_FLAG_OFFCHAN_TX,

W PHY_FLAG HAS_REMAI N_ON_CHANNEL,

W PHY_FLAG SUPPORTS 5_10_ Mz,
W PHY_FLAG HAS_CHANNEL_SW TCH

}s

Constants

WIPHY_FLAG_NETNS_OK

WIPHY_FLAG_PS ON_BY_DE-

FAULT

WIPHY_FLAG_4ADDR_AP

WIPHY_FLAG_4ADDR_S
TATION

WIPHY_FLAG_CON-
TROL_PORT_PROTOCOL

WIPHY_FLAG_IBSS RSN
WIPHY_FLAG_MESH_AUTH

WIPHY_FLAG_SUPPORT-
S SCHED_SCAN

WIPHY_FLAG_SUPPORT-
S FW_ROAM

if not set, do not allow changing the netns of thiswiphy at all

if set to true, powersave will be enabled by default -- this flag will
be set depending onthe kernel'sdefault onwi phy__new, but canbe
changed by the driver if it has agood reason to override the default

supports 4addr mode even on AP (with asingle station on aVLAN
interface)

supports 4addr mode even as a station

Thisdevice supports setting the control port protocol ethertype. The
device aso honours the control_port_no_encrypt flag.

The device supports IBSS RSN.

The device supports mesh authentication by routing auth frames to
userspace. See NL80211 MESH SETUP_USERSPACE_AUTH.

The device supports scheduled scans.

The device supports roaming feature in the firmware.

13

Deviceregistration

WIPHY_FLAG_AP_UAPSD

WIPHY_FLAG_SUPPORTS T-
DLS

WIPHY_FLAG_TDLS EXTER-
NAL_SETUP

WIPHY_FLAG_HAVE_AP _SME

WIPHY_FLAG_REPORTS OBSS

WiI-

The device supports uapsd on AP.

The device supports TDLS (802.112) operation.

The device does not handle TDLS (802.112) link setup/discov-
ery operations internally. Setup, discovery and teardown packets
should be sent through the NL80211 CVD TDLS MEMTI com-
mand. When this flag is not set, NL80211_ CVD TDLS OPER
should be used for asking the driver/firmware to perform a TDLS
operation.

device integrates AP SME

the device will report beacons from other BSSeswhen there arevir-
tual interfacesin AP mode by calling cf g80211_r eport _ob-
ss_beacon.

When operating as an AP, the device responds to probe-requestsin

PHY FLAG_AP PROBE_RESP OFhardware.

FLOAD
WIPHY_FLAG_OFFCHAN_TX

WIPHY_FLAG_HAS RE-
MAIN_ON_CHANNEL

WIPHY_FLAG_SUPPORT-
S 510 MHZ

WIPHY_FLAG_HAS CHAN-
NEL_SWITCH

Device supports direct off-channel TX.

Device supports remain-on-channel call.

Device supports 5 MHz and 10 MHz channels.

Device supports channel switch in beaconing mode (AP, IBSS,
Mesh, ...).

14

Deviceregistration

Name

struct wiphy — wireless hardware description

Synopsis

struct w phy {
u8 perm addr[ETH ALEN];
u8 addr_mask[ETH _ALEN];
struct mac_address * addresses;
const struct ieee80211 txrx_stypes * ngnt _stypes;
const struct ieee80211 iface_conbination * iface_conbinations;
int n_iface_conbinations;
ulé software_iftypes;
ulé n_addresses;
ulé interface_nodes;
ulé max_acl _mac_addrs;
u32 fl ags;
u32 regul atory_fI ags;
u32 features;
u8 ext features[DI V_ROUND UP(NUM NL80211 EXT_FEATURES# 8)];
u32 ap_sme_capa;
enum cf g80211 si gnal _type signal _type;
int bss_priv_size;
u8 max_scan_ssi ds;
u8 max_sched_scan_ssi ds;
u8 max_natch_sets;
ulé max_scan_ie_len;
ulé max_sched_scan_ie_len;
u32 max_sched_scan_pl ans;
u32 max_sched_scan_pl an_i nterval ;
u32 max_sched_scan_pl an_iterations;
i nt n_cipher_suites;
const u32 * cipher_suites;
u8 retry_short;
u8 retry_long
u32 frag_t hreshol d;
u32 rts_threshol d;
u8 coverage_cl ass;
char fw_version[ETHTOOL_FWERS_LEN] ;
u32 hw versi on;
fdef CONFI G_PM
const struct w phy_wow an_support * wow an;
struct cfg80211 wow an * wowl an_confi g;
#endi f
ulé max_remai n_on_channel _duration
u8 max_num pnki ds;
u32 avail abl e_antennas_tx;
u32 avail abl e_antennas_rx;
u32 probe_resp_of fl oad;
const u8 * extended_capabilities;
const u8 * extended_capabilities_nask;
u8 extended_capabilities_len;

#i

15

Deviceregistration

const void * privid;

struct ieee80211 supported_band * bands[| EEE80211 NUM BANDS] ;
void (* reg_notifier) (struct w phy *w phy, struct regul atory_request
const struct ieee80211 regdomain __rcu * regd;

struct device dev;
bool registered;

struct dentry * debugfsdir;
const struct ieee80211 _ht_cap * ht_capa_nod_mask;
const struct ieee80211 vht_cap * vht_capa_nod_nask;

possi bl e_net _t _net;
4

fdef CONFI G_CFGB0211_WEXT

const struct iw _handl er_def * wext;

#endi f

const struct w phy_coal esce_support * coal esce;
const struct w phy_vendor_conmand * vendor _commands;
const struct nl 80211 vendor _cnd_info * vendor_events;

i nt n_vendor _conmands;
int n_vendor _events;
ulé max_ap_assoc_st a;
u8 max_num csa_counters;

u8 max_adj _channel _rssi_conp;

char priv[O0];
b

Members

perm_addr[ETH_ALEN]

addr_mask[ETH_ALEN]

addresses

mgmt_stypes
iface_combinations

n_iface_combinations

software_iftypes

n_addresses

interface_modes

permanent MAC address of this device

If the device supports multiple MA C addresses by masking, set this
to amask with variable bitsset to 1, e.g. if thelast four bitsare vari-
able then set it to 00-00-00-00-00-0f. The actua variable bits shall
be determined by theinterfaces added, with interfaces not matching
the mask being rejected to be brought up.

If the device has more than one address, set this pointer to alist of
addresses (6 bytes each). The first one will be used by default for
perm_addr. Inthis case, the mask should be set to all-zeroes. Inthis
case it is assumed that the device can handle the same number of
arbitrary MAC addresses.

bitmasks of frame subtypes that can be subscribed to or transmitted
through nl80211, pointsto an array indexed by interface type

Valid interface combinations array, should not list single interface
types.

number of entriesini f ace_conbi nat i ons array.

bitmask of software interface types, these are not subject to any
restrictions since they are purely managed in SW.

number of addressesin addr esses.

bitmask of interfaces types valid for this wiphy, must be set by dri-
ver

16

*request);

Deviceregistration

max_acl_mac_addrs

flags

regulatory_flags

features

ext fea
tures[DIV_ROUND_UP(NUM_N-
L80211 EXT FEATURES# 8)]

ap_sme _capa
signal_type

bss priv_size

max_scan_ssids

max_sched_scan_ssids

max_match_sets

max_scan _ie len

max_sched_scan ie len

max_sched_scan plans

max_sched_scan plan_interval

max_sched_scan_plan _iterations

n_cipher_suites
cipher_suites
retry_short
retry _long

frag_threshold

rts_threshold

coverage class

Maximum number of MAC addresses that the device supports for
ACL.

wiphy flags, see enum wiphy_flags
wiphy regulatory flags, see enum ieeeB80211 regulatory flags
features advertised to nl80211, see enum nl80211 feature flags.

extended features advertised to nl80211, see enum nl80211 ex-
t_feature_index.

AP SME capabilities, flags from enum nl80211 ap sme features.
signal type reported in struct cfg80211 _bss.

each BSS struct has private data allocated with it, this variable de-
terminesits size

maximum number of SSIDs the device can scan for in any given
scan

maximum number of SSIDs the device can scan for in any given
scheduled scan

maximum number of match sets the device can handle when per-
forming a scheduled scan, O if filtering is not supported.

maximum length of user-controlled IEs device can add to probe
reguest framestransmitted during ascan, must not includefixed |IEs
like supported rates

same as max_scan_ie len, but for scheduled scans

maximum number of scan plans (scan interval and number of iter-
ations) for scheduled scan supported by the device.

maximum interval (in seconds) for a single scan plan supported by
the device.

maximum number of iterations for a single scan plan supported by
the device.

number of supported cipher suites

supported cipher suites

Retry limit for short frames (dot11ShortRetryLimit)
Retry limit for long frames (dot11L ongRetryLimit)

Fragmentation threshold (dotl1FragmentationThreshold); -1 =
fragmentation disabled, only odd values >= 256 used

RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled

current coverage class

17

Deviceregistration

fw_version[ETH-
TOOL_FWVERS _LEN]

hw_version

wowlan

wowlan_config

max_remain_on_channel_duration

max_num_pmkids

available_antennas_tx

available_antennas rx

probe resp offload

extended_capabilities

extended_capabilities mask
extended_capabilities len

privid

bands[| EEES0211_NUM_BANDS]

reg_notifier

regd

dev

registered

firmware version for ethtool reporting

hardware version for ethtool reporting
WOoWLAN support information

current WoWLAN configuration; this should usually not be used
since access to it is necessarily racy, use the parameter passed to
the suspend operation instead.

Maximum time a remain-on-channel operation may request, if im-
plemented.

maximum number of PMKIDs supported by device

bitmap of antennas which are available to be configured as TX an-
tennas. Antenna configuration commands will be rejected unless
thisor avai | abl e_ant ennas_r x isset.

bitmap of antennas which are available to be configured as RX an-
tennas. Antenna configuration commands will be rejected unless
thisor avai | abl e_ant ennas_t x isset.

Bitmap of supported protocols for probe response offloading. See
enum nl80211 probe resp offload support_attr. Only valid when
the wiphy flag W PHY_FLAG_AP_PROBE_RESP_CFFLOAD is
Set.

extended capabilities supported by the driver, additional capabili-
tiesmight be supported by userspace; these arethe 802.11 extended
capabilities (“ Extended Capabilities element”) and are in the same
format asin theinformation element. See 802.11-2012 8.4.2.29 for
the defined fields.

mask of the valid values
length of the extended capabilities

a pointer that drivers can use to identify if an arbitrary wiphy is
theirs, e.g. in global notifiers

information about bands/channels supported by this device

the driver's regulatory notification callback, note that if your driver
useswi phy_appl y_cust om regul at ory the reg_notifier's
reguest can be passed as NULL

the driver's regulatory domain, if one was requested viather eg-
ul atory_hint API. This can be used by the driver on the
reg _noti fier if it chooses to ignore future regulatory domain
changes caused by other drivers.

(virtual) struct device for this wiphy

helps synchronize suspend/resume with wiphy unregister

18

Deviceregistration

debugfsdir

ht_capa mod_mask

vht_capa_mod_mask

_net
wext

coalesce
vendor_commands
vendor_events
n_vendor_commands
n_vendor_events

max_ap _assoc_sta

max_num_csa_counters

max_adj _channdl_rssi_comp

priv[Q]

debugfs directory used for this wiphy, will be renamed automati-
cally on wiphy renames

Specify what ht_cap vaues can be over-ridden. If null, then none
can be over-ridden.

Specify what VHT capabilities can be over-ridden. If null, then
none can be over-ridden.

the network namespace this wiphy currently livesin
wireless extension handlers

packet coalescing support information

array of vendor commands supported by the hardware
array of vendor events supported by the hardware
number of vendor commands

number of vendor events

maximum number of associated stations supported in AP mode (in-
cluding P2P GO) or 0 to indicate no such limit is advertised. The
driver is allowed to advertise atheoretical limit that it can reach in
some cases, but may not always reach.

Number of supported csa_countersin beacons and probe responses.
This value should be set if the driver wishes to limit the number of
csa counters. Default (0) meansinfinite.

max offset of between the channel on which the frame was sent and
the channel on which the frame was heard for which the reported
rssiisstill valid. If adriver isableto compensatethelow rss when a
frameisheard on different channel, thenit should set thisvariableto
the maximal offset for which it can compensate. This value should
be setin MHz.

driver private data (sized according towi phy__new parameter)

19

Deviceregistration

Name

struct wireless dev — wireless device state

Synopsis

struct wrel ess_dev {
struct w phy * w phy;
enum nl 80211 _iftype iftype
struct list_head list;
struct net_device * netdev;
u32 identifier;
struct |ist_head ngnt_registrations;
spinl ock_t ngmt _registrations_I| ock
struct mutex mx;
bool use_4addr;
bool p2p_started,;
u8 address[ETH ALEN] ;
u8 ssid[| EEE80211_ MAX _SSI D LEN]
u8 ssid_len;
u8 nesh_id | en;
u8 mesh_id_up_Ien;
struct c¢fg80211 conn * conn
struct cfg80211 cached_keys * connect_keys;
struct list_head event |ist;
spi nl ock_t event | ock
struct cfg80211 internal _bss * current_bss;
struct cfg80211 chan_def preset_chandef;
struct cfg80211 chan_def chandef;
bool ibss_fixed,;
bool ibss_dfs_possi bl e;
bool ps;
int ps_tinmeout;
i nt beacon_interval;
u32 ap_unexpected_nl portid;
bool cac_started;
unsi gned long cac_start_tine;
unsi gned int cac_tinme_nms;
u32 owner _nl portid;

#i f def CONFI G_CFGB0211_WEXT
struct wext;
#endi f
1
Members
wiphy pointer to hardware description
iftype interface type
list (private) Used to collect the interfaces
netdev (private) Used to reference back to the netdev, may be NULL

20

Deviceregistration

identifier

mgmt_registrations
mgmt_registrations_lock

mtx

use 4daddr

p2p_started

addres ETH_ALEN]

ssid[IEEE80211_MAX_SSID_LEN]

ssid_len

mesh_id len
mesh_id up_len
conn
connect_keys
event_list
event_lock
current_bss

preset_chandef

chandef

ibss fixed
ibss dfs possible

ps
ps_timeout

beacon_interval

ap_unexpected nlportid

cac_started

(private) Identifier used in nl80211 to identify this wireless device
if it has no netdev

list of registrations for management frames
lock for the list

mutex used to lock datain this struct, may be used by drivers and
some API functions require it held

indicates 4addr mode is used on this interface, must be set by dri-
ver (if supported) on add_interface BEFORE registering the netdev
and may otherwise be used by driver read-only, will be update by
cfg80211 on change_interface

trueif thisis a P2P Device that has been started

The address for thisdevice, valid only if net dev isNULL
(private) Used by the internal configuration code

(private) Used by the internal configuration code

(private) Used by the internal configuration code

(private) Used by the internal configuration code

(private) cfg80211 software SME connection state machine data
(private) keysto set after connection is established
(private) list for internal event processing

(private) lock for event list

(private) Used by the internal configuration code

(private) Used by the internal configuration code to track the chan-
nel to be used for AP later

(private) Used by the internal configuration code to track the user-
set channel definition.

(private) IBSSis using fixed BSSID
(private) IBSS may change to a DFS channel
powersave mode is enabled

dynamic powersave timeout

beacon interval used on thisdevicefor transmitting beacons, O when
not valid

(private) netlink port ID of application registered for unexpected
class 3 frames (AP mode)

true if DFS channel availability check has been started

21

Deviceregistration

cac_start_time timestamp (jiffies) when the dfs state was entered.

cac _time ms CACtimeinms

owner_nlportid (private) owner socket port ID

wext (private) Used by the internal wireless extensions compat code
Description

For netdevs, this structure must be allocated by the driver that usestheieee80211 ptr field in struct net_de-
vice (thisisintentional soit can be allocated along with the netdev.) It need not be registered then as netdev
registration will be intercepted by cfg80211 to see the new wireless device.

For non-netdev uses, it must also be alocated by the driver in response to the cfg80211 callbacks that
requireit, asthere'sno netdev registration in that case it may not be allocated outside of callback operations
that return it.

22

Deviceregistration

Name
wiphy_new — create a new wiphy for use with cfg80211
Synopsis
struct w phy * w phy new (const struct cfg80211 ops * ops, int size-
of _priv);
Arguments
ops The configuration operations for this device

si zeof _priv Thesizeof the private areato allocate

Description

Create a new wiphy and associate the given operations with it. si zeof _pri v bytes are allocated for
private use.

Return

A pointer to the new wiphy. This pointer must be assigned to each netdev's ieeeB0211 ptr for proper
operation.

23

Deviceregistration

Name
wiphy_register — register awiphy with cfg80211

Synopsis
int wiphy register (struct w phy * w phy);
Arguments
wi phy Thewiphy to register.

Return

A non-negative wiphy index or a negétive error code.

24

Deviceregistration

Name
wiphy_unregister — deregister awiphy from cfg80211

Synopsis
voi d wi phy_unregi ster (struct w phy * w phy);
Arguments

wi phy Thewiphy to unregister.

Description

After this call, no more requests can be made with this priv pointer, but the call may sleep to wait for an
outstanding request that is being handled.

25

Deviceregistration

Name
wiphy_free — free wiphy

Synopsis
void wi phy_free (struct w phy * w phy);

Arguments

wi phy Thewiphy to free

26

Deviceregistration

Name

wiphy_name — get wiphy name
Synopsis
const char * w phy_name (const struct w phy * wi phy);

Arguments

wi phy The wiphy whose name to return

Return

The name of wi phy.

27

Deviceregistration

Name
wiphy_dev — get wiphy dev pointer

Synopsis
struct device * wi phy_dev (struct w phy * wi phy);

Arguments

wi phy Thewiphy whose device struct to look up

Return

The dev of wi phy.

28

Deviceregistration

Name
wiphy_priv — return priv from wiphy

Synopsis
void * wiphy priv (struct w phy * w phy);
Arguments

wi phy thewiphy whose priv pointer to return

Return

The priv of wi phy.

29

Deviceregistration

Name

priv_to_wiphy — return the wiphy containing the priv
Synopsis

struct wiphy * priv_to w phy (void * priv);
Arguments

priv apointer previously returned by wiphy priv
Return

The wiphy of pri v.

30

Deviceregistration

Name
set_wiphy_dev — set device pointer for wiphy

Synopsis
void set_w phy_dev (struct wi phy * w phy, struct device * dev);

Arguments

wi phy The wiphy whose device to bind

dev The device to parent it to

31

Deviceregistration

Name

wdev_priv — return wiphy priv from wireless dev

Synopsis

void * wdev_priv (struct wireless_dev * wdev);

Arguments

wdev The wireless device whose wiphy's priv pointer to return

Return

The wiphy priv of wdev.

32

Deviceregistration

Name
struct ieeeB0211 iface limit — limit on certain interface types
Synopsis
struct ieee80211 iface limt {
ulé mex;
ulé types;
1
Members
max maximum number of interfaces of these types

types interfacetypes (bits)

33

Deviceregistration

Name

struct ieeeB80211 iface combination — possible interface combination

Synopsis

struct ieee80211 iface_conbination {
const struct ieee80211 iface limt * limts;
u32 num di f f erent _channel s;

ulé max_i nterfaces;
u8 n_limts;

bool beacon_int_infra_match;
u8 radar _detect _wi dths;
u8 radar _detect_regions;

1

Members
limits
num_different_channels
max_interfaces
n_limits

beacon_int_infra_ match

radar_detect widths

radar_detect_regions

Description

limits for the given interface types

can use up to this many different channels

maximum number of interfacesin total allowed in this group
number of limitations

In this combination, the beacon intervals between infrastructure and
AP types must match. Thisisrequired only in special cases.

bitmap of channel widths supported for radar detection

bitmap of regions supported for radar detection

With this structure the driver can describe which interface combinations it supports concurrently.

Examples

1. Al ow #STA <= 1,

struct i

{ .max =1, .types
{ .max =1, .types
b

#AP <= 1, matching Bl, channels = 1, 2 total:

eee80211 iface limt limtsl[] = {

Bl T(NL80211 | FTYPE_STATION), },
BI T(NL80211 | FTYPE_AP}, },

struct ieee80211_iface_conbination conbinationl = {

dimts = limtsl,

n_linmts = ARRAY_SI ZE(limitsl),

.max_interfaces =

b

21
. beacon_int_infra_match = true,

Deviceregistration

2. Alow #{AP, P2P-G3 <= 8, channels =1, 8 total:

struct ieee80211 iface limt limts2[] = {
{ .max = 8, .types = BIT(NL80211_I| FTYPE_AP) |
Bl T(NL80211_| FTYPE_P2P_GO), 1},
b
struct ieee80211 iface_conbinati on conbi nati on2
dimts = limts2,
.n_limts = ARRAY_SI ZE(li m ts2),
.max_interfaces = 8,
.numdifferent_channels = 1,

b

11
—~~

3. Allow #STA <= 1, #{P2P-client,P2P-G3 <= 3 on two channels, 4 total.
This allows for an infrastructure connection and three P2P connecti ons.

struct ieee80211 iface limt limts3[] = {
{ .max = 1, .types = BIT(NL80211_I| FTYPE_STATION), 1},
{ .max = 3, .types = BIT(NL80211_I| FTYPE _P2P_Q0O) |
Bl T(NL80211_| FTYPE_P2P_CLI ENT), 1},
b
struct ieee80211_iface_conbination conbination3 = {
dimts = 1imts3,
.n_limts = ARRAY_SI ZE(li m ts3),
.max_interfaces = 4,
.numdifferent_channels = 2,

b

35

Deviceregistration

Name
cfg80211 check combinations — check interface combinations
Synopsis

i nt cfg80211_check_combi nations (struct wi phy * w phy, const int numd-
i fferent _channel s, const u8 radar_detect, const int iftype_nunf{ NUM N
L80211 | FTYPES]);

Arguments
Wi phy the wiphy
num di f f erent _channel s the number of different channels we want to use for verification
radar _det ect a bitmap where each bit corresponds to a channel width where
radar detection is needed, asin the definition of struct ieee80211 i-
face_combination.r adar _det ect _wi dt hs
i ftype_nuni NUM N array with the numbers of interfaces of each interface type. The
L80211 | FTYPES] index is the interface type as specified in enum nl80211 iftype.
Description

This function can be called by the driver to check whether a combination of interfaces and their types are
allowed according to the interface combinations.

36

Chapter 2. Actions and configuration

Each wirelessdevice and each virtua interface offer aset of configuration operations and other actionsthat
areinvoked by userspace. Each of these actionsis described in the operations structure, and the parameters
these operations use are described separately.

Additionally, some operations are asynchronous and expect to get status information via some functions
that drivers need to call.

Scanning and BSS list handling with its associated functionality is described in a separate chapter.

37

Actions and configuration

Name

struct cfg80211_ops — backend description for wireless configuration

Synopsis

struct cfg80211 ops {

nt
nt

(*
(*

suspend) (struct w phy *w phy, struct cfg80211 wow an *wow);
resume) (struct w phy *w phy);

void (* set_wakeup) (struct w phy *w phy, bool enabl ed);
struct wireless_dev * (* add_virtual _intf) (struct w phy *w phy, const char *nane

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

del _virtual _intf) (struct w phy *w phy, struct wi rel ess_dev *wdev);
change_virtual _intf) (struct w phy *w phy, struct net_devi ce *dev, enumnl 8
add_key) (struct wi phy *w phy, struct net_device *netdev, u8 key_index, bo
get _key) (struct w phy *w phy, struct net_device *netdev, u8 key_index, bo
del _key) (struct w phy *w phy, struct net_device *netdev, u8 key_index, bo
set _default_key) (struct w phy *w phy, struct net_device *netdev, u8 key_in
set _default_ngnt _key) (struct w phy *w phy, struct net_devi ce *netdev, u8 k
start_ap) (struct w phy *w phy, struct net_device *dev, struct cfg80211 ap
change_beacon) (struct w phy *w phy, struct net_device *dev, struct cfg802
stop_ap) (struct w phy *w phy, struct net_device *dev);

add_station) (struct w phy *w phy, struct net_device *dev, const u8 *mac, s
del _station) (struct w phy *w phy, struct net_device *dev, struct station_
change_station) (struct w phy *w phy, struct net_device *dev, const u8 *mm
get _station) (struct w phy *w phy, struct net_device *dev, const u8 *nmac,
dunp_station) (struct w phy *w phy, struct net_device *dev,int idx, u8 *n
add_npat h) (struct w phy *w phy, struct net_device *dev, const u8 *dst, co
del _npath) (struct w phy *w phy, struct net_devi ce *dev, const u8 *dst);
change_npat h) (struct w phy *w phy, struct net_devi ce *dev, const u8 *dst,
get _npath) (struct w phy *w phy, struct net_device *dev, u8 *dst, u8 *next
dunp_mnpat h) (struct w phy *w phy, struct net_device *dev,int idx, u8 *dst
get _npp) (struct w phy *w phy, struct net_device *dev,u8 *dst, u8 *npp, s
dunp_nmpp) (struct w phy *w phy, struct net_device *dev,int idx, u8 *dst,
get _nesh_config) (struct w phy *w phy, struct net_device *dev, struct mesh_
update_nesh_config) (struct w phy *w phy, struct net_devi ce *dev, u32 mask
join_nmesh) (struct w phy *w phy, struct net_device *dev, const struct mesh
| eave_mesh) (struct w phy *w phy, struct net_device *dev);

join_ocb) (struct w phy *w phy, struct net_device *dev,struct ocb_setup *
| eave_ocb) (struct w phy *w phy, struct net_device *dev);

change_bss) (struct w phy *w phy, struct net_device *dev, struct bss_paran
set _txq_paranms) (struct w phy *w phy, struct net_device *dev, struct ieee8
i bertas_set_nesh_channel) (struct w phy *w phy, struct net_devi ce *dev, st
set _noni tor_channel) (struct w phy *w phy, struct cfg80211 chan_def *chand
scan) (struct w phy *wi phy, struct cfg80211_scan_request *request);

aut h) (struct w phy *w phy, struct net_device *dev, struct cfg80211 auth_r
assoc) (struct wi phy *w phy, struct net_device *dev, struct cfg80211 assoc
deaut h) (struct w phy *w phy, struct net_device *dev, struct cfg80211 deau
di sassoc) (struct w phy *w phy, struct net_device *dev, struct cfg80211 di
connect) (struct w phy *w phy, struct net_device *dev, struct cfg80211 con
di sconnect) (struct w phy *w phy, struct net_device *dev, ul6 reason_code)
join_ibss) (struct w phy *w phy, struct net_device *dev, struct cfg80211 i
| eave_i bss) (struct w phy *w phy, struct net_device *dev);

set_ntast_rate) (struct w phy *w phy, struct net_device *dev,int rate[lEE

38

Actions and configuration

#i

int (* set_w phy_parans) (struct w phy *w phy, u32 changed);

int (* set_tx_power) (struct w phy *w phy, struct wrel ess_dev *wdev, enum nl 8021
int (* get_tx_power) (struct w phy *w phy, struct wrel ess_dev *wdev,int *dbm;
int (* set_wds_peer) (struct w phy *w phy, struct net_device *dev, const u8 *addr
void (* rfkill _poll) (struct w phy *w phy);

f def CONFI G_NL80211_TESTMODE

int (* testnode_cnd) (struct w phy *w phy, struct wrel ess_dev *wdev, voi d *dat a,
int (* testnmode_dunp) (struct w phy *w phy, struct sk _buff *skb, struct netlink_c

#endi f

nt (* set_bitrate_mask) (struct w phy *w phy, struct net_device *dev, const u8 *p
nt (* dunp_survey) (struct w phy *w phy, struct net_device *netdev,int idx, str
nt (* set_pnksa) (struct wi phy *w phy, struct net_device *netdev, struct cfg8021
nt (* del _pnksa) (struct w phy *w phy, struct net_device *netdev, struct cfg8021
nt (* flush_pnksa) (struct w phy *w phy, struct net_device *netdev);

nt (* remain_on_channel) (struct w phy *w phy, struct wrel ess_dev *wdev, struct
nt (* cancel _remain_on_channel) (struct w phy *w phy, struct w rel ess_dev *wdev,
nt (* mgnt _tx) (struct wi phy *w phy, struct wireless_dev *wdev, struct cfg80211_
nt (* mgnt_tx_cancel _wait) (struct w phy *w phy, struct w rel ess_dev *wdev, u64 c
nt (* set_power_ngnt) (struct w phy *w phy, struct net_devi ce *dev, bool enabl ed
nt (* set_cgmrssi_config) (struct w phy *w phy, struct net_device *dev, s32 rssi
nt (* set_cgmtxe config) (struct w phy *w phy, struct net_device *dev,u32 rate,
void (* ngm _frane_register) (struct wi phy *w phy, struct wirel ess_dev *wdev, ul6
int (* set_antenna) (struct w phy *w phy, u32 tx_ant, u32 rx_ant);

int (* get_antenna) (struct w phy *w phy, u32 *tx_ant, u32 *rx_ant);

int (* sched_scan_start) (struct w phy *w phy, struct net_device *dev, struct cfg8
int (* sched_scan_stop) (struct w phy *w phy, struct net_device *dev);

int (* set_rekey data) (struct w phy *w phy, struct net_device *dev, struct cfg80
int (* tdls_nmgnt) (struct wi phy *w phy, struct net_device *dev, const u8 *peer, u
[
[
[
[
[

nt (* tdls_oper) (struct w phy *w phy, struct net_device *dev, const u8 *peer, e
nt (* probe_client) (struct w phy *w phy, struct net_device *dev, const u8 *peer
nt (* set_noack_map) (struct w phy *w phy, struct net_device *dev, ulé noack_nap)
nt (* get_channel) (struct w phy *w phy, struct w rel ess_dev *wdev, struct cfg802
nt (* start_p2p_device) (struct w phy *w phy, struct wrel ess_dev *wdev);
void (* stop_p2p_device) (struct w phy *w phy, struct wrel ess_dev *wdev);
int (* set_mac_acl) (struct w phy *w phy, struct net_device *dev, const struct cf
int (* start_radar_detection) (struct w phy *w phy, struct net_device *dev, struct
int (* update_ft_ies) (struct w phy *w phy, struct net_device *dev, struct cfg802
int (* crit_proto_start) (struct w phy *w phy, struct wrel ess_dev *wdev, enum nl 8
void (* crit_proto_stop) (struct w phy *w phy, struct wrel ess_dev *wdev);
int (* set_coal esce) (struct w phy *w phy, struct cfg80211 coal esce *coal esce);
int (* channel _switch) (struct w phy *wi phy, struct net_devi ce *dev, struct cfg802
int (* set_gos_map) (struct w phy *w phy, struct net_device *dev, struct cfg80211
int (* set_ap_chanwi dth) (struct w phy *w phy, struct net_device *dev, struct cfg
int (* add_tx_ts) (struct wi phy *w phy, struct net_device *dev,u8 tsid, const u8
int (* del _tx_ts) (struct wi phy *w phy, struct net_device *dev,u8 tsid, const u8
int (* tdls_channel _switch) (struct w phy *w phy, struct net_devi ce *dev, const u8
void (* tdls_cancel channel swi tch) (struct w phy *w phy, struct net_device *dev,

39

Actions and configuration

Members

suspend

resume

set_wakeup

add virtual_intf

del_virtua_intf

change virtua_intf

add_key

get_key

del_key

set_default_key
set_default_ mgmt_key
start_ap

change beacon

stop_ap
add_station
del_station

change station

wiphy device needs to be suspended. The variable wow will be
NULL or contain the enabled Wake-on-Wireless triggers that are
configured for the device.

wiphy device needs to be resumed

Called when WoWLAN is enabled/disabled, use this callback to
call devi ce_set _wakeup_enabl e to enable/disable wakeup
from the device.

create a new virtual interface with the given name, must set the
struct wireless_dev'siftype. Beware: Y ou must create the new net-
dev in the wiphy's network namespace! Returns the struct wire-
less dev, or an ERR_PTR. For P2P device wdevs, the driver must
also set the address member in the wdev.

remove the virtual interface

change type/configuration of virtual interface, keep the struct wire-
less dev'siftype updated.

add a key with the given parameters. mac_addr will be NULL
when adding a group key.

get information about the key with the given parameters. mac_ad-

dr will be NULL when requesting information for agroup key. All
pointersgiventothecal | back function need not be valid after it
returns. This function should return an error if it is not possible to
retrieve the key, -ENOENT if it doesn't exist.

remove a key given the mac_addr (NULL for a group key) and
key_i ndex, return -ENOENT if the key doesn't exist.

set the default key on an interface
set the default management frame key on an interface
Start acting in AP mode defined by the parameters.

Change the beacon parameters for an access point mode interface.
This should reject the call when AP mode wasn't started.

Stop being an AP, including stopping beaconing.
Add anew station.
Remove a station

Modify a given station. Note that flags changes are not much val-
idated in cfg80211, in particular the auth/assoc/authorized flags
might come to the driver in invalid combinations -- make sure
to check them, also against the existing state! Drivers must call
cf 980211 check_stati on_change to vaidate the infor-
mation.

40

Actions and configuration

get_station
dump_station
add _mpath
del_mpath
change _mpath
get_mpath
dump_mpath
get_mpp
dump_mpp
get_mesh_config

update_mesh_config

join_mesh

leave_mesh

join_ocb

leave ocb

change bss
Set_txq_params

libertas_set_ mesh_channel

set_monitor_channel

auth

assoc

get station information for the station identified by mac
dump station callback -- resume dump at index i dx

add a fixed mesh path

delete a given mesh path

change a given mesh path

get amesh path for the given parameters

dump mesh path callback -- resume dump at index i dx

get amesh proxy path for the given parameters

dump mesh proxy path callback -- resume dump at index i dx
Get the current mesh configuration

Update mesh parameters on arunning mesh. The mask isahitfield
which tells us which parameters to set, and which to leave alone.

join the mesh network with the specified parameters (invoked with
the wireless_dev mutex held)

|eave the current mesh network (invoked with thewireless dev mu-
tex held)

join the OCB network with the specified parameters (invoked with
the wireless_dev mutex held)

leavethe current OCB network (invoked with thewireless dev mu-
tex held)

Modify parameters for agiven BSS.
Set TX queue parameters

Only for backward compatibility for libertas, as it doesn't imple-
ment join_mesh and needs to set the channel to join the mesh in-
stead.

Set the monitor mode channel for the device. If other interfaces are
active this callback should reject the configuration. If no interfaces
are active or the device is down, the channel should be stored for
when a monitor interface becomes active.

Request to do a scan. If returning zero, the scan request is given the
driver, and will bevalid until passedtocf g80211_scan_done.
For scanresults, call cf g80211_i nf or m_bss; you can call this
outside the scan/scan_done bracket too.

Request to authenticate with the specified peer (invoked with the
wireless_dev mutex held)

Request to (re)associate with the specified peer (invoked with the
wireless_dev mutex held)

41

Actions and configuration

deauth Request to deauthenticate from the specified peer (invoked with the
wireless _dev mutex held)

disassoc Request to disassociate from the specified peer (invoked with the
wireless _dev mutex held)

connect Connect to the ESS with the specified parameters. When connected,
call cf g80211 connect _resul t with statuscode WLAN_S-
TATUS_SUCCESS. If the connection fails for some reason, call
cf 980211 connect resul t withthestatusfromtheAP. (in-
voked with the wireless_dev mutex held)

disconnect Disconnect from the BSS/ESS. (invoked with thewireless dev mu-
tex held)
join ibss Join the specified IBSS (or create if necessary). Once done, call

cfg80211 i bss_j oi ned, also call that function when chang-
ing BSSID due to a merge. (invoked with the wireless dev mutex

held)
leave ibss Leave the IBSS. (invoked with the wireless dev mutex held)
set_mcast_rate Set the specified multicast rate (only if vif isin ADHOC or MESH
mode)
set wiphy params Notify that wiphy parameters have changed; changed hitfield (see

enum wiphy params_flags) describes which values have changed.
The actual parameter values are availablein struct wiphy. If return-
ing an error, no value should be changed.

set_tx_power set the transmit power according to the parameters, the power
passed isin mBm, to get dBm use VBM_TO _DBM The wdev may
be NULL if power was set for the wiphy, and will always be NULL
unless the driver supports per-vif TX power (as advertised by the
nl80211 feature flag.)

get_tx_power store the current TX power into the dom variable; return O if suc-
cessful

set wds_peer set the WDS peer for aWDS interface

rfkill_poll polls the hw rfkill line, use cfg80211 reporting functions to adjust
rfkill hw state

testmode_cmd run atest mode command; wdev may be NULL

testmode_dump Implement atest mode dump. The cb->argg 2] and up may be used

by the function, but 0 and 1 must not be touched. Additionally, re-
turn error codes other than -ENOBUFS and -ENOENT will termi-
nate the dump and return to userspace with an error, so be careful. If
any datawas passed in from userspace then the data/len arguments
will be present and point to the data contained in NL80211 AT-
TR_TESTDATA.

set_bitrate_mask set the bitrate mask configuration

dump_survey get site survey information.

42

Actions and configuration

set_pmksa

del_pmksa
flush_pmksa

remain_on_channel

cancel_remain_on_channel

mgmt_tx

mgmt_tx_cancel_wait

set_power_mgmt

set_cgm_rssi_config

set_cgm_txe config

mgmt_frame_register

set_antenna

get_antenna
sched scan_start

sched_scan_stop

set_rekey data

tdls_ mgmt

CacheaPMKID for aBSSID. Thisis mostly useful for fullmac de-
vices running firmwares capable of generating the (re) association
RSN IE. It allows for faster roaming between WPA2 BSSIDs.

Delete a cached PMKID.
Flush all cached PMKIDs.

Request the driver to remain awake on the specified channdl for the
specified duration to compl ete an off-channel operation (e.g., public
action frame exchange). When the driver is ready on the requested
channel, it must indicate this with an event notification by calling
cf 980211 ready_on_channel .

Cancel an on-going remain-on-channel operation. This allows the
operation to be terminated prior to timeout based on the duration
value.

Transmit a management frame.

Cancel the wait time from transmitting a management frame on an-
other channel

Configure WLAN power management. A timeout value of -1 al-
lows the driver to adjust the dynamic ps timeout value.

Configure connection quality monitor RSSI threshold. After con-
figuration, thedriver should (soon) send an event indi cating the cur-
rent level is above/below the configured threshold; this may need
some care when the configuration is changed (without first being
disabled.)

Configure connection quality monitor TX error thresholds.

Notify driver that a management frame type was registered. The
callback is allowed to sleep.

Set antenna configuration (tx_ant, rx_ant) on the device. Para
meters are bitmaps of allowed antennas to use for TX/RX. Dri-
vers may reject TX/RX mask combinations they cannot support
by returning-EINVAL (alsoseenl80211.hNL80211 ATTR W -
PHY_ANTENNA_TX).

Get current antenna configuration from device (tx_ant, rx_ant).
Tell the driver to start a scheduled scan.

Tell the driver to stop an ongoing scheduled scan. This call must
stop the scheduled scan and be ready for starting a new one before
it returns, i.e. sched_scan_st art may be called immediately
after that again and should not fail in that case. Thedriver should not
call cfg80211 sched_scan_st opped for a requested stop
(when this method returns 0.)

give the data necessary for GTK rekeying to the driver

Transmit a TDL'S management frame.

43

Actions and configuration

tdls oper Perform a high-level TDLS operation (e.g. TDLS link setup).

probe_client probe an associated client, must return a cookie that it later passes
tocf g80211_probe_st at us.

set_noack_map Set the NoAck Map for the TIDs.

get_channel Get the current operating channel for the virtual interface. For mon-
itor interfaces, it should return NULL unlessthere'sasingle current
monitoring channel.

start_p2p_device Start the given P2P device.
stop_p2p _device Stop the given P2P device.
set_ mac_acl Sets MAC address control listin AP and P2P GO mode. Parameters

include ACL policy, an array of MAC address of stations and the
number of MAC addresses. If there is already alist in driver this
new list replacesthe existing one. Driver hasto clear its ACL when
number of MAC addresses entries is passed as 0. Drivers which
advertise the support for MAC based ACL have to implement this

callback.
start_radar_detection Start radar detection in the driver.
update ft ies Provide updated Fast BSS Transition information to the driver. If

the SME isin the driver/firmware, this information can be used in
building Authentication and Reassociation Request frames.

crit_proto_start Indicates a critical protocol needs more link reliability for agiven
duration (milliseconds). The protocol is provided so the driver can
take the most appropriate actions.

crit_proto_stop Indicates critical protocol no longer needsincreased link reliability.
This operation can not fail.

set_coalesce Set coalesce parameters.

channel_switch initiate channel-switch procedure (with CSA). Driver is responsi-

ble for veryfing if the switch is possible. Since this is inherent-
ly tricky driver may decide to disconnect an interface later with
cf 980211 stop_iface. This doesn't mean driver can accept
everything. It should do it's best to verify requests and reject them
as soon as possible.

set_gos_map Set QoS mapping information to the driver

set_ap chanwidth Set the AP (including P2P GO) maode channel width for the giv-
en interface Thisis used e.g. for dynamic HT 20/40 MHz channel
width changes during the lifetime of the BSS.

add tx ts validate (if admitted timeis Q) or add a TX TS to the device with
the given parameters; action frame exchange has been handled by
userspace so thisjust has to modify the TX path to take the TSinto
account. If the admitted time is O just validate the parameters to
make sure the session can be created at all; it isvalid to just aways

44

Actions and configuration

return success for that but that may result in inefficient behaviour
(handshake with the peer followed by immediate teardown when
the addition is later rejected)

del_tx_ts removean existing TX TS

tdls_channel_switch Start channel-switching with a TDLS peer. The driver is responsi-
ble for continually initiating channel-switching operations and re-
turning to the base channel for communication with the AP.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both peers must be on
the base channel when the call completes.

Description

This struct is registered by fullmac card drivers and/or wireless stacks in order to handle configuration
requests on their interfaces.

All callbacks except where otherwise noted should return O on success or a negative error code.

All operations are currently invoked under rtnl for consistency with the wireless extensions but this is
subject to reevaluation as soon as this code is used more widely and we have afirst user without wext.

45

Actions and configuration

Name

struct vif_params — describes virtual interface parameters

Synopsis

struct vif_params {
i nt use_4addr;
u8 macaddr [ETH _ALEN] ;

}i
Members

use 4daddr use 4-address frames

macaddr[ETH_ALEN] address to use for this virtua interface. If this parameter is set to zero address
the driver may determine the address as needed. Thisfeatureisonly fully sup-
ported by drivers that enable the NL80211_FEATURE_MAC_ON_CREATE
flag. Others may support creating * only p2p devices with specified MAC.

46

Actions and configuration

Name
struct key _params — key information

Synopsis

struct key_params {
const u8 * key;
const u8 * seq;
int key_len;
int seq_len;

u32 ci pher;
I
Members
key key material
seq sequence counter (1V/PN) for TKIP and CCMP keys, only used withtheget _key callback,

must bein little endian, length given by seq_I en.
key len length of key material
seq len length of seq.

cipher cipher suite selector

Description

Information about a key

47

Actions and configuration

Name

enum survey_info_flags — survey information flags

Synopsis

enum survey_info_flags {
SURVEY_I NFO_NO SE_DBM
SURVEY_I NFO_|I N_USE,
SURVEY_I NFO_TI ME,
SURVEY_I NFO_TI ME_BUSY,
SURVEY_I NFO_TI ME_EXT_BUSY,
SURVEY_I NFO_TI ME_RX,
SURVEY_I NFO_TI ME_TX,
SURVEY_I NFO_TI ME_SCAN

}

Constants
SURVEY_INFO_NOISE _DBM noise (indBm) wasfilled in
SURVEY _INFO_IN_USE channel is currently being used

SURVEY_INFO_TIME active time (in ms) wasfilled in

SURVEY_INFO_TIME _BUSY busy timewasfilled in

SURVEY_INFO_TIME_EX- extension channel busy time wasfilled in
T_BUSY

SURVEY_INFO _TIME _RX receive time wasfilled in
SURVEY_INFO_TIME_TX transmit timewasfilled in

SURVEY_INFO_TIME_SCAN scan timewasfilled in

Description

Used by the driver to indicate which info in struct survey_info it hasfilled in during the get _sur vey.

48

Actions and configuration

Name

struct survey_info — channel survey response

Synopsis

struct survey_info {
struct ieee80211 channel * channel;
u6s time;
u64 time_busy;
u64 time_ext_busy;
ué4 tinme_rx;
ué4 tinme_tx;
ué4 ti me_scan;

u32 filled;
s8 noi se;
I
Members
channel the channel this survey record reports, may be NULL for a single record to report
global statistics
time amount of time in ms the radio was turn on (on the channel)
time_busy amount of time the primary channel was sensed busy
time_ext_busy amount of time the extension channel was sensed busy
time_rx amount of time the radio spent receiving data
time_tx amount of time the radio spent transmitting data
time_scan amount of time the radio spent for scanning
filled bitflag of flags from enum survey_info_flags
noise channel noise in dBm. Thisand al following fields are optional
Description

Used by dunp_sur vey to report back per-channel survey information.

This structure can later be expanded with things like channel duty cycle etc.

49

Actions and configuration

Name

struct cfg80211 beacon data— beacon data

Synopsis

struct cfg80211 beacon_data ({

const u8 * head,;

const u8 * tail;

const u8 * beacon_i es;

const u8 * proberesp_ies;

const u8 * assocresp_ies;

const u8 * probe_resp;

size_t head | en;

size t tail |en;

size_t beacon_ies_|en;

size_t proberesp_ies_len;

size_t assocresp_ies_len;

size_t probe_resp_len;
1

Members
head head portion of beacon (before TIM IE) or NULL if not changed
tail tail portion of beacon (after TIM IE) or NULL if not changed
beacon_ies extrainformation element(s) to add into Beacon frames or NULL
proberesp_ies extrainformation element(s) to add into Probe Response frames or NULL
assocresp_ies extrainformation element(s) to add into (Re)Association Response frames or
NUL L

probe _resp praobe response template (AP mode only)
head len length of head
tail_len lengthof t ai |

beacon_ies len
proberesp_ies len
assocresp_ies len

probe resp len

length of beacon_iesin octets
length of proberesp_iesin octets
length of assocresp_iesin octets

length of probe response template (pr obe_r esp)

50

Actions and configuration

Name
struct cfg80211_ap_settings— AP configuration

Synopsis

struct cfg80211 ap_settings {
struct cfg80211 chan_def chandef;
struct cfg80211 beacon_data beacon
i nt beacon_interval;
int dtimperiod;
const u8 * ssid;
size t ssid_|en;
enum nl 80211 hi dden_ssi d hi dden_ssi d;
struct cfg80211 crypto_settings crypto;
bool privacy;
enum nl 80211 aut h_t ype aut h_type;
enum nl 80211 _snps_node snps_node
int inactivity_timeout;
u8 p2p_ctw ndow;
bool p2p_opp_ps;
const struct cfg80211 acl _data * acl

i
Members
chandef defines the channel to use
beacon beacon data
beacon_interval beacon interval
dtim_period DTIM period
ssid SSID to be used in the BSS (note: may be NULL if not provided from user
space)
ssid_len length of ssi d
hidden_ssid whether to hide the SSID in Beacon/Probe Response frames
crypto crypto settings
privacy the BSS uses privacy
auth_type Authentication type (algorithm)
smps_mode SMPS mode
inactivity timeout timein seconds to determine station's inactivity.
p2p_ctwindow P2P CT Window
p2p_opp_ps P2P opportunistic PS

51

Actions and configuration

acl ACL configuration used by the drivers which has support for MAC address
based access control

Description

Used to configure an AP interface.

52

Actions and configuration

struct station_parameters — station parameters

Synopsis

struct station_paraneters {
const u8 * supported_rates;
struct net _device * vlan;
u32 sta flags_mask;
u32 sta flags_set;
u32 sta_nodi fy_nask;
int listen_interval;
ulé aid;
u8 supported rates_|en;
u8 plink_action;
u8 plink_state;
const struct ieee80211 ht cap * ht_capa;
const struct ieee80211 vht _cap * vht_capa;
u8 uapsd_queues;
u8 max_sp
enum nl 80211 _nesh_power _node | ocal _pm
ulé capability;
const u8 * ext_capab
u8 ext capab_I en;
const u8 * supported_channel s;
u8 supported_channel s_len;
const u8 * supported_oper_cl asses;
u8 supported_oper_cl asses_| en;
u8 opnode_notif;
bool opnode_notif _used;

b

Members

supported rates

supported rates in IEEE 802.11 format (or NULL for no change)

station flags that changed (bitmask of BIT(NL80211 S

station flags values (bitmask of BIT(NL80211 STA_FLAG_...))

bitmap indicating which parameters changed (for those that don't
have a natural “no change” value), see enum station_parameter-

vlan vlan interface station should belong to
sta flags mask
TA_FLAG ..))
sta flags set
sta_modify_mask
s apply_mask
listen_interval listen interval or -1 for no change
ad AID or zero for no change

supported rates len

number of supported rates

53

Actions and configuration

plink_action
plink_state
ht_capa
vht_capa
uapsd_queues

max_sp

local_pm

capability

ext_capab

ext_capab len

supported _channels
supported_channels len
supported oper_classes
supported oper_classes len
opmode_notif

opmode _notif_used

Description

plink action to take

set the peer link state for a station
HT capabilities of station

VHT capabilities of station

bitmap of queues configured for uapsd. same format as the AC
bitmap in the QoS info field

max Service Period. same format as the MAX_SP in the QoS info
field (but already shifted down)

local link-specific mesh power save mode (no change when set to
unknown)

station capability

extended capabilities of the station

number of extended capabilities

supported channelsin IEEE 802.11 format

number of supported channels

supported oper classesin |IEEE 802.11 format

number of supported operating classes

operating mode field from Operating Mode Notification

information if operating mode field is used

Used to change and create a hew station.

Actions and configuration

Name
enum rate_info_flags — bitrate info flags

Synopsis

enumrate_info_flags {
RATE_| NFO_FLAGS_MCS,
RATE_| NFO_FLAGS_VHT_MCS,
RATE_| NFO_FLAGS_SHORT_d ,
RATE_| NFO_FLAGS_60G

b
Constants

RATE_INFO_FLAGS MCS mes field filled with HT MCS

RATE_INFO_FLAGS VHT_MCS mcsfield filled with VHT MCS

RATE_IN- 400ns guard interval

FO_FLAGS SHORT_GI

RATE_INFO_FLAGS _60G 60GHz MCS
Description

Used by the driver to indicate the specific rate transmission type for 802.11n transmissions.

55

Actions and configuration

Name

struct rate_info — bitrate information

Synopsis

struct rate_info {
u8 fl ags;
u8 nts;
ulé | egacy;
u8 nss;
u8 bw;

b
Members

flags bitflag of flags from enum rate info_flags
mcs mcsindex if struct describes a 802.11n bitrate

legacy bitrate in 100kbit/s for 802.11abg

nss number of streams (VHT only)
bw bandwidth (from enum rate_info_bw)
Description

Information about areceiving or transmitting bitrate

56

Actions and configuration

Name

struct station_info — station information

Synopsis

struct station_info {
u32 filled;
u32 connected_ti e;
u32 inactive_tine;
u64 rx_bytes;
u64 tx_bytes;
ulé Ilid;
ulé plid;
u8 plink_state;
s8 si gnal
s8 signal _avg
u8 chai ns;
s8 chai n_signal [| EEEB0211 NMAX_ CHAI NS] ;
s8 chai n_signal _avg[| EEE80211_ MAX_CHAI NS]
struct rate_info txrate
struct rate_info rxrate;
u32 rx_packets;
u32 tx_packets;
u3d2 tx_retries;
u3d2 tx _failed,;
u32 rx_dropped_m sc;
struct sta_bss_paraneters bss_param
struct nl 80211 _sta flag update sta_ fl ags;
i nt generation;
const u8 * assoc_req_ies;
Size_t assoc_reg_ies_len;
u32 beacon_| oss_count;
s64 t_offset;
enum nl 80211 _mesh_power _node | ocal _pm
enum nl 80211 mesh_power _node peer_pm
enum nl 80211 _mesh_power _node nonpeer _pm
u32 expected_t hroughput;
u64 rx_beacon;
u8 rx_beacon_si gnal _avg;
struct cfg80211 tid_stats pertid[l EEE80211 NUM TIDS + 1];

b
Members
filled bitflag of flags using the bits of enum nI80211 sta info to indicate
the relevant values in this struct for them
connected time time(in secs) since a station is last connected
inactive_time time since last station activity (tx/rx) in milliseconds
rx_bytes bytes (size of MPDUS) received from this station

57

Actions and configuration

tx_bytes
llid

plid
plink_state

signal

signal_avg

chains

chain_sig-

nal[[EEES0211_MAX_CHAINS]

chain_sig-

bytes (size of MPDUS) transmitted to this station
mesh local link id

mesh peer link id

mesh peer link state

The signal strength, type depends on the wiphy's signal_type. For
CFG80211_SIGNAL_TYPE_MBM, valueisexpressedin_dBm_.

Average signal strength, type depends on the wiphy's signal_type.
For CFG80211_SIGNAL_TYPE_MBM, value is expressed in
dBm.

bitmask for filled values in chai n_si gnal , chai n_si g-
nal _avg

per-chain signal strength of last received packet in dBm

per-chain signal strength averagein dBm

nal_avg[IEEES0211_ MAX_CHAINS]

txrate
rxrate
rx_packets
tx_packets
tx_retries

tx_failed

rx_dropped_misc
bss param
sta flags

generation

assoc_req ies

assoc_req _ies len
beacon_loss _count

t offset

current unicast bitrate from this station

current unicast bitrate to this station

packets (MSDUs & MMPDUSs) received from this station
packets (MSDUs & MMPDUSs) transmitted to this station
cumulative retry counts (MPDUS)

number of failed transmissions (MPDUSs) (retries exceeded, no
ACK)

Dropped for un-specified reason.
current BSS parameters
station flags mask & values

generation number for nl80211 dumps. This number should in-
crease every time the list of stations changes, i.e. when a station is
added or removed, so that userspace can tell whether it got a con-
sistent snapshot.

IEs from (Re)Association Request. This is used only when in
AP mode with drivers that do not use user space MLME/
SME implementation. The information is provided for the
cf g80211_new_ st a callsto notify user space of the |Es.

Length of assoc_req _ies buffer in octets.
Number of times beacon loss event has triggered.

Time offset of the station relative to this host.

58

Actions and configuration

local_pm local mesh STA power save mode

peer_pm peer mesh STA power save mode

nonpeer_pm non-peer mesh STA power save mode

expected_throughput expected throughput in kbps (including 802.11 headers) towards
this station.

rx_beacon number of beacons received from this peer

rx_beacon_signal_avg signal strength average (in dBm) for beacons received from this
peer

pertid[|[EEE80211 NUM _TIDS+ per-TID satistics, see struct cfg80211 tid stats, using the last
1] (IEEE80211 NUM_TIDS) index for MSDUs not encapsulated in
QoS-MPDUs.

Description

Station information filled by driver for get _st at i on and dump_station.

59

Actions and configuration

Name

enum monitor_flags — monitor flags

Synopsis

enum nmoni tor _fl ags {
MONI TOR_FLAG_FCSFAI L,
MONI TOR_FLAG_PLCPFAI L,
MONI TOR_FLAG_CONTRQOL,
MONI TOR_FLAG_OTHER BSS,
MONI TOR_FLAG _COCK_FRAMES,
MONI TOR_FLAG_ACTI VE

I

Constants
MONITOR_FLAG_FCSFAIL pass frames with bad FCS
MONITOR_FLAG_PLCPFAIL pass frames with bad PLCP
MONITOR_FLAG_CONTROL pass control frames
MONITOR_FLAG_OTHER BSS disable BSSID filtering

MONI- report frames after processing
TOR_FLAG_COOK_FRAMES

MONITOR_FLAG_ACTIVE active monitor, ACKs frames on its MAC address

Description

Monitor interface configuration flags. Note that these must be the bits according to the nl80211 flags.

60

Actions and configuration

Name
enum mpath_info_flags — mesh path information flags

Synopsis

enum nmpat h_info_flags {
MPATH_| NFO_FRAME_QLEN,
MPATH_| NFO_SN,
MPATH_I| NFO_METRI C,
MPATH_I| NFO_EXPTI ME,
MPATH_| NFO_DI SCOVERY_TI MEQUT,
MPATH_| NFO_DI SCOVERY_RETRI ES,
MPATH_| NFO_FLAGS

b
Constants

MPATH_INFO_FRAME_QLEN franme_ql en filled

MPATH_INFO_SN sn filled

MPATH_INFO_METRIC met ri c filled

MPATH_INFO_EXPTIME expt i e filled

MPATH_INFO_DISCOV- di scovery_ti meout filled

ERY_TIMEOUT

MPATH_INFO_DISCOV- di scovery_retriesfilled

ERY_RETRIES

MPATH_INFO_FLAGS f1 ags filled
Description

Used by the driver to indicate which info in struct mpath_info it has filled in during get _st ati on or
dunp_stati on.

61

Actions and configuration

Name
struct mpath_info — mesh path information

Synopsis

struct mpath_info {

u32 filled;
u32 frane_qgl en;
u32 sn;

u32 metric;

u32 expti me;

u32 discovery_tinmeout;
u8 di scovery_retries;
u8 fl ags;

i nt generation;

I
Members
filled bitfield of flags from enum mpath_info_flags
frame_glen number of queued frames for this destination
sn target sequence number
metric metric (cost) of this mesh path
exptime expiration time for the mesh path from now, in msecs
discovery_timeout total mesh path discovery timeout, in msecs
discovery retries mesh path discovery retries
flags mesh path flags
generation generation number for nl80211 dumps. This number should increase every
time the list of mesh paths changes, i.e. when a station is added or removed,
so that userspace can tell whether it got a consistent snapshot.
Description

Mesh path information filled by driver for get _npat h and dunp_npat h.

62

Actions and configuration

Name

struct bss_parameters — BSS parameters

Synopsis

struct bss_paraneters {

int use cts_prot;

i nt use_short_preanbl e;
int use short_slot tine;
const u8 * basic_rates;
u8 basic_rates_|en;

int ap_isol ate;

i nt ht_opnode;

s8 p2p_ctw ndow,

S8 p2p_opp_ps;

b
Members

use_cts prot

use_short_preamble
use short_slot_time

basic_rates
basic_rates len
ap_isolate
ht_opmode
p2p_ctwindow

P2p_opp_ps

Description

Whether to use CTS protection (0 = no, 1 = yes, -1 = do not change)

Whether the use of short preamblesis allowed (0 = no, 1 = yes, -1 = do
not change)

Whether the use of short slot timeisalowed (0 = no, 1 = yes, -1 = do not
change)

basic ratesin IEEE 802.11 format (or NULL for no change)
number of basic rates

do not forward packets between connected stations

HT Operation mode (ul6 = opmode, -1 = do not change)
P2P CT Window (-1 = no change)

P2P opportunistic PS (-1 = no change)

Used to change BSS parameters (mainly for AP mode).

63

Actions and configuration

Name
struct ieeeB0211 txq params— TX queue parameters

Synopsis

struct ieee80211 txq_parans {
enum nl 80211 ac ac;
ulé txop;
ulé cwnm n;
ulé cwrex;
u8 aifs;

b
Members

ac AC identifier

txop Maximum burst time in units of 32 usecs, 0 meaning disabled

cwmin Minimum contention window [avalue of the form 2*n-1in the range 1..32767]
cwmax Maximum contention window [avalue of the form 2*n-1in the range 1..32767]

aifs Arbitration interframe space [0..255]

Actions and configuration

Name

struct cfg80211 _crypto_settings — Crypto settings

Synopsis

struct cfg80211 crypto_settings {

u32 wpa_versions;
u32 ci pher_group;
int n_ciphers_pairw se;

u32 ci phers_pairwi se[NL80211_MAX NR _Cl PHER SUI TES] ;

int n_akm suites;

u32 akm suites[NL80211 MAX_NR_AKM SUI TES] ;

bool control _port;

__bel6 control _port_ethertype;
bool control _port_no_encrypt;

b
Members

wpa_versions

cipher_group
n_ciphers pairwise
ciphers_pairwise[N-
L80211 MAX_N-
R_CIPHER_SUITES]

n_akm_suites

akm_suites NL80211_MAX_N-
R_AKM_SUITES]

control_port

control_port_ethertype

control_port_no_encrypt

indicates which, if any, WPA versions are enabled (from enum
nl80211 wpa versions)

group key cipher suite (or O if unset)
number of AP supported unicast ciphers

unicast key cipher suites

number of AKM suites

AKM suites

Whether user space controls |IEEE 802.1X port, i.e., sets/clears
NL80211 STA FLAG AUTHORI ZED. If true, the driver is re-
quired to assume that the port is unauthorized until authorized by
user space. Otherwise, port is marked authorized by default.

the control port protocol that should be allowed through even on
unauthorized ports

TRUE to prevent encryption of control port protocol frames.

65

Actions and configuration

Name

struct cfg80211 auth request — Authentication request data

Synopsis

struct cfg80211 auth_request {

struct cfg80211 bss * bss;

const u8 * ie;

size t ie_len;

enum nl 80211 aut h_type aut h_type;
const u8 * key;

u8 key_len;

u8 key_idx;

const u8 * sae dat a;

size_ t sae _data_ | en;

The BSS to authenticate with, the callee must obtain a reference to it if it needs to

Non-|E data to use with SAE or NULL. This starts with Authentication transaction

I
Members
bss
keep it.
ie Extra |Es to add to Authentication frame or NULL
ie len Length of ie buffer in octets
auth_type Authentication type (algorithm)
key WEP key for shared key authentication
key len length of WEP key for shared key authentication
key idx index of WEP key for shared key authentication
sae data
sequence number field.
sae data len Length of sae_data buffer in octets
Description

This structure provides information needed to complete |IEEE 802.11 authentication.

66

Actions and configuration

Name

struct cfg80211 assoc_request — (Re)Association request data

Synopsis

struct cfg80211 assoc_request {
struct cfg80211 bss * bss;
const u8 * ie;
const u8 * prev_bssid,;
size t ie_len;
struct cfg80211 crypto_settings crypto;
bool use_nfp;
u32 fl ags;
struct ieee80211 ht_cap ht_capa;
struct ieee80211 ht_cap ht_capa_nask;

struct ieee80211 vht_cap vht_capa;
struct ieee80211 vht_cap vht_capa_mask;

I
Members
bss The BSS to associate with. If the call is successful the driver is given a reference
that it must give back to cf g80211 send_r x_assoc or tocf g80211 as-
soc_t i nmeout . To ensure proper refcounting, new association requests while al-
ready associating must be rejected.
ie Extra |Es to add to (Re)Association Request frame or NULL
prev_bssid previous BSSID, if not NULL use reassociate frame
ie len Length of ie buffer in octets
crypto crypto settings
use_mfp Use management frame protection (IEEE 802.11w) in this association
flags See enum cfg80211 assoc req flags
ht_capa HT Capabilitiesover-rides. Valuessetin ht_capa mask will beusedin ht_capa. Un-
supported values will beignored.
ht_capa mask The bits of ht_capa which are to be used.
vht_capa VHT capability override
vht_capa_mask VHT capability mask indicating which fields to use
Description

This structure provides information needed to complete |IEEE 802.11 (re)association.

67

Actions and configuration

Name
struct cfg80211 deauth_request — Deauthentication request data

Synopsis

struct cfg80211 deaut h_request {
const u8 * bssid;
const u8 * ie;
size t ie_len;
ul6é reason_code;
bool | ocal _state_change;

I
Members

bssid the BSSID of the BSS to deauthenticate from

ie Extra |Es to add to Deauthentication frame or NULL

ie len Length of ie buffer in octets

reason_code The reason code for the deauthentication

local_state change if set, change local state only and do not set a deauth frame
Description

This structure provides information needed to complete |EEE 802.11 deauthentication.

68

Actions and configuration

Name
struct cfg80211_disassoc_request — Disassociation request data

Synopsis

struct cfg80211 di sassoc_request ({
struct cfg80211 bss * bss;
const u8 * ie;
size t ie_len;
ul6é reason_code;
bool | ocal _state_change;

I
Members
bss the BSS to disassociate from
ie Extra |Es to add to Disassociation frame or NULL
ie len Length of ie buffer in octets
reason_code The reason code for the disassociation
local_state change Thisisarequest for alocal state only, i.e., no Disassociation frame is to be
transmitted.
Description

This structure provides information needed to complete | EEE 802.11 disassocation.

69

Actions and configuration

Name

struct cfg80211 _ibss params— IBSS parameters

Synopsis

struct cfg80211 ibss_parans {

const u8 * ssid,;

const u8 * bssid;

struct cfg80211 chan_def chandef;
const u8 * ie;

u8 ssid |en;

ug8 ie len;

ulé beacon_interval;

u32 basic_rates;

bool channel fi xed;

bool privacy;

bool control _port;

bool userspace_handl es_dfs;

int ntast_rate[l EEEB0211 NUM BANDS] ;
struct ieee80211 ht _cap ht_capa;
struct ieee80211 ht_cap ht_capa_nask;

Members

I

ssid The SSID, will always be non-null.

bssid Fixed BSSID requested, maybe be NULL, if set do not search for
IBSSswith adifferent BSSID.

chandef defines the channel to use if no other IBSSto join can be found

ie information element(s) to include in the beacon

ssid_len The length of the SSID, will always be non-zero.

ie len length of that

beacon_interval

beacon interval to use

The channel should be fixed -- do not search for IBSSs to join on

thisis a protected network, keys will be configured after joining

basic_rates bitmap of basic rates to use when creating the IBSS
channel_fixed
other channels.
privacy
control_port

userspace handles dfs

whether user space controls IEEE 802.1X port, i.e., sets/clears
NL80211 STA FLAG AUTHORI ZED. If true, the driver is re-
quired to assume that the port is unauthorized until authorized by
user space. Otherwise, port is marked authorized by default.

whether user space controls DFS operation, i.e. changes the chan-
nel when aradar is detected. This is required to operate on DFS
channels.

70

Actions and configuration

mcast_rate[|EEE80211 NUM_BANDSr-band multicast rate index + 1 (0: disabled)

ht_capa HT Capabilities over-rides. Values set in ht_capa mask will be
used in ht_capa. Un-supported values will be ignored.
ht_capa mask The bits of ht_capa which are to be used.
Description

This structure defines the IBSS parameters for thej oi n_i bss method.

71

Actions and configuration

Name

struct cfg80211 connect_params — Connection parameters

Synopsis

struct cfg80211 connect _paramns {

struct ieee80211 channel * channel
struct ieee80211 channel * channel _hint;
const u8 * bssid;

const u8 * bssid_hint;

const u8 * ssid;

size_t ssid_|en;

enum nl 80211_aut h_t ype aut h_type;

const u8 * ie;

size t ie_len;

bool privacy;

enum nl 80211 nfp nfp;

struct cfg80211 crypto_settings crypto;
const u8 * key;

u8 key_l en;
u8 key_i dx;
u32 fl ags;

i nt bg_scan_peri od;

struct ieee80211 ht_cap ht_capa;

struct ieee80211 _ht_cap ht_capa_nask;
struct ieee80211 vht_cap vht_capa;
struct ieee80211_vht_cap vht_capa_mask;

b
Members

channel The channel to use or NULL if not specified (auto-select based on scan results)

channel_hint The channel of the recommended BSS for initial connection or NULL if not spec-
ified

bssid The APBSSID or NULL if not specified (auto-select based on scan results)

bssid_hint The recommended AP BSSID for initial connection to the BSS or NULL if
not specified. Unlike the bssi d parameter, the driver is allowed to ignore this
bssi d_hi nt if it hasknowledge of a better BSSto use.

ssid SSID

ssid len Length of ssid in octets

auth_type Authentication type (algorithm)

ie IEs for association request

ie len Length of assoc_iein octets

privacy indicates whether privacy-enabled APs should be used

72

Actions and configuration

mfp

crypto

key

key len
key_idx

flags

bg scan_period

ht_capa

ht_capa mask

vht_capa
vht_capa_mask

Description

indicate whether management frame protection is used

crypto settings

WEP key for shared key authentication

length of WEP key for shared key authentication

index of WEP key for shared key authentication

See enum cfg80211_assoc req flags

Background scan period in seconds or -1 to indicate that default valueisto be used.

HT Capabilities over-rides. Values set in ht_capa mask will be used in ht_capa.
Un-supported values will be ignored.

The bits of ht_capa which are to be used.
VHT Capability overrides

The bits of vht_capawhich are to be used.

This structure provides information needed to complete |EEE 802.11 authentication and association.

73

Actions and configuration

Name
struct cfg80211 pmksa— PMK Security Association

Synopsis

struct cfg80211 prksa {
const u8 * bssid;
const u8 * pnkid;
I
Members
bssid The AP'sBSSID.
pmkid The PMK material itself.

Description

This structure is passed to the set/del _pnksa method for PMKSA caching.

74

Actions and configuration

Name
cfg80211_rx_mlme_mgmt — notification of processed MLME management frame

Synopsis

void cfg80211 rx_m me_ngm (struct net_device * dev, const u8 * buf,
size_t len);

Arguments

dev network device
buf authentication frame (header + body)

| en length of the frame data

Description

This function is called whenever an authentication, disassociation or deauthentication frame has been
received and processed in station mode.

After being asked to authenticate via cfg80211 ops

:aut h the driver must call either thisfunction or cf g80211 aut h_ti neout.

After being asked to associate via cfg80211 ops

:assoc thedriver must call either thisfunction or cf g80211 aut h_t i meout . While connected, the
driver must callsthis for received and processed disassociation and deauthentication frames. If the frame
couldn't be used because it was unprotected, the driver must call the function cf g80211 rx_unpr o-
t _m me_ngnt instead.

This function may sleep. The caller must hold the corresponding wdev's mutex.

75

Actions and configuration

Name

cfg80211 auth_timeout — notification of timed out authentication

Synopsis

void cfg80211 aut h_tineout (struct net_device * dev, const u8 * addr);

Arguments

dev network device

addr The MAC address of the device with which the authentication timed out

Description

This function may sleep. The caller must hold the corresponding wdev's mutex.

76

Actions and configuration

Name
cfg80211 rx_assoc_resp — notification of processed association response

Synopsis

voi d cfg80211 rx_assoc_resp (struct net_device * dev, struct cfg80211 b-
ss * bss, const u8 * buf, size_t len, int uapsd_queues);

Arguments
dev network device
bss the BSS that association was requested with, ownership of the pointer moves to
cfg80211 in this call
buf authentication frame (header + body)
I en length of the frame data

uapsd_queues bitmap of ACs configured to uapsd. -1 if n/a.

After being asked to associate via cfg80211 ops

:assoc thedriver must call either thisfunction or cf g80211_aut h_t i neout .

This function may sleep. The caller must hold the corresponding wdev's mutex.

77

Actions and configuration

Name
cfg80211 assoc_timeout — notification of timed out association

Synopsis
voi d cfg80211_assoc_ti meout (struct net_device * dev, struct cfg80211 b-
ss * bss);

Arguments

dev network device

bss TheBSS entry with which association timed out.

Description

This function may sleep. The caller must hold the corresponding wdev's mutex.

78

Actions and configuration

Name

cfg80211 tx_mime_mgmt — notification of transmitted deauth/disassoc frame

Synopsis

void cfg80211 tx m me_ngm (struct net_device * dev, const u8 * buf,
size_t len);

Arguments
dev network device
buf 802.11 frame (header + body)

| en length of the frame data

Description

Thisfunction is called whenever deauthentication has been processed in station mode. This includes both
received deauthentication frames and locally generated ones. This function may sleep. The caller must
hold the corresponding wdev's mutex.

79

Actions and configuration

Name
cfg80211 ibss joined — notify cfg80211 that device joined an IBSS

Synopsis

void cfg80211 ibss _joined (struct net_device * dev, const u8 * bssid,
struct ieee80211 channel * channel, gfp_t gfp);

Arguments
dev network device
bssi d the BSSID of the IBSS joined
channel thechannel of the IBSS joined

of p alocation flags

Description

This function notifies cfg80211 that the device joined an IBSS or switched to a different BSSID. Be-
fore this function can be called, either a beacon has to have been received from the IBSS, or one of the
cfg80211 inform_bss{, frame} functions must have been called with the locally generated beacon -- this
guarantees that there is always a scan result for this IBSS. cfg80211 will handle the rest.

80

Actions and configuration

Name
cfg80211_connect_result — notify cfg80211 of connection result
Synopsis

voi d cfg80211 connect _result (struct net_device * dev, const u8 * bssid,
const u8 * req_ie, size t req_ie_len, const u8 * resp_ie, size t re-
sp_ie_len, ul6 status, gfp_t gfp);

Arguments
dev network device
bssi d the BSSID of the AP
req_ie association request | Es (maybe be NULL)

req_ie | en association request |IEslength
resp_ie association response | Es (may be NULL)
resp_i e_| en assocresponse |Eslength

st at us status code, 0 for successful connection, use WLAN_S-
TATUS_UNSPECI FI ED_FAI LURE if your device cannot give you the real status
code for failures.

of p allocation flags

Description

It should be called by the underlying driver whenever connect has succeeded.

81

Actions and configuration

Name
cfg80211_roamed — notify cfg80211 of roaming

Synopsis
voi d cfg80211 roanmed (struct net_device * dev, struct ieee80211 channel

* channel , const u8 * bssid, const u8 * req_ie, size_t req_ie_len, const
u8 * resp_ie, size_t resp_ie_len, gfp_t gfp);

Arguments
dev network device
channel the channel of the new AP
bssid the BSSID of the new AP
req_ie association request | Es (maybe be NULL)

reg_ie_l en association request |Eslength
resp_ie association response |Es (may be NULL)
resp_i e | en assocresponse |Eslength

of p allocation flags

Description

It should be called by the underlying driver whenever it roamed from one AP to another while connected.

82

Actions and configuration

Name
cfg80211_disconnected — notify cfg80211 that connection was dropped

Synopsis

voi d cfg80211_di sconnected (struct net_device * dev, ul6 reason, const
u8 * ie, size_t ie_len, bool locally_generated, gfp_t gfp);

Arguments
dev network device
reason reason code for the disconnection, set it to O if unknown
ie information elements of the deauth/disassoc frame (may be NULL)
ie len length of IEs

| ocal | y_generated disconnection was requested locally

of p alocation flags

Description

After it calsthis function, the driver should enter an idle state and not try to connect to any AP any more.

83

Actions and configuration

Name
cfg80211 ready on channel — notification of remain_on_channel start

Synopsis

voi d cfg80211 ready_on_channel (struct wirel ess_dev * wdev, u64 cookie,
struct ieee80211 channel * chan, unsigned int duration, gfp_t gfp);

Arguments

wdev wireless device

cooki e the request cookie

chan The current channel (from remain_on_channel request)

durati on Durationin milliseconds that the driver intents to remain on the channel

of p allocation flags

Actions and configuration

Name

cfg80211 remain_on_channel_expired — remain_on_channel duration expired
Synopsis

void c¢fg80211 remai n_on_channel _expired (struct w reless_dev * wdev,
u64 cookie, struct ieee80211 channel * chan, gfp_t gfp);

Arguments

wdev wireless device
cooki e therequest cookie
chan The current channel (from remain_on_channel request)

of p alocation flags

85

Actions and configuration

Name
cfg80211 new_sta— notify userspace about station

Synopsis

void cfg80211 new sta (struct net_device * dev, const u8 * mac_addr,
struct station_info * sinfo, gfp_t gfp);

Arguments

dev the netdev
mac_addr the station's address
sinfo the station information

of p alocation flags

86

Actions and configuration

Name

cfg80211_rx_mgmt — notification of received, unprocessed management frame
Synopsis

bool cfg80211 rx_mgmt (struct wirel ess_dev * wdev, int freq, int sig_dbm
const u8 * buf, size_t len, u32 flags);

Arguments
wdev wireless device receiving the frame
freq Frequency on which the frame was received in MHz

si g_dbm signal strengthin mBm, or O if unknown
buf Management frame (header + body)
I en length of the frame data

fl ags flags, as defined in enum nl80211_rxmgmt_flags
Description

This function is called whenever an Action frame is received for a station mode interface, but is not
processed in kernel.

Return

t r ue if auser space application hasregistered for thisframe. For action frames, that makesit responsible
for rejecting unrecognized action frames; f al se otherwise, in which case for action frames the driver is
responsible for regjecting the frame.

87

Actions and configuration

Name
cfg80211 mgmt_tx_status— notification of TX status for management frame

Synopsis

void cfg80211 nmgnt tx_status (struct wireless_dev * wdev, u64 cookie,
const u8 * buf, size_t len, bool ack, gfp_t gfp);

Arguments

wdev wireless device receiving the frame

cooki e Cookiereturned by cfg80211 ops::ngnt _t X

buf Management frame (header + body)

I en length of the frame data

ack Whether frame was acknowledged

of p context flags
Description

Thisfunction is called whenever a management frame was requested to be

transmitted with cfg80211 ops

:mgnt _t X to report the TX status of the transmission attempt.

88

Actions and configuration

Name

cfg80211_cgm_rssi_notify — connection quality monitoring rssi event

Synopsis

voi d cfg80211 cqmrssi_notify (struct net_device * dev, enumnl 80211 c-
gmrssi_threshol d_event rssi_event, gfp_t gfp);

Arguments

dev network device

rssi_event thetriggered RSSI event

of p context flags

Description
This function is called when a configured connection quality monitoring rssi threshold reached event oc-
curs.

89

Actions and configuration

Name
cfg80211 cgm_pktloss notify — notify userspace about packetloss to peer

Synopsis

void cfg80211 cgm pktloss_notify (struct net_device * dev, const u8 *
peer, u32 num packets, gfp_t gfp);

Arguments
dev network device
peer peer's MAC address

num packets how many packets were lost -- should be a fixed threshold but probably no less than
maybe 50, or maybe a throughput dependent threshold (to account for temporary in-
terference)

of p context flags

90

Actions and configuration

Name
cfg80211 michael_mic_failure — notification of Michael MIC failure (TKIP)

Synopsis

void cfg80211 nichael _nic failure (struct net_device * dev, const u8
* addr, enum nl 80211 key type key type, int key id, const u8 * tsc,

gfp_t gfp);
Arguments
dev network device
addr The source MAC address of the frame

key_type Thekey typethat the received frame used

key id Key identifier (0..3). Can be -1 if missing.

tsc The TSC value of the frame that generated the MIC failure (6 octets)
of p alocation flags
Description

This function is called whenever the local MAC detects a MIC failure in areceived frame. This matches
with MLME-MICHAELMICFAILURE.i ndi cati on primitive.

91

Chapter 3. Scanning and BSS list
handling

The scanning process itself is fairly smple, but cfg80211 offers quite a bit of helper functionality. To
start a scan, the scan operation will be invoked with a scan definition. This scan definition contains the
channels to scan, and the SSIDs to send probe requests for (including the wildcard, if desired). A passive
scan isindicated by having no SSIDsto probe. Additionally, ascan request may contain extrainformation
elements that should be added to the probe request. The |Es are guaranteed to be well-formed, and will
not exceed the maximum length the driver advertised in the wiphy structure.

When scanning findsaBSS, cfg80211 needsto be notified of that, becauseit isresponsible for maintaining
the BSS list; the driver should not maintain alist itself. For this notification, various functions exist.

Since drivers do not maintain a BSS list, there are also a number of functions to search for a BSS and
obtain information about it from the BSS structure cfg80211 maintains. The BSSlist isalso made available
to userspace.

92

Scanning and BSS list handling

Name
struct cfg80211_ssid — SSID description

Synopsis

struct cfg80211 ssid {
u8 ssid[| EEE80211 MAX SSID LEN];
u8 ssid |en;

b
Members

ssid[IEEES0211_MAX_SSID_LEN] the SSID

ssid len length of the ssid

93

Scanning and BSS list handling

Name

struct cfg80211_scan_request — scan request description

Synopsis

bool aborted;
bool notifi ed;
bool no_cck;
struct ieee80211_channel

b

Members

ssids

n_ssids

n_channels

scan_width

ie

ie len

flags

struct cfg80211 scan_request {
struct cfg80211 ssid * ssids;

int n_ssids;
u32 n_channel s;

enum nl 80211 bss_scan_wi dth scan_wi dt h;

const u8 * ie;
size t ie_len;
u32 fl ags;

u32 rates[| EEE80211_NUM BANDS] ;
struct wireless_dev * wdev;

u8 mac_addr [ETH ALEN] ;

u8 mac_addr _nmask[ETH_ALEN ;

struct w phy * wi phy;

unsi gned | ong scan_start;

rates[|EEE80211 NUM_BANDS]
wdev
mac_addr[ETH_ALEN]

mac_addr_mask[ETH_ALEN]

wiphy

scan_start

* channel s[0] ;

SSIDs to scan for (active scan only)

number of SSIDs

total number of channels to scan

channel width for scanning

optional information element(s) to add into Probe Request or NULL
length of ie in octets

bit field of flags controlling operation

bitmap of rates to advertise for each band

the wireless device to scan for

MAC address used with randomisation

MA C address mask used with randomisation, bits that are 0 in the
mask should be randomised, bits that are 1 should be taken from
themac_addr

the wiphy this was for

time (in jiffies) when the scan started

94

Scanning and BSS list handling

aborted (internal) scan request was notified as aborted

notified (internal) scan request was notified as done or aborted
no_cck used to send probe requests at non CCK rate in 2GHz band
channel§[0] channels to scan on.

95

Scanning and BSS list handling

Name
cfg80211 scan done — notify that scan finished

Synopsis
void cfg80211 scan_done (struct cfg80211 scan_request * request, bool
aborted);

Arguments

request the corresponding scan request

aborted settotrueif the scan was aborted for any reason, userspace will be notified of that

96

Scanning and BSS list handling

Name
struct cfg80211_bss — BSS description

Synopsis

struct cfg80211 bss {
struct ieee80211 channel * channel
enum nl 80211 bss_scan_wi dth scan_wi dt h;
const struct cfg80211 bss ies __rcu * ies;
const struct cfg80211 bss ies _ rcu * beacon_ies;
const struct cfg80211 bss ies __rcu * proberesp_ies;
struct cfg80211 bss * hi dden_beacon_bss;
s32 signal
ul6é beacon_interval;
ulé capability;
u8 bssi d[ETH ALEN] ;

u8 priv[0];
1
Members

channel channel thisBSSison

scan_width width of the control channel

ies the information elements (Note that there is no guarantee that these are well-
formed!); thisisapointer to either the beacon_iesor proberesp_iesdepending
on whether Probe Response frame has been received. It is always non-NULL.

beacon ies the information elements from the last Beacon frame (implementation note:
if hi dden_beacon_bss isset this struct doesn't own the beacon ies, but
they're just pointersto the ones from the hi dden_beacon_bss struct)

proberesp_ies the information elements from the last Probe Response frame

hidden_beacon_bss in case this BSS struct represents a probe response from a BSS that hides
the SSID in its beacon, this points to the BSS struct that holds the beacon
data. beacon_i es is gtill valid, of course, and points to the same data as
hidden _beacon_bss->beacon iesin that case.

signal signal strength value (type depends on the wiphy's signal _type)

beacon_interval the beacon interval as from the frame

capability the capability field in host byte order

bssid{ETH_ALEN] BSSID of the BSS

priv[0] private areafor driver use, has at least wiphy->bss priv_size bytes

Description

97

Scanning and BSS list handling

This structure describes a BSS (which may also be a mesh network) for use in scan results and similar.

98

Scanning and BSS list handling

Name

struct cfg80211 _inform_bss— BSSinform data

Synopsis

struct cfg80211 informbss {
struct ieee80211 channel * chan;
enum nl 80211 bss _scan_wi dth scan_wi dt h;

s32 signal;

u64 boottime_ns;

I
Members
chan
scan_width
signal

boottime _ns

channel the frame was received on
scan width that was used
signal strength value, according to the wiphy's signal type

timestamp (CLOCK_BOOTTIME) when the information was received; should match
thetimewhen theframewas actually received by the device (not just by the host, in case
it was buffered on the device) and be accurate to about 10ms. If theframeisn't buffered,
just passing the return value of kt i me_get boot _ns islikely appropriate.

99

Scanning and BSS list handling

Name
cfg80211 inform_bss frame data— inform cfg80211 of areceived BSS frame

Synopsis
struct c¢fg80211 bss * c¢fg80211 informbss frame_data (struct w phy *

wi phy, struct cfg80211 i nformbss * data, struct ieee80211 ngmt * ngm,
size_t len, gfp_t gfp);

Arguments
wi phy thewiphy reporting the BSS
data theBSS metadata
ngnt the management frame (probe response or beacon)
I en length of the management frame
of p context flags
Description

Thisinforms cfg80211 that BSS information was found and the BSS should be updated/added.

Return

A referenced struct, must be released with cf g80211 _put _bss! Or NULL on error.

100

Scanning and BSS list handling

Name

cfg80211 inform_bss data— inform cfg80211 of a new BSS

Synopsis

struct c¢fg80211 bss * c¢fg80211 i nformbss_data (struct w phy * w phy,

struct cfg80211 informbss * data,
const u8 * bssid, u64 tsf, ul6 capability, ul6 beacon_interval,

u8 * ie, size_t ielen, gfp_t gfp);

Arguments
Wi phy
dat a
ftype
bssi d
t sf
capability
beacon_i nterval
ie
ielen

gfp

Description

Thisinforms cfg80211 that BSS information was found and the BSS should be updated/added.

Return

the wiphy reporting the BSS

the BSS metadata

frame type (if known)

the BSSID of the BSS

the TSF sent by the peer in the beacon/probe response (or 0)
the capability field sent by the peer

the beacon interval announced by the peer

additional | Es sent by the peer

length of the additional IEs

context flags

A referenced struct, must be released with cf g80211_put _bss! Or NULL on error.

enum cf 980211 bss_frame_type ftype,

const

101

Scanning and BSS list handling

Name
cfg80211 unlink_bss— unlink BSS from internal data structures

Synopsis
void cfg80211 unlink_bss (struct w phy * w phy, struct cfg80211 bss *
bss);

Arguments

wi phy thewiphy

bss the bss to remove

Description

This function removes the given BSS from the internal data structures thereby making it no longer show
up in scan results etc. Use this function when you detect a BSS is gone. Normally BSSes will also time

out, so it is not necessary to use thisfunction at all.

102

Scanning and BSS list handling

Name
cfg80211 find_ie— find information element in data

Synopsis
const u8 * cfg80211 find_ie (u8 eid, const

Arguments

eid elementID
i es dataconsisting of IEs

I en length of data

Return

u8 * ies, int len);

NULL if the element ID could not be found or if the element isinvalid (claims to be longer than the given
data), or a pointer to the first byte of the requested element, that is the byte containing the element ID.

Note

There are no checks on the element length other than having to fit into the given data.

103

Scanning and BSS list handling

Name
ieeeB0211_bss get_ie— find IE with given ID

Synopsis
const u8 * ieee80211 bss get _ie (struct cfg80211 bss * bss, u8 ie);

Arguments

bss thebssto search

ie thelEID

Description

Note that the return value is an RCU-protected pointer, sor cu_r ead_| ock must be held when calling
this function.

Return

NULL if not found.

104

Chapter 4. Utility functions

cfg80211 offers a number of utility functions that can be useful.

105

Utility functions

Name

ieeeB0211 _channel_to_frequency — convert channel number to frequency

Synopsis

i nt i eee80211_channel _to_frequency (int chan, enumi eee80211 band band);

Arguments

chan channel number

band band, necessary due to channel number overlap

Return

The corresponding frequency (in MHz), or 0 if the conversion failed.

106

Utility functions

Name

ieeeB0211_frequency to_channel — convert frequency to channel number
Synopsis

int ieee80211 frequency_to_channel (int freq);
Arguments

freq center frequency
Return

The corresponding channel, or O if the conversion failed.

107

Utility functions

Name
ieeeB0211 get channel — get channel struct from wiphy for specified frequency

Synopsis
struct ieee80211 channel * ieee80211 get _channel (struct wi phy * wi phy,
int freq);

Arguments

wi phy the struct wiphy to get the channel for

freq thecenter frequency of the channel

Return

The channel struct fromwi phy at f r eq.

108

Utility functions

Name
ieeeB0211 get response rate — get basic rate for a given rate

Synopsis

struct i eee80211 rate * i eee80211 get _response_rate (struct
i eee80211 supported_band * sband, u32 basic_rates, int bitrate);

Arguments
sband the band to look for ratesin
basi c_rat es bitmap of basic rates

bitrate the bitrate for which to find the basic rate

Return

The basic rate corresponding to a given hitrate, that is the next lower hitrate contained in the basic rate
map, which is, for this function, given as a bitmap of indices of rates in the band's bitrate table.

109

Utility functions

Name
ieee80211_hdrlen — get header length in bytes from frame control
Synopsis
unsigned int _ attribute_const__ ieee80211 hdrlen (__lel6 fc);
Arguments
fc frame control field in little-endian format
Return

The header length in bytes.

110

Utility functions

Name
ieeeB0211 get hdrlen_from_skb — get header length from data

Synopsis
unsi gned i nt i eee80211 get hdrl en_from skb (const struct sk_buff * skb);

Arguments

skb theframe

Description

Given an skb with araw 802.11 header at the data pointer this function returns the 802.11 header length.

Return

The 802.11 header length in bytes (not including encryption headers). Or O if the data in the sk_buff is
too short to contain avalid 802.11 header.

111

Utility functions

Name

struct ieeeB0211 radiotap_iterator — tracks walk thru present radiotap args

Synopsis

struct ieee80211 radiotap_iterator {
struct ieee80211 radiotap_header * _rtheader;

const struct
const struct
unsi gned char

i eee80211 radi ot ap_vendor _nanespaces * _vns;
i eee80211 radi ot ap_nanespace * current_nanespace;
_arg;

unsi gned char * _next_ns_dat a;
__le32 * next_bitnmap;

unsi gned char * this_arg;

int this_arg_index;

int this_arg_size;

int is_radiotap_ns;

int _max_| ength;
int _arg_index;

uint32_t _bitmap_shifter;
int _reset_on_ext;

b
Members

_rtheader
_vns

current_namespace

_ag
_next_ns data
_next_bitmap

this_arg

this_arg_index

this_arg_size

is radiotap_ns

_max_length
_arg_index

_bitmap_shifter

pointer to the radiotap header we are walking through
vendor namespace definitions

pointer to the current namespace definition (or internally NULL if the current
namespace is unknown)

next argument pointer
beginning of the next namespace's data
internal pointer to next present u32

pointer to current radiotap arg; it isvalid after each call toi eee80211 r a-
di ot ap_i terator_next butalsoafteri eee80211 radiotap_it-
erat or _i ni t whereitwill point to the beginning of the actual data portion

index of current arg, valid after each successful call toi eee80211_r adi o-
tap_iterator_next

length of the current arg, for convenience

indicates whether the current namespace is the default radiotap namespace or
not

length of radiotap header in cpu byte ordering
next argument index

internal shifter for curr u32 bitmap, b0 set == arg present

112

Utility functions

_reset_on ext internal; reset the arg index to 0 when going to the next bitmap word

Description

Describes the radiotap parser state. Fields prefixed with an underscore must not be used by users of the
parser, only by the parser internally.

113

Chapter 5. Data path helpers

In addition to generic utilities, cfg80211 also offers functionsthat help implement the data path for devices
that do not do the 802.11/802.3 conversion on the device.

114

Data path helpers

Name
ieeeB0211 data to 8023 — convert an 802.11 data frame to 802.3

Synopsis

int i eee80211 data to_ 8023 (struct sk _buff * skb, const u8 * addr, enum
nl 80211 iftype iftype);

Arguments
skb the 802.11 data frame
addr the device MAC address

i ftype thevirtua interfacetype

Return

0 on success. Non-zero on error.

115

Data path helpers

Name
ieee80211 data from_8023 — convert an 802.3 frame to 802.11

Synopsis

int ieee80211 data from 8023 (struct sk _buff * skb, const u8 * addr,
enum nl 80211 iftype iftype, const u8 * bssid, bool qos);

Arguments

skb the 802.3 frame

addr the device MAC address

i ftype thevirtua interfacetype

bssid thenetwork bssid (used only for iftype STATION and ADHOC)

gos build 802.11 QoS data frame

Return

0 on success, or a negative error code.

116

Data path helpers

Name
ieeeB0211_amsdu_to 8023s— decode an |EEE 802.11n A-MSDU frame

Synopsis
voi d i eee80211 anmsdu_t o_8023s (struct sk_buff * skb, struct sk_buff_head

* list, const u8 * addr, enumnl 80211 iftype iftype, const unsigned int
extra_headroom bool has_ 80211 header);

Arguments
skb Theinput IEEE 802.11n A-MSDU frame.
list The output list of 802.3 frames. It must be alocated and initialized by by the
caler.
addr The device MAC address.
i ftype The device interface type.

extra_headroom The hardware extra headroom for SKBsinthel i st .

has 80211 header Setittrueif SKB iswith IEEE 802.11 header.

Description

Decode an |IEEE 802.11n A-MSDU frame and convert it to alist of 802.3 frames. Thel i st will be empty
if the decode fails. The skb is consumed after the function returns.

117

Data path helpers

Name
cfg80211 classify8021d — determine the 802.1p/1d tag for a data frame
Synopsis
unsi gned int c¢fg80211 classify8021d (struct sk_buff * skb, struct
cf 980211 qos_map * qos_map);
Arguments
skb the data frame
gos_map Interworking QoS mapping or NULL if not in use
Return

The 802.1p/1d tag.

118

Chapter 6. Regulatory enforcement
Infrastructure

TODO

119

Regulatory enforcement infrastructure

Name
regulatory_hint — driver hint to the wireless core aregulatory domain
Synopsis

int regulatory_hint (struct w phy * w phy, const char * al pha2);

Arguments

wi phy thewireless device giving the hint (used only for reporting conflicts)

al pha2 thelSO/IEC 3166 alpha2 the driver claimsits regulatory domain should bein. If r d is set this
should be NULL. Note that if you set thisto NULL you should still set rd->alpha2 to some
accepted alpha2.

Description

Wireless drivers can use this function to hint to the wireless core what it believes should be the current
regulatory domain by givingit an | SO/IEC 3166 al pha2 country codeit knowsitsregulatory domain should
bein or by providing acompletely build regulatory domain. If thedriver providesan | SO/IEC 3166 alpha2
userspace will be queried for aregulatory domain structure for the respective country.

The wiphy must have been registered to cfg80211 prior to this call. For cfg80211 drivers this means
you must first usewi phy_r egi st er, for mac80211 driversyou must first usei eee80211 _regi s-
ter _hw

Drivers should check the return value, its possible you can get an -ENOMEM.

Return

0 on success. -ENOMEM.

120

Regulatory enforcement infrastructure

Name
wiphy _apply_custom_regulatory — apply a custom driver regulatory domain

Synopsis

voi d wi phy_apply_customregul atory (struct w phy * w phy, const struct
i eee80211 regdonmain * regd);

Arguments

wi phy thewireless device we want to process the regulatory domain on

regd thecustom regulatory domain to use for this wiphy

Description

Drivers can sometimes have custom regulatory domains which do not apply to a specific country. Drivers
can use this to apply such custom regulatory domains. This routine must be called prior to wiphy regis-
tration. The custom regulatory domain will be trusted completely and as such previous default channel
settings will be disregarded. If no ruleisfound for a channel on the regulatory domain the channel will be
disabled. Drivers using this for awiphy should also set the wiphy flag REGULATORY _CUSTOM_REG
or cfg80211 will set it for the wiphy that called this helper.

121

Regulatory enforcement infrastructure

Name
freq_reg_info — get regulatory information for the given frequency

Synopsis

const struct ieee80211 reg rule * freq_reg_info (struct w phy * w phy,
u32 center_freq);

Arguments

Wi phy the wiphy for which we want to process this rule for

center_freq Frequencyin KHz for which we want regulatory information for

Description

Usethisfunction to get the regul atory rule for a specific frequency on agiven wirelessdevice. If thedevice
has a specific regulatory domain it wants to follow we respect that unless a country |1E has been received
and processed already.

Return

A valid pointer, or, when an error occurs, for example if no rule can be found, the return value is encoded
using ERR PTR. Usel S _ERRto check and PTR_ERR to obtain the numeric return value. The numeric
return value will be -ERANGE if we determine the given center_freq does not even have aregulatory rule
for afrequency rangein the center_fregq'sband. Seef r eq_i n_r ul e_band for our current definition of
aband -- thisis purely subjective and right now it's 802.11 specific.

122

Chapter 7. RFkill integration

RFKill integration in cfg80211 is almost invisible to drivers, as cfg80211 automatically registers an rfkill
instance for each wireless device it knows about. Soft kill isalso translated into disconnecting and turning
all interfaces off, drivers are expected to turn off the device when all interfaces are down.

However, devices may have a hard RFkill line, in which case they also need to interact with the rfkill
subsystem, via cfg80211. They can do this with afew helper functions documented here.

123

RFKill integration

Name
wiphy_rfkill_set hw_state — notify cfg80211 about hw block state

Synopsis
void wi phy_rfkill_set_hw state (struct wi phy * w phy, bool bl ocked);
Arguments

Wi phy the wiphy

bl ocked block status

124

RFKill integration

Name
wiphy_rfkill_start_polling — start polling rfkill

Synopsis
void wi phy_rfkill _start_polling (struct w phy * w phy);

Arguments

wi phy thewiphy

125

RFKill integration

Name
wiphy_rfkill_stop_polling — stop polling rfkill

Synopsis
void wi phy_rfkill_stop_polling (struct w phy * w phy);

Arguments

wi phy thewiphy

126

Chapter 8. Test mode

Test mode is a set of utility functions to allow drivers to interact with driver-specific tools to aid, for
instance, factory programming.

This chapter describes how drivers interact with it, for more information see the nl80211 book's chapter
onit.

127

Test mode

Name
cfg80211 testmode alloc_reply skb — allocate testmode reply
Synopsis

struct sk _buff * ¢fg80211 testnode_alloc_reply_skb (struct w phy *
wi phy, int approxlen);

Arguments
Wi phy the wiphy

appr oxl en an upper bound of the length of the data that will be put into the skb

Description

This function allocates and pre-fills an skb for a reply to the testmode command. Since it is intended for
areply, caling it outside of thet est node_cnd operationisinvalid.

The returned skb is pre-filled with the wiphy index and set up in away that any data that is put into the
skb (with skb_put , nl a_put or similar) will end up being withinthe NL80211 ATTR_TESTDATA
attribute, so al that needsto be done with the skb isadding datafor the corresponding userspace tool which
can then read that data out of the testdata attribute. Y ou must not modify the skb in any other way.

When done, call cf g80211 t est node_r epl y with the skb and return its error code as the result of
thet est node_cnd operation.

Return

An allocated and pre-filled skb. NULL if any errors happen.

128

Test mode

Name
cfg80211 testmode reply — send the reply skb

Synopsis
int cfg80211 testnode_reply (struct sk _buff * skb);

Arguments

skb The skb, must have been allocated with cf g80211 t est node_al | oc_reply_skb

Description

Since calling this function will usually be the last thing before returning from thet est node_cnd you
should return the error code. Note that this function consumes the skb regardless of the return value.

Return

An error code or 0 on success.

129

Test mode

Name
cfg80211 testmode alloc_event_skb — allocate testmode event

Synopsis

struct sk _buff * ¢fg80211 testnode_alloc_event_skb (struct w phy *
wi phy, int approxlen, gfp_t gfp);

Arguments
Wi phy the wiphy
appr oxl en an upper bound of the length of the data that will be put into the skb

of p alocation flags

Description

This function allocates and pre-fills an skb for an event on the testmode muilticast group.

The returned skb is set up in the same way aswith cf g80211 test node_al | oc_repl y_skb but
prepared for an event. Asthere, you should simply add datatoit that will thenendupintheNL80211 AT-
TR _TESTDATA attribute. Again, you must not modify the skb in any other way.

When done filling the skb, call cf g80211_t est node_event with the skb to send the event.

Return

An allocated and pre-filled skb. NULL if any errors happen.

130

Test mode

Name
cfg80211 testmode event — send the event

Synopsis

void cfg80211 testnode_event (struct sk _buff * skb, gfp_t gfp);

Arguments

skb The skb, must have been allocated with cf g80211 t est node_al | oc_event _skb
of p dlocation flags

Description

This function sends the given skb, which must have been allocated by cf g80211 t est node_al -
| oc_event _skb, asan event. It always consumesiit.

131

The mac80211 subsystem

The mac80211 subsystem

Abstract

mac80211 isthe Linux stack for 802.11 hardware that implements only partial functionality in hard- or firmware. This
document defines the interface between mac80211 and low-level hardware drivers.

If you're reading this document and not the header file itself, it will be incomplete because not all documentation has
been converted yet.

Table of Contents

I. The basic macB0211 driver INTEITACEouu i 1
1. BasiC hardware handling oo 3
SIUCE 1€8EB021T NWW ...ttt e e eaas 4
enumM 1€e80211 MW _FlaOS ..uunieii et 7
SET_IEEEBO21L DEV ...ttt 11
SET_IEEE80211 PERM_ADDRiiiiiiiiiciii ettt 12

SEUCE 18EEB02LL OIS vt eeeerin e ee ettt e ettt e e ettt e ettt e ettt ettt e et e e e e e e 13
16880211 AllOC MW ...t 24
186880211 regiSter MW ..cve e 25
186880211 UNregiSter NWcceeeiie e e 26
16880211 freB NW ...t e 27

2. PHY CONFIQUIBLION ...ttt ettt e et e et e e et e e e e e e eeenes 28
StrUCE 1€8E8021L CONF ...ttt e e 29
enum 1eeeB80211 CONf_FlagS ...cvuieii e 31

3. VIrtUBl INEEITACES ..ot 32
StrUCE 1€8EB021L Vit et 33

4. Receive and tranSmMit PrOCESSINGccevvuuerertuaeeettieeeteia et eet e e eat e e e st eeeab e eeenaes 35
What ShoUld DB NEIe ... e 35
Frame fOMEL ..o e e 35
Packet aligNMENtiiiiiii e 35
Calling into Mac80211 from INLEMTUDESeeieit et 35
fUNCLONSAEFTNITIONS ...t e 36

5. Frame flltEIING ..ooveieieei e e 67
enum 1eeeB80211 filter flagsc.vieeiiii e 68

6. The MacB0211 WOIKQUEUE it ettt ettt et e et e e e et e e eenaaeeees 69
1€6880211 UEUE WOFK ...ttt ettt e e e e et e e e e e et e e e eeneaes 70
ieeeB0211_queue delayed WOIKooouuiiiiii e 71

1. Advanced driver INEEITACEoiee e e e e e 72
A =D =¥ oo o APPSR PPN 74
i1€eeB0211 _get tX €0 NAIME ...cuuiii e e e 75
1€ee80211 gt X 180 NAMEeeeiiiiie e 76
ieeeB0211 _get aSSOC €0 NAIMEceuiiiiee et 77
ieeeB0211 _get radio 1€d NAMEc..uiiii e 78
struct ieeeB0211 Pt BlINKeiieie e 79
enum ieee80211 tpt_led trigger_flagsooevreiiiiii e 80
ieeeB0211 _create tPt 10 trQOEr ... oiee e 81

8. Hardware Crypto aCCEIEIatiONciiuueieiiii et 82
ENUM SELKEY CIM ..ttt e e e e e et e ean e eeees 83
struct ieee80211 KEY CONFueiei e e 84
enum ieeeB80211_KeY FlagSccvun it 85
1€0680211_gEt_tKIP_ PIKiieeii ettt 87
1€0280211_get_tKIP_PIK IV ...eeeiitiee it 88
1€0680211_ gt _tKIP 2Keieeii ettt 89

O. POWEISAVE SUPPONT ... eeeeitii ettt ettt e e et e e et et e e e e e 90
10. BEaCON Filter SUPPOIT . .eeeeieeeeii ettt e 91
16680211 BEACON T0SS .. .iieieii it 92

11. Multiple queues and QOS SUPPOITuuueiieiiie ettt ettt e e 93
struct 1eeeB0211_tX_QUEUE PEIAITIScuvuueiritneeeenti e eeentiaeeeeetn e eeenta e eeentn e eeentaaaees 94

12. ACCESS POINE MO SUPPONT ... eeeete ettt e ettt e ettt e ettt e et e et e e e e e e et e eeenn e eenenns 95
Support for POWErsaVing ClIENTSiiiiiii e 95

13. Supporting multiple virtual INtErfacescouuiiiiiiii e 105

CXXXIiV

The mac80211 subsystem

ieeeB0211 iterate active iNtErfaCeScvvueiie i 106
ieeeB0211 iterate active interfaces alomiCcccvvvieiiiiiiii i 107

14, Station haNAIiNG ...cconieie e 108
ST AT == S0 2 I v 109
ENUM Sta NOLITY CM ..o e 111
172 S0 2 I 1o R - T 112
ieeeB0211 find sta by ifaddrccouiiiiiii 113

15. Hardware sCan Offloadoooiiiiniiiiii e e e 114
ieeeB0211 scan COMPIELEAccvuiiii e e 115

SN0 o (= o - (o o Pt 116
TX A-MPDU aggregationcccuuiiiiiieiiieiiii e e e e e e e e s e e e st e e et e e eanaeee 116

RX A-MPDU aggregationcccuuiiiieeiiieeiiieeeiie e e e e e e e e s e e e et e e eeeeeaneeenes 116

17. Spatial Multiplexing POWersave (SMPS)oiiiiiiiii e 118
L= S 02 I = o =S s 14 P 119
enum 1eee80211 SMPS MOUE .. ceuuiiiieii e e e e e e e e e eaa s 120

[11. REEE CONIOl INEEITACE .iivvui ettt e et e e et e e et eeeeae s 121
18. Rae CONLrOl APl ... e et et aaaa 123
1€6e80211 start tX_Da SESSION ...cvuiiiii i e 124
ieeeB0211 start tX_ha Ch irgSafeccvueiiieiii e 125
166680211 StOP X DA SESSION ..uuuiiiiieiii e e 126
ieeeB0211 stop tX ba €h IrgSafeeveieiiie e 127

enum ieee80211 rate control_changedccoevviiiiiiiiiiii i 128
struct ieee80211 tX_rat€ CONIOlcuuiiiiiiiiii e e e 129

rate Control_SENA TOWueiiiii e e e 130

Y 14 11= 1 0= PRSP 131
RS = YA 1 7= 1 o | 3T RN 133
Key handling DasiCSccuuiiiiiiii e 133
MORE TBDiiiiiiiiiii e ettt e e e e et e e e e e e e et r e e e e e e e aaraaa s 133

20. RECEIVE PrOCESSING . .vuuevvtnertneetn ettt eeateestaestaesstaeeataeetnaestaestneeaneestnaesrnaesrnaeres 134
b2 T I -0 0 T o 0o Vo PN 135
22. Station infO handlingooiiniiiii e 136
Programming informationccoouuiiiiiiiiii e 136

STA information [fetiMe TUIESc.ooviiiiii e 141

PG T AN (o (=0 = (o] o Pt 143
struct sta ampAu_MIMEue e 144
SEUCE Tid AMPAU EX e e 145

LS LU To 1o =00 1o LU I o G 147

S o a1 (o 149

CXXXV

Part |. The basic
mac80211 driver interface

Y ou should read and understand the information contained within this part of the book while implementing a driver.
In some chapters, advanced usage is noted, that may be skipped at first.

Thispart of the book only covers station and monitor mode functionality, additional information required to implement
the other modesis covered in the second part of the book.

Table of Contents

1. BasiC hardware handlingu oot ettt 3
SIUCE 1€8EB021T NW ...t e e e e 4
enuM 16680211 MW _FlaOS ..uu it 7
S I 002 I I T Y PR 11
SET _IEEE80211 PERM_ADDR ..ot 12
SEUCE 18EEB02LL OIS ...t eeeeti e ettt e ettt e ettt ettt e et e e ettt e e et et e e et e e e e eaa s 13
1€6880211 AllOC NW ... e 24
16880211 FegiSter MW ..oeiiii it 25
186880211 UNFEQIStEr NW ... e 26
1€6880211 freB NW ..o 27

2. PHY CONFIQUIBLION ...ttt ettt ettt ettt ettt ettt e e et et e ebe e e e nni e e ennes 28
SV QTS S S0 2 I oo | PR 29
enum 1eee80211 CONF_FlagSuuiiie e 31

R AT (U= T 1= = o= T P 32
SEUCE 1€8EB021L Vit et e e 33

4. Receive and tranSmMit PrOCESSINGccuuuueteruneeeeti ettt e ettt e e et e e e eat et et e e ert e e erna s 35
What ShOUIA DE NEFE ... e e e 35
Frame FOMMEL ... e e e et e et e e e e e 35
Packet aligNMENTuiiiii e 35
Calling into Mac80211 from INEEITUPBLScceuuuieeiiti et e et e et e e e e e et e e e eni e 35
FUNCHONSAEFTNITIONS ...t e e e e eens 36

B, Frame fltEIING ..oeee i e 67
enum 1eee80211 filter flagsc.uiieeii i 68

6. The MaCB021L WOIKQUEUE eeeiii ettt ettt ettt e e ettt e e ettt e e et et e e e ent e e eenanaeeeees 69
16880211 QUEUE WOFK ... ettt ettt e e et e et e et e e e e et e e ean e ean s 70
ieeeB0211_queue delayed WOIKooouniiiiii e 71

Chapter 1. Basic hardware handling

TBD

This chapter shall contain information on getting a hw struct allocated and registered with mac80211.

Since it is required to alocate ratessmodes before registering a hw struct, this chapter shall also contain
information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming model should bein here,
including the definition of ieeeB0211 ops which will be referred to alot.

Finally, a discussion of hardware capabilities should be done with references to other parts of the book.

Basic hardware handling

Name

struct ieeeB0211 hw — hardware information and state

Synopsis

struct ieee80211 hw {

struct ieee80211 conf conf;

struct w phy * w phy;

const char * rate_control _algorithm

void * priv;

unsi gned | ong flags[BI TS _TO LONGS(NUM_ | EEE80211_ HW FLAGS)];
unsi gned int extra_tx_headroom
unsi gned int extra_beacon_tailroom

int vif_data_size;

int sta data_size;

i nt chanctx_data_size;
i nt txg_data_si ze;

ulé queues;

ulé max_listen_interval
s8 max_si gnal

u8 max_rates;

u8 max_report_rates;

u8 max_rate_tries;

u8 max_rx_aggregati on_subfranes;
u8 max_t x_aggregati on_subfranes;
u8 of f channel _t x_hw_queue;

u8 radi otap_nts_details;

ul6 radiotap_vht _details;
net dev_features_t netdev_features;

u8 uapsd_queues;
u8 uapsd_max_sp_I en;
u8 n_ci pher _schemes;

const struct ieee80211 ci pher_schene * ci pher_schenes;

i nt txg_ac_max_pendi ng;

b
Members

conf

wiphy

rate_control_algorithm

priv

struct ieeeB80211 conf, device configuration, don't use.

This points to the struct wiphy allocated for this 802.11 PHY. You
must fill in the per m addr and dev members of this structure
using SET_| EEE80211_DEV and SET_| EEE80211 PER-
M _ADDR. Additionally, all supported bands (with channels, bi-
trates) are registered here.

rate control algorithm for this hardware. If unset (NULL), the
default algorithm will be used. Must be set before calling
i eee80211 regi ster_hw

pointer to private area that was allocated for driver use along with
this structure.

Basic hardware handling

flaggBITS_ TO_LONGS(NUM_| EEEBa2iaie-flags, see enum ieee80211_hw_flags.

W_FLAGS)]

extra_tx_headroom

extra_beacon_tailroom

vif_data size
sta data size

chanctx_data size

txq_data size

queues

max_listen_interval

max_signal

max_rates

max_report_rates

max_rate tries

max_rx_aggregation_subframes

max_tx_aggregation_subframes

offchannel_tx_hw_queue

radiotap_mcs details

radiotap_vht_details

headroom to reserve in each transmit skb for use by the driver (e.g.
for transmit headers.)

tailroom to reserve in each beacon tx skb. Can be used by drivers
to add extra | Es.

size(in bytes) of thedrv_priv dataareawithin struct ieee80211 _vif.
size (in bytes) of thedrv_priv dataareawithin struct ieee80211_sta.

size (in bytes) of the drv_priv data area within struct
ieee80211 chanctx_conf.

size (in bytes) of the drv_priv data area within struct
ieee80211 txq.

number of available hardware transmit queues for data packets.
WMM/QOoS requires at least four, these queues need to have con-
figurable access parameters.

max listen interval in units of beacon interval that HW supports

Maximum value for signa (rssi) in RX information, used only
when | EEE80211 HW S| GNAL_UNSPEC or | EEE80211_H-
W SI GNAL_DB

maximum number of alternate rate retry stages the hw can handle.

maximum number of alternate rate retry stages the hw can report
back.

maximum number of tries for each stage

maximum buffer size (number of sub-frames) to be used for A-
MPDU block ack receiver aggregation. Thisis only relevant if the
device has restrictions on the number of subframes, if it relies on
mac80211 to do reordering it shouldn't be set.

maximum number of subframesin an aggregate an HT driver will
transmit. Though ADDBA will advertise a constant value of 64 as
some older APscan crashif thewindow sizeissmaller (an example
isLinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012).

HW queue ID to use for offchannel TX (if | EEE80211 H
W QUEUE_CONTROQL is set)

lists which MCS information can the HW reports, by default it
isset to MCS, Gl and BW but doesn't include FMT. Use
| EEE80211 RADI OTAP_MCS HAVE * vaues, only adding
_BW is supported today.

lists which VHT MCS information the HW reports, the de-
fault is _Gl | _-BANDWIDTH. Use the | EEE80211_ RADI O
TAP_VHT_KNOW_* values.

Basic hardware handling

netdev_features

uapsd_queues

uapsd_max_sp_len

n_cipher_schemes
cipher_schemes

txq_ac_max_pending

Description

netdev featuresto be set in each netdev created from thisHW. Note
that not all features are usable with mac80211, other features will
be rejected during HW registration.

Thisbitmap isincluded in (re)association frameto indicate for each
access category if it is UAPSD trigger-enabled and delivery- en-
abled. Use IEEES0211 WMM_IE_STA_QOSINFO_AC * to set
this bitmap. Each bit corresponds to different AC. Vaue'l' in spe-
cific bit means that corresponding AC is both trigger- and deliv-
ery-enabled. '0' means neither enabled.

maximum number of total buffered framesthe WMM AP may de-
liver to aWMM STA during any Service Period triggered by the
WMM STA. Use IEEE80211 WMM_IE_STA_QOSINFO_SP_*
for correct values.

asize of an array of cipher schemes definitions.
apointer to an array of cipher scheme definitions supported by HW.

maximum number of frames per AC pending in all txq entries for
avif.

This structure contains the configuration and hardware information for an 802.11 PHY .

Basic hardware handling

Name
enum ieeeB0211_hw_flags — hardware flags

Synopsis

enum i eee80211 hw flags {
| EEE80211_HW HAS RATE_CONTROL,
| EEE80211 HW RX | NCLUDES FCS,
| EEE80211_HW HOST_BROADCAST_PS_BUFFERI NG,
| EEE80211_HW SI GNAL_UNSPEC,
| EEES80211_HW SI GNAL_DBM
| EEE80211_HW NEED DTI M BEFORE_ASSCC,
| EEE80211_HW SPECTRUM MGMT,
| EEES80211_HW AMPDU_AGGREGATI ON,
| EEE80211 HW SUPPORTS PS,
| EEES0211 HW PS NULLFUNC_STACK,
| EEES0211 HW SUPPORTS_DYNAM C_PS,
| EEES80211_HW MFP_CAPABLE,
| EEE80211_HW WANT_MONI TOR VI F,
| EEE80211_HW NO AUTO VI F,
| EEE80211 HW SW CRYPTO CONTRQOL,
| EEE80211_HW SUPPORT_FAST XM T,
| EEE80211_HW REPORTS_TX_ACK_STATUS,
| EEE80211 HW CONNECTI ON_MONI TOR,
| EEE80211_HW QUEUE_CONTROL,
| EEE80211_HW SUPPORTS_PER STA GIK,
| EEES80211_HW AP_LI NK_PS,
| EEE80211_ HW TX_AMPDU_SETUP_| N_HW
| EEES80211_HW SUPPORTS_RC TABLE,
| EEES80211_HW P2P_DEV_ADDR FOR | NTF,
| EEE80211_ HW TI M NG_BEACON _ONLY,
| EEE80211 HW SUPPORTS HT_ CCK RATES,
| EEE80211_HW CHANCTX_STA CSA,
| EEE80211 HW SUPPORTS CLONED_ SKBS,
| EEE80211_ HW SI NGLE_SCAN ON_ALL_BANDS,
| EEE80211_HW TDLS W DER _BW
| EEES0211_HW SUPPORTS_ANMSDU_| N_AVPDU,
| EEE80211_HW BEACON TX_STATUS,
NUM | EEE80211_HW FLAGS

b

Constants
IEEE80211 H- The hardware or firmware includes rate control, and cannot be con-
W_HAS RATE CONTROL trolled by the stack. Assuch, no rate control algorithm should bein-

stantiated, and the TX rate reported to userspace will be taken from
the TX status instead of the rate control algorithm. Note that this
requires that the driver implement a number of callbacks so it has
the correct information, it needsto havetheset rts_t hresh-
ol d callback and must look at the BSS config use_cts_pr ot

Basic hardware handling

|EEES0211_HW_RX_IN-
CLUDES _FCS

|EEE80211 HW_HOST_BROAD-
CAST_PS BUFFERING

IEEE8S0211 HW_SIG-
NAL_UNSPEC

IEEE80211 HW_SIGNAL_DBM

|EEES0211_H-
W_NEED_DTIM_BE-
FORE_ASSOC

|[EEE80211 HW_SPEC-
TRUM_MGMT

|EEES0211_ HW_AMPDU_AG-
GREGATION

|EEE80211_ HW_SUPPORTS PS

IEEES0211_HW_PS_NULL-
FUNC_STACK

IEEES0211_HW_SUPPORT-
S DYNAMIC_PS

|EEE80211_ HW_MFP_CAPABLE

IEEES0211_HW_WANT_MONI-
TOR_VIF

|IEEES0211_HW_NO_AUTO VIF

|EEE80211 HW_SW_CRYP-
TO_CONTROL

|EEES0211_HW_SUP-
PORT_FAST_XMIT

for G/N protection,use_short _sl ot fordottimingin2.4 GHz
anduse_short _preanbl e for preamblesfor CCK frames.

Indicates that received frames passed to the stack include the FCS
at theend.

Some wireless LAN chipsets buffer broadcast/multicast frames for
power saving stations in the hardware/firmware and othersrely on
the host system for such buffering. This option is used to config-
ure the IEEE 802.11 upper layer to buffer broadcast and multicast
frames when there are power saving stations so that the driver can
fetchthem withi eee80211 get buffered_bc.

Hardware can provide signal values but we don't know its units.
We expect values between 0 and max_si gnal . If possible please
provide dB or dBm instead.

Hardware gives signal valuesin dBm, decibel difference from one
milliwatt. Thisis the preferred method since it is standardized be-
tween different devices. max_si gnal does not need to be set.

This device needs to get data from beacon before association (i.e.
dtim_period).

Hardware supports spectrum management defined in 802.11h Mea
surement, Channel Switch, Quieting, TPC

Hardware supports 11n A-MPDU aggregation.

Hardware has power save support (i.e. can go to sleep).

Hardware requires nullfunc frame handling in stack, implies stack
support for dynamic PS.

Hardware has support for dynamic PS.

Hardware supports management frame protection (MFP, IEEE
802.11w).

The driver would like to be informed of avirtual monitor interface
when monitor interfaces are the only active interfaces.

The driver would like for no wlanX to be created. It is expected
user-space will create vifs as desired (and thus have them named
as desired).

The driver wants to control which of the crypto algorithms can be
done in software - so don't automatically try to fall back to it if
hardware crypto fails, but do so only if the driver returns 1. This
also forces the driver to advertise its supported cipher suites.

Thedriver/hardware supportsfast-xmit, this currently requiresonly
the ability to calculate the duration for frames.

Basic hardware handling

|EEES0211_HW_RE-
PORTS TX_ACK_STATUS

I[EEES0211 HW_CONNEC-
TION_MONITOR

|EEES0211_HW_QUEUE_CON-
TROL

IEEES0211_HW_SUPPORT-
S PER_STA_GTK

IEEES0211_ HW_AP_LINK_PS

IEEES0211_HW_TX_AMP-
DU_SETUP_IN_HW

IEEES0211_HW_SUPPORTS R-
C_TABLE

IEEES0211_HW_P2P_DEV_AD-
DR_FOR_INTF

I[EEES0211 HW_TIMING_BEA-
CON_ONLY

IEEES0211_HW_SUPPORT-
S HT_CCK_RATES

IEEES0211_ HW_CHANCTX_S-
TA_CSA

IEEES0211_HW_SUPPORT-
S CLONED_SKBS

IEEES0211_HW_SINGLE_S-
CAN_ON_ALL_BANDS

|EEES0211_HW_T-
DLS WIDER BW

IEEES0211_HW_SUPPORT-
S AMSDU_IN_AMPDU

|EEES0211_HW_BEA-
CON_TX_STATUS

Hardware can provide ack status reports of Tx frames to the stack.

The hardware performs its own connection monitoring, including
periodic keep-alives to the AP and probing the AP on beacon loss.

Thedriver wantsto control per-interface queue mapping in order to
use different queues (not just one per AC) for different virtual in-
terfaces. Seethe doc section on HW queue control for more details.

The device's crypto engine supports per-station GTKs as used by
IBSS RSN or during fast transition. If the device doesn't support
per-station GTKSs, but can be asked not to decrypt group addressed
frames, then IBSS RSN support is still possible but software crypto
will be used. Advertise the wiphy flag only in that case.

When operating in AP mode the device autonomously man-
ages the PS status of connected stations. When this flag is set
mac80211 will not trigger PS mode for connected stations based
onthePM bit of incoming frames. Usei eee80211 start _ps/
i eee8021 end_ps to manualy configure the PS mode of con-
nected stations.

The device handles TX A-MPDU session setup strictly in HW.
mac80211 should not attempt to do thisin software.

Thedriver supports using arate selection table provided by therate
control algorithm.

Use the P2P Device address for any P2P Interface. This will be
honoured even if more than one interface is supported.

Use sync timing from beacon frames only, to allow getting TBTT
of aDTIM beacon.

Hardware supports mixing HT/CCK rates and can cope with CCK
rates in an aggregation session (e.g. by not using aggregation for
such frames.)

Support 802.11h based channel-switch (CSA) for a single active
channel while using channel contexts. When support is not enabled
the default action isto disconnect when getting the CSA frame.

The driver will never modify the payload or tailroom of TX skbs
without copying them first.

The HW supports scanning on al bands in one command,
macB80211 doesn't have to run separate scans per band.

The device/driver supports wider bandwidth than then BSS band-
width for aTDLS link on the base channel.

The driver supports receiving A-MSDUs within A-MPDU.

The device/driver provides TX status for sent beacons.

Basic hardware handling

NUM_IEEE80211 HW_FLAGS number of hardware flags, used for sizing arrays

Description

These flags are used to indicate hardware capabilities to the stack. Generally, flags here should have their
meaning donein away that the simplest hardware doesn't need setting any particular flags. There are some
exceptions to this rule, however, so you are advised to review these flags carefully.

10

Basic hardware handling

Name
SET IEEE80211 DEV — set device for 802.11 hardware

Synopsis
voi d SET_| EEEB0211 DEV (struct ieee80211 hw * hw, struct device * dev);

Arguments

hw the struct ieeeB0211 hw to set the device for

dev thestruct device of this 802.11 device

11

Basic hardware handling

Name
SET _IEEE80211 PERM_ADDR — set the permanent MAC address for 802.11 hardware

Synopsis
voi d SET_| EEE80211 PERM ADDR (struct ieee80211 hw * hw, u8 * addr);

Arguments

hw the struct ieee80211 hw to set the MAC address for

addr the addressto set

12

Basic hardware handling

Name

struct ieeeB0211 _ops — callbacks from mac80211 to the driver

Synopsis

struct ieee80211 ops {

void (* tx) (struct ieee80211 hw *hw, struct ieee80211 tx control *control, struct
int (* start) (struct ieee80211 hw *hw);
void (* stop) (struct ieee80211 hw *hw);

#i f def CONFI G_PM

int (* suspend) (struct ieee80211 hw *hw, struct cfg80211 wow an *wow an);
int (* resunme) (struct ieee80211 hw *hw);
void (* set_wakeup) (struct ieee80211 hw *hw, bool enabl ed);

#endi f

int (* add_interface) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

int (* change_interface) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, enun
void (* renmove_interface) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);
int (* config) (struct ieee80211 hw *hw, u32 changed);

void (* bss_info_changed) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,str
int (* start_ap) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

void (* stop_ap) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

u64 (* prepare_nulticast) (struct ieee80211 hw *hw, struct netdev_hw addr_list *n
void (* configure filter) (struct ieee80211 hw *hw, unsigned int changed_fl ags, un
void (* config_ iface filter) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,
int (* set_tin (struct ieee80211 hw *hw, struct ieee80211 sta *sta, bool set);
int (* set_key) (struct ieee80211 hw *hw, enum set_key_cnd cnd, struct ieee80211
void (* update_tkip_key) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,stru
void (* set_rekey data) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struc
void (* set_default_unicast_key) (struct ieee80211 hw *hw, struct ieee80211 vif *
int (* hw_scan) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struct ieee8
void (* cancel _hw scan) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

int (* sched_scan_start) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,stru
int (* sched_scan_stop) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);
void (* sw scan_start) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, const
void (* sw scan_conplete) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);
int (* get_stats) (struct ieee80211 hw *hw, struct ieee80211 |ow |evel _stats *sta
void (* get_key _seq) (struct ieee80211 hw *hw, struct ieee80211 key conf *key,str
int (* set_frag_threshold) (struct ieee80211 hw *hw, u32 val ue);

int (* set_rts_threshold) (struct ieee80211 hw *hw, u32 val ue);

int (* sta_add) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struct ieee8
int (* sta_renove) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struct ie

#i f def CONFI G_MACB80211_DEBUGFS
void (* sta_add_debugfs) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,stru
void (* sta_renmpve_debugfs) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,s
#endi f

void (* sta_notify) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, enum sta
int (* sta_state) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struct iee
void (* sta_pre_rcu_renmove) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,s
void (* sta_rc_update) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, struct
void (* sta_rate_tbl _update) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,
void (* sta_statistics) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struc
int (* conf_tx) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, ul6 ac, const

13

Basic hardware handling

#i

u64 (* get_tsf) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

void (* set_tsf) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,u64 tsf);
void (* reset_tsf) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

int (* tx_last_beacon) (struct ieee80211 hw *hw);

int (* anmpdu_action) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struct i
int (* get_survey) (struct ieee80211 hw *hw, int idx,struct survey_info *survey)
void (* rfkill _poll) (struct ieee80211 hw *hw);

void (* set_coverage_class) (struct ieee80211 hw *hw, s16 coverage_cl ass);

fdef CONFI G_NL80211_TESTMODE

int (* testnmode_cnd) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,void *d
int (* testnode_dunp) (struct ieee80211 hw *hw, struct sk_buff *skb,struct netli

#endi f

#i

void (* flush) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,u32 queues, b
void (* channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,struc
int (* set_antenna) (struct ieee80211 hw *hw, u32 tx_ant, u32 rx_ant);
int (* get_antenna) (struct ieee80211 hw *hw, u32 *tx_ant, u32 *rx_ant);
int (* remain_on_channel) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,str
(
(

* % F

i nt cancel _remai n_on_channel) (struct ieee80211 hw *hw);

int (* set_ringparam (struct ieee80211 hw *hw, u32 tx, u32 rx);

void (* get_ringparam (struct ieee80211 hw *hw, u32 *tx, u32 *tx_max, u32 *rx, u
bool (* tx_frames_pending) (struct ieee80211 hw *hw);

int (* set_bitrate_mask) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,con
void (* event_call back) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, const
void (* allow buffered franes) (struct ieee80211 hw *hw, struct ieee80211 sta *st
void (* rel ease _buffered _frames) (struct ieee80211 hw *hw, struct ieee80211 sta *
int (* get_et_sset_count) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, in
void (* get_et_stats) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, struct
void (* get_et_strings) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,u32 s
void (* ngd_prepare_tx) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);
void (* ngd_protect_tdls_discover) (struct ieee80211 hw *hw, struct ieee80211 vif
int (* add_chanctx) (struct ieee80211 hw *hw, struct ieee80211 chanctx_conf *ctx)
void (* remove_chanctx) (struct ieee80211 hw *hw, struct ieee80211 chanctx_conf *
void (* change_chanctx) (struct ieee80211 hw *hw, struct ieee80211 chanctx_conf *
int (* assign_vif_chanctx) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, st
void (* unassign_vif_chanctx) (struct ieee80211 hw *hw, struct ieee80211 vif *vif
int (* switch_vif_chanctx) (struct ieee80211 hw *hw, struct ieee80211 vif_chanctx
void (* reconfig_conplete) (struct ieee80211 hw *hw, enum i eee80211 reconfig_type
f | S_ENABLED(CONFI G_| PV6)

void (* ipv6_addr_change) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,str

#endi f

void (* channel _sw tch_beacon) (struct ieee80211 hw *hw, struct ieee80211 vif *vi
int (* pre_channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vif *vif, st
int (* post_channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);
int (* join_ibss) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

void (* |eave_ibss) (struct ieee80211 hw *hw, struct ieee80211 vif *vif);

u32 (* get_expected_throughput) (struct ieee80211 sta *sta);

int (* get_txpower) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,int *dbn
int (* tdls_channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vif *vif,s
void (* tdls_cancel channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vi
void (* tdls_recv_channel _switch) (struct ieee80211 hw *hw, struct ieee80211 vif
void (* wake_tx_queue) (struct ieee80211 hw *hw, struct ieee80211 txqg *txq);

14

Basic hardware handling

Members

tx

start

stop

suspend

resume

set_wakeup

add_interface

change interface

Handler that 802.11 module calls for each transmitted frame. skb
contains the buffer starting from the IEEE 802.11 header. The low-
level driver should send the frame out based on configuration in
the TX control data. This handler should, preferably, never fail and
stop queues appropriately. Must be atomic.

Called beforethefirst netdevice attached to the hardware isenabl ed.
This should turn on the hardware and must turn on frame reception
(for possibly enabled monitor interfaces.) Returns negative error
codes, these may be seen in userspace, or zero. When the deviceis
started it should not have a MAC address to avoid acknowledging
frames before anon-monitor deviceisadded. Must beimplemented
and can sleep.

Called after last netdevice attached to the hardwareis disabled. This
should turn off the hardware (at least it must turn off frame recep-
tion.) May be called right after add_interface if that rejects an in-
terface. If you added any work onto the mac80211 workqueue you
should ensure to cancel it on this callback. Must be implemented
and can sleep.

Suspend the device; mac80211 itself will quiesce before and stop
transmitting and doing any other configuration, and then ask the
deviceto suspend. Thisisonly invoked when WoWLAN isconfig-
ured, otherwise the device is deconfigured completely and recon-
figured at resume time. The driver may also impose specia condi-
tions under which it wants to use the “normal” suspend (deconfig-
ure), say if it only supports WoWLAN when the deviceis associat-
ed. In this case, it must return 1 from this function.

If WOWLAN was configured, this indicates that mac80211 is now
resuming its operation, after thisthe device must befully functional
again. If this returns an error, the only way out is to also unregister
the device. If it returns 1, then mac80211 will also go through the
regular compl ete restart on resume.

Enable or disable wakeup when WoWLAN configuration is modi-
fied. Thereasonisthat devi ce_set _wakeup_enabl e issup-
posed to be called when the configuration changes, not only in
suspend.

Called when a netdevice attached to the hardware is enabled. Be-
cause it is not called for monitor mode devices, st art and st op
must be implemented. The driver should perform any initialization
it needs before the device can be enabled. Theinitial configuration
for the interface is given in the conf parameter. The callback may
refuse to add an interface by returning anegative error code (which
will be seen in userspace.) Must be implemented and can sleep.

Called when a netdevice changes type. This callback is optional,
but only if it is supported can interface types be switched while the
interface is UP. The callback may sleep. Note that while an inter-

15

Basic hardware handling

remove_interface

config

bss info_changed

start_ap

stop_ap

prepare_multicast

configure filter

config_iface filter

set tim

set_key

update tkip_key

faceisbeing switched, it will not befound by theinterface iteration
callbacks.

Notifiesadriver that aninterfaceisgoing down. Thest op callback
iscalled after thisif it isthe last interface and no monitor interfaces
are present. When al interfaces are removed, the MAC addressin
the hardware must be cleared so the device no longer acknowledges
packets, themac_addr member of the conf structureis, however, set
to the MAC address of the device going away. Hence, this callback
must be implemented. It can sleep.

Handler for configuration requests. IEEE 802.11 code calls this
functionto change hardware configuration, e.g., channel. Thisfunc-
tion should never fail but returns a negative error code if it does.
The callback can sleep.

Handler for configuration requests related to BSS parameters that
may vary during BSS's lifespan, and may affect low level driver
(e.g. assoc/disassoc status, erp parameters). This function should
not beused if no BSS has been set, unlessfor association indication.
Thechanged parameter indicates which of the bss parametershas
changed when a call is made. The callback can sleep.

Start operation on the AP interface, thisis called after all the infor-
mation in bss_conf is set and beacon can be retrieved. A channel
context is bound before this is called. Note that if the driver uses
software scan or ROC, this (and st op_ap) isn't called when the
AP isjust “paused” for scanning/ROC, which is indicated by the
beacon being disabled/enabled viabss_i nf o_changed.

Stop operation on the AP interface.

Prepare for multicast filter configuration. This callback is optional,
anditsreturn valueispassed toconf i gure_fil t er. Thiscal-
back must be atomic.

Configure the device's RX filter. See the section “Frame filtering”
for more information. This callback must be implemented and can

Sleep.

Configure the interface's RX filter. This callback is optional and is
used to configure which frames should be passed to mac80211. The
filter_flags is the combination of FIF_* flags. The changed flags
is a bit mask that indicates which flags are changed. This callback
can sleep.

Set TIM bit. mac80211 calls this function when a TIM bit must be
set or cleared for agiven STA. Must be atomic.

See the section “Hardware crypto acceleration” This callback is
only called between add_interface and remove_interface calls, i.e.
whilethegiven virtual interfaceisenabled. Returnsanegative error
code if the key can't be added. The callback can sleep.

See the section “Hardware crypto acceleration” This callback
will be caled in the context of Rx. Called for drivers which set

16

Basic hardware handling

set_rekey data

set_default_unicast_key

hw_scan

cancel_hw_scan

sched scan_start

sched_scan_stop

Sw_scan_start

Sw_scan_complete

get_stats

IEEE80211 KEY_FLAG TKIP_REQ RX _P1 KEY. The cal-
back must be atomic.

If the device supports GTK rekeying, for example while the host
is suspended, it can assign this callback to retrieve the data nec-
essary to do GTK rekeying, this is the KEK, KCK and replay
counter. After rekeying was done it should (for example dur-
ing resume) notify userspace of the new replay counter using
i eee80211_gtk_rekey_noti fy.

Set the default (unicast) key index, useful for WEP when the device
sends data packets autonomously, e.g. for ARP offloading. Thein-
dex can be 0-3, or -1 for unsetting it.

Ask the hardware to service the scan request, no need to start the
scan state machinein stack. The scan must honour the channel con-
figuration done by the regulatory agent in the wiphy's registered
bands. The hardware (or the driver) needs to make sure that pow-
er save is disabled. Ther eq ief/ie_len members are rewritten by
mac80211 to contain the entire |Es after the SSID, so that drivers
need not look at these at al but just send them after the SSID --
mac80211 includesthe (extended) supported ratesand HT informa:
tion (where applicable). When the scan finishes, i eee80211_s-

can_conpl et ed must be called; note that it also must be called
when the scan cannot finish due to any error unless this callback
returned a negative error code. The callback can seep.

Ask the low-level tp cancel the active hw scan. The driver should
ask the hardware to cancel the scan (if possible), but the scan
will be completed only after the driver will call i eee80211_s-
can_conpl et ed. Thiscallback is needed for wowlan, to prevent
engueueing anew scan_work after thelow-level driver was already
suspended. The callback can sleep.

Ask the hardware to start scanning repeatedly at specific intervals.
Thedriver must call thei eee80211 _sched_scan_results
function whenever it finds results. This process will continue until
sched_scan_stop is called.

Tell the hardware to stop an ongoing scheduled scan. In this case,
i eee80211 sched_scan_st opped must not be called.

Notifier function that is caled just before a software
scan is started. Can be NULL, if the driver doesn't need
this notification. The mac_addr parameter allows supporting
NL80211 SCAN_FLAG_RANDOM_ADDR, the driver may set
the NL80211 FEATURE_SCAN_RANDOM_MAC_ADDR flag
if it can use this parameter. The callback can sleep.

Notifier function that is called just after a software scan finished.
Can be NULL, if the driver doesn't need this notification. The call-
back can sleep.

Return low-level statistics. Returns zero if statistics are available.
The callback can sleep.

17

Basic hardware handling

get key seq If your device implements encryption in hardware and does IV/PN
assignment then this callback should be provided to read the IV/PN
for the given key from hardware. The callback must be atomic.

set_frag_threshold Configuration of fragmentation threshold. Assign thisif the device
does fragmentation by itself; if this callback is implemented then
the stack will not do fragmentation. The callback can sleep.

set_rts threshold Configuration of RTS threshold (if device needs it) The callback
can sleep.
sta_add Notifies low level driver about addition of an associated station,

AP, IBSS'WDS/mesh peer etc. This callback can sleep.

sta_remove Notifies low level driver about removal of an associated station,
AP, IBSS/WDS/mesh peer etc. Notethat after the callback returnsit
isn't safe to use the pointer, not even RCU protected; no RCU grace
period is guaranteed between returning here and freeing the station.
Seesta_pre_rcu_renove if needed. Thiscallback can sleep.

sta_add_debugfs Drivers can use this callback to add debugfs files when a station
is added to mac80211's station list. This callback and sta_r e-
nmove_debugf s should be within a CONFIG_MAC80211 DE-
BUGFS conditional. This callback can sleep.

sta_ remove_debugfs Removethe debugfsfileswhichwereadded using st a_add_de-
bugf s. Thiscallback can sleep.

sta_notify Notifies low level driver about power state transition of an asso-
ciated station, AP, IBSS/'WDS/mesh peer etc. For a VIF operat-
ing in AP mode, this callback will not be caled when the flag
| EEE80211 HW AP_LI NK_PSisset. Must be atomic.

sta_state Notifies low level driver about state transition of a station (which
can bethe AP, aclient, IBSS/WDS/mesh peer etc.) Thiscallback is
mutually exclusivewith st a_add/st a_r enpve. It must not fail
for down transitions but may fail for transitions up the list of states.
Also notethat after the callback returnsit isn't safe to use the point-
er, not even RCU protected - no RCU grace period is guaranteed
between returning here and freeing the station. Seesta_pre_r -
cu_renove if needed. The callback can sleep.

sta_pre rcu_remove Notify driver about station removal before RCU synchronisation.
This is useful if a driver needs to have station pointers protected
using RCU, it can then use this call to clear the pointers instead of
waiting for an RCU grace period to elapse in st a_st at e. The
callback can sleep.

sta_rc_update Notifies the driver of changes to the bitrates that can be used
to transmit to the station. The changes are advertised with hits
from enum ieee80211 rate control_changed and the values are
reflected in the station data. This callback should only be used
when the driver uses hardware rate control (I EEE80211 H-
W HAS RATE_ CONTRQL) since otherwise the rate control algo-
rithm is notified directly. Must be atomic.

18

Basic hardware handling

sta _rate thl_update

sta_statistics

conf_tx

get_tsf

set_tsf

reset tsf

tx_last_beacon

ampdu_action

get_survey

rfkill_poll

set_coverage class

Notifies the driver that the rate table changed. This is only used
if the configured rate control algorithm actually uses the new rate
table API, and is therefore optional. Must be atomic.

Get statistics for this station. For example with beacon filtering,
the statistics kept by mac80211 might not be accurate, so let the
driver pre-fill the statistics. The driver can fill most of the values
(indicating which by setting the filled bitmap), but not all of them
make sense - see the source for which ones are possible. Statistics
that the driver doesn't fill will befilled by mac80211. The callback
can sleep.

Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
bursting) for a hardware TX queue. Returns a negative error code
on failure. The callback can sleep.

Get the current TSF timer value from firmware/hardware. Current-
ly, thisisonly used for IBSS mode BSSID merging and debugging.
Is not arequired function. The callback can sleep.

Set the TSF timer to the specified value in the firmware/hardware.
Currently, thisis only used for IBSS mode debugging. Isnot are-
quired function. The callback can sleep.

Reset the TSF timer and allow firmware/hardware to synchronize
with other STAsintheIBSS. Thisisonly used in IBSS mode. This
functionisoptional if the firmware/hardware takesfull care of TSF
synchronization. The callback can sleep.

Determine whether the last IBSS beacon was sent by us. This is
needed only for IBSS mode and the result of this function is used
to determine whether to reply to Probe Requests. Returns non-zero
if this device sent the last beacon. The callback can sleep.

Perform a certain A-MPDU action The RA/TID combination de-
termines the destination and TID we want the ampdu action to
be performed for. The action is defined through ieee80211 amp-
du_mlme_action. When the action is set to | EEE80211 AMP-

DU_TX_ OPERATI ONAL the driver may neither send aggregates
containing more subframesthanbuf _si ze nor send aggregatesin
away that lost frames would exceed the buffer size. If just limiting
the aggregate size, this would be

Return per-channel survey information

Poll rfkill hardware state. If you need this, you also need to set
wiphy->rfkill_poll to t r ue before registration, and need to call
wi phy _rfkill _set hw st at e inthecallback. The callback
can sleep.

Set dot time for given coverage class as specified in IEEE
802.11-2007 section 17.3.8.6 and modify ACK timeout according-
ly; coverage class equals to -1 to enable ACK timeout estimation
agorithm (dynack). To disable dynack set valid value for coverage
class. This callback is not required and may sleep.

19

Basic hardware handling

testmode_cmd Implement a cfg80211 test mode command. The passed vi f may
be NULL. The callback can sleep.

testmode_dump Implement a cfg80211 test mode dump. The callback can sleep.

flush Flush al pending framesfrom the hardware queue, making surethat

the hardware queues are empty. Thequeues parameter isabitmap
of queuesto flush, which isuseful if different virtual interfaces use
different hardware queues; it may also indicate all queues. If the
parameter dr op issettot r ue, pending frames may be dropped.
Note that vif can be NULL. The callback can sleep.

channel_switch Driversthat need (or want) to offload the channel switch operation
for CSAsreceived from the AP may implement this callback. They
must then call i eee80211_chswi t ch_done to indicate com-
pletion of the channel switch.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Para
meters are bitmaps of allowed antennas to use for TX/RX. Dri-
vers may reject TX/RX mask combinations they cannot support
by returning-EINVAL (alsoseenl80211.hNL80211 ATTR W -
PHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).

remain_on_channel Starts an off-channel period on the given channel, must call back to
i eee80211 ready_on_channel when onthat channel. Note
that normal channel traffic is not stopped asthisisintended for hw
offload. Frames to transmit on the off-channel channel are trans-
mitted normally except for the | EEE80211_ TX CTL_TX OF-
FCHAN flag. When the duration (which will always be non-zero)
expires, the driver must call i eee80211 renmi n_on_chan-
nel _expi r ed. Note that this callback may be called while the
deviceisin IDLE and must be accepted in this case. This callback

may sleep.

cancel_remain_on_channel Requests that an ongoing off-channel period is aborted before it
expires. This callback may sleep.

set_ringparam Set tx and rx ring sizes.
get_ringparam Get tx and rx ring current and maximum sizes.
tx_frames_pending Check if there is any pending frame in the hardware queues before

entering power save.

set_bitrate_mask Set amask of ratesto be used for rate control selection when trans-
mitting aframe. Currently only legacy rates are handled. The call-
back can sleep.

event_callback Notify driver about any event in mac80211. See enum
ieee80211 event_typefor the different types. The callback must be
atomic.

allow_buffered frames Prepare device to allow the given number of framesto go out to the
given station. The frames will be sent by mac80211 via the usual
TX path after thiscall. The TX information for framesreleased will

20

Basic hardware handling

release buffered frames

get_et sset_count
get_et_stats

get_et_strings

mgd_prepare tx

also have the | EEE80211_TX_ CTL_NO_PS BUFFER flag set
and thelast one will also havel EEE80211_ TX STATUS ECSP
set. In case frames from multiple TIDs are released and the
driver might reorder them between the TIDs, it must set the
| EEE80211 TX STATUS EGSPflagonthelast frameand clear
it on al others and also handle the EOSP bit in the QoS header cor-
rectly. Alternatively, it can also call thei eee80211 st a_eosp
function. Thet i ds parameter isabitmap and tellsthedriver which
TIDs the frames will be on; it will at most have two bits set. This
callback must be atomic.

Release buffered frames according to the given parameters. In the
case where the driver buffers some frames for sleeping stations
mac80211 will use this callback to tell the driver to release some
frames, either for PS-poll or uAPSD. Note that if the nor e_da-
t a parameter is f al se the driver must check if there are more
frames on the given TIDs, and if there are more than the frames
being released then it must till set the more-data bit in the frame. If
thenor e_dat a parameter ist r ue, then of course the more-data
bit must always be set. Thet i ds parameter tells the driver which
TIDs to release frames from, for PS-poll it will always have only
a single bit set. In the case this is used for a PS-pall initiated re-
lease, thenum f r ames parameter will alwaysbe 1 so code can be
shared. In this case the driver must also set | EEEB0211 TX S-
TATUS_ EQSP flag onthe TX status (and must report TX status) so
that the PS-poll period is properly ended. Thisisused to avoid send-
ing multipleresponsesfor aretried PS-poll frame. Inthe casethisis
used for UAPSD, the num f r anes parameter may be bigger than
one, but the driver may send fewer frames (it must send at |east one,
however). In this case it is also responsible for setting the EOSP
flag in the QoS header of the frames. Also, when the service pe-
riod ends, the driver must set | EEE80211 TX STATUS EGCSP
on the last frame in the SP. Alternatively, it may call the function
i eee80211 st a_eosp to inform mac80211 of the end of the
SP. This callback must be atomic.

Ethtool API to get string-set count.
Ethtool API to get a set of u64 stats.

Ethtool API to get aset of stringsto describe stats and perhaps other
supported types of ethtool data-sets.

Preparefor transmitting amanagement framefor association before
associated. In multi-channel scenarios, avirtua interface is bound
to a channel before it is associated, but as it isn't associated yet it
need not necessarily be given airtime, in particular since any trans-
mission to a P2P GO needs to be synchronized against the GO's
powersave state. mac80211 will call this function before transmit-
ting amanagement frame prior to having successfully associated to
alow the driver to give it channel time for the transmission, to get
aresponse and to be able to synchronize with the GO. The callback
will be called before each transmission and upon return mac80211
will transmit the frameright away. The callback is optional and can
(should!) sleep.

21

Basic hardware handling

mgd_protect_tdls discover Protect a TDLS discovery session. After sending a TDLS discov-
ery-request, we expect a reply to arrive on the AP's channel. We
must stay on the channel (no PSM, scan, etc.), since a TDLS set-
up-response is a direct packet not buffered by the AP. mac80211
will call this function just before the transmission of a TDLS dis-
covery-request. The recommended period of protectionisat least 2
* (DTIM period). The callback is optional and can sleep.

add_chanctx Notifies device driver about new channel context creation. This
callback may sleep.

remove_chanctx Notifies device driver about channel context destruction. This call-
back may deep.
change_chanctx Notifies devicedriver about channel context changesthat may hap-

pen when combining different virtual interfaces on the same chan-
nel context with different settings This callback may sleep.

assign_vif_chanctx Notifies device driver about channel context being bound to vif.
Possible useis for hw queue remapping. This callback may sleep.

unassign vif _chanctx Notifies device driver about channel context being unbound from
vif. This callback may sleep.

switch_vif_chanctx switch a number of vifs from one chanctx to another, as speci-
fiedinthelist of i eee80211 vi f _chanct x_swi t ch passed
to the driver, according to the mode defined in ieee80211_chanc-
tx_switch_mode. This callback may sleep.

reconfig_complete Cadlled after acall toi eee80211_restart_hwand during re-
sume, when the reconfiguration has completed. This can help the
driver implement the reconfiguration step (and indicate mac80211
isready to receive frames). This callback may sleep.

ipv6_addr_change IPv6 address assignment on the given interface changed. Currently,
thisis only called for managed or P2P client interfaces. This call-
back is optional; it must not sleep.

channel_switch_beacon Starts a channel switch to a new channel. Beacons are modified
toinclude CSA or ECSA |Es before calling this function. The cor-
responding count fields in these IEs must be decremented, and
when they reach 1 the driver must call i eee80211 csa_fi n-
i sh. Driverswhich usei eee80211 beacon_get get the csa
counter decremented by mac80211, but must check if it is 1 us-
ingi eee80211 csa_i s_conpl et e after the beacon has been
transmitted andthen call i eee80211 csa_fi ni sh.IftheCSA
count starts as zero or 1, thisfunction will not be called, since there
won't be any time to beacon before the switch anyway.

pre_channel_switch Thisis an optional callback that is called before a channel switch
procedureisstarted (ie. when aSTA getsaCSA or an userspaceini-
tiated channel-switch), allowing the driver to prepare for the chan-
nel switch.

post_channel_switch This is an optional callback that is called after a channel switch
procedure is compl eted, allowing the driver to go back to a normal
configuration.

22

Basic hardware handling

join ibss

leave ibss

get_expected _throughput

get_txpower

tdls_channel_switch

tdls _cancel_channel _switch

tdls recv_channel_switch

wake tx_queue

Description

Join an IBSS (on an IBSSinterface); thisis called after all informa-
tioninbss_conf isset up and the beacon can beretrieved. A channel
context is bound before thisis called.

Leavethe IBSS again.

extract the expected throughput towards the specified station. The
returned valueis expressed in Kbps. It returns 0 if the RC algorithm
does not have proper data to provide.

get current maximum tx power (in dBm) based on configuration
and hardware limits.

Start channel-switching with a TDLS peer. The driver is responsi-
ble for continually initiating channel-switching operations and re-
turning to the base channel for communication with the AP. The
driver receives a channel-switch request template and the location
of the switch-timing |E within the template as part of the invoca-
tion. The template is valid only within the call, and the driver can
optionally copy the skb for further re-use.

Stop channel-switching with a TDLS peer. Both peers must be on
the base channel when the call compl etes.

a TDLS channel-switch related frame (request or response) has
been received from a remote peer. The driver gets parameters
parsed from the incoming frame and may use them to continue an
ongoing channel-switch operation. In addition, a channel-switch
response template is provided, together with the location of the
switch-timing |E within the template. The skb can only be used
within the function call.

Called when new packets have been added to the queue.

This structure contains various callbacks that the driver may handle or, in some cases, must handle, for
example to configure the hardware to anew channel or to transmit aframe.

possible with a buf_size of 8

-TX: 1....7-RX: 2....7 (lost frame #1) - TX: 8..1... which isinvalid since #1 was how re-transmitted well
past the buffer size of 8. Correct ways to retransmit #1 would be: - TX: 1 or 18 or 81 Even “189" would

be wrong since 1 could be lost again.

Returns a negative error code on failure. The callback can sleep.

23

Basic hardware handling

Name

ieeeB0211_alloc_hw — Allocate a new hardware device

Synopsis

struct ieee80211 hw * ieee80211 alloc_hw (size_t priv_data_len, const
struct ieee80211 ops * ops);

Arguments
priv_data_ | en lengthof private data
ops callbacks for this device
Description

This must be called once for each hardware device. The returned pointer must be used to refer to this
device when calling other functions. mac80211 allocates a private data area for the driver pointed to by
pri v instruct ieee80211 hw, the size of thisareaisgivenaspri v_dat a | en.

Return

A pointer to the new hardware device, or NULL on error.

24

Basic hardware handling

Name
ieeeB0211 register_hw — Register hardware device

Synopsis
int ieeeB80211 register_hw (struct ieee80211 hw * hw);

Arguments

hw thedeviceto register asreturned by i eee80211 al | oc_hw

Description

You must call this function before any other functions in mac80211. Note that before a hardware can be
registered, you need to fill the contained wiphy'sinformation.

Return

0 on success. An error code otherwise.

25

Basic hardware handling

Name
ieeeB0211_unregister_hw — Unregister a hardware device

Synopsis

voi d i eee80211 unregi ster_hw (struct ieee80211 hw * hw);

Arguments

hw the hardware to unregister

Description

Thisfunctioninstructsmac80211 to freeallocated resources and unregister netdevicesfrom the networking
subsystem.

26

Basic hardware handling

Name
ieeeB0211 free hw — free hardware descriptor

Synopsis

void i eee80211 free_hw (struct ieee80211 hw * hw);

Arguments

hw the hardwareto free

Description

This function frees everything that was allocated, including the private data for the driver. Y ou must call
i eee80211 unregi st er _hwhbefore calling this function.

27

Chapter 2. PHY configuration

TBD

This chapter should describe PHY handling including start/stop callbacks and the various structures used.

28

PHY configuration

Name
struct ieeeB80211 conf — configuration of the device

Synopsis

struct ieee80211_ conf {
u32 fl ags;
i nt power_| evel;
int dynam c_ps_ti meout;
ulé listen_interval;
u8 ps_dti m peri od;

u8 | ong_frame_max_t x_count;
u8 short frame_nax_tx_count;
struct cfg80211 chan_def chandef;

bool radar_enabl ed;

enum i eee80211_snps_node snps_node;

b
Members

flags

power_level

dynamic_ps_timeout

listen_interval

ps_dtim_period
long_frame _max_tx_count
short_frame_max_tx_count

chandef
radar_enabled

smps_mode

Description

configuration flags defined above

reguested transmit power (in dBm), backward compatibility value
only that is set to the minimum of all interfaces

The dynamic powersave timeout (in ms), see the powersave docu-
mentation below. This variable is valid only when the CONF_PS
flagis set.

listen interval in units of beacon interva

The DTIM period of the AP we're connected to, for use in power
saving. Power saving will not be enabled until a beacon has been
received and the DTIM period is known.

Maximum number of transmissionsfor a“long” frame (aframe not
RTS protected), called “dot11LongRetryLimit” in 802.11, but ac-
tually means the number of transmissions not the number of retries

Maximum number of transmissions for a “short” frame, called
“dot11ShortRetryLimit” in 802.11, but actually means the number
of transmissions not the number of retries

the channel definition to tune to
whether radar detection is enabled

spatia multiplexing powersave mode; notethat | EEE80211_SM

PS_STATI Cis used when the device is not configured for an HT
channel. Notethat thisisonly valid if channel contextsare not used,
otherwise each channel context has the number of chainslisted.

29

PHY configuration

This struct indicates how the driver shall configure the hardware.

30

PHY configuration

Name

enum ieeeB0211_conf_flags — configuration flags

Synopsis

enum i eee80211 conf _flags {

| EEE80211_CONF_MONI TOR,

| EEE80211_CONF_PS,
| EEE80211_CONF_I DLE,

| EEE80211_CONF_COFFCHANNEL

b
Constants

IEEE80211_CONF_MONITOR

IEEE80211 CONF_PS

IEEE80211_CONF_IDLE

IEEE80211_CONF_OFFCHAN-
NEL

Description

there's a monitor interface present -- use this to determine for ex-
ample whether to calculate timestamps for packets or not, do not
use instead of filter flags!

Enable 802.11 power save mode (managed mode only). Thisisthe
power save mode defined by | EEE 802.11-2007 section 11.2, mean-
ing that the hardware still wakes up for beacons, is able to transmit
frames and receive the possible acknowledgment frames. Not to be
confused with hardware specific wakeup/sleep states, driver isre-
sponsible for that. See the section “ Powersave support” for more.

Thedeviceisrunning, but idle; if theflag is set the driver should be
prepared to handle configuration requests but may turn the device
off as much as possible. Typically, this flag will be set when an
interfaceis set UP but not associated or scanning, but it can also be
unset in that case when monitor interfaces are active.

The deviceis currently not on its main operating channel.

Flagsto define PHY configuration options

31

Chapter 3. Virtual interfaces

TBD

This chapter should describe virtual interface basics that are relevant to the driver (VLANS, MGMT etc
arenot.) It should explain the use of the add_iface/remove_iface callbacks aswell as the interface config-
uration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate chapter, a BIG FAT note
should be here about this though and the recommendation to allow only a single interface in STA mode
at first!

32

Virtual interfaces

Name

struct ieeeB0211 vif — per-interface data

Synopsis

struct ieee80211 vif {

enum nl 80211 i ftype type;
struct ieee80211 bss_conf bss_conf;

u8 addr[ETH _ALEN] ;
bool p2p;

bool csa_active;
u8 cab_queue;

u8 hw_queue[| EEE80211 NUM ACS];
struct ieee80211 txq * txq;
struct ieee80211 chanctx_conf _ rcu * chanctx_conf;

u32 driver_fl ags;
4

fdef CONFI G_MAC80211_DEBUGFS

struct dentry * debugfs_dir;

#endi f

unsi gned int probe_reqg_reg;

u8 drv_priv[O0];
b

Members
type

bss conf

addr[ETH_ALEN]

pZ2p

csa _active

cab_queue
hw_queue[IEEE80211 NUM_ACS]

txq

chanctx_conf

driver_flags

type of this virtual interface

BSS configuration for this interface, either our own or the BSS
we're associated to

address of thisinterface

indicates whether this AP or STA interface is a p2p interface, i.e.
a GO or p2p-sta respectively

marks whether a channel switch is going on. Internaly it is write-
protected by sdata |ock and local->mtx so holding either isfinefor
read access.

content-after-beacon (DTIM beacon really) queue, AP mode only
hardware queue for each AC
the multicast data TX queue (if driver uses the TXQ abstraction)

The channel context thisinterface is assigned to, or NULL when it
is not assigned. This pointer is RCU-protected due to the TX path
needing to accessiit; even though the netdev carrier will always be
off when it is NULL there can still be races and packets could be
processed after it switches back to NULL.

flags/capabilities the driver has for this interface, these need to be
set (or cleared) when the interface is added or, if supported by the

33

Virtual interfaces

driver, theinterfacetypeis changed at runtime, mac80211 will nev-
er touch thisfield

debugfs dir debugfs dentry, can be used by drivers to create own per interface
debug files. Notethat it will be NULL for the virtual monitor inter-
face (if that is requested.)

probe req reg probe requests should be reported to mac80211 for this interface.
drv_priv[Q] data areafor driver use, will always be aligned to sizeof(void *).
Description

Datain this structureis continually present for driver use during the life of avirtual interface.

Chapter 4. Receive and transmit
processing

what should be here

TBD

This should describe the receive and transmit paths in mac80211/the drivers as well as transmit status
handling.

Frame format

As a general rule, when frames are passed between mac80211 and the driver, they start with the IEEE
802.11 header and include the same octets that are sent over the air except for the FCS which should be
calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

Thefirst exception is for hardware encryption and decryption offload where the IV/ICV may or may not
be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the driver from mac80211 is
the MSDU, not the MPDU.

Packet alignment

Drivers always need to pass packets that are aligned to two-byte boundaries to the stack.

Additionally, should, if possible, align the payload data in a way that guarantees that the contained 1P
header is aligned to a four-byte boundary. In the case of regular frames, this simply means aligning the
payload to afour-byte boundary (because either the | P header isdirectly contained, or IV/RFC1042 headers
that have alength divisible by four are in front of it). If the payload datais not properly aligned and the
architecture doesn't support efficient unaligned operations, mac80211 will align the data.

With A-MSDU frames, however, the payload data address must yield two modulo four because there are
14-byte 802.3 headers within the A-MSDU frames that push the IP header further back to a multiple of
four again. Thankfully, the specs were sane enough this time around to require padding each A-MSDU
subframe to alength that is a multiple of four.

Padding like Atheros hardware adds which is between the 802.11 header and the payload is not supported,
the driver isrequired to move the 802.11 header to be directly in front of the payload in that case.

Calling into mac80211 from interrupts

Only i eee80211 tx_status_irqgsafe andi eee80211 rx_irqgsafe can be called in hard-
ware interrupt context. The low-level driver must not call any other functions in hardware interrupt con-

35

Receive and transmit processing

text. If thereis a need for such call, the low-level driver should first ACK the interrupt and perform the
|EEE 802.11 code call after this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If thedriver optsto usethe_i r gsaf e functions, it may not also use the non-IRQ-safe functions!

functions/definitions

36

Receive and transmit processing

Name

struct ieeeB0211 rx_status — receive status

Synopsis

struct ieee80211 rx_status {
ub4 nmacti nme;
u32 device_tinestanp;
u32 anpdu_ref erence;
u32 flag;
ulé fregq;

us
us
us
us
us
us
s8
us
s8

vht _fl ag;

rate_idx;

vht _nss;

rx_flags;

band;

ant enna;

si gnal

chai ns;

chai n_si gnal [| EEE80211 MAX_ CHAI NS]

u8 anmpdu_deliniter_crc;
i
Members

mactime value in microseconds of the 64-bit Time Synchronization Func-
tion (TSF) timer when the first data symbol (MPDU) arrived at the
hardware.

device timestamp arbitrary timestamp for the device, mac80211 doesn't useit but can
storeit and pass it back to the driver for synchronisation

ampdu_reference A-MPDU reference number, must be a different value for each A-
MPDU but the same for each subframe within one A-MPDU

flag RX_FLAG *

freq frequency the radio wastuned to when receiving thisframe, in MHz

vht_flag RX_VHT_FLAG *

rate idx index of data rate into band's supported rates or MCS index if HT
or VHT isused (RX_FLAG HT/RX_FLAG VHT)

vht_nss number of streams (VHT only)

rx_flags internal RX flags for mac80211

band the active band when this frame was received

antenna antenna used

signal signal strength when receiving this frame, either in dBm, in

dB or unspecified depending on the hardware capabilities flags
| EEE80211 HW SI GNAL_*

37

Receive and transmit processing

chains bitmask of receive chains for which separate signal strength values
were filled.
chain_sig- per-chain signal strength, in dBm (unlikesi gnal , doesn't support
nal[|EEE80211_MAX_CHAINS] dB or unspecified units)
ampdu_delimiter_crc A-MPDU delimiter CRC
Description

The low-level driver should provide this information (the subset supported by hardware) to the 802.11
code with each received frame, in the skb's control buffer (cb).

38

Receive and transmit processing

Name

enum mac80211_rx_flags— receive flags

Synopsis

enum mac80211 rx_flags {

RX_FLAG_MM C_ERROR,
RX_FLAG_DECRYPTED,
RX_FLAG_MM C_STRI PPED,
RX_FLAG_| V_STRI PPED,

RX_FLAG_FAI LED_FCS_CRC,
RX_FLAG_FAI LED_PLCP_CRC,

RX_FLAG_MACTI ME_START,
RX_FLAG_SHORTPRE,
RX_FLAG _HT,
RX_FLAG_40MHZ,
RX_FLAG_SHORT G ,
RX_FLAG_NO_SI GNAL_VAL,
RX_FLAG HT_GF,
RX_FLAG_AMPDU_DETAI LS,
RX_FLAG_PN_VALI DATED,

RX_FLAG_AMPDU_LAST KNOW,

RX_FLAG AMPDU | S_LAST,

RX_FLAG_AMPDU_DELI M_CRC_ERROR,
RX_FLAG_AMPDU_DELI M_CRC_KNOW,

RX_FLAG_MACTI ME_END,
RX_FLAG_VHT,
RX_FLAG_LDPC,
RX_FLAG_STBC_MASK,
RX_FLAG_10MHZ,
RX_FLAG 5MHZ,
RX_FLAG_AMSDU_MORE,

RX_FLAG_RADI OTAP_VENDOR DATA

s
Constants

RX_FLAG_MMIC_ERROR

RX_FLAG_DECRYPTED

RX_FLAG_MMIC_STRIPPED

RX_FLAG_IV_STRIPPED

RX_FLAG_FAILED_FCS CRC

RX_FLAG_FAILED_PLCP_CRC

Michael MIC error was reported on this frame. Use together with
RX_FLAG_WMM C_STRI PPED.

This frame was decrypted in hardware.

the Michadl MIC is stripped off this frame, verification has been
done by the hardware.

ThelV/ICV arestripped from thisframe. If thisflag is set, the stack
cannot do any replay detection hence the driver or hardware will
have to do that.

Set thisflag if the FCS check failed on the frame.

Set thisflag if the PCLP check failed on the frame.

39

Receive and transmit processing

RX_FLAG_MACTIME_START

RX_FLAG_SHORTPRE
RX_FLAG_HT
RX_FLAG_40MHZ
RX_FLAG_SHORT Gl

RX_FLAG_NO_SIGNAL_VAL

RX_FLAG_HT GF

RX_FLAG_AMPDU_DETAILS

RX_FLAG_PN_VALIDATED

RX_FLAG_AMP-
DU_LAST_KNOWN

RX_FLAG_AMPDU_IS_LAST

RX_FLAG_AMP-
DU_DELIM_CRC_ERROR

RX_FLAG_AMP-
DU_DELIM_CRC_KNOWN

RX_FLAG_MACTIME_END

RX_FLAG_VHT
RX_FLAG_LDPC
RX_FLAG_STBC_MASK
RX_FLAG_10MHZ
RX_FLAG_5MHZ

RX_FLAG_AMSDU_MORE

The timestamp passed in the RX status (mact i me field) is valid
and contains the time the first symbol of the MPDU was received.
Thisisuseful in monitor mode and for proper IBSS merging.

Short preamble was used for this frame

HT MCSwas used and rate_idx is MCS index
HT40 (40 MHZz) was used

Short guard interval was used

The signal strength valueis not present. Valid only for dataframes
(mainly A-MPDU)

This frame was received in a HT-greenfield transmission, if the
driver fillsthisvalueit should add | EEE80211_RADI OTAP_M
CS_HAVE_FM to hw.radiotap mcs details to advertise that fact

A-MPDU details are known, in particular the reference number
(ampdu_r ef er ence) must be populated and be a distinct num-
ber for each A-MPDU

Currently only valid for CCMP/GCMP frames, this flag indicates
that the PN was verified for replay protection. Note that thisflagis
aso currently only supported when a frame is also decrypted (ie.
RX_FLAG_DECRYPTED must be set)

last subframe is known, should be set on all subframes of a single
A-MPDU

this subframe is the last subframe of the A-MPDU

A delimiter CRC error has been detected on this subframe

The delimiter CRC field is known (the CRC is stored in the anp-
du_del i m ter_crc fied)

The timestamp passed in the RX status (mact i e field) is valid
and containsthe timethelast symbol of the MPDU (including FCS)
was received.

VHT MCSwas used and rate_index is MCS index
LDPC was used

STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3
10 MHz (half channel) was used

5 MHz (quarter channel) was used

Some drivers may prefer to report separate A-MSDU subframes
instead of a one huge frame for performance reasons. All, but the
last MSDU from an A-MSDU should have this flag set. E.g. if an
A-MSDU has 3 frames, the first 2 must have the flag set, while the

40

Receive and transmit processing

3rd (last) one must not have this flag set. The flag is used to deal
with retransmission/duplication recovery properly since A-MSDU
subframes share the same sequence number. Reported subframes

can be either regular MSDU or singly A-MSDUs. Subframes must
not be interleaved with other frames.

RX_FLAG_RADIOTAP_VEN- This frame contains vendor-specific radiotap data in the skb->data
DOR_DATA (before the frame) as described by the struct ieee80211 vendor_ra
diotap.
Description

These flags are used with the f | ag member of struct ieee80211 rx_status.

41

Receive and transmit processing

Name

enum mac80211_tx_info_flags — flags to describe transmission information/status

Synopsis

enum mac80211 tx info flags {
| EEE80211 TX CTL_REQ TX STATUS,
| EEE80211 TX CTL_ASSI GN _SEQ
| EEE80211 TX CTL_NO ACK,
| EEE80211 TX CTL_CLEAR PS FILT,
| EEE80211 TX CTL_FI RST_FRAGVENT,
| EEE80211 TX CTL_SEND AFTER DTI M
| EEE80211 TX CTL_AMPDUY,
| EEE80211 TX CTL_| NJECTED,
| EEE80211 TX STAT_TX FI LTERED,
| EEE80211 TX STAT_ ACK,
| EEE80211 TX STAT_ AMPDU,
| EEE80211 TX STAT_AMPDU NO BACK,
| EEE80211 TX CTL_RATE_CTRL_PROBE,
| EEE80211 TX I NTFL_OFFCHAN TX K,
| EEE80211 TX | NTFL_NEED TXPROCESSI NG,
| EEE80211 TX I NTFL_RETRI ED,
| EEE80211 TX | NTFL_DONT_ENCRYPT,
| EEE80211 TX CTL_NO PS BUFFER,
| EEE80211 TX CTL_MORE FRAMES,
| EEE80211 TX | NTFL_RETRANSM SSI ON,
| EEE80211 TX I NTFL_M_ME_CONN_TX,
| EEE80211 TX I NTFL_NL80211 FRAME TX,
| EEE80211 TX CTL_LDPC,
| EEE80211 TX CTL_STBC,
| EEE80211 TX CTL_TX OFFCHAN,
| EEE80211 TX INTFL_TKI P_M C FAI LURE,
| EEE80211 TX CTL_NO CCK RATE,
| EEE80211 TX STATUS EGCSP,
| EEE80211 TX CTL_USE M NRATE,
| EEE80211 TX CTL_DONTFRAG,
| EEE80211 TX STAT_NOACK TRANSM TTED

b
Constants

IEEE80211 TX_CTL_RE- require TX status callback for this frame.
Q _TX_STATUS

IEEE80211 TX CTL_ASSIGN_SEQThe driver has to assign a sequence number to this
frame, taking care of not overwriting the fragment num-
ber and increasing the sequence number only when the
IEEE80211 TX_CTL_FIRST_FRAGMENT flagisset. mac80211
will properly assign sequence numbersto QoS-dataframes but can-
not do so correctly for non-QoS-data and management frames be-
cause beacons need them from that counter as well and mac80211
cannot guarantee proper sequencing. If this flag is set, the driver

42

Receive and transmit processing

IEEES0211_TX_CTL_NO_ACK

should instruct the hardware to assign a sequence number to the
frame or assign one itself. Cf. IEEE 802.11-2007 7.1.3.4.1 para-
graph 3. Thisflag will alwaysbe set for beaconsand alwaysbe clear
for frames without a sequence number field.

tell the low level not to wait for an ack

IEEES0211_TX_CTL_CLEAR_PS _Ful&r powersave filter for destination station

IEEE80211 TX_CTL_FIRST_FRAGthisisafirst fragment of the frame

MENT

IEEES0211_TX_CTL_SEND_AF-
TER_DTIM

IEEE80211 TX_CTL_AMPDU
IEEE80211 TX_CTL_INJECTED

|IEEE80211 TX_STAT_TX_FIL-
TERED

IEEES0211_TX_STAT_ACK
|EEES0211_TX_STAT_AMPDU

|EEES0211_TX_STAT_AMP-
DU_NO_BACK

IEEE80211 TX_CTL_RATE _C-
TRL_PROBE

IEEES0211_TX_INTFL_OF-
FCHAN_TX_OK

I[EEE80211 TX_INT-
FL_NEED_TXPROCESSING

IEEE80211 TX_INT-
FL_RETRIED

|IEEE80211 TX_INTFL_DON-
T_ENCRYPT

send this frame after DTIM beacon

this frame should be sent as part of an A-MPDU
Frame was injected, internal to mac80211.

The frame was not transmitted because the destination STA was
in powersave mode. Note that to avoid race conditions, the fil-
ter must be set by the hardware or firmware upon receiving a
frame that indicates that the station went to deep (must be done
on device to filter frames already on the queue) and may on-
ly be unset after mac80211 gives the OK for that by setting the
IEEE80211 TX_CTL_CLEAR_PS FILT (see above), since only
thenisit guaranteed that no more frames arein the hardware queue.

Frame was acknowledged
The frame was aggregated, so status is for the whole aggregation.

no block ack was returned, so consider using block ack request
(BAR).

internal to mac80211, can be set by rate control algorithmsto indi-
cate probe rate, will be cleared for fragmented frames (except on
the last fragment)

Internal to mac80211. Used to indicate that a frame can be trans-
mitted while the queues are stopped for off-channel operation.

completely internal to mac80211, used to indicate that a pending
frame requires TX processing beforeit can be sent out.

completely internal to mac80211, used to indicate that aframe was
aready retried dueto PS

completely internal to mac80211, used to indicate frame should not
be encrypted

IEEE80211 TX CTL_NO_PS BUFFERs frame is aresponse to a poll frame (PS-Poll or uAPSD) or a

non-bufferable MMPDU and must be sent although the station is
in powersave mode.

IEEE80211 TX CTL_MORE_FRAM¥#Sreframeswill be passed to thetransmit function after the current

frame, this can be used by drivers to kick the DMA queue only if
unset or when the queue gets full.

43

Receive and transmit processing

IEEES0211_TX_INTFL_RE-
TRANSMISSION

IEEES0211_TX_INT-
FL_MLME_CONN_TX

IEEES0211_TX_INTFL_N-
L80211 FRAME_TX

IEEES0211_TX_CTL_LDPC

IEEES0211_TX_CTL_STBC

IEEES0211_TX_CTL_TX_OF-
FCHAN

IEEES0211_TX_INT-
FL_TKIP_MIC_FAILURE

IEEES0211_TX_CTL_NO_C-
CK_RATE

IEEEB0211 TX_STATUS EOSP

IEEES0211_TX_CTL_USE_MIN-
RATE

IEEES0211_TX_CTL_DONT-
FRAG

|EEES0211 TX_S-
TAT_NOACK_TRANSMITTED

Description

Note

Thisframeisbeing retransmitted after TX status because the desti-
nation was asleep, it must not be modified again (no segno assign-
ment, crypto, etc.)

This frame was transmitted by the MLME code for connection es-
tablishment, this indicates that its status should kick the MLME
state machine.

Frame was requested through nl80211 MLME command (internal
to mac80211 to figure out whether to send TX status to user space)

tells the driver to use LDPC for this frame

Enables Space-Time Block Coding (STBC) for this frame and se-
| ects the maximum number of streamsthat it can use.

Marks this packet to be transmitted on the off-channel channel
when a remain-on-channel offload is done in hardware -- normal
packets still flow and are expected to be handled properly by the
device.

Marks this packet to be used for TKIP testing. It will be sent out
with incorrect Michagl MIC key to alow TKIP countermeasuresto
be tested.

Thisframe will be sent at non CCK rate. Thisflag is actually used
for management frame especially for P2P frames not being sent at
CCK ratein 2GHz band.

This packet marks the end of service period, when its status is re-
ported the service period ends. For framesin an SP that mac80211
transmits, it is already set; for driver frames the driver may set this
flag. It is also used to do the same for PS-Poll responses.

Thisframewill be sent at lowest rate. Thisflag isused to send null-
func frame at minimum rate when the nullfunc is used for connec-
tion monitoring purpose.

Don't fragment this packet even if it would be fragmented by size
(thisis optional, only used for monitor injection).

A frame that was marked with IEEE80211 TX_CTL_NO_ACK
has been successfully transmitted without any errors (like
issues specific to the driver/HW). This flag must not be
set for frames that don't request no-ack behaviour with
IEEE80211 TX_CTL_NO_ACK.

These flags are used with the f | ags member of ieee80211 tx_info.

If you have to add new flags to the enumeration, then don't forget to update | EEE80211 TX TEMPG

RARY_FLAGS when necessary.

Receive and transmit processing

Name

enum mac80211_tx_control_flags — flags to describe transmit control

Synopsis

enum mac80211 tx control flags {
| EEE80211_TX CTRL_PORT_CTRL_PROTQ,
| EEE80211_TX CTRL_PS_RESPONSE

1
Constants
IEEE80211 TX CTRL_PORT_C- thisframeisaport control protocol frame (e.g. EAP)
TRL_PROTO
IEEE80211 TX CTR- Thisframe is aresponse to a poll frame (PS-Poll or UAPSD).

L_PS RESPONSE

Description

These flags are used in tx_info->control.flags.

45

Receive and transmit processing

Name
enum mac80211 _rate control_flags — per-rate flags set by the Rate Control a gorithm.

Synopsis

enum nmac80211 rate control _flags {
| EEE80211_TX_RC USE_RTS CTS,
| EEE80211 TX RC USE CTS PROTECT,
| EEE80211_TX_ RC USE_SHORT PREAMBLE,
| EEE80211_TX_RC_MCS,
| EEE80211_TX_RC GREEN FI ELD,
| EEES0211_TX RC 40 _MHZ_W DTH,
| EEES80211_TX_RC DUP_DATA,
| EEE80211_TX RC SHORT G,
| EEE80211_TX_RC VHT _MCS,
| EEES0211_TX _RC 80 _MHZ_W DTH,
| EEES0211_TX _RC 160 MHZ_ W DTH

b

Constants
IEEE80211 TX_ R- Use RTS/CTS exchange for thisrate.
C_USE RTS CTS
IEEE80211 TX RC USE C- CTS-to-self protection is required. This is set if the current BSS
TS PROTECT requires ERP protection.
IEEE80211 TX_R- Use short preamble.
C_USE_SHORT_PREAMBLE
IEEE80211 TX_RC _MCS HT rate.
IEEE80211 TX R- Indicates whether this rate should be used in Greenfield mode.

C_GREEN_FIELD

IEEE80211 TX_R- Indicatesif the Channel Width should be 40 MHz.
C_40 MHZ_WIDTH

IEEE80211 TX RC DUP DATA The frame should be transmitted on both of
the adjacent 20 MHz channels, if the cur-
rent channel type is NL80211 CHAN_HT40MINUS or
NL80211 CHAN_HT40PLUS.

IEEE80211 TX_RC_SHORT_GI Short Guard interval should be used for this rate.

IEEE80211 TX RC VHT_MCS VHT MCSrate, inthiscasetheidx field is split into a higher 4 bits
(Nss) and lower 4 bits (MCS number)

IEEE80211 TX_R- Indicates 80 MHz transmission
C_80 MHZ_WIDTH

IEEE8B0211 TX R- Indicates 160 MHz transmission (80+80 isn't supported yet)
C_160 MHZ_WIDTH

46

Receive and transmit processing

Description

These flags are set by the Rate control algorithm for each rate during tx, in the f | ags member of struct
ieeeB0211_tx_rate.

47

Receive and transmit processing

Name
struct ieeeB0211 tx_rate — rate selection/status

Synopsis

struct ieee80211 tx rate {
s8 idx;

ulé count:>5;

ulé flags: 11;
s

Members

idx rate index to attempt to send with
count number of triesin this rate before going to the next rate

flags rate control flags (enum mac80211 rate control_flags)
Description

A value of -1 for i dx indicates an invalid rate and, if used in an array of retry rates, that no more rates
should be tried.

When used for transmit statusreporting, the driver should alwaysreport the rate al ong with the flagsit used.

struct ieeeB0211 tx_info contains an array of these structsin the control information, and it will be filled
by the rate control algorithm according to what should be sent. For example, if this array contains, in the
format { <idx>, <count>} theinformation{ 3,2},{ 2,2},{ 1,4},{-1,0},{ -1, 0} then thismeans
that the frame should be transmitted up to twice at rate 3, up to twice at rate 2, and up to four times at rate
1if it doesn't get acknowledged. Say it gets acknowledged by the peer after the fifth attempt, the status
information should then contain{ 3,2},{ 2,2},{ 1,1},{ -1, 0} ... sinceit wastransmitted twice at rate
3, twice at rate 2 and once at rate 1 after which we received an acknowledgement.

48

Receive and transmit processing

Name
struct ieeeB0211 tx_info — skb transmit information
Synopsis
struct ieee80211 tx_ info {
u32 fl ags;
u8 band;

u8 hw _queue;
ulé ack frame_id;
uni on {unnaned_uni on};

b
Members
flags transmit info flags, defined above
band the band to transmit on (use for checking for races)
hw_queue HW queue to put the frame on, skb_get _queue_nappi ng givesthe AC
ack frame id internal frame ID for TX status, used internally
{unnamed_union} anonymous
Description

This structure is placed in skb->cb for three uses: (1) mac80211 TX control - mac80211 tells the driver
what to do (2) driver internal use (if applicable) (3) TX status information - driver tells mac80211 what
happened

49

Receive and transmit processing

Name
ieeeB0211 tx_info_clear_status— clear TX status

Synopsis
void i eee80211 tx info_clear_status (struct ieee80211 tx info * info);

Arguments

i nfo Thestruct ieeeB0211 tx_info to be cleared.

Description

When the driver passes an skb back to mac80211, it must report a number of thingsin TX status. This
function clears everything in the TX status but the rate control information (it does clear the count since
you need to fill that in anyway).

NOTE

You can only use this function if you do NOT use info->driver_datal Use info->rate_driver_datainstead
if you need only the less space that allows.

50

Receive and transmit processing

Name

ieeeB0211 rx — receive frame

Synopsis

void i eee80211 rx (struct ieee80211 hw * hw, struct sk buff * skb);

Arguments
hw the hardware this frame camein on

skb the buffer to receive, owned by mac80211 after this call

Description

Usethisfunction to hand received framesto mac80211. Thereceive buffer in skb must start with an IEEE
802.11 header. In case of apaged skb isused, the driver is recommended to put the ieee80211 header of
the frame on the linear part of the skb to avoid memory allocation and/or memcpy by the stack.

This function may not be called in IRQ context. Calls to this function for a single hard-
ware must be synchronized against each other. Calls to this function, i eee80211 rx_ni and
i eee80211_rx_i rgsaf e may not be mixed for a single hardware. Must not run concurrently with
i eee80211 tx_statusori eee80211 tx status_ni.

In process context useinstead i eee80211 rx_ni .

51

Receive and transmit processing

Name

ieeeB0211_rx_ni — receive frame (in process context)

Synopsis

void i eee80211 rx _ni (struct ieee80211 hw * hw, struct sk_buff * skb);
Arguments

hw the hardware this frame camein on

skb the buffer to receive, owned by mac80211 after this call

Description

Likei eee80211 r x but can be called in process context (internally disables bottom halves).

Calls to this function, i eee80211_r x and i eee80211_r x_i r gsaf e may not be mixed for a sin-
gle hardware. Must not run concurrently with i eee80211 t x_status ori eee80211 tx_sta-

tus_ni.

52

Receive and transmit processing

Name
ieeeB0211 rx_irqsafe — receive frame

Synopsis
void ieee80211 rx irgsafe (struct ieee80211 hw * hw, struct sk _buff *
skb);

Arguments

hw the hardware this frame camein on

skb the buffer to receive, owned by mac80211 after this call

Description

Likei eee80211 r x but can be caled in IRQ context (internally defersto atasklet.)

Calls to this function, i eee80211 rx ori eee80211 rx_ni may not be mixed for a single hard-
ware.Must not run concurrently withi eee80211 tx_stat us ori eee80211 _tx_status_ni.

53

Receive and transmit processing

Name
ieeeB0211_tx_status — transmit status callback

Synopsis
void ieee80211 tx status (struct ieee80211 hw * hw, struct sk buff *
skb);

Arguments

hw the hardware the frame was transmitted by

skb theframe that was transmitted, owned by mac80211 after this call

Description

Call this function for all transmitted frames after they have been transmitted. It is permissible to not call
this function for multicast frames but this can affect statistics.

This function may not be called in IRQ context. Calls to this function for a single hardware
must be synchronized against each other. Calls to this function, i eee80211 tx_stat us_ni and
i eee80211 tx_status_irqgsaf e may not be mixed for asingle hardware. Must not run concur-
rently withi eee80211 rx ori eee80211 rx_ni .

Receive and transmit processing

Name
ieeeB0211 tx_status ni — transmit status callback (in process context)

Synopsis
void ieeeB80211 tx status_ni (struct ieee80211 hw * hw, struct sk_buff
* skb);

Arguments

hw the hardware the frame was transmitted by

skb theframe that was transmitted, owned by mac80211 after this call

Description

Likei eee80211 t x_st at us but can be called in process context.

Callsto thisfunction, i eee80211 tx_status andi eee80211_t x_stat us_i rqsaf e may not
be mixed for asingle hardware.

55

Receive and transmit processing

Name
ieeeB0211 tx_status irqsafe — IRQ-safe transmit status callback

Synopsis

void ieee80211 tx status irqgsafe (struct ieee80211 hw * hw, struct
sk_buff * skb);

Arguments
hw the hardware the frame was transmitted by

skb theframe that was transmitted, owned by mac80211 after this call

Description

Likei eee80211 t x_st at us but can be called in IRQ context (internally defersto atasklet.)

Cdlls to this function, i eee80211 tx_status and i eee80211 tx_status_ni may not be
mixed for a single hardware.

56

Receive and transmit processing

Name
ieeeB0211 rts get — RTS frame generation function
Synopsis

void i eee80211 rts_get (struct ieee80211 hw* hw, struct ieee80211 vif *
vif, const void* franme, size_t franme_l en, const struct i eee80211 tx info
* frame_txctl, struct ieee80211 rts * rts);

Arguments
hw pointer obtained fromi eee80211 al | oc_hw.
vi f struct ieeeB80211 vif pointer from the add_interface callback.
frame pointer to the frame that is going to be protected by the RTS.

frame_l en the frame length (in octets).
frame_txctl structieee80211 tx_info of the frame.

rts The buffer where to store the RTS frame.
Description
If the RTS frames are generated by the host system (i.e., not in hardware/firmware), the low-level driver

uses this function to receive the next RTS frame from the 802.11 code. The low-level is responsible for
calling this function before and RTS frame is needed.

57

Receive and transmit processing

Name
ieeeB0211 rts duration — Get the duration field for an RTS frame
Synopsis

__lel6 ieee80211 rts duration (struct ieee80211 hw * hw, struct
i eee80211 vif * vif, size t frame_len, const struct ieee80211 tx info
* frame_txctl);

Arguments
hw pointer obtained fromi eee80211 al | oc_hw.
vi f struct ieeeB80211 vif pointer from the add_interface callback.

frame_| en the length of the frame that is going to be protected by the RTS.

frame_txctl structieee80211 tx_info of the frame.

Description

If the RTS is generated in firmware, but the host system must provide the duration field, the low-level
driver uses this function to receive the duration field value in little-endian byteorder.

Return

The duration.

58

Receive and transmit processing

Name
ieeeB0211_ctstoself_get — CTS-to-self frame generation function
Synopsis

void ieee80211 ctstoself _get (struct ieee80211 hw * hw, struct
i eee80211 vif * vif, const void * frame, size_ t frame_|l en, const struct
i eee80211 tx_info * franme_txctl, struct ieee80211 cts * cts);

Arguments
hw pointer obtained fromi eee80211 al | oc_hw.
vi f struct ieeeB80211 vif pointer from the add_interface callback.
franme pointer to the frame that is going to be protected by the CTS-to-self.

frame_l en the frame length (in octets).
frame_txctl structieee80211 tx_info of the frame.

cts The buffer where to store the CTS-to-self frame.
Description
If the CTS-to-self frames are generated by the host system (i.e., not in hardware/firmware), the low-level

driver uses this function to receive the next CTS-to-self frame from the 802.11 code. The low-level is
responsible for calling this function before and CTS-to-self frame is needed.

59

Receive and transmit processing

Name
ieeeB0211 _ctstoself _duration — Get the duration field for a CTS-to-self frame
Synopsis

|l el6 ieee80211 ctstoself duration (struct ieee80211 hw * hw, struct
i eee80211 vif * vif, size t frame_len, const struct ieee80211 tx info
* frame_txctl);

Arguments
hw pointer obtained fromi eee80211 al | oc_hw.
vi f struct ieeeB80211 vif pointer from the add_interface callback.

frame_I| en the length of the frame that is going to be protected by the CTS-to-self.

frame_txctl structieee80211 tx_info of the frame.

Description

If the CTS-to-self is generated in firmware, but the host system must provide the duration field, the low-
level driver uses this function to receive the duration field value in little-endian byteorder.

Return

The duration.

60

Receive and transmit processing

Name
ieeeB0211_generic_frame duration — Calculate the duration field for aframe
Synopsis

__lel6 ieee80211 generic frane duration (struct ieee80211 hw * hw,
struct ieee80211 vif * vif, enumieee80211 band band, size t frane_|en,
struct ieee80211 rate * rate);

Arguments
hw pointer obtained fromi eee80211 al | oc_hw.
vi f struct ieeeB80211 vif pointer from the add_interface callback.
band the band to calculate the frame duration on

frame_| en thelength of the frame.

rate the rate at which the frame is going to be transmitted.

Description

Calculate the duration field of some generic frame, given its length and transmission rate (in 100kbps).

Return

The duration.

61

Receive and transmit processing

Name

ieeeB0211_wake queue — wake specific queue
Synopsis

voi d i eee80211 wake queue (struct ieee80211 hw * hw, int queue);
Arguments

hw pointer as obtained fromi eee80211 al | oc_hw.

gueue queue number (counted from zero).

Description

Drivers should use this function instead of netif_wake queue.

62

Receive and transmit processing

Name

ieeeB0211_stop_queue — stop specific queue
Synopsis

voi d i eee80211 stop_queue (struct ieee80211 hw * hw, int queue);
Arguments

hw pointer as obtained fromi eee80211 al | oc_hw.

gueue queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop _queue.

63

Receive and transmit processing

Name
ieeeB0211 wake queues — wake al queues
Synopsis
voi d i eee80211 wake queues (struct ieee80211 hw * hw);
Arguments
hw pointer as obtained fromi eee80211 al | oc_hw.
Description

Drivers should use this function instead of netif wake queue.

Receive and transmit processing

Name
ieeeB0211_stop_queues — stop al queues
Synopsis
voi d i eee80211 stop_queues (struct ieee80211 hw * hw);
Arguments
hw pointer as obtained fromi eee80211 al | oc_hw.
Description

Drivers should use this function instead of netif _stop _queue.

65

Receive and transmit processing

Name

ieeeB0211_queue_stopped — test status of the queue
Synopsis

int ieee80211 queue_stopped (struct ieee80211 hw * hw, int queue);
Arguments

hw pointer as obtained fromi eee80211 al | oc_hw.

gueue queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop _queue.

Return

t r ue if the queueis stopped. f al se otherwise.

66

Chapter 5. Frame filtering

mac80211 requiresto see many management framesfor proper operation, and users may want to see many
more frames when in monitor mode. However, for best CPU usage and power consumption, having as
few frames as possible percol ate through the stack is desirable. Hence, the hardware should filter as much
aspossible.

To achievethis, mac80211 usesfilter flags (see below) to tell thedriver'sconf i gure_fil t er function
which frames should be passed to mac80211 and which should be filtered out.

Beforeconfigure_filter isinvoked,thepr epare_mul ti cast calbackisinvokedwiththepara-
metersnt_count andnt_| i st for thecombined multicast addresslist of al virtual interfaces. It'suseis
optional, and it returnsau64 that ispassedtoconf i gure_fi | t er. Additionally, confi gure_fil -
t er hasthe arguments changed_f | ags telling which flags were changed and t ot al _f | ags with
the new flag states.

If your device has no multicast address filters your driver will need to check both the FI F_ ALLMULTI
flagand the nt_count parameter to see whether multicast frames should be accepted or dropped.

All unsupported flagsint ot al _f | ags must be cleared. Hardware does not support aflag if it isinca
pable of _passing_ the frame to the stack. Otherwise the driver must ignore the flag, but not clear it. You
must _only_ clear the flag (annhounce no support for the flag to mac80211) if you are not able to pass the
packet type to the stack (so the hardware always filtersit). So for example, you should clear FI F_CON-
TRAL, if your hardware always filters control frames. If your hardware aways passes control frames to
the kernel and isincapable of filtering them, youdo _not_ clear the FI F_CONTROL flag. Thisrule applies
to all other FIF flags as well.

67

Frame filtering

Name
enum ieee80211_filter_flags— hardwarefilter flags
Synopsis
enum i eee80211 filter_flags {
FI F_ALLMULTI ,
FI F_FCSFAI L,
FI F_PLCPFAI L,
FI F_BCN_PRBRESP_PROM SC,
FI F_CONTROL,
FI F_OTHER _BSS,
FI F_PSPQOLL,
FI F_PROBE_REQ
1
Constants
FIF ALLMULTI pass all multicast frames, thisisused if requested by the user or if the
hardware is not capable of filtering by multicast address.
FIF_FCSFAIL pass frames with failed FCS (but you need to set the
RX_FLAG FAI LED FCS_CRCfor them)
FIF_PLCPFAIL pass frames with failled PLCP CRC (but you need to set the

RX_FLAG_FAI LED_PLCP_CRC for them

FIF_ BCN_PRBRESP_PROMISC This flag is set during scanning to indicate to the hardware that it
should not filter beacons or probe responses by BSSID. Filtering
them can greatly reduce the amount of processing mac80211 needs
to do and the amount of CPU wakeups, so you should honour this

flag if possible.
FIF_CONTROL pass control frames (except for PS Poll) addressed to this station
FIF_ OTHER BSS pass frames destined to other BSSes
FIF_PSPOLL pass PS Poll frames
FIF_PROBE_REQ pass probe request frames

HW queue control

These flags determine what the filter in hardware should be programmed to let through and what should
not be passed to the stack. It isalways safe to pass more frames than requested, but this has negative impact
on power consumption.

68

Chapter 6. The mac80211 workqueue

mac80211 provides its own workqgueue for drivers and internal mac80211 use. The workqueueisasingle
threaded workqueue and can only be accessed by helpersfor sanity checking. Drivers must ensure all work
added onto the mac80211 workqgueue should be cancelled on the driver st op callback.

mac80211 will flushed the workqueue upon interface removal and during suspend.

All work performed on the mac80211 workgueue must not acquire the RTNL lock.

69

The mac80211 workqueue

Name
ieeeB0211_queue work — add work onto the mac80211 workqueue

Synopsis

voi d i eee80211 queue_work (struct ieee80211 hw * hw, struct work_struct
* wor k) ;

Arguments
hw the hardware struct for the interface we are adding work for

wor k the work we want to add onto the mac80211 workqueue
Description

Drivers and mac80211 use this to add work onto the mac80211 workqueue. This helper ensures drivers
are not queueing work when they should not be.

70

The mac80211 workqueue

Name
ieeeB0211_queue delayed_work — add work onto the mac80211 workqueue

Synopsis

void ieee80211 queue_del ayed work (struct ieee80211 hw * hw,
del ayed_work * dwork, unsigned | ong del ay);

Arguments
hw the hardware struct for the interface we are adding work for
dwor k delayable work to queue onto the mac80211 workqueue

del ay number of jiffiesto wait before queueing

Description

Drivers and mac80211 use this to queue delayed work onto the mac80211 workqueue.

struct

71

Part Il. Advanced driver interface

Information contained within this part of the book is of interest only for advanced interaction of mac80211 with drivers
to exploit more hardware capabilities and improve performance.

Table of Contents

A = =¥ o] o o S TP PPN 74
1€ee80211 _get tX €0 NAIMEuiit e e 75
1€6880211 gt X 180 NAMIE . ..iee et 76
ieeeB0211 _get aSSOC €0 NAIME ... cuiiii e e 77
ieeeB0211 get radio 180 NAMEc.uuiiii e e 78
struct ieeeB0211 Pt BlINK ...c..eiie e 79
enum ieee80211 tpt_led trigger_flagscoouru i 80
1€ee80211 _create Pt 10 trgOEr «.uieee e 81

8. Hardware Crypto aCCEIEIatiONooeeiii it 82
ENUM SEEKEY M .. et e e e et e e e e et e e e e ean s 83
Struct i€ee80211 KEY CONF ...ttt e e 84
enum i€eeB80211_KEY FlaOS . ..evvu it 85
1€0680211_ gL TKIP PIK ...ueeeitii ettt 87
1€0280211_get_tKIP_ PIK IV ...eieiiei ettt 88
1€0680211_ gL TKIP 2Keeeeti ettt ettt 89

O. POWEISAVE SUPPOIT ...ttt ittt ettt ettt ettt e e et et e 90

10. BEaCON TIlter SUPPOIT ...eeee ettt ettt e et e et e e e e e 91
1€6880211 BEACON T0SS .. ieiiiiti ettt 92

11. Multiple queues and QOS SUPPOIToieeuue ettt ettt et e e e e e e e e 93
struct 1€eeB0211_tX_QUEUE PAIAIMISuuueeirrtneeeetiaeeeeti e eeeetiaeeeete e eeeert e eeeeneaeeeenaaaeees 94

12. ACCESS POINE MO SUPPONT ...ttt ettt e et e et e et e e e et e e e e et e e enaa s 95
SUPPOrt fOr POWEISAVING ClIENTS ...ovveiiiii e 95

13. Supporting multiple virtual iNterfacesi i 105
ieeeB0211 iterate active INtErfaCeS .. .ovvu i 106
ieeeB0211 iterate active interfaces alomMiCovevuiieiiiiii e 107

14, SEEtioN NANAIING ...ceeeei e et e 108
S Vo QTS 02 I v PPN 109
ENUM StA NOLITY CMA ..o e e e e 111
1€E8021L_FINU_SIA .. eevteeeieii ettt 112
ieeeB0211 find sta by ifaddrooouniiii i 113

15. Hardware SCan Offl0B0cooiiiiiiiiii e e e 114
1€eeB0211 Scan_ COMPIELEAcceeeeie ittt e e e e e e 115

oo (= o= o] o PP PP UPPPTT 116
TX A-MPDU 800MEJALIONeueiiiiie ettt ettt e et e e e e naa s 116
RX A-MPDU 8OOIEIALIONueiiitieeeei ettt ettt et e e e et eeena e 116

17. Spatial Multiplexing POWErsave (SMPS)ccouuiiiiiiiii e 118
1€0E80211_FEOUESL SITIDS .. eevueeeetieeeettt e ettt e e ettt e e et e e et et e e et et e e et et e e e e ebe e e e e ena s 119
enuM 1€ee80211 SMPS MOTEuuiiiieit e ettt e e et e et e e e e et e e eanaaee 120

73

Chapter 7. LED support

Mac80211 supports various ways of blinking LEDs. Wherever possible, device LEDs should be exposed
as LED class devices and hooked up to the appropriate trigger, which will then be triggered appropriately
by mac80211.

74

LED support

Name
ieeeB0211 get tx_led name — get name of TX LED

Synopsis
const char * ieee80211 get _tx |ed_nane (struct ieee80211 hw * hw);

Arguments

hw the hardware to get the LED trigger name for

Description

mac80211 creates a transmit LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDS)
of the trigger so you can automatically link the LED device.

Return

The name of the LED trigger. NULL if not configured for LEDs.

75

LED support

Name
ieeeB0211 get rx_led name — get name of RX LED

Synopsis
const char * ieee80211 get_rx_|ed_nane (struct ieee80211 hw * hw);

Arguments

hw the hardware to get the LED trigger name for

Description

mac80211 creates areceive LED trigger for each wireless hardware that can be used to drive LEDsiif your
driver registersaLED device. Thisfunction returns the name (or NULL if not configured for LEDSs) of the
trigger so you can automatically link the LED device.

Return

The name of the LED trigger. NULL if not configured for LEDs.

76

LED support

Name
ieeeB0211 get assoc led_name — get hame of association LED

Synopsis
const char * ieee80211 get _assoc_l ed _name (struct ieee80211 hw * hw);

Arguments

hw the hardware to get the LED trigger name for

Description

mac80211 creates a association LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDS)
of the trigger so you can automatically link the LED device.

Return

The name of the LED trigger. NULL if not configured for LEDs.

77

LED support

Name
ieeeB0211 get radio_led name — get name of radio LED

Synopsis
const char * ieee80211 get _radio_|ed name (struct ieee80211 hw * hw);

Arguments

hw the hardware to get the LED trigger name for

Description

mac80211 creates aradio change LED trigger for each wireless hardware that can be used to drive LEDs if
your driver registers a LED device. This function returns the name (or NULL if not configured for LEDS)
of the trigger so you can automatically link the LED device.

Return

The name of the LED trigger. NULL if not configured for LEDs.

78

LED support

Name
struct ieee80211 tpt_blink — throughput blink description

Synopsis

struct ieee80211 tpt_blink {
i nt throughput;
int blink tinme;

b
Members

throughput throughput in Khbit/sec

blink_time blink time in milliseconds (full cycle, ie. one off + one on period)

79

LED support

Name

enum ieee80211 tpt_led trigger_flags — throughput trigger flags

Synopsis

enum i eee80211 tpt_led_trigger_flags {
| EEE80211_TPT_LEDTRI G _FL_RADI O
| EEE80211_TPT_LEDTRI G_FL_WORK,

}i
Constants

|EEES0211_TP-
T_LEDTRIG_FL_RADIO

|EEE80211_TP-
T_LEDTRIG_FL_WORK

|IEEE80211_TP-
T_LEDTRIG_FL_CONNECTED

| EEE80211_TPT_LEDTRI G_FL_CONNECTED

enable blinking with radio

enable blinking when working

enable blinking when at least one interface is connected in some
way, including being an AP

80

LED support

Name
ieeeB0211_create tpt_led trigger — create throughput LED trigger
Synopsis

const char * ieeeB80211 create tpt led trigger (struct ieee80211 hw *
hw, unsigned int flags, const struct ieee80211 tpt_blink * blink_table,
unsi gned int blink_table_len);

Arguments
hw the hardware to create the trigger for
flags trigger flags, see enum ieee80211 tpt led trigger flags
blink_table the blink table -- needs to be ordered by throughput

blink_table | en sizeof theblink table

Return

NULL (in case of error, or if no LED triggers are configured) or the name of the new trigger.

Note

This function must be called beforei eee80211_r egi st er _hw.

81

Chapter 8. Hardware crypto
acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs for encryption and de-
cryption operations.

Theset _key callback inthe struct ieeeB0211 opsfor agiven deviceiscalled to enable hardware accel-
eration of encryption and decryption. The callback takes a st a parameter that will be NULL for default
keys or keys used for transmission only, or point to the station information for the peer for individual
keys. Multiple transmission keys with the same key index may be used when VLANSs are configured for
an access point.

When transmitting, the TX control data will use the hw_key_i dx selected by the driver by modifying
the struct ieee80211 key conf pointed to by the key parameter to theset _key function.

Theset _key cal for the SET_KEY command should return O if the key is now in use, -EOPNOT SUPP
or -ENGCSPC if it couldn't be added; if you return O then hw_key idx must be assigned to the hardware
key index, you are free to use the full u8 range.

Note that in the case that the | EEE80211_ HW SW CRYPTO_CONTROL flag is set, mac80211 will not
automatically fall back to software crypto if enabling hardware crypto failed. Theset _key call may also
return the value 1 to permit this specific key/algorithm to be done in software.

When the cmd is DI SABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if akey for it has been uploaded to hardware, the
stack will not make any decision based on whether a key has been uploaded or not but rather based on
the receive flags.

The struct ieee80211 key conf structure pointed to by the key parameter is guaranteed to be valid until
another call toset _key removesit, but it can only be used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption acceleration (i.e. iwlwifi). Those
drivers should provide update tkip_key handler. The updat e_t ki p_key call updates the driver with
the new phase 1 key. Thishappensevery timetheiv16 wrapsaround (every 65536 packets). Theset _key
call will happen only once for each key (unless the AP did rekeying), it will not include a valid phase 1
key. The valid phase 1 key is provided by update tkip_key only. The trigger that makes mac80211 call
this handler is software decryption with wrap around of iv16.

Theset _def aul t _uni cast _key call updatesthe default WEP key index configured to the hardware
for WEP encryption type. This is required for devices that support offload of data packets (e.g. ARP
responses).

82

Hardware crypto acceleration

Name

enum set_key cmd — key command

Synopsis

enum set _key cmd {
SET_KEY,
Dl SABLE_KEY

}i
Constants

SET_KEY akey is set

DISABLE_KEY akey must be disabled

Description

Used withtheset _key callback in struct ieeeB0211_ops, this indicates whether akey is being removed
or added.

83

Hardware crypto acceleration

Name

struct ieeeB0211_key conf — key information

Synopsis

struct ieee80211 key_ conf {
atomi c64_t tx_pn;
u32 ci pher;
ug8 icv_len;

ug8 iv_len;

u8 hw key_ i dx;

u8 fl ags;
s8 keyi dx;
u8 keyl en;
u8 key[O0];

b
Members

tx_pn

cipher
icv_len
iv_len

hw_key idx

flags

keyidx
keylen
key[O]

Description

PN used for TX on non-TKIP keys, may be used by the driver as well if it needs to do
software PN assignment by itself (e.g. due to TSO)

The key's cipher suite selector.
The ICV length for thiskey type
The IV length for this key type

To be set by the driver, thisis the key index the driver wants to be given when a frame
istransmitted and needs to be encrypted in hardware.

key flags, see enum ieee80211 key flags.
the key index (0-3)
key material length

key material. For ALG_TKIP the key is encoded as a 256-hit (32 byte)

This key information is given by mac80211 to the driver by the set _key callback in struct

ieee80211_ops.

data block

- Temporal Encryption Key (128 hits) - Temporal Authenticator Tx MIC Key (64 bits) - Tempora Au-
thenticator Rx MIC Key (64 bits)

Hardware crypto acceleration

Name

enum ieee80211_key flags — key flags

Synopsis

enum i eee80211 key flags {

| EEE80211_KEY_FLAG GENERATE | V_MGMT,
| EEE80211 KEY_FLAG GENERATE |V,

| EEE80211 KEY_FLAG GENERATE_MM C,

| EEE80211_KEY_FLAG PAI RW SE,

| EEE80211_KEY_FLAG SW MGMT_TX,

| EEE80211_KEY_FLAG PUT_| V_SPACE,

| EEE80211 KEY_FLAG RX_MGM,

| EEE80211 KEY_FLAG RESERVE_TAI LROOM

b
Constants

|EEE80211_KEY_FLAG_GEN-
ERATE_IV_MGMT

|EEE80211 KEY_FLAG_GEN-
ERATE_IV

IEEE80211 KEY_FLAG_GEN-
ERATE_MMIC

IEEE80211 KEY_FLAG_PAIR-
WISE

This flag should be set by the driver for a CCMP/GCMP key to
indicate that is requires IV generation only for managment frames
(MFP).

This flag should be set by the driver to indicate that it requires 1V
generation for this particular key. Setting this flag does not neces-
sarily mean that SKBswill have sufficient tailroom for ICV or MIC.

This flag should be set by the driver for a TKIP key if it requires
Michael MIC generation in software.

Set by mac80211, this flag indicates that the key is pairwise rather
then a shared key.

IEEE80211 KEY_FLAG_SW_MGMThis€lag should be set by the driver for a CCMP/GCMP key if it

requires CCMP/GCMP encryption of management frames (MFP)
to be donein software.

IEEE80211 KEY_FLAG_PUT_IV_SThis flag should be set by the driver if space should be prepared

PACE

for the IV, but the IV itself should not be generated. Do not set
together with | EEE80211_KEY_FLAG GENERATE_| V on the
same key. Setting this flag does not necessarily mean that SKBs
will have sufficient tailroom for ICV or MIC.

IEEE80211 KEY_FLAG_RX_MGMThis key will be used to decrypt received management frames.

The flag can help drivers that have a hardware crypto imple-
mentation that doesn't deal with management frames properly
by allowing them to not upload the keys to hardware and fall
back to software crypto. Note that this flag deals only with RX,
if your crypto engine can't deal with TX you can also set the
| EEE80211_ KEY_FLAG SW MGMT_TX flag to encrypt such
framesin SW.

IEEE80211 KEY_ FLAG RESERVEThidflag should be set by the driver for akey to indicate that suffi-

ROOM

cient tailroom must always bereserved for ICV or MIC, even when
HW encryption is enabled.

85

Hardware crypto acceleration

Description

These flags are used for communication about keys between the driver and mac80211, with the f | ags
parameter of struct ieee80211 key conf.

86

Hardware crypto acceleration

Name
ieeeB0211_get_tkip_plk — get a TKIP phase 1 key

Synopsis

voi d i eeeB80211 get tkip_plk (struct i eee80211 key conf * keyconf, struct
sk_buff * skb, ul6é * plk);

Arguments

keyconf the parameter passed with the set key
skb the packet to take the V32 value from that will be encrypted with this P1K

p1lk abuffer to which the key will be written, as 5 ul6 values
Description

This function returns the TKIP phase 1 key for the 1V 32 taken from the given packet.

87

Hardware crypto acceleration

Name
ieeeB0211_get_tkip_plk_iv — get a TKIP phase 1 key for 1V 32

Synopsis

void ieee80211 get tkip_plk_iv (struct ieee80211 key conf * keyconf,
u32 iv32, ulé * plk);

Arguments
keyconf the parameter passed with the set key

iv32 1V 32 to get the P1K for

p1lk abuffer to which the key will be written, as 5 ul6 values

Description

This function returns the TKIP phase 1 key for the given 1V 32.

88

Hardware crypto acceleration

Name
ieeeB0211_get_tkip_p2k — get a TKIP phase 2 key

Synopsis

voi d i eeeB80211 get tkip_p2k (struct i eee80211 key_ conf * keyconf, struct
sk_buff * skb, u8 * p2k);

Arguments

keyconf the parameter passed with the set key
skb the packet to take the IV32/1V 16 values from that will be encrypted with this key

p2k abuffer to which the key will be written, 16 bytes

Description

This function computes the TKIP RC4 key for the IV values in the packet.

89

Chapter 9. Powersave support

mac80211 has support for various powersave implementations.

First, it can support hardware that handles all powersaving by itself, such hardware should simply set the
| EEE80211 HW SUPPORTS_PS hardwareflag. Inthat case, it will betold about the desired powersave
mode withthel EEE80211 CONF_PS flag depending on the association status. The hardware must take
care of sending nullfunc frames when necessary, i.e. when entering and leaving powersave mode. The
hardware is required to look at the AID in beacons and signal to the AP that it woke up when it finds
traffic directed to it.

| EEES0211 CONF_PS flag enabled means that the powersave mode defined in IEEE 802.11-2007 sec-
tion 11.2 is enabled. Thisis not to be confused with hardware wakeup and sleep states. Driver is respon-
sible for waking up the hardware before issuing commands to the hardware and putting it back to sleep
at appropriate times.

When PS is enabled, hardware needs to wakeup for beacons and receive the buffered multicast/broadcast
frames after the beacon. Also it must be possible to send frames and receive the acknowledment frame.

Other hardware designs cannot send nullfunc frames by themselves and also need software support for
parsing the TIM bitmap. Thisis also supported by mac80211 by combining thel EEE80211_ HW SUP-
PORTS_PS and | EEE80211 HW PS_NULLFUNC_STACK flags. The hardware is of course still re-
quired to pass up beacons. The hardware is still required to handle waking up for multicast traffic; if it
cannot the driver must handle that as best asit can, mac80211 is too slow to do that.

Dynamic powersave is an extension to normal powersave in which the hardware stays awake for a user-
specified period of time after sending a frame so that reply frames need not be buffered and therefore
delayed to the next wakeup. It's compromise of getting good enough latency when there's data traffic and
still saving significantly power inidle periods.

Dynamic powersave is simply supported by mac80211 enabling and disabling PS based on traffic. Driver
needstoonly set | EEE80211 HW SUPPORTS_PS flag and mac80211 will handle everything automat-
ically. Additionally, hardware having support for the dynamic PS feature may set the | EEE80211 H-

W SUPPORTS_DYNAM C_PS flag to indicate that it can support dynamic PS mode itself. The driver
needsto look at thedynami c¢_ps_ti neout hardware configuration value and use it that value when-
ever | EEE80211 CONF_PSis set. In this case mac80211 will disable dynamic PS feature in stack and
will just keep | EEE80211 CONF_PS enabled whenever user has enabled powersave.

Driver informs U-APSD client support by enabling | EEE80211_VI F_SUPPORTS_UAPSD flag. The
mode is configured through the uapsd parameter in conf _t x operation. Hardware needs to send the
QoS Nullfunc frames and stay awake until the service period has ended. To utilize U-APSD, dynamic
powersave is disabled for voip AC and all frames from that AC are transmitted with powersave enabled.

Note: U-APSD client mode is not yet supported with | EEE80211 HW PS NULLFUNC_STACK.

90

Chapter 10. Beacon filter support

Some hardware have beacon filter support to reduce host cpu wakeups which will reduce system power
consumption. It usually works so that the firmware creates a checksum of the beacon but omits all con-
stantly changing elements (TSF, TIM etc). Whenever the checksum changesthe beacon isforwarded to the
host, otherwise it will be just dropped. That way the host will only receive beacons where some relevant
information (for example ERP protection or WMM settings) have changed.

Beacon filter support is advertised with the | EEE80211 VI F_BEACON FI LTER interface capa-
bility. The driver needs to enable beacon filter support whenever power save is enabled, that is
| EEE80211 CONF_PSisset. When power save is enabled, the stack will not check for beacon loss and
the driver needs to notify about loss of beaconswithi eee80211 beacon_| oss.

The time (or number of beacons missed) until the firmware notifies the driver of a beacon loss event
(which in turn causes the driver to call i eee80211 beacon_| oss) should be configurable and will
be controlled by mac80211 and the roaming algorithm in the future.

Since there may be constantly changing information elements that nothing in the software stack cares
about, we will, in the future, have mac80211 tell the driver which information elements are interesting in
the sense that we want to see changes in them. Thiswill include - alist of information element IDs - alist
of OUlsfor the vendor information element

Idedlly, the hardware would filter out any beacons without changes in the requested elements, but if it
cannot support that it may, at the expense of some efficiency, filter out only a subset. For example, if the
device doesn't support checking for OUlIsit should passup al changesin al vendor information elements.

Note that change, for the sake of simplification, also includes information elements appearing or disap-
pearing from the beacon.

Some hardware supportsan “ignorelist” instead, just make sure nothing that was requested ison theignore
list, and include commonly changing information element IDsintheignorelist, for example 11 (BSSload)
and the various vendor-assigned | Es with unknown contents (128, 129, 133-136, 149, 150, 155, 156, 173,
176, 178, 179, 219); for forward compatibility it could also include some currently unused IDs.

I'n addition to these capabilities, hardware should support notifying the host of changesin the beacon RSSI.
Thisisrelevant to implement roaming when no traffic is flowing (when traffic is flowing we see the RSS
of the received data packets). This can consist in notifying the host when the RSSI changes significantly
or when it drops below or rises above configurable thresholds. In the future these thresholds will also be
configured by mac80211 (which gets them from userspace) to implement them as the roaming algorithm
requires.

If the hardware cannot implement this, the driver should ask it to periodically pass beacon frames to the
host so that software can do the signal strength threshold checking.

91

Beacon filter support

Name

ieeeB0211 _beacon loss — inform hardware does not receive beacons
Synopsis
voi d i eee80211 beacon_|l oss (struct ieee80211 vif * vif);

Arguments

vi f struct ieeeB0211 vif pointer from the add_interface callback.

Description

When beacon filtering is enabled with | EEE80211 VI F_BEACON_FI LTERand | EEE80211_ CON-
F_PSisset, thedriver needsto inform whenever the hardwareis not receiving beacons with this function.

92

Chapter 11. Multiple queues and QoS
support

TBD

93

Multiple queues and QoS support

Name

struct ieeeB0211 tx_queue params— transmit queue configuration

Synopsis

struct ieee80211 tx_queue_parans {
ulé txop;
ulé cw mn;
ulé cw_nax;

u8 aifs;
bool acm
bool uapsd;
b
Members
txop maximum burst time in units of 32 usecs, 0 meaning disabled

cw_min minimum contention window [a value of the form 2*n-1 in the range 1..32767]
CW_max maximum contention window [like cw_ni n]

aifs arbitration interframe space [0..255]

acm is mandatory admission control required for the access category

uapsd isU-APSD mode enabled for the queue

Description

The information provided in this structure is required for QoS transmit queue configuration. Cf. IEEE
802.11 7.3.2.29.

94

Chapter 12. Access point mode
support

TBD
Some parts of theif _conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

support for powersaving clients

In order toimplement AP and P2P GO modes, mac80211 has support for client powersaving, both “legacy”
PS (PS-Poll/null data) and uAPSD. There currently is no support for SAPSD.

There is one assumption that mac80211 makes, namely that a client will not poll with PS-Poll and trigger
with UAPSD at the same time. Both are supported, and both can be used by the same client, but they can't
be used concurrently by the same client. This simplifies the driver code.

Thefirst thing to keep in mind isthat thereisaflag for complete driver implementation: | EEE80211 H-

W AP_LI NK_PS. If thisflag is set, mac80211 expects the driver to handle most of the state machine for
powersaving clients and will ignore the PM bit in incoming frames. Drivers then usei eee80211_s-

ta_ps_transition toinform mac80211 of stations powersave transitions. In this mode, mac80211
also doesn't handle PS-Poll/uAPSD.

In the mode without | EEE80211_ HW AP_LI NK_PS, mac80211 will check the PM bit in incoming
frames for client powersave transitions. When a station goes to sleep, we will stop transmitting to it.
Thereis, however, arace condition: a station might go to sleep while there is data buffered on hardware
gueues. If the device has support for thisit will reject frames, and the driver should give the frames back
to mac80211 with thel EEE80211_TX_STAT_TX_FI LTERED flag set which will cause mac80211 to
retry the frame when the station wakes up. The driver is aso notified of powersave transitions by calling
itssta_not i fy calback.

When the station is asleep, it has three choices: it can wake up, it can PS-Poll, or it can possi-
bly start a UAPSD service period. Waking up is implemented by ssimply transmitting al buffered
(and filtered) frames to the station. This is the easiest case. When the station sends a PS-Poll or a
UAPSD trigger frame, mac80211 will inform the driver of this with the al | ow_buf f ered_franes
callback; this callback is optional. mac80211 will then transmit the frames as usual and set the
| EEE80211 TX CTL_NO_PS BUFFERonNeachframe. Thelast frameintheserviceperiod (or theonly
responseto a PS-Poll) also has| EEE80211 TX STATUS_EQGSP set to indicate that it ends the service
period; asthisframe must have TX statusreport it also sets| EEE80211 TX CTL_REQ TX STATUS.
When TX statusis reported for this frame, the service period is marked has having ended and a new one
can be started by the peer.

Additionally, non-bufferable MMPDUs can also be transmitted by mac80211 with the
| EEE80211_TX_ CTL_NO PS_BUFFERset in them.

Another race condition can happen on some devices like iwlwifi when there are frames queued for the
station and it wakes up or polls; the frames that are already queued could end up being transmitted first
instead, causing reordering and/or wrong processing of the EOSP. The cause isthat allowing framesto be
transmitted to a certain station is out-of-band communication to the device. To allow this problem to be
solved, thedriver cancall i eee80211 st a_bl ock_awake if frames are buffered when it is notified

95

Access point mode support

that the station went to sleep. When all these frames have been filtered (see above), it must call the function
again to indicate that the station is no longer blocked.

If the driver buffers frames in the driver for aggregation in any way, it must use thei eee80211_s-

ta_set _buf fered call when it is notified of the station going to sleep to inform mac80211 of any
TIDs that have frames buffered. Note that when a station wakes up this information is reset (hence the
requirement to call it when informed of the station going to sleep). Then, when a service period starts
for any reason, r el ease_buf f er ed_franes iscalled with the number of frames to be released and
which TIDsthey areto comefrom. In this case, the driver isresponsible for setting the EOSP (for uAPSD)
and MORE_DATA bits in the released frames, to help the nor e_dat a parameter is passed to tell the
driver if there is more data on other TIDs -- the TIDs to release frames from are ignored since mac80211
doesn't know how many frames the buffers for those TIDs contain.

If the driver also implement GO mode, where absence periods may shorten service periods (or abort PS-
Poll responses), it must filter those response frames except in the case of frames that are buffered in the
driver -- those must remain buffered to avoid reordering. Becauseit is possible that no frames are rel eased
inthiscase, thedriver must call i eee80211_st a_eosp toindicateto mac80211 that the service period
ended anyway.

Finally, if frames from multiple TIDs are released from mac80211 but the driver might reorder them, it
must clear & set theflags appropriately (only thelast framemay havel EEE80211 TX STATUS EQCSP)
and also take care of the EOSP and MORE_DATA bits in the frame. The driver may also use
i eee80211 st a_eosp inthiscase.

Note that if the driver ever buffers frames other than QoS-data frames, it must take care to never send a
non-QoS-data frame as the last frame in a service period, adding a QoS-nulldata frame after a non-QoS-
data frameif needed.

96

Access point mode support

Name
ieeeB0211 get buffered bc — accessing buffered broadcast and multicast frames

Synopsis

struct sk_buff * ieee80211 get buffered bc (struct ieee80211 hw * hw,
struct ieee80211 vif * vif);

Arguments

hw pointer asobtained fromi eee80211 al | oc_hw.

vi f struct ieeeB0211 vif pointer from the add_interface callback.

Description

Function for accessing buffered broadcast and multicast frames. If hardware/firmware does not implement
buffering of broadcast/multicast frames when power saving is used, 802.11 code buffers them in the host
memory. The low-level driver uses this function to fetch next buffered frame. In most cases, thisis used
when generating beacon frame.

Return

A pointer to the next buffered skb or NULL if no more buffered frames are available.

Note

buffered frames are returned only after DTIM beacon frame was generated with i eee80211 bea-
con_get and the Ilow-level driver must thus call ieee80211 beacon_get first.
i eee80211 get buffered_bc returns NULL if the previous generated beacon was not DTIM, so
the low-level driver does not need to check for DTIM beacons separately and should be able to use com-
mon code for all beacons.

97

Access point mode support

Name
ieeeB0211_beacon get — beacon generation function

Synopsis

struct sk _buff * ieeeB80211 beacon_get (struct ieee80211 hw * hw, struct
i eee80211 vif * vif);

Arguments

hw pointer obtained fromi eee80211_al | oc_hw.

vi f struct ieeeB0211 vif pointer from the add_interface callback.
Description

Seei eee80211 beacon_get tim

Return

Seei eee80211 beacon_get tim

98

Access point mode support

Name

ieeeB0211_sta eosp — notify mac80211 about end of SP

Synopsis

void i eee80211 sta eosp (struct ieee80211 sta * pubsta);

Arguments

pubsta thestation

Description

NB

When a device transmits frames in away that it can't tell mac80211 in the TX status about the EOSP, it
must clear the | EEE80211 TX STATUS_ EGSP bit and call this function instead. This applies for PS-
Poll aswell as UAPSD.

Notethat just likewith _t x_st at us and _r x driversmust not mix calsto irqsafe/non-irgsafe versions,
this function must not be mixed with those either. Use the all irgsafe, or all non-irgsafe, don't mix!

the _irgsafe version of this function doesn't exist, no driver needs it right now. Don't call this function if
you'd need the _irgsafe version, look at the git history and restore the _irgsafe version!

99

Access point mode support

Name

enum ieee80211_frame release type — frame release reason

Synopsis

enum i eee80211 franme_rel ease_type {
| EEE80211_FRAME_RELEASE PSPOLL,
| EEE80211_FRAME_RELEASE_UAPSD

};

Constants
IEEE80211 FRAME_RE- frame released for PS-Pall
LEASE PSPOLL
IEEE80211 FRAME_RE- frame(s) released due to frame received on trigger-enabled AC
LEASE UAPSD

100

Access point mode support

Name
ieeeB0211_sta ps transition — PS transition for connected sta

Synopsis

int ieee80211 sta ps transition (struct ieee80211 sta * sta, bool
start);

Arguments
sta currently connected sta

start start or stop PS

Description

When operating in AP mode with the | EEE80211 HW AP_LI NK_PS flag set, use this function to in-
form mac80211 about a connected station entering/leaving PS mode.
This function may not be called in IRQ context or with softirgs enabled.

Callsto this function for a single hardware must be synchronized against each other.

Return

0 on success. -EINVAL when the requested PS mode is already set.

101

Access point mode support

Name

ieeeB0211_sta ps transition_ni — PStransition for connected sta (in process context)
Synopsis

int ieee80211 sta ps_ transition_ni (struct ieee80211 sta * sta, bool
start);

Arguments
sta currently connected sta

start start or stop PS

Description

Likei eee80211 sta ps_transiti on butcanbecaledin processcontext (internally disables bot-
tom halves). Concurrent call restriction still applies.

Return

Likei eee80211 sta ps_transition.

102

Access point mode support

ieeeB0211_sta set buffered — inform mac80211 about driver-buffered frames

Synopsis

void ieee80211 sta set buffered (struct ieee80211 sta * sta, u8 tid,
bool buffered);

Arguments

sta struct ieee80211 _sta pointer for the sleeping station
tid the TID that has buffered frames

buf f ered indicates whether or not frames are buffered for this TID

Description

If adriver buffers frames for a powersave station instead of passing them back to mac80211 for retrans-
mission, the station may still need to betold that there are buffered frames viathe TIM bhit.

This function informs mac80211 whether or not there are frames that are buffered in the driver for agiven
TID; mac80211 can then use this data to set the TIM bit (NOTE: This may call back into the driver's
set_tim call! Beware of the locking!)

If al framesarereleased to the station (dueto PS-poll or uAPSD) then the driver needsto inform mac80211
that there no longer are frames buffered. However, when the station wakes up mac80211 assumes that all
buffered frames will be transmitted and clears this data, drivers need to make sure they inform mac80211
about all buffered frames on the sleep transition (st a_not i f y with STA_NOTI FY_SLEEP).

Note that technically mac80211 only needs to know this per AC, not per TID, but since driver buffering
will inevitably happen per TID (since it is related to aggregation) it is easier to make mac80211 map the
TID to the AC asrequired instead of keeping track in all driversthat use this API.

103

Access point mode support

Name
ieeeB0211_sta block_awake — block station from waking up

Synopsis

void ieee80211 sta block awake (struct ieee80211 hw * hw,
i eee80211 sta * pubsta, bool bl ock);

Arguments
hw the hardware
pubsta thestation

bl ock whether to block or unblock

Description

struct

Some devices require that al frames that are on the queues for a specific station that went to sleep are
flushed before a poll response or frames after the station woke up can be delivered to that it. Note that
such frames must be rejected by the driver asfiltered, with the appropriate status flag.

This function alows implementing this mode in a race-free manner.

To do this, adriver must keep track of the number of frames still enqueued for a specific station. If this
number is not zero when the station goes to sleep, the driver must call this function to force mac80211
to consider the station to be asleep regardless of the station's actual state. Once the number of outstand-
ing frames reaches zero, the driver must call this function again to unblock the station. That will cause
mac80211 to be able to send ps-poll responses, and if the station queried in the meantime then frames will
also be sent out as aresult of this. Additionally, the driver will be notified that the station woke up some
time after it is unblocked, regardless of whether the station actually woke up while blocked or not.

104

Chapter 13. Supporting multiple virtual
Interfaces

TBD
Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses here, note which con-
figurations are supported by mac80211, add notes about supporting hw crypto with it.

105

Supporting multiple virtual interfaces

Name

ieeeB0211 iterate active interfaces — iterate active interfaces

Synopsis
void i eee80211 iterate_active_interfaces (struct i eee80211 hw* hw, u32

iter_flags, void (*iterator) (void *data, u8 *nmac, struct ieee80211 vif
*vif), void * data);

Arguments

hw the hardware struct of which the interfaces should be iterated over

iter_flags iterationflags, see enum ieeeB0211 interface iteration_flags

iterator the iterator function to call
dat a first argument of the iterator function
Description

This function iterates over the interfaces associated with a given hardware that are currently active and
callsthe callback for them. Thisfunction allowsthe iterator function to sleep, when the iterator function is
atomici eee80211 iterate_active_interfaces_aton c canbeused. Doesnot iterate over
anew interfaceduring add_i nt er f ace.

106

Supporting multiple virtual interfaces

Name

ieeeB0211 iterate active interfaces atomic — iterate active interfaces

Synopsis
void i eee80211 iterate_active_interfaces_atomc (struct ieee80211 hw *

hw, u32 iter_flags, void (*iterator) (void *data, u8 *mmc, struct
i eee80211 vif *vif), void * data);

Arguments

hw the hardware struct of which the interfaces should be iterated over

iter_flags iterationflags, see enum ieeeB0211 interface iteration_flags

iterator the iterator function to call, cannot sleep
dat a first argument of the iterator function
Description

This function iterates over the interfaces associated with a given hardware that are currently active and
calls the callback for them. This function requires the iterator callback function to be atomic, if that is
not desired, usei eee80211 iterate_active_interfaces instead. Doesnot iterate over anew
interface during add_i nt er f ace.

107

Chapter 14. Station handling

TODO

108

Station handling

Name

struct ieeeB80211_sta— station table entry

Synopsis

struct ieee80211 sta {

u32 supp_rates[| EEE80211_NUM BANDS] ;

u8 addr[ETH ALEN];
ulé aid;

struct ieee80211 sta ht_cap ht_cap;
struct ieee80211 sta_vht_cap vht_cap;
u8 max_rx_aggregati on_subfranes;

bool wre;
u8 uapsd_queues;
u8 max_sp;
u8 rx_nss;

enum i eee80211 sta rx_bandw dt h bandw dt h;
enum i eee80211 snps_node snps_node;
struct ieee80211 sta rates __rcu * rates;

bool tdls;
bool tdls_initiator;
bool nfp;

struct ieee80211_txqg * txq[l EEEB0211_NUM TI DS];

u8 drv_priv[0];
b

Members

Sup-
p_rates{[EEES0211 NUM_BANDS]

addr[ETH_ALEN]
ad

ht_cap

vht_cap

max_rx_aggregation_subframes
wme
uapsd_queues

max_sp

rX_nss

Bitmap of supported rates (per band)

MAC address

AID we assigned to the station if we'rean AP

HT capabilities of this STA; restricted to our own capabilities
VHT capabilities of this STA; restricted to our own capabilities

maximal amount of framesin asingle AMPDU that this station is
alowed to transmit to us. Can be modified by driver.

indicates whether the STA supports QoS/'WME (if local devices
does, otherwise always false)

bitmap of queues configured for uapsd. Only valid if wme is sup-
ported.

max Service Period. Only valid if wme is supported.

inHT/VHT, the maximum number of spatial streamsthe station can
receive at the moment, changed by operating mode notifications

109

Station handling

bandwidth
smps_mode
rates

tdls

tdls initiator
mfp

txq[|EEE80211_ NUM_TIDS]

drv_priv[Q]

Description

and capabilities. The value is only valid after the station moves to
associated state.

current bandwidth the station can receive with
current SMPS mode (off, static or dynamic)
rate control selection table

indicates whether the STA isaTDLS peer

indicatesthe STA isan initiator of the TDLSIink. Only valid if the
STA isaTDLS peer in thefirst place.

indicates whether the STA uses management frame protection or
not.

per-TID data TX queues (if driver usesthe TXQ abstraction)

data area for driver use, will always be aligned to sizeof(void *),
sizeis determined in hw information.

A dstation table entry represents a station we are possibly communicating with. Since stations are
RCU-managed in mac80211, any ieee80211 sta pointer you get access to must either be protected by
rcu_read_| ock explicitly or implicitly, or you must take good care to not use such a pointer after a
call to your sta_remove callback that removed it.

110

Station handling

Name

enum sta_notify_cmd — sta notify command

Synopsis

enum sta_notify_cnd {
STA _NOTI FY_SLEEP,
STA_NOTI FY_AWAKE

}i
Constants

STA_NOTIFY_SLEEP astationisnow sleeping

STA_NOTI- a dleeping station woke up
FY_AWAKE

Description

Usedwiththest a_not i fy callback in struct ieee80211 ops, thisindicatesif an associated station made
apower state transition.

111

Station handling

Name
ieeeB0211 find_sta— find a station

Synopsis

struct ieee80211 sta * ieee80211 find_sta (struct ieee80211 vif * vif,
const u8 * addr);

Arguments

vi f virtual interface to look for station on

addr station's address

Return

The station, if found. NULL otherwise.

Note

Thisfunction must be called under RCU lock and theresulting pointer isonly valid under RCU lock aswell.

112

Station handling

Name
ieeeB0211 find_sta by ifaddr — find a station on hardware
Synopsis
struct i eee80211 sta * i eee80211 find_sta_by_ifaddr
i eee80211 _hw * hw, const u8 * addr, const u8 * |ocal addr);
Arguments
hw pointer as obtained fromi eee80211 al | oc_hw
addr remote station's address

| ocal addr local address (vif->sdata->vif.addr). Use NULL for ‘any'.

Return

The station, if found. NULL otherwise.

Note

(struct

Thisfunction must be called under RCU lock and theresulting pointer isonly valid under RCU lock aswell.

NOTE

You may pass NULL for localaddr, but then you will just get the first STA that matches the remote ad-
dress 'addr'. We can have multiple STA associated with multiple logical stations (e.g. consider a station
connecting to another BSSID on the same AP hardware without disconnecting first). In this case, theresult

of this method with localaddr NULL is not reliable.

DO NOT USE THIS FUNCTION with localaddr NULL if at al possible.

113

Chapter 15. Hardware scan offload

TBD

114

Hardware scan offload

Name
ieeeB0211 _scan_completed — completed hardware scan
Synopsis
voi d i eee80211 scan_conpl eted (struct ieee80211 hw * hw, bool aborted);
Arguments
hw the hardware that finished the scan
aborted settotrueif scan was aborted
Description

When hardware scan offload is used (i.e. the hw_scan callback is assigned) this function needs to be
called by thedriver to notify mac80211 that the scan finished. Thisfunction can be called from any context,

including hardirqg context.

115

Chapter 16. Aggregation
TX A-MPDU aggregation

Aggregation on the TX side requires setting the hardware flag | EEE80211_HW AMPDU_AGGRE-
GATI ON. Thedriver will then be handed packets with aflag indicating A-MPDU aggregation. The driver
or deviceis responsible for actually aggregating the frames, as well as deciding how many and which to

aggregate.

When TX aggregation is started by some subsystem (usually the rate control agorithm would be appro-
priate) by calling thei eee80211 start tx_ba_sessi on function, the driver will be notified via
itsanpdu_act i on function, with thel EEE80211 AMPDU TX START action.

In response to that, the driver is later required to call thei eee80211_start _tx _ba cb_irqgsafe
function, which will really start the aggregation session after the peer has also responded. If the peer
responds negatively, the sessionwill be stopped againright away. Notethat it ispossiblefor the aggregation
session to be stopped before the driver hasindicated that it is done setting it up, in which case it must not
indicate the setup completion.

Also note that, since we also need to wait for a response from the peer, the driver is notified of the com-
pletion of the handshake by the | EEE80211_AMPDU_TX_OPERATI ONAL action to the anpdu_ac-
ti on callback.

Similarly, when the aggregation session is stopped by the peer or something caling
i eee80211 stop_tx_ba_ sessi on,thedriver'sanpdu_act i on function will be called with the
action | EEE80211 AMPDU_TX_ STOP. In this case, the call must not fail, and the driver must later
cal i eee80211 stop_tx_ba cb_irqgsaf e. Notethat the stacan get destroyed before the BA tear
down is complete.

RX A-MPDU aggregation

Aggregation on the RX side requires only implementing theanpdu_act i on calback that isinvoked to
start/stop any block-ack sessions for RX aggregation.

When RX aggregation is started by the peer, the driver isnotified viaanpdu_act i on function, with the
| EEE80211 AMPDU_RX_START action, and may reject the request in which case a negative response
is sent to the peer, if it acceptsit a positive response is sent.

While the session is active, the device/driver are required to de-aggregate frames and pass them up one by
one to mac80211, which will handle the reorder buffer.

When the aggregation session is stopped again by the peer or ourselves, the driver's anpdu_act i on
functionwill becalled withtheaction| EEE80211 AMPDU_RX_STOP. Inthiscase, thecall must not fail.

116

Aggregation

Name
enum ieee80211 ampdu_mime_action — A-MPDU actions

Synopsis

enum i eee80211 anpdu_m ne_action {
| EEE80211_AMPDU_RX_START,
| EEE80211_AMPDU_RX_STOPR,
| EEE80211_AMPDU_TX_START,
| EEE80211_AMPDU_TX_STOP_CONT,
| EEE80211_AMPDU_TX_STOP_FLUSH,
| EEE80211_AMPDU_TX_STOP_FLUSH_CONT,
| EEE80211_AMPDU_TX_OPERATI ONAL

1

Constants
IEEE80211 AMPDU_RX_START start RX aggregation
IEEE80211 AMPDU_RX _STOP stop RX aggregation

IEEE80211 AMPDU_TX_START start TX aggregation

IEEE80211 AMPDU_TX_ S stop TX aggregation but continue transmitting queued packets, now

TOP_CONT unaggregated. After all packets are transmitted the driver hasto call
i eee80211 stop_tx _ba cb_irqgsafe.

IEEE80211 AMPDU TX S stop TX aggregation and flush all packets, caled when

TOP_FLUSH the station is removed. There's no need or reason to call

i eee80211 stop tx _ba cb_irgsafe in this case as
mac80211 assumes the session is gone and removes the station.

IEEE80211 AMPDU _TX_S called when TX aggregation is stopped but the driver hasn't

TOP_FLUSH_CONT calledi eee80211 stop_tx_ba_cb_irqgsaf e yet and now
the connection is dropped and the station will be removed. Drivers
should clean up and drop remaining packets when thisis called.

IEEE80211 AMPDU_TX_OPER- TX aggregation has become operational
ATIONAL

Description

These flags are used with theanpdu_act i on callback in struct ieee80211 opsto indicate which action
is needed.

Note that drivers MUST be able to deal with a TX aggregation session being stopped even before they
OK'ed starting it by calling ieee80211 start_tx_ba cb_irgsafe, because the peer might receive the addBA
frame and send a del BA right away!

117

Chapter 17. Spatial Multiplexing
Powersave (SMPS)

SMPS (Spatial multiplexing power save) isamechanism to conserve power in an 802.11nimplementation.
For details on the mechanism and rationale, please refer to 802.11 (as amended by 802.11n-2009) “11.2.3
SM power save”.

The mac80211 implementation is capable of sending action frames to update the AP about the station's
SMPS mode, and will instruct the driver to enter the specific mode. It will also announce the requested
SMPS mode during the association handshake. Hardware support for this feature is required, and can be
indicated by hardware flags.

The default mode will be " automatic”, which nl80211/cfg80211 defines to be dynamic SMPS in (regular)
powersave, and SMPS turned off otherwise.

To support this feature, the driver must set the appropriate hardware support flags, and handle the SMPS
flag totheconf i g operation. It will then with this mechanism beinstructed to enter the requested SMPS
mode while associated to an HT AP.

118

Spatial Multiplexing

Powersave (SMPS)
Name
ieeeB0211_request_smps — request SM PStransition
Synopsis
void ieee80211 request_snps (struct i eee80211 vif * wvif, enum

i eee80211 snps_node snps_node);

Arguments

vi f struct ieeeB80211 vif pointer from the add_interface callback.

snps_node new SM PS mode

Description

Thisalowsthedriver to request an SM PStransition in managed mode. Thisis useful when the driver has
more information than the stack about possible interference, for example by bluetooth.

119

Spatial Multiplexing
Powersave (SMPS)

Name

enum ieee80211 smps mode — spatial multiplexing power save mode

Synopsis

enum i eee80211 snps_node {
| EEE80211_SMPS_AUTONATI C,
| EEE80211_SMPS_OFF,
| EEE80211_SMPS_STATI C,
| EEE80211_SMPS_DYNAM C,
| EEE80211_SMPS_NUM MODES

b
Constants

|IEEE80211_SMPS AUTOMATIC automatic
|EEES0211_SMPS_OFF off
|EEE80211_SMPS_STATIC static
|IEEE80211_SMPS DYNAMIC dynamic

IEEE80211 SMPS NUM_MOD- internal, don't use
ES

120

Part Ill. Rate control interface

TBD

This part of the book describes the rate control algorithm interface and how it relates to mac80211 and drivers.

Table of Contents

18. RAE CONIOl APl ..ot e e e e et et eans 123
106880211 _Start tX DA SESSIONuuiiii et a e 124
ieeeB0211 start tX_ba Ch irgSafeceu i 125
1€6880211 StOP X DA SESSIONiiiiiiii i 126
ieeeB0211_stop tX ba Ch IrgSafe ...ceuiiiee e 127
enum ieee80211 rate control_Changedcoeeuniiiiiiiiii e 128
struct ieeeB0211 tX_rate CONIIOlceuuiii et e e e ean s 129
rate CONIOl_SENA TOW ...euiiiti e et e et e e e e eeeen 130

122

Chapter 18. Rate Control API

TBD

123

Rate Control API

Name

ieeeB0211_start tx_ba session — Start atx Block Ack session.

Synopsis

int i eee80211 start_tx_ba session (struct ieee80211 sta * sta, ul6 tid,
ulé timeout);

Arguments
sta the station for which to start a BA session
tid the TID to BA on.

ti meout sessiontimeout value (in TUS)

Return

successif addBA request was sent, failure otherwise

Although mac80211/Iow level driver/user space application can estimate the need to start aggregation on
acertain RA/TID, the session level will be managed by the mac80211.

124

Rate Control API

Name
ieeeB0211_start tx_ba cb_irgsafe — low level driver ready to aggregate.
Synopsis

voi d i eee80211 start_tx _ba cb_irqgsafe (struct i eee80211 vif * vif, const
u8 * ra, ul6 tid);

Arguments
vi f struct ieeeB0211 vif pointer from the add_interface callback
ra receiver address of the BA session recipient.

tid theTID toBA on.

Description

This function must be called by low level driver once it has finished with preparations for the BA session.
It can be called from any context.

125

Rate Control API

Name
ieeeB0211_stop_tx_ba session — Stop aBlock Ack session.

Synopsis
int i eee80211 stop_tx_ba_session (struct ieee80211 sta * sta, ul6 tid);

Arguments

sta the station whose BA session to stop

tid theTID tostop BA.

Return

negative error if the TID isinvalid, or no aggregation active

Although mac80211/Iow level driver/user space application can estimate the need to stop aggregation on
acertain RA/TID, the session level will be managed by the mac80211.

126

Rate Control API

Name
ieeeB0211_stop_tx_ba cb_irgsafe — low level driver ready to stop aggregate.

Synopsis

voi d i eee80211 stop_tx _ba cb_irqgsafe (struct ieee80211 vif * vif, const
u8 * ra, ul6 tid);

Arguments
vi f struct ieeeB0211 vif pointer from the add_interface callback
ra receiver address of the BA session recipient.

tid thedesred TID to BA on.

Description

This function must be called by low level driver once it has finished with preparations for the BA session
tear down. It can be called from any context.

127

Rate Control API

Name
enum ieee80211 rate control_changed — flags to indicate what changed

Synopsis

enum i eee80211 rate_control _changed {
| EEE80211 RC BW CHANGED,
| EEE80211 RC _SMPS_CHANGED,
| EEE80211 RC SUPP_RATES CHANGED,
| EEE80211 RC NSS_ CHANGED

b
Constants

IEEE80211 RC BW_CHANGED The bandwidth that can be used to transmit to this station changed.
The actua bandwidth isin the station information -- for HT20/40
the IEEE80211 HT CAP_SUP WIDTH_20 40 flag changes, for
HT and VHT the bandwidth field changes.

IEEE80211 RC_SM- The SMPS state of the station changed.

PS CHANGED

IEEE80211 RC_SUP- The supported rate set of this peer changed (in IBSS mode) due to
P_RATES CHANGED discovering more information about the peer.

IEEE80211 RC NSS CHANGED N_SS (number of spatial streams) was changed by the peer

128

Rate Control API

Name
struct ieeeB0211 tx_rate control — rate control information for/from RC ago

Synopsis

struct ieee80211 tx_rate_control ({
struct ieee80211 hw * hw,
struct ieee80211 supported_band * sband;
struct ieee80211 bss conf * bss_conf;
struct sk _buff * skb;
struct ieee80211 tx_rate reported_rate;
bool rts;
bool short_preanbl e;
u8 max_rate_ idx;

u32 rate_idx_nask;
u8 * rate_idx_nts_mask;

rate_idx_mcs mask

bss

bool bss;
1
Members

hw The hardware the algorithm is invoked for.

shand The band this frame is being transmitted on.

bss_conf the current BSS configuration

skb the skb that will be transmitted, the control information in it needsto befilled
in

reported_rate The rate control algorithm can fill this in to indicate which rate should be
reported to userspace as the current rate and used for rate calculations in the
mesh network.

rts whether RTS will be used for this frame because it is longer than the RTS
threshold

short_preamble whether mac80211 will request short-preamble transmission if the selected
rate supportsit

max_rate idx user-requested maximum (legacy) rate (deprecated; thiswill be removed once
drivers get updated to use rate_idx_mask)

rate_idx_mask user-requested (legacy) rate mask

user-requested MCS rate mask (NULL if not in use)

whether thisframeis sent out in AP or IBSS mode

129

Rate Control API

Name
rate_control_send_low — helper for drivers for management/no-ack frames
Synopsis

bool rate_control _send_| ow (struct i eee80211 sta * sta, void * priv_sta,
struct ieee80211 tx_rate control * txrc);

Arguments
sta struct ieeeB80211 sta pointer to the target destination. Note that this may be null.
priv_sta privaterate control structure. This may be null.

txrc rate control information we sholud populate for mac80211.

Description

Rate control algorithms that agree to use the lowest rate to send management frames and NO_ACK data
with the respective hw retries should use this in the beginning of their mac80211 get rate callback. If
true is returned the rate control can simply return. If false is returned we guarantee that sta and sta and

priv_stais not null.

Rate control algorithmswishing to do moreintelligent selection of rate for multicast/broadcast frames may
choose to not use this.

130

Part IV. Internals

TBD

This part of the book describes mac80211 internals.

Table of Contents

19, K&Y NaNAIiNGceeeeieieii et 133
Key handling DESICSoooiiiii e 133
MORE TBD ..ttt ettt e ettt e e et e e et e e e 133

20. RECEIVE PIOCESSING ..cevvueeeittieeeeet ettt ettt e e e e et e et eat e et ee b e et eetaneeeeataaeeeesbnaeeeentnaaaees 134

21, TTANSMIT PrOCESSING ..eevtueeirtneeeetti ettt e et et e et et e e e eet e e et et e e et et e e e taba e e e eeta e eeeeba s 135

22, Station info NANAIINGeeiii et 136
Programming iNfOMMEBLIONuuiiiiii ettt e e e e e e e e 136
STA information [IfEtiMe FUIESuuiiii e 141

R o o (= = (o O PP PPPPPTR 143
StrUCE St aMPAU_IMIME .. e e et e e e e et e e et e e et e e eeneees 144
LS (0o (o [0 o LU o G PP 145
LS00 To O (o = 00] o [V I o PRSPPI 147

24, SYNCHIONISALION ...ttt et ettt ettt e e et bt e e e e a e e e e nb s 149

132

Chapter 19. Key handling
Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and per-station keys. Since
each station belongs to an interface, each station key also belongs to that interface.

Hardware acceleration is done on a best-effort basis for algorithms that are implemented in software, for
each key the hardware is asked to enable that key for offloading but if it cannot do that the key is simply
kept for software encryption (unless it is for an algorithm that isn't implemented in software). There is
currently no way of knowing whether akey ishandled in SW or HW except by looking into debugfs.

All key management isinternally protected by amutex. Within all other parts of mac80211, key references
are, just as STA structure references, protected by RCU. Note, however, that some things are unprotected,
namely the key->sta dereferences within the hardware acceleration functions. This meansthat st a_i n-
f o_dest r oy must remove the key which waits for an RCU grace period.

MORE TBD

TBD

133

Chapter 20. Receive processing

TBD

134

Chapter 21. Transmit processing

TBD

135

Chapter 22. Station info handling

Programming information

136

Station info handling

Name
struct sta_info— STA information

Synopsis

struct sta_info {
struct list_head |ist;
struct list_head free |ist;
struct rcu_head rcu_head;
struct rhash_head hash_node;
u8 addr[ETH ALEN] ;
struct ieee80211 |ocal * |ocal
struct ieee80211 sub if _data * sdata;
struct ieee80211 key _ rcu * gt k[NUM DEFAULT_KEYS + NUM DEFAULT MGMI_KEYS]
struct ieee80211 key _ rcu * ptk[NUM DEFAULT_KEYS]
u8 ptk_idx;
struct rate _control _ref * rate ctrl
void * rate_ctrl _priv;
spinlock t rate_ctrl | ock
spi nl ock_t | ock;
struct ieee80211 fast tx __rcu * fast tx;
fdef CONFI G_MAC80211_MESH
struct nmesh_sta * mesh;
#endi f
struct work_struct drv_deliver wk;
ulé listen_interval;
bool dead;
bool upl oaded,;
enum i eee80211 sta state sta_state;
unsi gned long _fl ags;
spinlock t ps_l|ock
struct sk_buff head ps_tx_buf[| EEE80211 NUM ACS];
struct sk_buff head tx filtered[| EEE80211 NUM ACS];
unsi gned long driver_buffered_ tids;
unsi gned long txqg_buffered tids;
| ong | ast_connect ed;
struct debugfs;
#endi f
enum i eee80211 sta_rx_bandw dth cur_nax_bandw dt h;
enum i eee80211 snps_node known_snps_node;
const struct ieee80211 cipher_schenme * cipher_schene;
u8 reserved_tid;
struct cfg80211 chan_def tdls_chandef;
struct ieee80211 sta sta;

#i

b
Members
list global linked list entry
free list list entry for keeping track of stationsto free
rcu_head RCU head used for freeing this station struct

137

Station info handling

hash_node

addr[ETH_ALEN]

local

sdata

gtkiNUM_DE-
FAULT_KEYS+ NUM_DE-
FAULT MGMT_KEYS]
ptkiNUM_DEFAULT_KEY S|
ptk_idx

rate ctrl

rate_ctrl_priv

rate _ctrl_lock

lock

fast tx

mesh

drv_deliver_wk

listen interval

dead

upl oaded

sta state

_flags

ps_lock
ps_tx_buf[IEEE80211_NUM_ACS]

tx_fil-
tered[IEEE80211_NUM_ACS]

driver_buffered tids
txq_buffered_tids

last_connected

hash node for rhashtable

station's MAC address - duplicated from public part to let the hash
table work with just a single cacheline

pointer to the global information
virtual interface this station belongs to

group keys negotiated with this station, if any

peer keys negotiated with this station, if any
last installed peer key index

rate control algorithm reference

rate control private per-STA pointer

spinlock used to protect rate control data (datainside the algorithm,
so serializes calls there)

used for locking all fieldsthat require locking, see commentsin the
header file.

TX fastpath information

mesh STA information

used for delivering frames after driver PS unblocking

listen interval of this station, when we're acting as AP

set to true when staiis unlinked

set to true when stais uploaded to the driver

duplicates information about station state (for debug)

STA flags, seeenumieee80211 sta info_flags, do not use directly
used for powersave (when mac80211 isthe AP) related locking

buffers (per AC) of framesto transmit to this station when it leaves
power saving state or polls

buffers (per AC) of frames we already tried to transmit but were
filtered by hardware dueto STA having entered power saving state,
these are also delivered to the station when it leaves powersave or
polls for frames

bitmap of TIDs the driver has data buffered on
bitmap of TIDs that mac80211 has txq data buffered on

time (in seconds) when a station got connected

138

Station info handling

debugfs

cur_max_bandwidth

known_smps_mode
cipher_scheme

reserved tid
tdls_chandef

sta

Description

debug filesystem info

maximum bandwidth to use for TX to the station, taken from HT/
VHT capabilities or VHT operating mode notification

the smps_mode the client thinks we are in. Relevant for AP only.
optional cipher scheme for this station

reserved TID (if any, otherwise |EEE80211 TID_UN-
RESERVED)

a TDLS peer can have a wider chandef that is compatible to the
BSS one.

station information we share with the driver

This structure collects information about a station that mac80211 is communicating with.

139

Station info handling

Name

enum ieee80211_sta info_flags — Stations flags

Synopsis

enum i eee80211 sta_ info flags {

b

W.AN_STA AUTH,

W.AN_STA ASSCC,
W.AN_STA PS STA,
W.AN_STA AUTHOR! ZED,
W.AN_STA SHORT PREAMBLE,
W.AN_STA WDS,

W.AN_STA CLEAR PS FILT,
W.AN_STA MFP,

W.AN_STA BLOCK_BA,
W.AN_STA PS DRI VER,
W.AN_STA PSPOLL,
W.AN_STA TDLS PEER,
W.AN_STA TDLS PEER AUTH,
W.AN_STA TDLS | NI TI ATOR,
W.AN_STA TDLS CHAN SW TCH,
W.AN_STA TDLS OFF_CHANNEL,
W.AN_STA TDLS W DER BW
W.AN_STA UAPSD,
W.AN_STA SP,

W.AN_STA 4ADDR_EVENT,
W.AN_STA | NSERTED,
W.AN_STA RATE_CONTROL,
W.AN_STA TOFFSET_KNOWW,
W.AN_STA MPSP_OWKER,
W.AN_STA MPSP_REC! P| ENT,
W.AN_STA PS DELI VER

Constants

WLAN_STA_AUTH
WLAN_STA_ASSOC
WLAN_STA_PS_STA

Station is authenticated.
Station is associated.

Station isin power-save mode

WLAN_STA_AUTHORIZED

WLAN_STA_SHORT_PREAM-
BLE

WLAN_STA_WDS

WLAN_STA_CLEAR_PS FILT

Station is authorized to send/receive traffic. This bit is always
checked so needs to be enabled for al stations when virtua port
control isnot in use.

Station is capable of receiving short-preamble frames.

Station is one of our WDS peers.

Clear PS filter in hardware (using the
IEEE80211 TX_CTL_CLEAR_PS FILT control flag) when the
next frame to this station is transmitted.

140

Station info handling

WLAN_STA_MFP

WLAN_STA_BLOCK_BA

WLAN_STA_PS DRIVER

WLAN_STA_PSPOLL

WLAN_STA_TDLS PEER

WLAN_STA _T-
DLS PEER AUTH

WLAN_STA_TDLS INITIATOR

WLAN_STA _T-
DLS_CHAN_SWITCH

WLAN_STA_TDLS OFF CHAN-
NEL

WLAN_STA_TDLS WIDER BW

WLAN_STA_UAPSD

WLAN_STA_SP

WLAN_STA_4ADDR_EVENT
WLAN_STA_INSERTED
WLAN_STA_RATE_CONTROL

WLAN_STA_TOF-
FSET_KNOWN

WLAN_STA_MPSP_OWNER
WLAN_STA_MPSP_RECIPIENT

WLAN_STA_PS DELIVER

Description

Management frame protection is used with this STA.

Used to deny ADDBA requests (both TX and RX) during sus-
pend/resume and station removal.

driver requires keeping this station in power-save mode logically to
flush frames that might still bein the queues

Station sent PS-poll while driver was keeping station in power-save
mode, reply when the driver unblocks.

Stationisa TDLS peer.

This TDLS peer is authorized to send direct packets. This means
thelink is enabled.

We are theinitiator of the TDLS link with this station.

This TDLS peer supports TDLS channel-switching

Thelocal STA iscurrently off-channel with this TDLS peer

This TDLS peer supports working on awider bw on the BSS base
channel.

Station requested unscheduled SP while driver was keeping station
in power-save mode, reply when the driver unblocks the station.

Station isin a service period, so don't try to reply to other uAPSD
trigger frames or PS-Poll.

4-addr event was already sent for thisframe.
This station is inserted into the hash table.
rate control was initialized for this station.

toffset calculated for this station is valid.

local STA isowner of amesh Peer Service Period.
local STA isrecipient of a MPSP.

station woke up, but we're still blocking TX until pending frames
are delivered

These flags are used with struct sta info's f | ags member, but only indirectly with set _sta_fl ag

and friends.

STA information lifetime rules

141

Station info handling

STA info structures (struct sta_info) are managed in a hash table for faster lookup and alist for iteration.
They are managed using RCU, i.e. accessto the list and hash table is protected by RCU.

Uponallocating aSTA infostructurewithst a_i nf o_al | oc, thecaller ownsthat structure. It must then
insert it into the hash tableusing either st a_i nfo_i nsert orsta_i nfo_i nsert _rcu;onlyinthe
latter case (which acquires an rcu read section but must not be called from within one) will the pointer
still be valid after the call. Note that the caller may not do much with the STA info before inserting it, in
particular, it may not start any mesh peer link management or add encryption keys.

When the insertion fails (st a_i nf o_i nsert) returns non-zero), the structure will have been freed by
sta_info_insert!

Station entries are added by mac80211 when you establish alink with a peer. This means different things
for the different type of interfaces we support. For aregular station this mean we add the AP stawhen we
receive an association response from the AP. For IBSS this occurs when get to know about a peer on the
same IBSS. For WDS we add the sta for the peer immediately upon device open. When using AP mode
we add stations for each respective station upon request from userspace through nl80211.

In order to remove a STA info structure, various sta_info_destroy *() calls are available.

There is no concept of ownership on a STA entry, each structure is owned by the global hash table/list
until it isremoved. All users of the structure need to be RCU protected so that the structure won't be freed
before they are done using it.

142

Chapter 23. Aggregation

143

Aggregation

Name

struct sta_ampdu_mlme — STA aggregation information.

Synopsis

struct sta_anmpdu_m ne {

b

struct mutex mtx;

struct tid ampdu_rx _ rcu * tid_rx[|EEE80211 NUM TI DS];

unsigned long tid_rx_tinmer_expired[Bl TS_TO LONGS(| EEE80211 NUM TI DS)];
unsi gned long tid_rx_stop_requested[BI TS TO LONGS(| EEE80211 NUM TIDS)];
struct work _struct work;

struct tid ampdu_tx _ rcu * tid_tx[|EEE80211 NUM TI DS];

struct tid ampdu_tx * tid_start_tx[|EEE80211 NUM TI DS];

unsi gned | ong | ast_addba_req_ti ne[| EEE80211 NUM TI DS] ;

u8 addba_req_nun{ | EEEB0211 NUM TI DS] ;

u8 di al og_t oken_al | ocat or;

Members

mtx mutex to protect al TX data (except non-NULL assignments to

tid_tx[idx], which are protected by the sta spinlock) tid_start tx is
also protected by sta->lock.

tid_rx[IEEE80211 NUM_TIDS) aggregation info for Rx per TID -- RCU protected

tid_rx_timer_ex- bitmap indicating on which TIDs the RX timer expired until the
pired[BITS TO_LONGS(IEEE80211 vidichM oI 8)is

tid_rx_stop_request- bitmap indicating which BA sessions per TID the driver requested
ed[BITS TO_LONGS(IEEE80211 N\l oBHDE}]| the work for it runs

work work struct for starting/stopping aggregation

tid_tx[IEEE80211 NUM_TIDS] aggregation info for Tx per TID

tid s sessions where start was requested
tart_tx[IEEE80211 NUM_TIDS]

last_addba re- timestamp of the last addBA request.
q_time[IEEES0211_NUM_TIDS]

addba re- number of times addBA request has been sent.
g_num[IEEE80211 NUM_TIDS]

dialog_token_allocator dialog token enumerator for each new session;

144

Aggregation

Name
struct tid_ampdu_tx — TID aggregation information (Tx).

Synopsis

struct tid anpdu_tx {
struct rcu_head rcu_head;
struct tiner_list session_tinmer;
struct tiner_list addba_resp_ti mer;
struct sk_buff_head pendi ng;
unsi gned | ong state;
unsi gned long | ast_tx;
ul6 timeout;
u8 di al og_t oken;
u8 stop_initiator;
bool tx_stop;
u8 buf _si ze;

ulé fail ed_bar_ssn;
bool bar_pendi ng;

bool ansdu;

b

failed bar_ssn

Members
rcu_head rcu head for freeing structure
session_timer check if we keep Tx-ing on the TID (by timeout value)
addba _resp_timer timer for peer's response to addba request
pending pending frames queue -- use sta's spinlock to protect
State session state (see above)
last_tx jiffies of last tx activity
timeout session timeout value to befilled in ADDBA requests
dialog_token dialog token for aggregation on
stop_initiator initiator of a session stop
tx_stop TX DelBA frame when stopping
buf size reorder buffer size at receiver

ssn of the last failed BAR tx attempt

bar_pending BAR needs to be re-sent
amsdu support A-MSDU withing A-MDPU
Description

Thisstructure'slifetimeis managed by RCU, assignmentsto the array holding it must hold the aggregation

mutex.

145

Aggregation

TheTX path can accessit under RCU lock-freeif, and only if, the state hastheflag HT _AGG_STATE_OP-
ERATI ONAL set. Otherwise, the TX path must also acquire the spinlock and re-check the state, see com-
ments in the tx code touching it.

146

Aggregation

Name
struct tid_ampdu_rx — TID aggregation information (Rx).

Synopsis

struct tid_anmpdu_rx {
struct rcu_head rcu_head,;
spi nl ock_t reorder_I ock
struct sk _buff _head * reorder_buf;
unsi gned long * reorder_tine;
struct timer_list session_tiner;
struct timer_list reorder_tinmner;
unsi gned long | ast_rx;
ulé head_seq_num
ulé stored_npdu_num
ulé ssn;
ulé buf _si ze;
ulé timeout;
u8 di al og_t oken;
bool auto_seq;
bool renoved;

i
Members

rcu_head RCU head used for freeing this struct

reorder_lock serializes access to reorder buffer, see below.

reorder_buf buffer to reorder incoming aggregated MPDUs. An MPDU may be an A-MSDU
with individually reported subframes.

reorder_time jiffies when skb was added

session_timer check if peer keeps Tx-ing on the TID (by timeout value)

reorder_timer releases expired frames from the reorder buffer.

last_rx jiffies of last rx activity

head seq num head sequence number in reordering buffer.

stored_mpdu_num number of MPDUs in reordering buffer

ssn Starting Sequence Number expected to be aggregated.

buf_size buffer size for incoming A-MPDUs

timeout reset timer value (in TUs).

dialog_token dialog token for aggregation session

auto_seq used for offloaded BA sessions to automatically pick head seq and and ssn.

147

Aggregation

removed this session is removed (but might have been found due to RCU)

Description

Thisstructure'slifetimeis managed by RCU, assignmentsto the array holding it must hold the aggregation
mutex.

Ther eorder _| ock isused to protect the members of this struct, except for t i meout , buf _si ze
and di al og_t oken, which are constant across the lifetime of the struct (the dialog token being used
only for debugging).

148

Chapter 24. Synchronisation

TBD

Locking, lots of RCU

149

	The 802.11 subsystems – for kernel developers
	Table of Contents
	The cfg80211 subsystem
	Chapter 1. Device registration
	enum ieee80211_band
	enum ieee80211_channel_flags
	struct ieee80211_channel
	enum ieee80211_rate_flags
	struct ieee80211_rate
	struct ieee80211_sta_ht_cap
	struct ieee80211_supported_band
	enum cfg80211_signal_type
	enum wiphy_params_flags
	enum wiphy_flags
	struct wiphy
	struct wireless_dev
	wiphy_new
	wiphy_register
	wiphy_unregister
	wiphy_free
	wiphy_name
	wiphy_dev
	wiphy_priv
	priv_to_wiphy
	set_wiphy_dev
	wdev_priv
	struct ieee80211_iface_limit
	struct ieee80211_iface_combination
	cfg80211_check_combinations

	Chapter 2. Actions and configuration
	struct cfg80211_ops
	struct vif_params
	struct key_params
	enum survey_info_flags
	struct survey_info
	struct cfg80211_beacon_data
	struct cfg80211_ap_settings
	struct station_parameters
	enum rate_info_flags
	struct rate_info
	struct station_info
	enum monitor_flags
	enum mpath_info_flags
	struct mpath_info
	struct bss_parameters
	struct ieee80211_txq_params
	struct cfg80211_crypto_settings
	struct cfg80211_auth_request
	struct cfg80211_assoc_request
	struct cfg80211_deauth_request
	struct cfg80211_disassoc_request
	struct cfg80211_ibss_params
	struct cfg80211_connect_params
	struct cfg80211_pmksa
	cfg80211_rx_mlme_mgmt
	cfg80211_auth_timeout
	cfg80211_rx_assoc_resp
	cfg80211_assoc_timeout
	cfg80211_tx_mlme_mgmt
	cfg80211_ibss_joined
	cfg80211_connect_result
	cfg80211_roamed
	cfg80211_disconnected
	cfg80211_ready_on_channel
	cfg80211_remain_on_channel_expired
	cfg80211_new_sta
	cfg80211_rx_mgmt
	cfg80211_mgmt_tx_status
	cfg80211_cqm_rssi_notify
	cfg80211_cqm_pktloss_notify
	cfg80211_michael_mic_failure

	Chapter 3. Scanning and BSS list handling
	struct cfg80211_ssid
	struct cfg80211_scan_request
	cfg80211_scan_done
	struct cfg80211_bss
	struct cfg80211_inform_bss
	cfg80211_inform_bss_frame_data
	cfg80211_inform_bss_data
	cfg80211_unlink_bss
	cfg80211_find_ie
	ieee80211_bss_get_ie

	Chapter 4. Utility functions
	ieee80211_channel_to_frequency
	ieee80211_frequency_to_channel
	ieee80211_get_channel
	ieee80211_get_response_rate
	ieee80211_hdrlen
	ieee80211_get_hdrlen_from_skb
	struct ieee80211_radiotap_iterator

	Chapter 5. Data path helpers
	ieee80211_data_to_8023
	ieee80211_data_from_8023
	ieee80211_amsdu_to_8023s
	cfg80211_classify8021d

	Chapter 6. Regulatory enforcement infrastructure
	regulatory_hint
	wiphy_apply_custom_regulatory
	freq_reg_info

	Chapter 7. RFkill integration
	wiphy_rfkill_set_hw_state
	wiphy_rfkill_start_polling
	wiphy_rfkill_stop_polling

	Chapter 8. Test mode
	cfg80211_testmode_alloc_reply_skb
	cfg80211_testmode_reply
	cfg80211_testmode_alloc_event_skb
	cfg80211_testmode_event

	The mac80211 subsystem
	Part I. The basic mac80211 driver interface
	Chapter 1. Basic hardware handling
	struct ieee80211_hw
	enum ieee80211_hw_flags
	SET_IEEE80211_DEV
	SET_IEEE80211_PERM_ADDR
	struct ieee80211_ops
	ieee80211_alloc_hw
	ieee80211_register_hw
	ieee80211_unregister_hw
	ieee80211_free_hw

	Chapter 2. PHY configuration
	struct ieee80211_conf
	enum ieee80211_conf_flags

	Chapter 3. Virtual interfaces
	struct ieee80211_vif

	Chapter 4. Receive and transmit processing
	what should be here
	Frame format
	Packet alignment
	Calling into mac80211 from interrupts
	functions/definitions
	struct ieee80211_rx_status
	enum mac80211_rx_flags
	enum mac80211_tx_info_flags
	enum mac80211_tx_control_flags
	enum mac80211_rate_control_flags
	struct ieee80211_tx_rate
	struct ieee80211_tx_info
	ieee80211_tx_info_clear_status
	ieee80211_rx
	ieee80211_rx_ni
	ieee80211_rx_irqsafe
	ieee80211_tx_status
	ieee80211_tx_status_ni
	ieee80211_tx_status_irqsafe
	ieee80211_rts_get
	ieee80211_rts_duration
	ieee80211_ctstoself_get
	ieee80211_ctstoself_duration
	ieee80211_generic_frame_duration
	ieee80211_wake_queue
	ieee80211_stop_queue
	ieee80211_wake_queues
	ieee80211_stop_queues
	ieee80211_queue_stopped

	Chapter 5. Frame filtering
	enum ieee80211_filter_flags

	Chapter 6. The mac80211 workqueue
	ieee80211_queue_work
	ieee80211_queue_delayed_work

	Part II. Advanced driver interface
	Chapter 7. LED support
	ieee80211_get_tx_led_name
	ieee80211_get_rx_led_name
	ieee80211_get_assoc_led_name
	ieee80211_get_radio_led_name
	struct ieee80211_tpt_blink
	enum ieee80211_tpt_led_trigger_flags
	ieee80211_create_tpt_led_trigger

	Chapter 8. Hardware crypto acceleration
	enum set_key_cmd
	struct ieee80211_key_conf
	enum ieee80211_key_flags
	ieee80211_get_tkip_p1k
	ieee80211_get_tkip_p1k_iv
	ieee80211_get_tkip_p2k

	Chapter 9. Powersave support
	Chapter 10. Beacon filter support
	ieee80211_beacon_loss

	Chapter 11. Multiple queues and QoS support
	struct ieee80211_tx_queue_params

	Chapter 12. Access point mode support
	support for powersaving clients
	ieee80211_get_buffered_bc
	ieee80211_beacon_get
	ieee80211_sta_eosp
	enum ieee80211_frame_release_type
	ieee80211_sta_ps_transition
	ieee80211_sta_ps_transition_ni
	ieee80211_sta_set_buffered
	ieee80211_sta_block_awake

	Chapter 13. Supporting multiple virtual interfaces
	ieee80211_iterate_active_interfaces
	ieee80211_iterate_active_interfaces_atomic

	Chapter 14. Station handling
	struct ieee80211_sta
	enum sta_notify_cmd
	ieee80211_find_sta
	ieee80211_find_sta_by_ifaddr

	Chapter 15. Hardware scan offload
	ieee80211_scan_completed

	Chapter 16. Aggregation
	TX A-MPDU aggregation
	RX A-MPDU aggregation
	enum ieee80211_ampdu_mlme_action

	Chapter 17. Spatial Multiplexing Powersave (SMPS)
	ieee80211_request_smps
	enum ieee80211_smps_mode

	Part III. Rate control interface
	Chapter 18. Rate Control API
	ieee80211_start_tx_ba_session
	ieee80211_start_tx_ba_cb_irqsafe
	ieee80211_stop_tx_ba_session
	ieee80211_stop_tx_ba_cb_irqsafe
	enum ieee80211_rate_control_changed
	struct ieee80211_tx_rate_control
	rate_control_send_low

	Part IV. Internals
	Chapter 19. Key handling
	Key handling basics
	MORE TBD

	Chapter 20. Receive processing
	Chapter 21. Transmit processing
	Chapter 22. Station info handling
	Programming information
	struct sta_info
	enum ieee80211_sta_info_flags

	STA information lifetime rules

	Chapter 23. Aggregation
	struct sta_ampdu_mlme
	struct tid_ampdu_tx
	struct tid_ampdu_rx

	Chapter 24. Synchronisation

