
The Linux Kernel API

The Linux Kernel API
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Data Types ... 1

Doubly Linked Lists .. 1
2. Basic C Library Functions ... 44

String Conversions ... 44
String Manipulation ... 66
Bit Operations ... 101

3. Basic Kernel Library Functions .. 119
Bitmap Operations ... 119
Command-line Parsing .. 140
CRC Functions .. 143
idr/ida Functions .. 148

4. Memory Management in Linux .. 165
The Slab Cache ... 165
User Space Memory Access .. 183
More Memory Management Functions .. 190

5. Kernel IPC facilities ... 288
IPC utilities .. 288

6. FIFO Buffer .. 312
kfifo interface .. 312

7. relay interface support ... 346
relay interface ... 346

8. Module Support ... 373
Module Loading .. 373
Inter Module support .. 377

9. Hardware Interfaces .. 378
Interrupt Handling .. 378
DMA Channels ... 397
Resources Management ... 399
MTRR Handling .. 417
PCI Support Library ... 418
PCI Hotplug Support Library ... 562

10. Firmware Interfaces .. 566
DMI Interfaces .. 566
EDD Interfaces .. 574

11. Security Framework .. 580
security_init .. 581
security_module_enable .. 582
securityfs_create_file .. 583
securityfs_create_dir ... 584
securityfs_remove .. 585

12. Audit Interfaces .. 586
audit_log_start ... 587
audit_log_format .. 588
audit_log_end .. 589
audit_log .. 590
audit_log_secctx .. 591
audit_alloc .. 592
__audit_free .. 593
__audit_syscall_entry .. 594
__audit_syscall_exit ... 595
__audit_reusename ... 596

iii

The Linux Kernel API

__audit_getname .. 597
__audit_inode .. 598
auditsc_get_stamp .. 599
audit_set_loginuid .. 600
__audit_mq_open ... 601
__audit_mq_sendrecv ... 602
__audit_mq_notify ... 603
__audit_mq_getsetattr ... 604
__audit_ipc_obj ... 605
__audit_ipc_set_perm ... 606
__audit_socketcall .. 607
__audit_fd_pair .. 608
__audit_sockaddr ... 609
__audit_signal_info .. 610
__audit_log_bprm_fcaps .. 611
__audit_log_capset ... 612
audit_core_dumps .. 613
audit_rule_change .. 614
audit_list_rules_send ... 615
parent_len ... 616
audit_compare_dname_path ... 617

13. Accounting Framework ... 618
sys_acct .. 619
acct_collect ... 620
acct_process .. 621

14. Block Devices .. 622
blk_delay_queue .. 623
blk_start_queue_async .. 624
blk_start_queue .. 625
blk_stop_queue .. 626
blk_sync_queue ... 627
__blk_run_queue_uncond .. 628
__blk_run_queue .. 629
blk_run_queue_async .. 630
blk_run_queue ... 631
blk_queue_bypass_start ... 632
blk_queue_bypass_end .. 633
blk_cleanup_queue ... 634
blk_init_queue ... 635
blk_rq_set_block_pc ... 636
blk_requeue_request ... 637
part_round_stats ... 638
generic_make_request ... 639
submit_bio .. 640
blk_insert_cloned_request .. 641
blk_rq_err_bytes .. 642
blk_peek_request ... 643
blk_start_request .. 644
blk_fetch_request ... 645
blk_update_request ... 646
blk_unprep_request .. 647
blk_end_request ... 648
blk_end_request_all .. 649
blk_end_request_cur ... 650

iv

The Linux Kernel API

blk_end_request_err ... 651
__blk_end_request ... 652
__blk_end_request_all .. 653
__blk_end_request_cur .. 654
__blk_end_request_err .. 655
rq_flush_dcache_pages .. 656
blk_lld_busy ... 657
blk_rq_unprep_clone .. 658
blk_rq_prep_clone .. 659
blk_start_plug .. 660
blk_pm_runtime_init .. 661
blk_pre_runtime_suspend .. 662
blk_post_runtime_suspend ... 663
blk_pre_runtime_resume ... 664
blk_post_runtime_resume .. 665
blk_set_runtime_active .. 666
__blk_drain_queue ... 667
rq_ioc .. 668
__get_request .. 669
get_request ... 670
blk_attempt_plug_merge ... 671
blk_cloned_rq_check_limits ... 672
blk_end_bidi_request .. 673
__blk_end_bidi_request ... 674
blk_rq_map_user_iov .. 675
blk_rq_unmap_user .. 676
blk_rq_map_kern ... 677
blk_release_queue .. 678
blk_queue_prep_rq ... 679
blk_queue_unprep_rq .. 680
blk_set_default_limits ... 681
blk_set_stacking_limits ... 682
blk_queue_make_request ... 683
blk_queue_bounce_limit .. 684
blk_queue_max_hw_sectors ... 685
blk_queue_chunk_sectors .. 686
blk_queue_max_discard_sectors ... 687
blk_queue_max_write_same_sectors .. 688
blk_queue_max_write_zeroes_sectors .. 689
blk_queue_max_segments ... 690
blk_queue_max_segment_size .. 691
blk_queue_logical_block_size .. 692
blk_queue_physical_block_size .. 693
blk_queue_alignment_offset ... 694
blk_limits_io_min .. 695
blk_queue_io_min .. 696
blk_limits_io_opt ... 697
blk_queue_io_opt ... 698
blk_queue_stack_limits ... 699
blk_stack_limits ... 700
bdev_stack_limits ... 701
disk_stack_limits ... 702
blk_queue_dma_pad ... 703
blk_queue_update_dma_pad ... 704

v

The Linux Kernel API

blk_queue_dma_drain ... 705
blk_queue_segment_boundary .. 706
blk_queue_virt_boundary .. 707
blk_queue_dma_alignment ... 708
blk_queue_update_dma_alignment .. 709
blk_set_queue_depth ... 710
blk_queue_write_cache ... 711
blk_execute_rq_nowait .. 712
blk_execute_rq .. 713
blkdev_issue_flush ... 714
blkdev_issue_discard .. 715
blkdev_issue_write_same .. 716
__blkdev_issue_zeroout .. 717
blkdev_issue_zeroout .. 718
blk_queue_find_tag .. 719
blk_free_tags ... 720
blk_queue_free_tags ... 721
blk_init_tags ... 722
blk_queue_init_tags .. 723
blk_queue_resize_tags .. 724
blk_queue_end_tag ... 725
blk_queue_start_tag .. 726
blk_queue_invalidate_tags ... 727
__blk_queue_free_tags .. 728
blk_rq_count_integrity_sg ... 729
blk_rq_map_integrity_sg ... 730
blk_integrity_compare .. 731
blk_integrity_register .. 732
blk_integrity_unregister ... 733
blk_trace_ioctl ... 734
blk_trace_shutdown .. 735
blk_add_trace_rq .. 736
blk_add_trace_bio .. 737
blk_add_trace_bio_remap .. 738
blk_add_trace_rq_remap .. 739
blk_mangle_minor ... 740
blk_alloc_devt ... 741
blk_free_devt .. 742
disk_replace_part_tbl .. 743
disk_expand_part_tbl .. 744
disk_block_events .. 745
disk_unblock_events ... 746
disk_flush_events ... 747
disk_clear_events ... 748
disk_get_part ... 749
disk_part_iter_init .. 750
disk_part_iter_next ... 751
disk_part_iter_exit .. 752
disk_map_sector_rcu .. 753
register_blkdev .. 754
device_add_disk .. 755
get_gendisk ... 756
bdget_disk .. 757

15. Char devices .. 758

vi

The Linux Kernel API

register_chrdev_region .. 759
alloc_chrdev_region ... 760
__register_chrdev ... 761
unregister_chrdev_region ... 762
__unregister_chrdev ... 763
cdev_add .. 764
cdev_del ... 765
cdev_alloc .. 766
cdev_init .. 767

16. Miscellaneous Devices .. 768
misc_register ... 769
misc_deregister .. 770

17. Clock Framework ... 771
struct clk_notifier ... 772
struct clk_notifier_data .. 773
clk_notifier_register .. 774
clk_notifier_unregister .. 775
clk_get_accuracy .. 776
clk_set_phase .. 777
clk_get_phase .. 778
clk_is_match ... 779
clk_prepare ... 780
clk_unprepare .. 781
clk_get ... 782
devm_clk_get .. 783
clk_enable .. 784
clk_disable .. 785
clk_get_rate .. 786
clk_put ... 787
devm_clk_put .. 788
clk_round_rate ... 789
clk_set_rate ... 790
clk_has_parent ... 791
clk_set_rate_range .. 792
clk_set_min_rate .. 793
clk_set_max_rate ... 794
clk_set_parent ... 795
clk_get_parent ... 796
clk_get_sys ... 797

vii

Chapter 1. Data Types
Doubly Linked Lists

1

Data Types

Name
list_add — add a new entry

Synopsis

void list_add (struct list_head * new, struct list_head * head);

Arguments

new new entry to be added

head list head to add it after

Description

Insert a new entry after the specified head. This is good for implementing stacks.

2

Data Types

Name
list_add_tail — add a new entry

Synopsis

void list_add_tail (struct list_head * new, struct list_head * head);

Arguments

new new entry to be added

head list head to add it before

Description

Insert a new entry before the specified head. This is useful for implementing queues.

3

Data Types

Name
__list_del_entry — deletes entry from list.

Synopsis

void __list_del_entry (struct list_head * entry);

Arguments

entry the element to delete from the list.

Note

list_empty on entry does not return true after this, the entry is in an undefined state.

4

Data Types

Name
list_replace — replace old entry by new one

Synopsis

void list_replace (struct list_head * old, struct list_head * new);

Arguments

old the element to be replaced

new the new element to insert

Description

If old was empty, it will be overwritten.

5

Data Types

Name
list_del_init — deletes entry from list and reinitialize it.

Synopsis

void list_del_init (struct list_head * entry);

Arguments

entry the element to delete from the list.

6

Data Types

Name
list_move — delete from one list and add as another's head

Synopsis

void list_move (struct list_head * list, struct list_head * head);

Arguments

list the entry to move

head the head that will precede our entry

7

Data Types

Name
list_move_tail — delete from one list and add as another's tail

Synopsis

void list_move_tail (struct list_head * list, struct list_head * head);

Arguments

list the entry to move

head the head that will follow our entry

8

Data Types

Name
list_is_last — tests whether list is the last entry in list head

Synopsis

int list_is_last (const struct list_head * list, const struct list_head
* head);

Arguments

list the entry to test

head the head of the list

9

Data Types

Name
list_empty — tests whether a list is empty

Synopsis

int list_empty (const struct list_head * head);

Arguments

head the list to test.

10

Data Types

Name
list_empty_careful — tests whether a list is empty and not being modified

Synopsis

int list_empty_careful (const struct list_head * head);

Arguments

head the list to test

Description

tests whether a list is empty _and_ checks that no other CPU might be in the process of modifying either
member (next or prev)

NOTE

using list_empty_careful without synchronization can only be safe if the only activity that can
happen to the list entry is list_del_init. Eg. it cannot be used if another CPU could re-list_add it.

11

Data Types

Name
list_rotate_left — rotate the list to the left

Synopsis

void list_rotate_left (struct list_head * head);

Arguments

head the head of the list

12

Data Types

Name
list_is_singular — tests whether a list has just one entry.

Synopsis

int list_is_singular (const struct list_head * head);

Arguments

head the list to test.

13

Data Types

Name
list_cut_position — cut a list into two

Synopsis

void list_cut_position (struct list_head * list, struct list_head *
head, struct list_head * entry);

Arguments

list a new list to add all removed entries

head a list with entries

entry an entry within head, could be the head itself and if so we won't cut the list

Description

This helper moves the initial part of head, up to and including entry, from head to list. You should
pass on entry an element you know is on head. list should be an empty list or a list you do not care
about losing its data.

14

Data Types

Name
list_splice — join two lists, this is designed for stacks

Synopsis

void list_splice (const struct list_head * list, struct list_head *
head);

Arguments

list the new list to add.

head the place to add it in the first list.

15

Data Types

Name
list_splice_tail — join two lists, each list being a queue

Synopsis

void list_splice_tail (struct list_head * list, struct list_head * head);

Arguments

list the new list to add.

head the place to add it in the first list.

16

Data Types

Name
list_splice_init — join two lists and reinitialise the emptied list.

Synopsis

void list_splice_init (struct list_head * list, struct list_head * head);

Arguments

list the new list to add.

head the place to add it in the first list.

Description

The list at list is reinitialised

17

Data Types

Name
list_splice_tail_init — join two lists and reinitialise the emptied list

Synopsis

void list_splice_tail_init (struct list_head * list, struct list_head
* head);

Arguments

list the new list to add.

head the place to add it in the first list.

Description

Each of the lists is a queue. The list at list is reinitialised

18

Data Types

Name
list_entry — get the struct for this entry

Synopsis

list_entry (ptr, type, member);

Arguments

ptr the struct list_head pointer.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

19

Data Types

Name
list_first_entry — get the first element from a list

Synopsis

list_first_entry (ptr, type, member);

Arguments

ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description

Note, that list is expected to be not empty.

20

Data Types

Name
list_last_entry — get the last element from a list

Synopsis

list_last_entry (ptr, type, member);

Arguments

ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description

Note, that list is expected to be not empty.

21

Data Types

Name
list_first_entry_or_null — get the first element from a list

Synopsis

list_first_entry_or_null (ptr, type, member);

Arguments

ptr the list head to take the element from.

type the type of the struct this is embedded in.

member the name of the list_head within the struct.

Description

Note that if the list is empty, it returns NULL.

22

Data Types

Name
list_next_entry — get the next element in list

Synopsis

list_next_entry (pos, member);

Arguments

pos the type * to cursor

member the name of the list_head within the struct.

23

Data Types

Name
list_prev_entry — get the prev element in list

Synopsis

list_prev_entry (pos, member);

Arguments

pos the type * to cursor

member the name of the list_head within the struct.

24

Data Types

Name
list_for_each — iterate over a list

Synopsis

list_for_each (pos, head);

Arguments

pos the struct list_head to use as a loop cursor.

head the head for your list.

25

Data Types

Name
list_for_each_prev — iterate over a list backwards

Synopsis

list_for_each_prev (pos, head);

Arguments

pos the struct list_head to use as a loop cursor.

head the head for your list.

26

Data Types

Name
list_for_each_safe — iterate over a list safe against removal of list entry

Synopsis

list_for_each_safe (pos, n, head);

Arguments

pos the struct list_head to use as a loop cursor.

n another struct list_head to use as temporary storage

head the head for your list.

27

Data Types

Name
list_for_each_prev_safe — iterate over a list backwards safe against removal of list entry

Synopsis

list_for_each_prev_safe (pos, n, head);

Arguments

pos the struct list_head to use as a loop cursor.

n another struct list_head to use as temporary storage

head the head for your list.

28

Data Types

Name
list_for_each_entry — iterate over list of given type

Synopsis

list_for_each_entry (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

29

Data Types

Name
list_for_each_entry_reverse — iterate backwards over list of given type.

Synopsis

list_for_each_entry_reverse (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

30

Data Types

Name
list_prepare_entry — prepare a pos entry for use in list_for_each_entry_continue

Synopsis

list_prepare_entry (pos, head, member);

Arguments

pos the type * to use as a start point

head the head of the list

member the name of the list_head within the struct.

Description

Prepares a pos entry for use as a start point in list_for_each_entry_continue.

31

Data Types

Name
list_for_each_entry_continue — continue iteration over list of given type

Synopsis

list_for_each_entry_continue (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description

Continue to iterate over list of given type, continuing after the current position.

32

Data Types

Name
list_for_each_entry_continue_reverse — iterate backwards from the given point

Synopsis

list_for_each_entry_continue_reverse (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description

Start to iterate over list of given type backwards, continuing after the current position.

33

Data Types

Name
list_for_each_entry_from — iterate over list of given type from the current point

Synopsis

list_for_each_entry_from (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the list_head within the struct.

Description

Iterate over list of given type, continuing from current position.

34

Data Types

Name
list_for_each_entry_safe — iterate over list of given type safe against removal of list entry

Synopsis

list_for_each_entry_safe (pos, n, head, member);

Arguments

pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

35

Data Types

Name
list_for_each_entry_safe_continue — continue list iteration safe against removal

Synopsis

list_for_each_entry_safe_continue (pos, n, head, member);

Arguments

pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description

Iterate over list of given type, continuing after current point, safe against removal of list entry.

36

Data Types

Name
list_for_each_entry_safe_from — iterate over list from current point safe against removal

Synopsis

list_for_each_entry_safe_from (pos, n, head, member);

Arguments

pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description

Iterate over list of given type from current point, safe against removal of list entry.

37

Data Types

Name
list_for_each_entry_safe_reverse — iterate backwards over list safe against removal

Synopsis

list_for_each_entry_safe_reverse (pos, n, head, member);

Arguments

pos the type * to use as a loop cursor.

n another type * to use as temporary storage

head the head for your list.

member the name of the list_head within the struct.

Description

Iterate backwards over list of given type, safe against removal of list entry.

38

Data Types

Name
list_safe_reset_next — reset a stale list_for_each_entry_safe loop

Synopsis

list_safe_reset_next (pos, n, member);

Arguments

pos the loop cursor used in the list_for_each_entry_safe loop

n temporary storage used in list_for_each_entry_safe

member the name of the list_head within the struct.

Description

list_safe_reset_next is not safe to use in general if the list may be modified concurrently (eg. the lock is
dropped in the loop body). An exception to this is if the cursor element (pos) is pinned in the list, and
list_safe_reset_next is called after re-taking the lock and before completing the current iteration of the
loop body.

39

Data Types

Name
hlist_for_each_entry — iterate over list of given type

Synopsis

hlist_for_each_entry (pos, head, member);

Arguments

pos the type * to use as a loop cursor.

head the head for your list.

member the name of the hlist_node within the struct.

40

Data Types

Name
hlist_for_each_entry_continue — iterate over a hlist continuing after current point

Synopsis

hlist_for_each_entry_continue (pos, member);

Arguments

pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

41

Data Types

Name
hlist_for_each_entry_from — iterate over a hlist continuing from current point

Synopsis

hlist_for_each_entry_from (pos, member);

Arguments

pos the type * to use as a loop cursor.

member the name of the hlist_node within the struct.

42

Data Types

Name
hlist_for_each_entry_safe — iterate over list of given type safe against removal of list entry

Synopsis

hlist_for_each_entry_safe (pos, n, head, member);

Arguments

pos the type * to use as a loop cursor.

n another struct hlist_node to use as temporary storage

head the head for your list.

member the name of the hlist_node within the struct.

43

Chapter 2. Basic C Library Functions
When writing drivers, you cannot in general use routines which are from the C Library. Some of the
functions have been found generally useful and they are listed below. The behaviour of these functions
may vary slightly from those defined by ANSI, and these deviations are noted in the text.

String Conversions

44

Basic C Library Functions

Name
simple_strtoull — convert a string to an unsigned long long

Synopsis

unsigned long long simple_strtoull (const char * cp, char ** endp,
unsigned int base);

Arguments

cp The start of the string

endp A pointer to the end of the parsed string will be placed here

base The number base to use

Description

This function is obsolete. Please use kstrtoull instead.

45

Basic C Library Functions

Name
simple_strtoul — convert a string to an unsigned long

Synopsis

unsigned long simple_strtoul (const char * cp, char ** endp, unsigned
int base);

Arguments

cp The start of the string

endp A pointer to the end of the parsed string will be placed here

base The number base to use

Description

This function is obsolete. Please use kstrtoul instead.

46

Basic C Library Functions

Name
simple_strtol — convert a string to a signed long

Synopsis

long simple_strtol (const char * cp, char ** endp, unsigned int base);

Arguments

cp The start of the string

endp A pointer to the end of the parsed string will be placed here

base The number base to use

Description

This function is obsolete. Please use kstrtol instead.

47

Basic C Library Functions

Name
simple_strtoll — convert a string to a signed long long

Synopsis

long long simple_strtoll (const char * cp, char ** endp, unsigned int
base);

Arguments

cp The start of the string

endp A pointer to the end of the parsed string will be placed here

base The number base to use

Description

This function is obsolete. Please use kstrtoll instead.

48

Basic C Library Functions

Name
vsnprintf — Format a string and place it in a buffer

Synopsis

int vsnprintf (char * buf, size_t size, const char * fmt, va_list args);

Arguments

buf The buffer to place the result into

size The size of the buffer, including the trailing null space

fmt The format string to use

args Arguments for the format string

Description

This function generally follows C99 vsnprintf, but has some

extensions and a few limitations

n is unsupported p* is handled by pointer

See pointer or Documentation/printk-formats.txt for more extensive description.

** Please update the documentation in both places when making changes **

The return value is the number of characters which would be generated for the given input, excluding the
trailing '\0', as per ISO C99. If you want to have the exact number of characters written into buf as return
value (not including the trailing '\0'), use vscnprintf. If the return is greater than or equal to size,
the resulting string is truncated.

If you're not already dealing with a va_list consider using snprintf.

49

Basic C Library Functions

Name
vscnprintf — Format a string and place it in a buffer

Synopsis

int vscnprintf (char * buf, size_t size, const char * fmt, va_list args);

Arguments

buf The buffer to place the result into

size The size of the buffer, including the trailing null space

fmt The format string to use

args Arguments for the format string

Description

The return value is the number of characters which have been written into the buf not including the trailing
'\0'. If size is == 0 the function returns 0.

If you're not already dealing with a va_list consider using scnprintf.

See the vsnprintf documentation for format string extensions over C99.

50

Basic C Library Functions

Name
snprintf — Format a string and place it in a buffer

Synopsis

int snprintf (char * buf, size_t size, const char * fmt, ...);

Arguments

buf The buffer to place the result into

size The size of the buffer, including the trailing null space

fmt The format string to use @...: Arguments for the format string

... variable arguments

Description

The return value is the number of characters which would be generated for the given input, excluding the
trailing null, as per ISO C99. If the return is greater than or equal to size, the resulting string is truncated.

See the vsnprintf documentation for format string extensions over C99.

51

Basic C Library Functions

Name
scnprintf — Format a string and place it in a buffer

Synopsis

int scnprintf (char * buf, size_t size, const char * fmt, ...);

Arguments

buf The buffer to place the result into

size The size of the buffer, including the trailing null space

fmt The format string to use @...: Arguments for the format string

... variable arguments

Description

The return value is the number of characters written into buf not including the trailing '\0'. If size is
== 0 the function returns 0.

52

Basic C Library Functions

Name
vsprintf — Format a string and place it in a buffer

Synopsis

int vsprintf (char * buf, const char * fmt, va_list args);

Arguments

buf The buffer to place the result into

fmt The format string to use

args Arguments for the format string

Description

The function returns the number of characters written into buf. Use vsnprintf or vscnprintf in
order to avoid buffer overflows.

If you're not already dealing with a va_list consider using sprintf.

See the vsnprintf documentation for format string extensions over C99.

53

Basic C Library Functions

Name
sprintf — Format a string and place it in a buffer

Synopsis

int sprintf (char * buf, const char * fmt, ...);

Arguments

buf The buffer to place the result into

fmt The format string to use @...: Arguments for the format string

... variable arguments

Description

The function returns the number of characters written into buf. Use snprintf or scnprintf in order
to avoid buffer overflows.

See the vsnprintf documentation for format string extensions over C99.

54

Basic C Library Functions

Name
vbin_printf — Parse a format string and place args' binary value in a buffer

Synopsis

int vbin_printf (u32 * bin_buf, size_t size, const char * fmt, va_list
args);

Arguments

bin_buf The buffer to place args' binary value

size The size of the buffer(by words(32bits), not characters)

fmt The format string to use

args Arguments for the format string

Description

The format follows C99 vsnprintf, except n is ignored, and its argument is skipped.

The return value is the number of words(32bits) which would be generated for the given input.

NOTE

If the return value is greater than size, the resulting bin_buf is NOT valid for bstr_printf.

55

Basic C Library Functions

Name
bstr_printf — Format a string from binary arguments and place it in a buffer

Synopsis

int bstr_printf (char * buf, size_t size, const char * fmt, const u32
* bin_buf);

Arguments

buf The buffer to place the result into

size The size of the buffer, including the trailing null space

fmt The format string to use

bin_buf Binary arguments for the format string

Description

This function like C99 vsnprintf, but the difference is that vsnprintf gets arguments from stack, and
bstr_printf gets arguments from bin_buf which is a binary buffer that generated by vbin_printf.

The format follows C99 vsnprintf, but has some extensions: see vsnprintf comment for details.

The return value is the number of characters which would be generated for the given input, excluding the
trailing '\0', as per ISO C99. If you want to have the exact number of characters written into buf as return
value (not including the trailing '\0'), use vscnprintf. If the return is greater than or equal to size,
the resulting string is truncated.

56

Basic C Library Functions

Name
bprintf — Parse a format string and place args' binary value in a buffer

Synopsis

int bprintf (u32 * bin_buf, size_t size, const char * fmt, ...);

Arguments

bin_buf The buffer to place args' binary value

size The size of the buffer(by words(32bits), not characters)

fmt The format string to use @...: Arguments for the format string

... variable arguments

Description

The function returns the number of words(u32) written into bin_buf.

57

Basic C Library Functions

Name
vsscanf — Unformat a buffer into a list of arguments

Synopsis

int vsscanf (const char * buf, const char * fmt, va_list args);

Arguments

buf input buffer

fmt format of buffer

args arguments

58

Basic C Library Functions

Name
sscanf — Unformat a buffer into a list of arguments

Synopsis

int sscanf (const char * buf, const char * fmt, ...);

Arguments

buf input buffer

fmt formatting of buffer @...: resulting arguments

... variable arguments

59

Basic C Library Functions

Name
kstrtol — convert a string to a long

Synopsis

int kstrtol (const char * s, unsigned int base, long * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign or a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

60

Basic C Library Functions

Name
kstrtoul — convert a string to an unsigned long

Synopsis

int kstrtoul (const char * s, unsigned int base, unsigned long * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign, but not a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

61

Basic C Library Functions

Name
kstrtoull — convert a string to an unsigned long long

Synopsis

int kstrtoull (const char * s, unsigned int base, unsigned long long
* res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign, but not a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

62

Basic C Library Functions

Name
kstrtoll — convert a string to a long long

Synopsis

int kstrtoll (const char * s, unsigned int base, long long * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign or a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

63

Basic C Library Functions

Name
kstrtouint — convert a string to an unsigned int

Synopsis

int kstrtouint (const char * s, unsigned int base, unsigned int * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign, but not a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

64

Basic C Library Functions

Name
kstrtoint — convert a string to an int

Synopsis

int kstrtoint (const char * s, unsigned int base, int * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign or a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

65

Basic C Library Functions

Name
kstrtobool — convert common user inputs into boolean values

Synopsis

int kstrtobool (const char * s, bool * res);

Arguments

s input string

res result

Description

This routine returns 0 iff the first character is one of 'Yy1Nn0', or [oO][NnFf] for “on” and “off”. Otherwise
it will return -EINVAL. Value pointed to by res is updated upon finding a match.

String Manipulation

66

Basic C Library Functions

Name
strncasecmp — Case insensitive, length-limited string comparison

Synopsis

int strncasecmp (const char * s1, const char * s2, size_t len);

Arguments

s1 One string

s2 The other string

len the maximum number of characters to compare

67

Basic C Library Functions

Name
strcpy — Copy a NUL terminated string

Synopsis

char * strcpy (char * dest, const char * src);

Arguments

dest Where to copy the string to

src Where to copy the string from

68

Basic C Library Functions

Name
strncpy — Copy a length-limited, C-string

Synopsis

char * strncpy (char * dest, const char * src, size_t count);

Arguments

dest Where to copy the string to

src Where to copy the string from

count The maximum number of bytes to copy

Description

The result is not NUL-terminated if the source exceeds count bytes.

In the case where the length of src is less than that of count, the remainder of dest will be padded
with NUL.

69

Basic C Library Functions

Name
strlcpy — Copy a C-string into a sized buffer

Synopsis

size_t strlcpy (char * dest, const char * src, size_t size);

Arguments

dest Where to copy the string to

src Where to copy the string from

size size of destination buffer

BSD

the result is always a valid NUL-terminated string that fits in the buffer (unless, of course, the buffer size
is zero). It does not pad out the result like strncpy does.

70

Basic C Library Functions

Name
strscpy — Copy a C-string into a sized buffer

Synopsis

ssize_t strscpy (char * dest, const char * src, size_t count);

Arguments

dest Where to copy the string to

src Where to copy the string from

count Size of destination buffer

Description

Copy the string, or as much of it as fits, into the dest buffer. The routine returns the number of characters
copied (not including the trailing NUL) or -E2BIG if the destination buffer wasn't big enough. The behavior
is undefined if the string buffers overlap. The destination buffer is always NUL terminated, unless it's
zero-sized.

Preferred to strlcpy since the API doesn't require reading memory from the src string beyond the spec-
ified “count” bytes, and since the return value is easier to error-check than strlcpy's. In addition, the
implementation is robust to the string changing out from underneath it, unlike the current strlcpy im-
plementation.

Preferred to strncpy since it always returns a valid string, and doesn't unnecessarily force the tail of
the destination buffer to be zeroed. If the zeroing is desired, it's likely cleaner to use strscpy with an
overflow test, then just memset the tail of the dest buffer.

71

Basic C Library Functions

Name
strcat — Append one NUL-terminated string to another

Synopsis

char * strcat (char * dest, const char * src);

Arguments

dest The string to be appended to

src The string to append to it

72

Basic C Library Functions

Name
strncat — Append a length-limited, C-string to another

Synopsis

char * strncat (char * dest, const char * src, size_t count);

Arguments

dest The string to be appended to

src The string to append to it

count The maximum numbers of bytes to copy

Description

Note that in contrast to strncpy, strncat ensures the result is terminated.

73

Basic C Library Functions

Name
strlcat — Append a length-limited, C-string to another

Synopsis

size_t strlcat (char * dest, const char * src, size_t count);

Arguments

dest The string to be appended to

src The string to append to it

count The size of the destination buffer.

74

Basic C Library Functions

Name
strcmp — Compare two strings

Synopsis

int strcmp (const char * cs, const char * ct);

Arguments

cs One string

ct Another string

75

Basic C Library Functions

Name
strncmp — Compare two length-limited strings

Synopsis

int strncmp (const char * cs, const char * ct, size_t count);

Arguments

cs One string

ct Another string

count The maximum number of bytes to compare

76

Basic C Library Functions

Name
strchr — Find the first occurrence of a character in a string

Synopsis

char * strchr (const char * s, int c);

Arguments

s The string to be searched

c The character to search for

77

Basic C Library Functions

Name
strchrnul — Find and return a character in a string, or end of string

Synopsis

char * strchrnul (const char * s, int c);

Arguments

s The string to be searched

c The character to search for

Description

Returns pointer to first occurrence of 'c' in s. If c is not found, then return a pointer to the null byte at
the end of s.

78

Basic C Library Functions

Name
strrchr — Find the last occurrence of a character in a string

Synopsis

char * strrchr (const char * s, int c);

Arguments

s The string to be searched

c The character to search for

79

Basic C Library Functions

Name
strnchr — Find a character in a length limited string

Synopsis

char * strnchr (const char * s, size_t count, int c);

Arguments

s The string to be searched

count The number of characters to be searched

c The character to search for

80

Basic C Library Functions

Name
skip_spaces — Removes leading whitespace from str.

Synopsis

char * skip_spaces (const char * str);

Arguments

str The string to be stripped.

Description

Returns a pointer to the first non-whitespace character in str.

81

Basic C Library Functions

Name
strim — Removes leading and trailing whitespace from s.

Synopsis

char * strim (char * s);

Arguments

s The string to be stripped.

Description

Note that the first trailing whitespace is replaced with a NUL-terminator in the given string s. Returns
a pointer to the first non-whitespace character in s.

82

Basic C Library Functions

Name
strlen — Find the length of a string

Synopsis

size_t strlen (const char * s);

Arguments

s The string to be sized

83

Basic C Library Functions

Name
strnlen — Find the length of a length-limited string

Synopsis

size_t strnlen (const char * s, size_t count);

Arguments

s The string to be sized

count The maximum number of bytes to search

84

Basic C Library Functions

Name
strspn — Calculate the length of the initial substring of s which only contain letters in accept

Synopsis

size_t strspn (const char * s, const char * accept);

Arguments

s The string to be searched

accept The string to search for

85

Basic C Library Functions

Name
strcspn — Calculate the length of the initial substring of s which does not contain letters in reject

Synopsis

size_t strcspn (const char * s, const char * reject);

Arguments

s The string to be searched

reject The string to avoid

86

Basic C Library Functions

Name
strpbrk — Find the first occurrence of a set of characters

Synopsis

char * strpbrk (const char * cs, const char * ct);

Arguments

cs The string to be searched

ct The characters to search for

87

Basic C Library Functions

Name
strsep — Split a string into tokens

Synopsis

char * strsep (char ** s, const char * ct);

Arguments

s The string to be searched

ct The characters to search for

Description

strsep updates s to point after the token, ready for the next call.

It returns empty tokens, too, behaving exactly like the libc function of that name. In fact, it was stolen
from glibc2 and de-fancy-fied. Same semantics, slimmer shape. ;)

88

Basic C Library Functions

Name
sysfs_streq — return true if strings are equal, modulo trailing newline

Synopsis

bool sysfs_streq (const char * s1, const char * s2);

Arguments

s1 one string

s2 another string

Description

This routine returns true iff two strings are equal, treating both NUL and newline-then-NUL as equivalent
string terminations. It's geared for use with sysfs input strings, which generally terminate with newlines
but are compared against values without newlines.

89

Basic C Library Functions

Name
match_string — matches given string in an array

Synopsis

int match_string (const char *const * array, size_t n, const char *
string);

Arguments

array array of strings

n number of strings in the array or -1 for NULL terminated arrays

string string to match with

Return

index of a string in the array if matches, or -EINVAL otherwise.

90

Basic C Library Functions

Name
memset — Fill a region of memory with the given value

Synopsis

void * memset (void * s, int c, size_t count);

Arguments

s Pointer to the start of the area.

c The byte to fill the area with

count The size of the area.

Description

Do not use memset to access IO space, use memset_io instead.

91

Basic C Library Functions

Name
memzero_explicit — Fill a region of memory (e.g. sensitive keying data) with 0s.

Synopsis

void memzero_explicit (void * s, size_t count);

Arguments

s Pointer to the start of the area.

count The size of the area.

Note

usually using memset is just fine (!), but in cases where clearing out _local_ data at the end of a scope is
necessary, memzero_explicit should be used instead in order to prevent the compiler from optimising
away zeroing.

memzero_explicit doesn't need an arch-specific version as it just invokes the one of memset im-
plicitly.

92

Basic C Library Functions

Name
memcpy — Copy one area of memory to another

Synopsis

void * memcpy (void * dest, const void * src, size_t count);

Arguments

dest Where to copy to

src Where to copy from

count The size of the area.

Description

You should not use this function to access IO space, use memcpy_toio or memcpy_fromio instead.

93

Basic C Library Functions

Name
memmove — Copy one area of memory to another

Synopsis

void * memmove (void * dest, const void * src, size_t count);

Arguments

dest Where to copy to

src Where to copy from

count The size of the area.

Description

Unlike memcpy, memmove copes with overlapping areas.

94

Basic C Library Functions

Name
memcmp — Compare two areas of memory

Synopsis

__visible int memcmp (const void * cs, const void * ct, size_t count);

Arguments

cs One area of memory

ct Another area of memory

count The size of the area.

95

Basic C Library Functions

Name
memscan — Find a character in an area of memory.

Synopsis

void * memscan (void * addr, int c, size_t size);

Arguments

addr The memory area

c The byte to search for

size The size of the area.

Description

returns the address of the first occurrence of c, or 1 byte past the area if c is not found

96

Basic C Library Functions

Name
strstr — Find the first substring in a NUL terminated string

Synopsis

char * strstr (const char * s1, const char * s2);

Arguments

s1 The string to be searched

s2 The string to search for

97

Basic C Library Functions

Name
strnstr — Find the first substring in a length-limited string

Synopsis

char * strnstr (const char * s1, const char * s2, size_t len);

Arguments

s1 The string to be searched

s2 The string to search for

len the maximum number of characters to search

98

Basic C Library Functions

Name
memchr — Find a character in an area of memory.

Synopsis

void * memchr (const void * s, int c, size_t n);

Arguments

s The memory area

c The byte to search for

n The size of the area.

Description

returns the address of the first occurrence of c, or NULL if c is not found

99

Basic C Library Functions

Name
memchr_inv — Find an unmatching character in an area of memory.

Synopsis

void * memchr_inv (const void * start, int c, size_t bytes);

Arguments

start The memory area

c Find a character other than c

bytes The size of the area.

Description

returns the address of the first character other than c, or NULL if the whole buffer contains just c.

100

Basic C Library Functions

Name
strreplace — Replace all occurrences of character in string.

Synopsis

char * strreplace (char * s, char old, char new);

Arguments

s The string to operate on.

old The character being replaced.

new The character old is replaced with.

Description

Returns pointer to the nul byte at the end of s.

Bit Operations

101

Basic C Library Functions

Name
set_bit — Atomically set a bit in memory

Synopsis

void set_bit (long nr, volatile unsigned long * addr);

Arguments

nr the bit to set

addr the address to start counting from

Description

This function is atomic and may not be reordered. See __set_bit if you do not require the atomic
guarantees.

Note

there are no guarantees that this function will not be reordered on non x86 architectures, so if you are
writing portable code, make sure not to rely on its reordering guarantees.

Note that nr may be almost arbitrarily large; this function is not restricted to acting on a single-word
quantity.

102

Basic C Library Functions

Name
__set_bit — Set a bit in memory

Synopsis

void __set_bit (long nr, volatile unsigned long * addr);

Arguments

nr the bit to set

addr the address to start counting from

Description

Unlike set_bit, this function is non-atomic and may be reordered. If it's called on the same region of
memory simultaneously, the effect may be that only one operation succeeds.

103

Basic C Library Functions

Name
clear_bit — Clears a bit in memory

Synopsis

void clear_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to clear

addr Address to start counting from

Description

clear_bit is atomic and may not be reordered. However, it does not contain a memory barrier, so if
it is used for locking purposes, you should call smp_mb__before_atomic and/or smp_mb__af-
ter_atomic in order to ensure changes are visible on other processors.

104

Basic C Library Functions

Name
__change_bit — Toggle a bit in memory

Synopsis

void __change_bit (long nr, volatile unsigned long * addr);

Arguments

nr the bit to change

addr the address to start counting from

Description

Unlike change_bit, this function is non-atomic and may be reordered. If it's called on the same region
of memory simultaneously, the effect may be that only one operation succeeds.

105

Basic C Library Functions

Name
change_bit — Toggle a bit in memory

Synopsis

void change_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to change

addr Address to start counting from

Description

change_bit is atomic and may not be reordered. Note that nr may be almost arbitrarily large; this
function is not restricted to acting on a single-word quantity.

106

Basic C Library Functions

Name
test_and_set_bit — Set a bit and return its old value

Synopsis

int test_and_set_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to set

addr Address to count from

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

107

Basic C Library Functions

Name
test_and_set_bit_lock — Set a bit and return its old value for lock

Synopsis

int test_and_set_bit_lock (long nr, volatile unsigned long * addr);

Arguments

nr Bit to set

addr Address to count from

Description

This is the same as test_and_set_bit on x86.

108

Basic C Library Functions

Name
__test_and_set_bit — Set a bit and return its old value

Synopsis

int __test_and_set_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to set

addr Address to count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. You must protect multiple accesses with a lock.

109

Basic C Library Functions

Name
test_and_clear_bit — Clear a bit and return its old value

Synopsis

int test_and_clear_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to clear

addr Address to count from

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

110

Basic C Library Functions

Name
__test_and_clear_bit — Clear a bit and return its old value

Synopsis

int __test_and_clear_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to clear

addr Address to count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. You must protect multiple accesses with a lock.

Note

the operation is performed atomically with respect to the local CPU, but not other CPUs. Portable code
should not rely on this behaviour. KVM relies on this behaviour on x86 for modifying memory that is also

accessed from a hypervisor on the same CPU if running in a VM

don't change this without also updating arch/x86/kernel/kvm.c

111

Basic C Library Functions

Name
test_and_change_bit — Change a bit and return its old value

Synopsis

int test_and_change_bit (long nr, volatile unsigned long * addr);

Arguments

nr Bit to change

addr Address to count from

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

112

Basic C Library Functions

Name
test_bit — Determine whether a bit is set

Synopsis

int test_bit (int nr, const volatile unsigned long * addr);

Arguments

nr bit number to test

addr Address to start counting from

113

Basic C Library Functions

Name
__ffs — find first set bit in word

Synopsis

unsigned long __ffs (unsigned long word);

Arguments

word The word to search

Description

Undefined if no bit exists, so code should check against 0 first.

114

Basic C Library Functions

Name
ffz — find first zero bit in word

Synopsis

unsigned long ffz (unsigned long word);

Arguments

word The word to search

Description

Undefined if no zero exists, so code should check against ~0UL first.

115

Basic C Library Functions

Name
ffs — find first set bit in word

Synopsis

int ffs (int x);

Arguments

x the word to search

Description

This is defined the same way as the libc and compiler builtin ffs routines, therefore differs in spirit from
the other bitops.

ffs(value) returns 0 if value is 0 or the position of the first set bit if value is nonzero. The first (least
significant) bit is at position 1.

116

Basic C Library Functions

Name
fls — find last set bit in word

Synopsis

int fls (int x);

Arguments

x the word to search

Description

This is defined in a similar way as the libc and compiler builtin ffs, but returns the position of the most
significant set bit.

fls(value) returns 0 if value is 0 or the position of the last set bit if value is nonzero. The last (most signif-
icant) bit is at position 32.

117

Basic C Library Functions

Name
fls64 — find last set bit in a 64-bit word

Synopsis

int fls64 (__u64 x);

Arguments

x the word to search

Description

This is defined in a similar way as the libc and compiler builtin ffsll, but returns the position of the most
significant set bit.

fls64(value) returns 0 if value is 0 or the position of the last set bit if value is nonzero. The last (most
significant) bit is at position 64.

118

Chapter 3. Basic Kernel Library
Functions

The Linux kernel provides more basic utility functions.

Bitmap Operations

119

Basic Kernel Library Functions

Name
__bitmap_shift_right — logical right shift of the bits in a bitmap

Synopsis

void __bitmap_shift_right (unsigned long * dst, const unsigned long *
src, unsigned shift, unsigned nbits);

Arguments

dst destination bitmap

src source bitmap

shift shift by this many bits

nbits bitmap size, in bits

Description

Shifting right (dividing) means moving bits in the MS -> LS bit direction. Zeros are fed into the vacated
MS positions and the LS bits shifted off the bottom are lost.

120

Basic Kernel Library Functions

Name
__bitmap_shift_left — logical left shift of the bits in a bitmap

Synopsis

void __bitmap_shift_left (unsigned long * dst, const unsigned long *
src, unsigned int shift, unsigned int nbits);

Arguments

dst destination bitmap

src source bitmap

shift shift by this many bits

nbits bitmap size, in bits

Description

Shifting left (multiplying) means moving bits in the LS -> MS direction. Zeros are fed into the vacated LS
bit positions and those MS bits shifted off the top are lost.

121

Basic Kernel Library Functions

Name
bitmap_find_next_zero_area_off — find a contiguous aligned zero area

Synopsis

unsigned long bitmap_find_next_zero_area_off (unsigned long * map, un-
signed long size, unsigned long start, unsigned int nr, unsigned long
align_mask, unsigned long align_offset);

Arguments

map The address to base the search on

size The bitmap size in bits

start The bitnumber to start searching at

nr The number of zeroed bits we're looking for

align_mask Alignment mask for zero area

align_offset Alignment offset for zero area.

Description

The align_mask should be one less than a power of 2; the effect is that the bit offset of all zero areas
this function finds plus align_offset is multiple of that power of 2.

122

Basic Kernel Library Functions

Name
__bitmap_parse — convert an ASCII hex string into a bitmap.

Synopsis

int __bitmap_parse (const char * buf, unsigned int buflen, int is_user,
unsigned long * maskp, int nmaskbits);

Arguments

buf pointer to buffer containing string.

buflen buffer size in bytes. If string is smaller than this then it must be terminated with a \0.

is_user location of buffer, 0 indicates kernel space

maskp pointer to bitmap array that will contain result.

nmaskbits size of bitmap, in bits.

Description

Commas group hex digits into chunks. Each chunk defines exactly 32 bits of the resultant bitmask. No
chunk may specify a value larger than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value
then leading 0-bits are prepended. -EINVAL is returned for illegal characters and for grouping errors such
as “1,,5”, “,44”, “,” and "". Leading and trailing whitespace accepted, but not embedded whitespace.

123

Basic Kernel Library Functions

Name
bitmap_parse_user — convert an ASCII hex string in a user buffer into a bitmap

Synopsis

int bitmap_parse_user (const char __user * ubuf, unsigned int ulen,
unsigned long * maskp, int nmaskbits);

Arguments

ubuf pointer to user buffer containing string.

ulen buffer size in bytes. If string is smaller than this then it must be terminated with a \0.

maskp pointer to bitmap array that will contain result.

nmaskbits size of bitmap, in bits.

Description

Wrapper for __bitmap_parse, providing it with user buffer.

We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the ac-
cess_ok declaration and this causes cyclic dependencies.

124

Basic Kernel Library Functions

Name
bitmap_print_to_pagebuf — convert bitmap to list or hex format ASCII string

Synopsis

int bitmap_print_to_pagebuf (bool list, char * buf, const unsigned long
* maskp, int nmaskbits);

Arguments

list indicates whether the bitmap must be list

buf page aligned buffer into which string is placed

maskp pointer to bitmap to convert

nmaskbits size of bitmap, in bits

Description

Output format is a comma-separated list of decimal numbers and ranges if list is specified or hex digits
grouped into comma-separated sets of 8 digits/set. Returns the number of characters written to buf.

It is assumed that buf is a pointer into a PAGE_SIZE area and that sufficient storage remains at buf to
accommodate the bitmap_print_to_pagebuf output.

125

Basic Kernel Library Functions

Name
bitmap_parselist_user —

Synopsis

int bitmap_parselist_user (const char __user * ubuf, unsigned int ulen,
unsigned long * maskp, int nmaskbits);

Arguments

ubuf pointer to user buffer containing string.

ulen buffer size in bytes. If string is smaller than this then it must be terminated with a \0.

maskp pointer to bitmap array that will contain result.

nmaskbits size of bitmap, in bits.

Description

Wrapper for bitmap_parselist, providing it with user buffer.

We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the ac-
cess_ok declaration and this causes cyclic dependencies.

126

Basic Kernel Library Functions

Name
bitmap_remap — Apply map defined by a pair of bitmaps to another bitmap

Synopsis

void bitmap_remap (unsigned long * dst, const unsigned long * src, const
unsigned long * old, const unsigned long * new, unsigned int nbits);

Arguments

dst remapped result

src subset to be remapped

old defines domain of map

new defines range of map

nbits number of bits in each of these bitmaps

Description

Let old and new define a mapping of bit positions, such that whatever position is held by the n-th set bit
in old is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight 'w' of new is less than the weight of old, map the position of the n-th set bit in old to the position
of the m-th set bit in new, where m == n % w.

If either of the old and new bitmaps are empty, or if src and dst point to the same location, then this
routine copies src to dst.

The positions of unset bits in old are mapped to themselves (the identify map).

Apply the above specified mapping to src, placing the result in dst, clearing any bits previously set
in dst.

For example, lets say that old has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other bit positions unchanged. So
if say src comes into this routine with bits 1, 5 and 7 set, then dst should leave with bits 1, 13 and 15 set.

127

Basic Kernel Library Functions

Name
bitmap_bitremap — Apply map defined by a pair of bitmaps to a single bit

Synopsis

int bitmap_bitremap (int oldbit, const unsigned long * old, const un-
signed long * new, int bits);

Arguments

oldbit bit position to be mapped

old defines domain of map

new defines range of map

bits number of bits in each of these bitmaps

Description

Let old and new define a mapping of bit positions, such that whatever position is held by the n-th set bit
in old is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight 'w' of new is less than the weight of old, map the position of the n-th set bit in old to the position
of the m-th set bit in new, where m == n % w.

The positions of unset bits in old are mapped to themselves (the identify map).

Apply the above specified mapping to bit position oldbit, returning the new bit position.

For example, lets say that old has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other bit positions unchanged.
So if say oldbit is 5, then this routine returns 13.

128

Basic Kernel Library Functions

Name
bitmap_onto — translate one bitmap relative to another

Synopsis

void bitmap_onto (unsigned long * dst, const unsigned long * orig, const
unsigned long * relmap, unsigned int bits);

Arguments

dst resulting translated bitmap

orig original untranslated bitmap

relmap bitmap relative to which translated

bits number of bits in each of these bitmaps

Description

Set the n-th bit of dst iff there exists some m such that the n-th bit of relmap is set, the m-th bit of orig
is set, and the n-th bit of relmap is also the m-th _set_ bit of relmap. (If you understood the previous
sentence the first time your read it, you're overqualified for your current job.)

In other words, orig is mapped onto (surjectively) dst, using the map { <n, m> | the n-th bit of relmap
is the m-th set bit of relmap }.

Any set bits in orig above bit number W, where W is the weight of (number of set bits in) relmap are
mapped nowhere. In particular, if for all bits m set in orig, m >= W, then dst will end up empty. In
situations where the possibility of such an empty result is not desired, one way to avoid it is to use the
bitmap_fold operator, below, to first fold the orig bitmap over itself so that all its set bits x are in
the range 0 <= x < W. The bitmap_fold operator does this by setting the bit (m % W) in dst, for
each bit (m) set in orig.

Example [1] for bitmap_onto: Let's say relmap has bits 30-39 set, and orig has bits 1, 3, 5, 7, 9 and
11 set. Then on return from this routine, dst will have bits 31, 33, 35, 37 and 39 set.

When bit 0 is set in orig, it means turn on the bit in dst corresponding to whatever is the first bit (if any)
that is turned on in relmap. Since bit 0 was off in the above example, we leave off that bit (bit 30) in dst.

When bit 1 is set in orig (as in the above example), it means turn on the bit in dst corresponding to
whatever is the second bit that is turned on in relmap. The second bit in relmap that was turned on in
the above example was bit 31, so we turned on bit 31 in dst.

Similarly, we turned on bits 33, 35, 37 and 39 in dst, because they were the 4th, 6th, 8th and 10th set bits
set in relmap, and the 4th, 6th, 8th and 10th bits of orig (i.e. bits 3, 5, 7 and 9) were also set.

When bit 11 is set in orig, it means turn on the bit in dst corresponding to whatever is the twelfth bit
that is turned on in relmap. In the above example, there were only ten bits turned on in relmap (30..39),
so that bit 11 was set in orig had no affect on dst.

Example [2] for bitmap_fold + bitmap_onto: Let's say relmap has these ten bits set: 40 41 42 43
45 48 53 61 74 95 (for the curious, that's 40 plus the first ten terms of the Fibonacci sequence.)

Further lets say we use the following code, invoking bitmap_fold then bitmap_onto, as suggested
above to avoid the possibility of an empty dst result:

129

Basic Kernel Library Functions

unsigned long *tmp; // a temporary bitmap's bits

bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); bitmap_onto(dst, tmp, relmap, bits);

Then this table shows what various values of dst would be, for various orig's. I list the zero-based posi-
tions of each set bit. The tmp column shows the intermediate result, as computed by using bitmap_fold
to fold the orig bitmap modulo ten (the weight of relmap).

orig tmp dst 0 0 40 1 1 41 9 9 95 10 0 40 (*) 1 3 5 7 1 3 5 7 41 43 48 61 0 1 2 3 4 0 1 2 3 4 40 41
42 43 45 0 9 18 27 0 9 8 7 40 61 74 95 0 10 20 30 0 40 0 11 22 33 0 1 2 3 40 41 42 43 0 12 24 36 0 2
4 6 40 42 45 53 78 102 211 1 2 8 41 42 74 (*)

(*) For these marked lines, if we hadn't first done bitmap_fold into tmp, then the dst result would
have been empty.

If either of orig or relmap is empty (no set bits), then dst will be returned empty.

If (as explained above) the only set bits in orig are in positions m where m >= W, (where W is the weight
of relmap) then dst will once again be returned empty.

All bits in dst not set by the above rule are cleared.

130

Basic Kernel Library Functions

Name
bitmap_fold — fold larger bitmap into smaller, modulo specified size

Synopsis

void bitmap_fold (unsigned long * dst, const unsigned long * orig,
unsigned int sz, unsigned int nbits);

Arguments

dst resulting smaller bitmap

orig original larger bitmap

sz specified size

nbits number of bits in each of these bitmaps

Description

For each bit oldbit in orig, set bit oldbit mod sz in dst. Clear all other bits in dst. See further the
comment and Example [2] for bitmap_onto for why and how to use this.

131

Basic Kernel Library Functions

Name
bitmap_find_free_region — find a contiguous aligned mem region

Synopsis

int bitmap_find_free_region (unsigned long * bitmap, unsigned int bits,
int order);

Arguments

bitmap array of unsigned longs corresponding to the bitmap

bits number of bits in the bitmap

order region size (log base 2 of number of bits) to find

Description

Find a region of free (zero) bits in a bitmap of bits bits and allocate them (set them to one). Only
consider regions of length a power (order) of two, aligned to that power of two, which makes the search
algorithm much faster.

Return the bit offset in bitmap of the allocated region, or -errno on failure.

132

Basic Kernel Library Functions

Name
bitmap_release_region — release allocated bitmap region

Synopsis

void bitmap_release_region (unsigned long * bitmap, unsigned int pos,
int order);

Arguments

bitmap array of unsigned longs corresponding to the bitmap

pos beginning of bit region to release

order region size (log base 2 of number of bits) to release

Description

This is the complement to __bitmap_find_free_region and releases the found region (by clearing
it in the bitmap).

No return value.

133

Basic Kernel Library Functions

Name
bitmap_allocate_region — allocate bitmap region

Synopsis

int bitmap_allocate_region (unsigned long * bitmap, unsigned int pos,
int order);

Arguments

bitmap array of unsigned longs corresponding to the bitmap

pos beginning of bit region to allocate

order region size (log base 2 of number of bits) to allocate

Description

Allocate (set bits in) a specified region of a bitmap.

Return 0 on success, or -EBUSY if specified region wasn't free (not all bits were zero).

134

Basic Kernel Library Functions

Name
bitmap_from_u32array — copy the contents of a u32 array of bits to bitmap

Synopsis

unsigned int bitmap_from_u32array (unsigned long * bitmap, unsigned int
nbits, const u32 * buf, unsigned int nwords);

Arguments

bitmap array of unsigned longs, the destination bitmap, non NULL

nbits number of bits in bitmap

buf array of u32 (in host byte order), the source bitmap, non NULL

nwords number of u32 words in buf

Description

copy min(nbits, 32*nwords) bits from buf to bitmap, remaining bits between nword and nbits in
bitmap (if any) are cleared. In last word of bitmap, the bits beyond nbits (if any) are kept unchanged.

Return the number of bits effectively copied.

135

Basic Kernel Library Functions

Name
bitmap_to_u32array — copy the contents of bitmap to a u32 array of bits

Synopsis

unsigned int bitmap_to_u32array (u32 * buf, unsigned int nwords, const
unsigned long * bitmap, unsigned int nbits);

Arguments

buf array of u32 (in host byte order), the dest bitmap, non NULL

nwords number of u32 words in buf

bitmap array of unsigned longs, the source bitmap, non NULL

nbits number of bits in bitmap

Description

copy min(nbits, 32*nwords) bits from bitmap to buf. Remaining bits after nbits in buf (if any) are
cleared.

Return the number of bits effectively copied.

136

Basic Kernel Library Functions

Name
bitmap_copy_le — copy a bitmap, putting the bits into little-endian order.

Synopsis

void bitmap_copy_le (unsigned long * dst, const unsigned long * src,
unsigned int nbits);

Arguments

dst destination buffer

src bitmap to copy

nbits number of bits in the bitmap

Description

Require nbits % BITS_PER_LONG == 0.

137

Basic Kernel Library Functions

Name
__bitmap_parselist — convert list format ASCII string to bitmap

Synopsis

int __bitmap_parselist (const char * buf, unsigned int buflen, int
is_user, unsigned long * maskp, int nmaskbits);

Arguments

buf read nul-terminated user string from this buffer

buflen buffer size in bytes. If string is smaller than this then it must be terminated with a \0.

is_user location of buffer, 0 indicates kernel space

maskp write resulting mask here

nmaskbits number of bits in mask to be written

Description

Input format is a comma-separated list of decimal numbers and ranges. Consecutively set bits are shown
as two hyphen-separated decimal numbers, the smallest and largest bit numbers set in the range.

Returns 0 on success, -errno on invalid input strings.

Error values

-EINVAL: second number in range smaller than first -EINVAL: invalid character in string -ERANGE:
bit number specified too large for mask

138

Basic Kernel Library Functions

Name
bitmap_pos_to_ord — find ordinal of set bit at given position in bitmap

Synopsis

int bitmap_pos_to_ord (const unsigned long * buf, unsigned int pos,
unsigned int nbits);

Arguments

buf pointer to a bitmap

pos a bit position in buf (0 <= pos < nbits)

nbits number of valid bit positions in buf

Description

Map the bit at position pos in buf (of length nbits) to the ordinal of which set bit it is. If it is not set
or if pos is not a valid bit position, map to -1.

If for example, just bits 4 through 7 are set in buf, then pos values 4 through 7 will get mapped to 0
through 3, respectively, and other pos values will get mapped to -1. When pos value 7 gets mapped to
(returns) ord value 3 in this example, that means that bit 7 is the 3rd (starting with 0th) set bit in buf.

The bit positions 0 through bits are valid positions in buf.

139

Basic Kernel Library Functions

Name
bitmap_ord_to_pos — find position of n-th set bit in bitmap

Synopsis

unsigned int bitmap_ord_to_pos (const unsigned long * buf, unsigned int
ord, unsigned int nbits);

Arguments

buf pointer to bitmap

ord ordinal bit position (n-th set bit, n >= 0)

nbits number of valid bit positions in buf

Description

Map the ordinal offset of bit ord in buf to its position in buf. Value of ord should be in range 0 <=
ord < weight(buf). If ord >= weight(buf), returns nbits.

If for example, just bits 4 through 7 are set in buf, then ord values 0 through 3 will get mapped to 4 through
7, respectively, and all other ord values returns nbits. When ord value 3 gets mapped to (returns) pos
value 7 in this example, that means that the 3rd set bit (starting with 0th) is at position 7 in buf.

The bit positions 0 through nbits-1 are valid positions in buf.

Command-line Parsing

140

Basic Kernel Library Functions

Name
get_option — Parse integer from an option string

Synopsis

int get_option (char ** str, int * pint);

Arguments

str option string

pint (output) integer value parsed from str

Description

Read an int from an option string; if available accept a subsequent comma as well.

Return values

0 - no int in string 1 - int found, no subsequent comma 2 - int found including a subsequent comma 3 -
hyphen found to denote a range

141

Basic Kernel Library Functions

Name
get_options — Parse a string into a list of integers

Synopsis

char * get_options (const char * str, int nints, int * ints);

Arguments

str String to be parsed

nints size of integer array

ints integer array

Description

This function parses a string containing a comma-separated list of integers, a hyphen-separated range of
positive integers, or a combination of both. The parse halts when the array is full, or when no more
numbers can be retrieved from the string.

Return value is the character in the string which caused the parse to end (typically a null terminator, if
str is completely parseable).

142

Basic Kernel Library Functions

Name
memparse — parse a string with mem suffixes into a number

Synopsis

unsigned long long memparse (const char * ptr, char ** retptr);

Arguments

ptr Where parse begins

retptr (output) Optional pointer to next char after parse completes

Description

Parses a string into a number. The number stored at ptr is potentially suffixed with K, M, G, T, P, E.

CRC Functions

143

Basic Kernel Library Functions

Name
crc7_be — update the CRC7 for the data buffer

Synopsis

u8 crc7_be (u8 crc, const u8 * buffer, size_t len);

Arguments

crc previous CRC7 value

buffer data pointer

len number of bytes in the buffer

Context

any

Description

Returns the updated CRC7 value. The CRC7 is left-aligned in the byte (the lsbit is always 0), as that makes
the computation easier, and all callers want it in that form.

144

Basic Kernel Library Functions

Name
crc16 — compute the CRC-16 for the data buffer

Synopsis

u16 crc16 (u16 crc, u8 const * buffer, size_t len);

Arguments

crc previous CRC value

buffer data pointer

len number of bytes in the buffer

Description

Returns the updated CRC value.

145

Basic Kernel Library Functions

Name
crc_itu_t — Compute the CRC-ITU-T for the data buffer

Synopsis

u16 crc_itu_t (u16 crc, const u8 * buffer, size_t len);

Arguments

crc previous CRC value

buffer data pointer

len number of bytes in the buffer

Description

Returns the updated CRC value

146

Basic Kernel Library Functions

Name
lib/crc32.c — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file lib/cr-
c32.c at this point, but none was found. This dummy section is inserted to allow generation
to continue.

147

Basic Kernel Library Functions

Name
crc_ccitt — recompute the CRC for the data buffer

Synopsis

u16 crc_ccitt (u16 crc, u8 const * buffer, size_t len);

Arguments

crc previous CRC value

buffer data pointer

len number of bytes in the buffer

idr/ida Functions
idr synchronization (stolen from radix-tree.h)

idr_find is able to be called locklessly, using RCU. The caller must ensure calls to this function are
made within rcu_read_lock regions. Other readers (lock-free or otherwise) and modifications may
be running concurrently.

It is still required that the caller manage the synchronization and lifetimes of the items. So if RCU lock-
free lookups are used, typically this would mean that the items have their own locks, or are amenable to
lock-free access; and that the items are freed by RCU (or only freed after having been deleted from the
idr tree *and* a synchronize_rcu grace period).

IDA - IDR based ID allocator

This is id allocator without id -> pointer translation. Memory usage is much lower than full blown idr
because each id only occupies a bit. ida uses a custom leaf node which contains IDA_BITMAP_BITS slots.

2007-04-25 written by Tejun Heo <htejungmail.com>

148

Basic Kernel Library Functions

Name
idr_preload — preload for idr_alloc

Synopsis

void idr_preload (gfp_t gfp_mask);

Arguments

gfp_mask allocation mask to use for preloading

Description

Preload per-cpu layer buffer for idr_alloc. Can only be used from process context and each idr_pre-
load invocation should be matched with idr_preload_end. Note that preemption is disabled while
preloaded.

The first idr_alloc in the preloaded section can be treated as if it were invoked with gfp_mask used
for preloading. This allows using more permissive allocation masks for idrs protected by spinlocks.

For example, if idr_alloc below fails, the failure can be treated as if idr_alloc were called with
GFP_KERNEL rather than GFP_NOWAIT.

idr_preload(GFP_KERNEL); spin_lock(lock);

id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);

spin_unlock(lock); idr_preload_end; if (id < 0) error;

149

Basic Kernel Library Functions

Name
idr_alloc — allocate new idr entry

Synopsis

int idr_alloc (struct idr * idr, void * ptr, int start, int end, gfp_t
gfp_mask);

Arguments

idr the (initialized) idr

ptr pointer to be associated with the new id

start the minimum id (inclusive)

end the maximum id (exclusive, <= 0 for max)

gfp_mask memory allocation flags

Description

Allocate an id in [start, end) and associate it with ptr. If no ID is available in the specified range, returns
-ENOSPC. On memory allocation failure, returns -ENOMEM.

Note that end is treated as max when <= 0. This is to always allow using start + N as end as long
as N is inside integer range.

The user is responsible for exclusively synchronizing all operations which may modify idr. However,
read-only accesses such as idr_find or iteration can be performed under RCU read lock provided the
user destroys ptr in RCU-safe way after removal from idr.

150

Basic Kernel Library Functions

Name
idr_alloc_cyclic — allocate new idr entry in a cyclical fashion

Synopsis

int idr_alloc_cyclic (struct idr * idr, void * ptr, int start, int end,
gfp_t gfp_mask);

Arguments

idr the (initialized) idr

ptr pointer to be associated with the new id

start the minimum id (inclusive)

end the maximum id (exclusive, <= 0 for max)

gfp_mask memory allocation flags

Description

Essentially the same as idr_alloc, but prefers to allocate progressively higher ids if it can. If the “cur”
counter wraps, then it will start again at the “start” end of the range and allocate one that has already been
used.

151

Basic Kernel Library Functions

Name
idr_remove — remove the given id and free its slot

Synopsis

void idr_remove (struct idr * idp, int id);

Arguments

idp idr handle

id unique key

152

Basic Kernel Library Functions

Name
idr_destroy — release all cached layers within an idr tree

Synopsis

void idr_destroy (struct idr * idp);

Arguments

idp idr handle

Description

Free all id mappings and all idp_layers. After this function, idp is completely unused and can be freed /
recycled. The caller is responsible for ensuring that no one else accesses idp during or after idr_de-
stroy.

A typical clean-up sequence for objects stored in an idr tree will use idr_for_each to free all objects,
if necessary, then idr_destroy to free up the id mappings and cached idr_layers.

153

Basic Kernel Library Functions

Name
idr_for_each — iterate through all stored pointers

Synopsis

int idr_for_each (struct idr * idp, int (*fn) (int id, void *p, void
*data), void * data);

Arguments

idp idr handle

fn function to be called for each pointer

data data passed back to callback function

Description

Iterate over the pointers registered with the given idr. The callback function will be called for each pointer
currently registered, passing the id, the pointer and the data pointer passed to this function. It is not safe to
modify the idr tree while in the callback, so functions such as idr_get_new and idr_remove are not allowed.

We check the return of fn each time. If it returns anything other than 0, we break out and return that value.

The caller must serialize idr_for_each vs idr_get_new and idr_remove.

154

Basic Kernel Library Functions

Name
idr_get_next — lookup next object of id to given id.

Synopsis

void * idr_get_next (struct idr * idp, int * nextidp);

Arguments

idp idr handle

nextidp pointer to lookup key

Description

Returns pointer to registered object with id, which is next number to given id. After being looked up,
*nextidp will be updated for the next iteration.

This function can be called under rcu_read_lock, given that the leaf pointers lifetimes are correctly
managed.

155

Basic Kernel Library Functions

Name
idr_replace — replace pointer for given id

Synopsis

void * idr_replace (struct idr * idp, void * ptr, int id);

Arguments

idp idr handle

ptr pointer you want associated with the id

id lookup key

Description

Replace the pointer registered with an id and return the old value. A -ENOENT return indicates that id
was not found. A -EINVAL return indicates that id was not within valid constraints.

The caller must serialize with writers.

156

Basic Kernel Library Functions

Name
idr_init — initialize idr handle

Synopsis

void idr_init (struct idr * idp);

Arguments

idp idr handle

Description

This function is use to set up the handle (idp) that you will pass to the rest of the functions.

157

Basic Kernel Library Functions

Name
ida_pre_get — reserve resources for ida allocation

Synopsis

int ida_pre_get (struct ida * ida, gfp_t gfp_mask);

Arguments

ida ida handle

gfp_mask memory allocation flag

Description

This function should be called prior to locking and calling the following function. It preallocates enough
memory to satisfy the worst possible allocation.

If the system is REALLY out of memory this function returns 0, otherwise 1.

158

Basic Kernel Library Functions

Name
ida_get_new_above — allocate new ID above or equal to a start id

Synopsis

int ida_get_new_above (struct ida * ida, int starting_id, int * p_id);

Arguments

ida ida handle

starting_id id to start search at

p_id pointer to the allocated handle

Description

Allocate new ID above or equal to starting_id. It should be called with any required locks.

If memory is required, it will return -EAGAIN, you should unlock and go back to the ida_pre_get
call. If the ida is full, it will return -ENOSPC.

p_id returns a value in the range starting_id ... 0x7fffffff.

159

Basic Kernel Library Functions

Name
ida_remove — remove the given ID

Synopsis

void ida_remove (struct ida * ida, int id);

Arguments

ida ida handle

id ID to free

160

Basic Kernel Library Functions

Name
ida_destroy — release all cached layers within an ida tree

Synopsis

void ida_destroy (struct ida * ida);

Arguments

ida ida handle

161

Basic Kernel Library Functions

Name
ida_simple_get — get a new id.

Synopsis

int ida_simple_get (struct ida * ida, unsigned int start, unsigned int
end, gfp_t gfp_mask);

Arguments

ida the (initialized) ida.

start the minimum id (inclusive, < 0x8000000)

end the maximum id (exclusive, < 0x8000000 or 0)

gfp_mask memory allocation flags

Description

Allocates an id in the range start <= id < end, or returns -ENOSPC. On memory allocation failure, returns
-ENOMEM.

Use ida_simple_remove to get rid of an id.

162

Basic Kernel Library Functions

Name
ida_simple_remove — remove an allocated id.

Synopsis

void ida_simple_remove (struct ida * ida, unsigned int id);

Arguments

ida the (initialized) ida.

id the id returned by ida_simple_get.

163

Basic Kernel Library Functions

Name
ida_init — initialize ida handle

Synopsis

void ida_init (struct ida * ida);

Arguments

ida ida handle

Description

This function is use to set up the handle (ida) that you will pass to the rest of the functions.

164

Chapter 4. Memory Management in
Linux
The Slab Cache

165

Memory Management in Linux

Name
kmalloc — allocate memory

Synopsis

void * kmalloc (size_t size, gfp_t flags);

Arguments

size how many bytes of memory are required.

flags the type of memory to allocate.

Description

kmalloc is the normal method of allocating memory for objects smaller than page size in the kernel.

The flags argument may be one of:

GFP_USER - Allocate memory on behalf of user. May sleep.

GFP_KERNEL - Allocate normal kernel ram. May sleep.

GFP_ATOMIC - Allocation will not sleep. May use emergency pools. For example, use this inside interrupt
handlers.

GFP_HIGHUSER - Allocate pages from high memory.

GFP_NOIO - Do not do any I/O at all while trying to get memory.

GFP_NOFS - Do not make any fs calls while trying to get memory.

GFP_NOWAIT - Allocation will not sleep.

__GFP_THISNODE - Allocate node-local memory only.

GFP_DMA - Allocation suitable for DMA. Should only be used for kmalloc caches. Otherwise, use a
slab created with SLAB_DMA.

Also it is possible to set different flags by OR'ing in one or more of the following additional flags:

__GFP_COLD - Request cache-cold pages instead of trying to return cache-warm pages.

__GFP_HIGH - This allocation has high priority and may use emergency pools.

__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail (think twice before using).

__GFP_NORETRY - If memory is not immediately available, then give up at once.

__GFP_NOWARN - If allocation fails, don't issue any warnings.

__GFP_REPEAT - If allocation fails initially, try once more before failing.

There are other flags available as well, but these are not intended for general use, and so are not documented
here. For a full list of potential flags, always refer to linux/gfp.h.

166

Memory Management in Linux

Name
kmalloc_array — allocate memory for an array.

Synopsis

void * kmalloc_array (size_t n, size_t size, gfp_t flags);

Arguments

n number of elements.

size element size.

flags the type of memory to allocate (see kmalloc).

167

Memory Management in Linux

Name
kcalloc — allocate memory for an array. The memory is set to zero.

Synopsis

void * kcalloc (size_t n, size_t size, gfp_t flags);

Arguments

n number of elements.

size element size.

flags the type of memory to allocate (see kmalloc).

168

Memory Management in Linux

Name
kzalloc — allocate memory. The memory is set to zero.

Synopsis

void * kzalloc (size_t size, gfp_t flags);

Arguments

size how many bytes of memory are required.

flags the type of memory to allocate (see kmalloc).

169

Memory Management in Linux

Name
kzalloc_node — allocate zeroed memory from a particular memory node.

Synopsis

void * kzalloc_node (size_t size, gfp_t flags, int node);

Arguments

size how many bytes of memory are required.

flags the type of memory to allocate (see kmalloc).

node memory node from which to allocate

170

Memory Management in Linux

Name
kmem_cache_alloc — Allocate an object

Synopsis

void * kmem_cache_alloc (struct kmem_cache * cachep, gfp_t flags);

Arguments

cachep The cache to allocate from.

flags See kmalloc.

Description

Allocate an object from this cache. The flags are only relevant if the cache has no available objects.

171

Memory Management in Linux

Name
kmem_cache_alloc_node — Allocate an object on the specified node

Synopsis

void * kmem_cache_alloc_node (struct kmem_cache * cachep, gfp_t flags,
int nodeid);

Arguments

cachep The cache to allocate from.

flags See kmalloc.

nodeid node number of the target node.

Description

Identical to kmem_cache_alloc but it will allocate memory on the given node, which can improve the
performance for cpu bound structures.

Fallback to other node is possible if __GFP_THISNODE is not set.

172

Memory Management in Linux

Name
kmem_cache_free — Deallocate an object

Synopsis

void kmem_cache_free (struct kmem_cache * cachep, void * objp);

Arguments

cachep The cache the allocation was from.

objp The previously allocated object.

Description

Free an object which was previously allocated from this cache.

173

Memory Management in Linux

Name
kfree — free previously allocated memory

Synopsis

void kfree (const void * objp);

Arguments

objp pointer returned by kmalloc.

Description

If objp is NULL, no operation is performed.

Don't free memory not originally allocated by kmalloc or you will run into trouble.

174

Memory Management in Linux

Name
ksize — get the actual amount of memory allocated for a given object

Synopsis

size_t ksize (const void * objp);

Arguments

objp Pointer to the object

Description

kmalloc may internally round up allocations and return more memory than requested. ksize can be used
to determine the actual amount of memory allocated. The caller may use this additional memory, even
though a smaller amount of memory was initially specified with the kmalloc call. The caller must guarantee
that objp points to a valid object previously allocated with either kmalloc or kmem_cache_alloc.
The object must not be freed during the duration of the call.

175

Memory Management in Linux

Name
kfree_const — conditionally free memory

Synopsis

void kfree_const (const void * x);

Arguments

x pointer to the memory

Description

Function calls kfree only if x is not in .rodata section.

176

Memory Management in Linux

Name
kstrdup — allocate space for and copy an existing string

Synopsis

char * kstrdup (const char * s, gfp_t gfp);

Arguments

s the string to duplicate

gfp the GFP mask used in the kmalloc call when allocating memory

177

Memory Management in Linux

Name
kstrdup_const — conditionally duplicate an existing const string

Synopsis

const char * kstrdup_const (const char * s, gfp_t gfp);

Arguments

s the string to duplicate

gfp the GFP mask used in the kmalloc call when allocating memory

Description

Function returns source string if it is in .rodata section otherwise it fallbacks to kstrdup. Strings allocated
by kstrdup_const should be freed by kfree_const.

178

Memory Management in Linux

Name
kstrndup — allocate space for and copy an existing string

Synopsis

char * kstrndup (const char * s, size_t max, gfp_t gfp);

Arguments

s the string to duplicate

max read at most max chars from s

gfp the GFP mask used in the kmalloc call when allocating memory

179

Memory Management in Linux

Name
kmemdup — duplicate region of memory

Synopsis

void * kmemdup (const void * src, size_t len, gfp_t gfp);

Arguments

src memory region to duplicate

len memory region length

gfp GFP mask to use

180

Memory Management in Linux

Name
memdup_user — duplicate memory region from user space

Synopsis

void * memdup_user (const void __user * src, size_t len);

Arguments

src source address in user space

len number of bytes to copy

Description

Returns an ERR_PTR on failure.

181

Memory Management in Linux

Name
memdup_user_nul — duplicate memory region from user space and NUL-terminate

Synopsis

void * memdup_user_nul (const void __user * src, size_t len);

Arguments

src source address in user space

len number of bytes to copy

Description

Returns an ERR_PTR on failure.

182

Memory Management in Linux

Name
get_user_pages_fast — pin user pages in memory

Synopsis

int get_user_pages_fast (unsigned long start, int nr_pages, int write,
struct page ** pages);

Arguments

start starting user address

nr_pages number of pages from start to pin

write whether pages will be written to

pages array that receives pointers to the pages pinned. Should be at least nr_pages long.

Description

Returns number of pages pinned. This may be fewer than the number requested. If nr_pages is 0 or negative,
returns 0. If no pages were pinned, returns -errno.

get_user_pages_fast provides equivalent functionality to get_user_pages, operating on current and cur-
rent->mm, with force=0 and vma=NULL. However unlike get_user_pages, it must be called without
mmap_sem held.

get_user_pages_fast may take mmap_sem and page table locks, so no assumptions can be made
about lack of locking. get_user_pages_fast is to be implemented in a way that is advantageous (vs
get_user_pages) when the user memory area is already faulted in and present in ptes. However if the
pages have to be faulted in, it may turn out to be slightly slower so callers need to carefully consider what
to use. On many architectures, get_user_pages_fast simply falls back to get_user_pages.

User Space Memory Access

183

Memory Management in Linux

Name
__copy_to_user_inatomic — Copy a block of data into user space, with less checking.

Synopsis

unsigned long __copy_to_user_inatomic (void __user * to, const void *
from, unsigned long n);

Arguments

to Destination address, in user space.

from Source address, in kernel space.

n Number of bytes to copy.

Context

User context only.

Description

Copy data from kernel space to user space. Caller must check the specified block with access_ok before
calling this function. The caller should also make sure he pins the user space address so that we don't result
in page fault and sleep.

Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault we return the initial request size
(1, 2 or 4), as copy_*_user should do. If a store crosses a page boundary and gets a fault, the x86 will not
write anything, so this is accurate.

184

Memory Management in Linux

Name
__copy_to_user — Copy a block of data into user space, with less checking.

Synopsis

unsigned long __copy_to_user (void __user * to, const void * from,
unsigned long n);

Arguments

to Destination address, in user space.

from Source address, in kernel space.

n Number of bytes to copy.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

Copy data from kernel space to user space. Caller must check the specified block with access_ok before
calling this function.

Returns number of bytes that could not be copied. On success, this will be zero.

185

Memory Management in Linux

Name
__copy_from_user — Copy a block of data from user space, with less checking.

Synopsis

unsigned long __copy_from_user (void * to, const void __user * from,
unsigned long n);

Arguments

to Destination address, in kernel space.

from Source address, in user space.

n Number of bytes to copy.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

Copy data from user space to kernel space. Caller must check the specified block with access_ok before
calling this function.

Returns number of bytes that could not be copied. On success, this will be zero.

If some data could not be copied, this function will pad the copied data to the requested size using zero
bytes.

An alternate version - __copy_from_user_inatomic - may be called from atomic context and will
fail rather than sleep. In this case the uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h
for explanation of why this is needed.

186

Memory Management in Linux

Name
clear_user — Zero a block of memory in user space.

Synopsis

unsigned long clear_user (void __user * to, unsigned long n);

Arguments

to Destination address, in user space.

n Number of bytes to zero.

Description

Zero a block of memory in user space.

Returns number of bytes that could not be cleared. On success, this will be zero.

187

Memory Management in Linux

Name
__clear_user — Zero a block of memory in user space, with less checking.

Synopsis

unsigned long __clear_user (void __user * to, unsigned long n);

Arguments

to Destination address, in user space.

n Number of bytes to zero.

Description

Zero a block of memory in user space. Caller must check the specified block with access_ok before
calling this function.

Returns number of bytes that could not be cleared. On success, this will be zero.

188

Memory Management in Linux

Name
_copy_to_user — Copy a block of data into user space.

Synopsis

unsigned long _copy_to_user (void __user * to, const void * from,
unsigned n);

Arguments

to Destination address, in user space.

from Source address, in kernel space.

n Number of bytes to copy.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

Copy data from kernel space to user space.

Returns number of bytes that could not be copied. On success, this will be zero.

189

Memory Management in Linux

Name
_copy_from_user — Copy a block of data from user space.

Synopsis

unsigned long _copy_from_user (void * to, const void __user * from,
unsigned n);

Arguments

to Destination address, in kernel space.

from Source address, in user space.

n Number of bytes to copy.

Context

User context only. This function may sleep if pagefaults are enabled.

Description

Copy data from user space to kernel space.

Returns number of bytes that could not be copied. On success, this will be zero.

If some data could not be copied, this function will pad the copied data to the requested size using zero
bytes.

More Memory Management Functions

190

Memory Management in Linux

Name
read_cache_pages — populate an address space with some pages & start reads against them

Synopsis

int read_cache_pages (struct address_space * mapping, struct list_head
* pages, int (*filler) (void *, struct page *), void * data);

Arguments

mapping the address_space

pages The address of a list_head which contains the target pages. These pages have their ->index
populated and are otherwise uninitialised.

filler callback routine for filling a single page.

data private data for the callback routine.

Description

Hides the details of the LRU cache etc from the filesystems.

191

Memory Management in Linux

Name
page_cache_sync_readahead — generic file readahead

Synopsis

void page_cache_sync_readahead (struct address_space * mapping, struct
file_ra_state * ra, struct file * filp, pgoff_t offset, unsigned long
req_size);

Arguments

mapping address_space which holds the pagecache and I/O vectors

ra file_ra_state which holds the readahead state

filp passed on to ->readpage and ->readpages

offset start offset into mapping, in pagecache page-sized units

req_size hint: total size of the read which the caller is performing in pagecache pages

Description

page_cache_sync_readahead should be called when a cache miss happened: it will submit the
read. The readahead logic may decide to piggyback more pages onto the read request if access patterns
suggest it will improve performance.

192

Memory Management in Linux

Name
page_cache_async_readahead — file readahead for marked pages

Synopsis

void page_cache_async_readahead (struct address_space * mapping, struct
file_ra_state * ra, struct file * filp, struct page * page, pgoff_t
offset, unsigned long req_size);

Arguments

mapping address_space which holds the pagecache and I/O vectors

ra file_ra_state which holds the readahead state

filp passed on to ->readpage and ->readpages

page the page at offset which has the PG_readahead flag set

offset start offset into mapping, in pagecache page-sized units

req_size hint: total size of the read which the caller is performing in pagecache pages

Description

page_cache_async_readahead should be called when a page is used which has the PG_readahead
flag; this is a marker to suggest that the application has used up enough of the readahead window that we
should start pulling in more pages.

193

Memory Management in Linux

Name
delete_from_page_cache — delete page from page cache

Synopsis

void delete_from_page_cache (struct page * page);

Arguments

page the page which the kernel is trying to remove from page cache

Description

This must be called only on pages that have been verified to be in the page cache and locked. It will never
put the page into the free list, the caller has a reference on the page.

194

Memory Management in Linux

Name
filemap_flush — mostly a non-blocking flush

Synopsis

int filemap_flush (struct address_space * mapping);

Arguments

mapping target address_space

Description

This is a mostly non-blocking flush. Not suitable for data-integrity purposes - I/O may not be started
against all dirty pages.

195

Memory Management in Linux

Name
filemap_fdatawait_range — wait for writeback to complete

Synopsis

int filemap_fdatawait_range (struct address_space * mapping, loff_t
start_byte, loff_t end_byte);

Arguments

mapping address space structure to wait for

start_byte offset in bytes where the range starts

end_byte offset in bytes where the range ends (inclusive)

Description

Walk the list of under-writeback pages of the given address space in the given range and wait for all of
them. Check error status of the address space and return it.

Since the error status of the address space is cleared by this function, callers are responsible for checking
the return value and handling and/or reporting the error.

196

Memory Management in Linux

Name
filemap_fdatawait — wait for all under-writeback pages to complete

Synopsis

int filemap_fdatawait (struct address_space * mapping);

Arguments

mapping address space structure to wait for

Description

Walk the list of under-writeback pages of the given address space and wait for all of them. Check error
status of the address space and return it.

Since the error status of the address space is cleared by this function, callers are responsible for checking
the return value and handling and/or reporting the error.

197

Memory Management in Linux

Name
filemap_write_and_wait_range — write out & wait on a file range

Synopsis

int filemap_write_and_wait_range (struct address_space * mapping, loff_t
lstart, loff_t lend);

Arguments

mapping the address_space for the pages

lstart offset in bytes where the range starts

lend offset in bytes where the range ends (inclusive)

Description

Write out and wait upon file offsets lstart->lend, inclusive.

Note that `lend' is inclusive (describes the last byte to be written) so that this function can be used to write
to the very end-of-file (end = -1).

198

Memory Management in Linux

Name
replace_page_cache_page — replace a pagecache page with a new one

Synopsis

int replace_page_cache_page (struct page * old, struct page * new, gfp_t
gfp_mask);

Arguments

old page to be replaced

new page to replace with

gfp_mask allocation mode

Description

This function replaces a page in the pagecache with a new one. On success it acquires the pagecache
reference for the new page and drops it for the old page. Both the old and new pages must be locked. This
function does not add the new page to the LRU, the caller must do that.

The remove + add is atomic. The only way this function can fail is memory allocation failure.

199

Memory Management in Linux

Name
add_to_page_cache_locked — add a locked page to the pagecache

Synopsis

int add_to_page_cache_locked (struct page * page, struct address_space
* mapping, pgoff_t offset, gfp_t gfp_mask);

Arguments

page page to add

mapping the page's address_space

offset page index

gfp_mask page allocation mode

Description

This function is used to add a page to the pagecache. It must be locked. This function does not add the
page to the LRU. The caller must do that.

200

Memory Management in Linux

Name
add_page_wait_queue — Add an arbitrary waiter to a page's wait queue

Synopsis

void add_page_wait_queue (struct page * page, wait_queue_t * waiter);

Arguments

page Page defining the wait queue of interest

waiter Waiter to add to the queue

Description

Add an arbitrary waiter to the wait queue for the nominated page.

201

Memory Management in Linux

Name
unlock_page — unlock a locked page

Synopsis

void unlock_page (struct page * page);

Arguments

page the page

Description

Unlocks the page and wakes up sleepers in ___wait_on_page_locked. Also wakes sleepers
in wait_on_page_writeback because the wakeup mechanism between PageLocked pages and
PageWriteback pages is shared. But that's OK - sleepers in wait_on_page_writeback just go back
to sleep.

The mb is necessary to enforce ordering between the clear_bit and the read of the waitqueue (to avoid
SMP races with a parallel wait_on_page_locked).

202

Memory Management in Linux

Name
end_page_writeback — end writeback against a page

Synopsis

void end_page_writeback (struct page * page);

Arguments

page the page

203

Memory Management in Linux

Name
__lock_page — get a lock on the page, assuming we need to sleep to get it

Synopsis

void __lock_page (struct page * page);

Arguments

page the page to lock

204

Memory Management in Linux

Name
page_cache_next_hole — find the next hole (not-present entry)

Synopsis

pgoff_t page_cache_next_hole (struct address_space * mapping, pgoff_t
index, unsigned long max_scan);

Arguments

mapping mapping

index index

max_scan maximum range to search

Description

Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest indexed hole.

Returns

the index of the hole if found, otherwise returns an index outside of the set specified (in which case 'return
- index >= max_scan' will be true). In rare cases of index wrap-around, 0 will be returned.

page_cache_next_hole may be called under rcu_read_lock. However, like radix_tree_gang_lookup, this
will not atomically search a snapshot of the tree at a single point in time. For example, if a hole is created
at index 5, then subsequently a hole is created at index 10, page_cache_next_hole covering both indexes
may return 10 if called under rcu_read_lock.

205

Memory Management in Linux

Name
page_cache_prev_hole — find the prev hole (not-present entry)

Synopsis

pgoff_t page_cache_prev_hole (struct address_space * mapping, pgoff_t
index, unsigned long max_scan);

Arguments

mapping mapping

index index

max_scan maximum range to search

Description

Search backwards in the range [max(index-max_scan+1, 0), index] for the first hole.

Returns

the index of the hole if found, otherwise returns an index outside of the set specified (in which case 'index
- return >= max_scan' will be true). In rare cases of wrap-around, ULONG_MAX will be returned.

page_cache_prev_hole may be called under rcu_read_lock. However, like radix_tree_gang_lookup, this
will not atomically search a snapshot of the tree at a single point in time. For example, if a hole is created
at index 10, then subsequently a hole is created at index 5, page_cache_prev_hole covering both indexes
may return 5 if called under rcu_read_lock.

206

Memory Management in Linux

Name
find_get_entry — find and get a page cache entry

Synopsis

struct page * find_get_entry (struct address_space * mapping, pgoff_t
offset);

Arguments

mapping the address_space to search

offset the page cache index

Description

Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned with
an increased refcount.

If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.

Otherwise, NULL is returned.

207

Memory Management in Linux

Name
find_lock_entry — locate, pin and lock a page cache entry

Synopsis

struct page * find_lock_entry (struct address_space * mapping, pgoff_t
offset);

Arguments

mapping the address_space to search

offset the page cache index

Description

Looks up the page cache slot at mapping & offset. If there is a page cache page, it is returned locked
and with an increased refcount.

If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.

Otherwise, NULL is returned.

find_lock_entry may sleep.

208

Memory Management in Linux

Name
pagecache_get_page — find and get a page reference

Synopsis

struct page * pagecache_get_page (struct address_space * mapping,
pgoff_t offset, int fgp_flags, gfp_t gfp_mask);

Arguments

mapping the address_space to search

offset the page index

fgp_flags PCG flags

gfp_mask gfp mask to use for the page cache data page allocation

Description

Looks up the page cache slot at mapping & offset.

PCG flags modify how the page is returned.

FGP_ACCESSED

the page will be marked accessed

FGP_LOCK

Page is return locked

FGP_CREAT

If page is not present then a new page is allocated using gfp_mask and added to the page cache and the
VM's LRU list. The page is returned locked and with an increased refcount. Otherwise, NULL is returned.

If FGP_LOCK or FGP_CREAT are specified then the function may sleep even if the GFP flags specified
for FGP_CREAT are atomic.

If there is a page cache page, it is returned with an increased refcount.

209

Memory Management in Linux

Name
find_get_pages_contig — gang contiguous pagecache lookup

Synopsis

unsigned find_get_pages_contig (struct address_space * mapping, pgoff_t
index, unsigned int nr_pages, struct page ** pages);

Arguments

mapping The address_space to search

index The starting page index

nr_pages The maximum number of pages

pages Where the resulting pages are placed

Description

find_get_pages_contig works exactly like find_get_pages, except that the returned number
of pages are guaranteed to be contiguous.

find_get_pages_contig returns the number of pages which were found.

210

Memory Management in Linux

Name
find_get_pages_tag — find and return pages that match tag

Synopsis

unsigned find_get_pages_tag (struct address_space * mapping, pgoff_t *
index, int tag, unsigned int nr_pages, struct page ** pages);

Arguments

mapping the address_space to search

index the starting page index

tag the tag index

nr_pages the maximum number of pages

pages where the resulting pages are placed

Description

Like find_get_pages, except we only return pages which are tagged with tag. We update index to index
the next page for the traversal.

211

Memory Management in Linux

Name
find_get_entries_tag — find and return entries that match tag

Synopsis

unsigned find_get_entries_tag (struct address_space * mapping, pgoff_t
start, int tag, unsigned int nr_entries, struct page ** entries, pgoff_t
* indices);

Arguments

mapping the address_space to search

start the starting page cache index

tag the tag index

nr_entries the maximum number of entries

entries where the resulting entries are placed

indices the cache indices corresponding to the entries in entries

Description

Like find_get_entries, except we only return entries which are tagged with tag.

212

Memory Management in Linux

Name
generic_file_read_iter — generic filesystem read routine

Synopsis

ssize_t generic_file_read_iter (struct kiocb * iocb, struct iov_iter
* iter);

Arguments

iocb kernel I/O control block

iter destination for the data read

Description

This is the “read_iter” routine for all filesystems that can use the page cache directly.

213

Memory Management in Linux

Name
filemap_fault — read in file data for page fault handling

Synopsis

int filemap_fault (struct vm_area_struct * vma, struct vm_fault * vmf);

Arguments

vma vma in which the fault was taken

vmf struct vm_fault containing details of the fault

Description

filemap_fault is invoked via the vma operations vector for a mapped memory region to read in file
data during a page fault.

The goto's are kind of ugly, but this streamlines the normal case of having it in the page cache, and handles
the special cases reasonably without having a lot of duplicated code.

vma->vm_mm->mmap_sem must be held on entry.

If our return value has VM_FAULT_RETRY set, it's because lock_page_or_retry returned 0. The
mmap_sem has usually been released in this case. See __lock_page_or_retry for the exception.

If our return value does not have VM_FAULT_RETRY set, the mmap_sem has not been released.

We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.

214

Memory Management in Linux

Name
read_cache_page — read into page cache, fill it if needed

Synopsis

struct page * read_cache_page (struct address_space * mapping, pgoff_t
index, int (*filler) (void *, struct page *), void * data);

Arguments

mapping the page's address_space

index the page index

filler function to perform the read

data first arg to filler(data, page) function, often left as NULL

Description

Read into the page cache. If a page already exists, and PageUptodate is not set, try to fill the page and
wait for it to become unlocked.

If the page does not get brought uptodate, return -EIO.

215

Memory Management in Linux

Name
read_cache_page_gfp — read into page cache, using specified page allocation flags.

Synopsis

struct page * read_cache_page_gfp (struct address_space * mapping,
pgoff_t index, gfp_t gfp);

Arguments

mapping the page's address_space

index the page index

gfp the page allocator flags to use if allocating

Description

This is the same as “read_mapping_page(mapping, index, NULL)”, but with any new page allocations
done using the specified allocation flags.

If the page does not get brought uptodate, return -EIO.

216

Memory Management in Linux

Name
__generic_file_write_iter — write data to a file

Synopsis

ssize_t __generic_file_write_iter (struct kiocb * iocb, struct iov_iter
* from);

Arguments

iocb IO state structure (file, offset, etc.)

from iov_iter with data to write

Description

This function does all the work needed for actually writing data to a file. It does all basic checks, removes
SUID from the file, updates modification times and calls proper subroutines depending on whether we do
direct IO or a standard buffered write.

It expects i_mutex to be grabbed unless we work on a block device or similar object which does not need
locking at all.

This function does *not* take care of syncing data in case of O_SYNC write. A caller has to handle it.
This is mainly due to the fact that we want to avoid syncing under i_mutex.

217

Memory Management in Linux

Name
generic_file_write_iter — write data to a file

Synopsis

ssize_t generic_file_write_iter (struct kiocb * iocb, struct iov_iter
* from);

Arguments

iocb IO state structure

from iov_iter with data to write

Description

This is a wrapper around __generic_file_write_iter to be used by most filesystems. It takes
care of syncing the file in case of O_SYNC file and acquires i_mutex as needed.

218

Memory Management in Linux

Name
try_to_release_page — release old fs-specific metadata on a page

Synopsis

int try_to_release_page (struct page * page, gfp_t gfp_mask);

Arguments

page the page which the kernel is trying to free

gfp_mask memory allocation flags (and I/O mode)

Description

The address_space is to try to release any data against the page (presumably at page->private). If the release
was successful, return `1'. Otherwise return zero.

This may also be called if PG_fscache is set on a page, indicating that the page is known to the local
caching routines.

The gfp_mask argument specifies whether I/O may be performed to release this page (__GFP_IO), and
whether the call may block (__GFP_RECLAIM & __GFP_FS).

219

Memory Management in Linux

Name
zap_vma_ptes — remove ptes mapping the vma

Synopsis

int zap_vma_ptes (struct vm_area_struct * vma, unsigned long address,
unsigned long size);

Arguments

vma vm_area_struct holding ptes to be zapped

address starting address of pages to zap

size number of bytes to zap

Description

This function only unmaps ptes assigned to VM_PFNMAP vmas.

The entire address range must be fully contained within the vma.

Returns 0 if successful.

220

Memory Management in Linux

Name
vm_insert_page — insert single page into user vma

Synopsis

int vm_insert_page (struct vm_area_struct * vma, unsigned long addr,
struct page * page);

Arguments

vma user vma to map to

addr target user address of this page

page source kernel page

Description

This allows drivers to insert individual pages they've allocated into a user vma.

The page has to be a nice clean _individual_ kernel allocation. If you allocate a compound page, you need to
have marked it as such (__GFP_COMP), or manually just split the page up yourself (see split_page).

NOTE! Traditionally this was done with “remap_pfn_range” which took an arbitrary page protection
parameter. This doesn't allow that. Your vma protection will have to be set up correctly, which means that
if you want a shared writable mapping, you'd better ask for a shared writable mapping!

The page does not need to be reserved.

Usually this function is called from f_op->mmap handler under mm->mmap_sem write-lock, so it can
change vma->vm_flags. Caller must set VM_MIXEDMAP on vma if it wants to call this function from
other places, for example from page-fault handler.

221

Memory Management in Linux

Name
vm_insert_pfn — insert single pfn into user vma

Synopsis

int vm_insert_pfn (struct vm_area_struct * vma, unsigned long addr,
unsigned long pfn);

Arguments

vma user vma to map to

addr target user address of this page

pfn source kernel pfn

Description

Similar to vm_insert_page, this allows drivers to insert individual pages they've allocated into a user vma.
Same comments apply.

This function should only be called from a vm_ops->fault handler, and in that case the handler should
return NULL.

vma cannot be a COW mapping.

As this is called only for pages that do not currently exist, we do not need to flush old virtual caches or
the TLB.

222

Memory Management in Linux

Name
remap_pfn_range — remap kernel memory to userspace

Synopsis

int remap_pfn_range (struct vm_area_struct * vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot);

Arguments

vma user vma to map to

addr target user address to start at

pfn physical address of kernel memory

size size of map area

prot page protection flags for this mapping

Note

this is only safe if the mm semaphore is held when called.

223

Memory Management in Linux

Name
vm_iomap_memory — remap memory to userspace

Synopsis

int vm_iomap_memory (struct vm_area_struct * vma, phys_addr_t start,
unsigned long len);

Arguments

vma user vma to map to

start start of area

len size of area

Description

This is a simplified io_remap_pfn_range for common driver use. The driver just needs to give us
the physical memory range to be mapped, we'll figure out the rest from the vma information.

NOTE! Some drivers might want to tweak vma->vm_page_prot first to get whatever write-combining
details or similar.

224

Memory Management in Linux

Name
unmap_mapping_range — unmap the portion of all mmaps in the specified address_space corresponding
to the specified page range in the underlying file.

Synopsis

void unmap_mapping_range (struct address_space * mapping, loff_t const
holebegin, loff_t const holelen, int even_cows);

Arguments

mapping the address space containing mmaps to be unmapped.

holebegin byte in first page to unmap, relative to the start of the underlying file. This will be rounded
down to a PAGE_SIZE boundary. Note that this is different from truncate_page-
cache, which must keep the partial page. In contrast, we must get rid of partial pages.

holelen size of prospective hole in bytes. This will be rounded up to a PAGE_SIZE boundary. A
holelen of zero truncates to the end of the file.

even_cows 1 when truncating a file, unmap even private COWed pages; but 0 when invalidating page-
cache, don't throw away private data.

225

Memory Management in Linux

Name
follow_pfn — look up PFN at a user virtual address

Synopsis

int follow_pfn (struct vm_area_struct * vma, unsigned long address,
unsigned long * pfn);

Arguments

vma memory mapping

address user virtual address

pfn location to store found PFN

Description

Only IO mappings and raw PFN mappings are allowed.

Returns zero and the pfn at pfn on success, -ve otherwise.

226

Memory Management in Linux

Name
vm_unmap_aliases — unmap outstanding lazy aliases in the vmap layer

Synopsis

void vm_unmap_aliases (void);

Arguments

void no arguments

Description

The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily to amortize TLB flushing over-
heads. What this means is that any page you have now, may, in a former life, have been mapped into kernel
virtual address by the vmap layer and so there might be some CPUs with TLB entries still referencing that
page (additional to the regular 1:1 kernel mapping).

vm_unmap_aliases flushes all such lazy mappings. After it returns, we can be sure that none of the pages
we have control over will have any aliases from the vmap layer.

227

Memory Management in Linux

Name
vm_unmap_ram — unmap linear kernel address space set up by vm_map_ram

Synopsis

void vm_unmap_ram (const void * mem, unsigned int count);

Arguments

mem the pointer returned by vm_map_ram

count the count passed to that vm_map_ram call (cannot unmap partial)

228

Memory Management in Linux

Name
vm_map_ram — map pages linearly into kernel virtual address (vmalloc space)

Synopsis

void * vm_map_ram (struct page ** pages, unsigned int count, int node,
pgprot_t prot);

Arguments

pages an array of pointers to the pages to be mapped

count number of pages

node prefer to allocate data structures on this node

prot memory protection to use. PAGE_KERNEL for regular RAM

Description

If you use this function for less than VMAP_MAX_ALLOC pages, it could be faster than vmap so it's
good. But if you mix long-life and short-life objects with vm_map_ram, it could consume lots of address
space through fragmentation (especially on a 32bit machine). You could see failures in the end. Please use
this function for short-lived objects.

Returns

a pointer to the address that has been mapped, or NULL on failure

229

Memory Management in Linux

Name
unmap_kernel_range_noflush — unmap kernel VM area

Synopsis

void unmap_kernel_range_noflush (unsigned long addr, unsigned long
size);

Arguments

addr start of the VM area to unmap

size size of the VM area to unmap

Description

Unmap PFN_UP(size) pages at addr. The VM area addr and size specify should have been allocated
using get_vm_area and its friends.

NOTE

This function does NOT do any cache flushing. The caller is responsible for calling
flush_cache_vunmap on to-be-mapped areas before calling this function and flush_tlb_ker-
nel_range after.

230

Memory Management in Linux

Name
unmap_kernel_range — unmap kernel VM area and flush cache and TLB

Synopsis

void unmap_kernel_range (unsigned long addr, unsigned long size);

Arguments

addr start of the VM area to unmap

size size of the VM area to unmap

Description

Similar to unmap_kernel_range_noflush but flushes vcache before the unmapping and tlb after.

231

Memory Management in Linux

Name
vfree — release memory allocated by vmalloc

Synopsis

void vfree (const void * addr);

Arguments

addr memory base address

Description

Free the virtually continuous memory area starting at addr, as obtained from vmalloc, vmalloc_32
or __vmalloc. If addr is NULL, no operation is performed.

Must not be called in NMI context (strictly speaking, only if we don't have CONFIG_ARCH_HAVE_N-
MI_SAFE_CMPXCHG, but making the calling conventions for vfree arch-depenedent would be a re-
ally bad idea)

NOTE

assumes that the object at *addr has a size >= sizeof(llist_node)

232

Memory Management in Linux

Name
vunmap — release virtual mapping obtained by vmap

Synopsis

void vunmap (const void * addr);

Arguments

addr memory base address

Description

Free the virtually contiguous memory area starting at addr, which was created from the page array passed
to vmap.

Must not be called in interrupt context.

233

Memory Management in Linux

Name
vmap — map an array of pages into virtually contiguous space

Synopsis

void * vmap (struct page ** pages, unsigned int count, unsigned long
flags, pgprot_t prot);

Arguments

pages array of page pointers

count number of pages to map

flags vm_area->flags

prot page protection for the mapping

Description

Maps count pages from pages into contiguous kernel virtual space.

234

Memory Management in Linux

Name
vmalloc — allocate virtually contiguous memory

Synopsis

void * vmalloc (unsigned long size);

Arguments

size allocation size Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space.

Description

For tight control over page level allocator and protection flags use __vmalloc instead.

235

Memory Management in Linux

Name
vzalloc — allocate virtually contiguous memory with zero fill

Synopsis

void * vzalloc (unsigned long size);

Arguments

size allocation size Allocate enough pages to cover size from the page level allocator and map them
into contiguous kernel virtual space. The memory allocated is set to zero.

Description

For tight control over page level allocator and protection flags use __vmalloc instead.

236

Memory Management in Linux

Name
vmalloc_user — allocate zeroed virtually contiguous memory for userspace

Synopsis

void * vmalloc_user (unsigned long size);

Arguments

size allocation size

Description

The resulting memory area is zeroed so it can be mapped to userspace without leaking data.

237

Memory Management in Linux

Name
vmalloc_node — allocate memory on a specific node

Synopsis

void * vmalloc_node (unsigned long size, int node);

Arguments

size allocation size

node numa node

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel
virtual space.

For tight control over page level allocator and protection flags use __vmalloc instead.

238

Memory Management in Linux

Name
vzalloc_node — allocate memory on a specific node with zero fill

Synopsis

void * vzalloc_node (unsigned long size, int node);

Arguments

size allocation size

node numa node

Description

Allocate enough pages to cover size from the page level allocator and map them into contiguous kernel
virtual space. The memory allocated is set to zero.

For tight control over page level allocator and protection flags use __vmalloc_node instead.

239

Memory Management in Linux

Name
vmalloc_32 — allocate virtually contiguous memory (32bit addressable)

Synopsis

void * vmalloc_32 (unsigned long size);

Arguments

size allocation size

Description

Allocate enough 32bit PA addressable pages to cover size from the page level allocator and map them
into contiguous kernel virtual space.

240

Memory Management in Linux

Name
vmalloc_32_user — allocate zeroed virtually contiguous 32bit memory

Synopsis

void * vmalloc_32_user (unsigned long size);

Arguments

size allocation size

Description

The resulting memory area is 32bit addressable and zeroed so it can be mapped to userspace without
leaking data.

241

Memory Management in Linux

Name
remap_vmalloc_range_partial — map vmalloc pages to userspace

Synopsis

int remap_vmalloc_range_partial (struct vm_area_struct * vma, unsigned
long uaddr, void * kaddr, unsigned long size);

Arguments

vma vma to cover

uaddr target user address to start at

kaddr virtual address of vmalloc kernel memory

size size of map area

Returns

0 for success, -Exxx on failure

This function checks that kaddr is a valid vmalloc'ed area, and that it is big enough to cover the range
starting at uaddr in vma. Will return failure if that criteria isn't met.

Similar to remap_pfn_range (see mm/memory.c)

242

Memory Management in Linux

Name
remap_vmalloc_range — map vmalloc pages to userspace

Synopsis

int remap_vmalloc_range (struct vm_area_struct * vma, void * addr,
unsigned long pgoff);

Arguments

vma vma to cover (map full range of vma)

addr vmalloc memory

pgoff number of pages into addr before first page to map

Returns

0 for success, -Exxx on failure

This function checks that addr is a valid vmalloc'ed area, and that it is big enough to cover the vma. Will
return failure if that criteria isn't met.

Similar to remap_pfn_range (see mm/memory.c)

243

Memory Management in Linux

Name
alloc_vm_area — allocate a range of kernel address space

Synopsis

struct vm_struct * alloc_vm_area (size_t size, pte_t ** ptes);

Arguments

size size of the area

ptes returns the PTEs for the address space

Returns

NULL on failure, vm_struct on success

This function reserves a range of kernel address space, and allocates pagetables to map that range. No
actual mappings are created.

If ptes is non-NULL, pointers to the PTEs (in init_mm) allocated for the VM area are returned.

244

Memory Management in Linux

Name
__get_pfnblock_flags_mask — Return the requested group of flags for the pageblock_nr_pages block of
pages

Synopsis

unsigned long __get_pfnblock_flags_mask (struct page * page, unsigned
long pfn, unsigned long end_bitidx, unsigned long mask);

Arguments

page The page within the block of interest

pfn The target page frame number

end_bitidx The last bit of interest to retrieve

mask mask of bits that the caller is interested in

Return

pageblock_bits flags

245

Memory Management in Linux

Name
set_pfnblock_flags_mask — Set the requested group of flags for a pageblock_nr_pages block of pages

Synopsis

void set_pfnblock_flags_mask (struct page * page, unsigned long flags,
unsigned long pfn, unsigned long end_bitidx, unsigned long mask);

Arguments

page The page within the block of interest

flags The flags to set

pfn The target page frame number

end_bitidx The last bit of interest

mask mask of bits that the caller is interested in

246

Memory Management in Linux

Name
alloc_pages_exact_nid — allocate an exact number of physically-contiguous pages on a node.

Synopsis

void * alloc_pages_exact_nid (int nid, size_t size, gfp_t gfp_mask);

Arguments

nid the preferred node ID where memory should be allocated

size the number of bytes to allocate

gfp_mask GFP flags for the allocation

Description

Like alloc_pages_exact, but try to allocate on node nid first before falling back.

247

Memory Management in Linux

Name
nr_free_zone_pages — count number of pages beyond high watermark

Synopsis

unsigned long nr_free_zone_pages (int offset);

Arguments

offset The zone index of the highest zone

Description

nr_free_zone_pages counts the number of counts pages which are beyond the high watermark with-
in all zones at or below a given zone index. For each zone, the number of pages is calculated as: man-
aged_pages - high_pages

248

Memory Management in Linux

Name
nr_free_pagecache_pages — count number of pages beyond high watermark

Synopsis

unsigned long nr_free_pagecache_pages (void);

Arguments

void no arguments

Description

nr_free_pagecache_pages counts the number of pages which are beyond the high watermark with-
in all zones.

249

Memory Management in Linux

Name
find_next_best_node — find the next node that should appear in a given node's fallback list

Synopsis

int find_next_best_node (int node, nodemask_t * used_node_mask);

Arguments

node node whose fallback list we're appending

used_node_mask nodemask_t of already used nodes

Description

We use a number of factors to determine which is the next node that should appear on a given node's
fallback list. The node should not have appeared already in node's fallback list, and it should be the next
closest node according to the distance array (which contains arbitrary distance values from each node to
each node in the system), and should also prefer nodes with no CPUs, since presumably they'll have very
little allocation pressure on them otherwise. It returns -1 if no node is found.

250

Memory Management in Linux

Name
free_bootmem_with_active_regions — Call memblock_free_early_nid for each active range

Synopsis

void free_bootmem_with_active_regions (int nid, unsigned long
max_low_pfn);

Arguments

nid The node to free memory on. If MAX_NUMNODES, all nodes are freed.

max_low_pfn The highest PFN that will be passed to memblock_free_early_nid

Description

If an architecture guarantees that all ranges registered contain no holes and may be freed, this this function
may be used instead of calling memblock_free_early_nid manually.

251

Memory Management in Linux

Name
sparse_memory_present_with_active_regions — Call memory_present for each active range

Synopsis

void sparse_memory_present_with_active_regions (int nid);

Arguments

nid The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.

Description

If an architecture guarantees that all ranges registered contain no holes and may be freed, this function
may be used instead of calling memory_present manually.

252

Memory Management in Linux

Name
get_pfn_range_for_nid — Return the start and end page frames for a node

Synopsis

void get_pfn_range_for_nid (unsigned int nid, unsigned long * start_pfn,
unsigned long * end_pfn);

Arguments

nid The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.

start_pfn Passed by reference. On return, it will have the node start_pfn.

end_pfn Passed by reference. On return, it will have the node end_pfn.

Description

It returns the start and end page frame of a node based on information provided by memblock_set_n-
ode. If called for a node with no available memory, a warning is printed and the start and end PFNs will
be 0.

253

Memory Management in Linux

Name
absent_pages_in_range — Return number of page frames in holes within a range

Synopsis

unsigned long absent_pages_in_range (unsigned long start_pfn, unsigned
long end_pfn);

Arguments

start_pfn The start PFN to start searching for holes

end_pfn The end PFN to stop searching for holes

Description

It returns the number of pages frames in memory holes within a range.

254

Memory Management in Linux

Name
node_map_pfn_alignment — determine the maximum internode alignment

Synopsis

unsigned long node_map_pfn_alignment (void);

Arguments

void no arguments

Description

This function should be called after node map is populated and sorted. It calculates the maximum power
of two alignment which can distinguish all the nodes.

For example, if all nodes are 1GiB and aligned to 1GiB, the return value would indicate 1GiB alignment
with (1 << (30 - PAGE_SHIFT)). If the nodes are shifted by 256MiB, 256MiB. Note that if only the last
node is shifted, 1GiB is enough and this function will indicate so.

This is used to test whether pfn -> nid mapping of the chosen memory model has fine enough granularity
to avoid incorrect mapping for the populated node map.

Returns the determined alignment in pfn's. 0 if there is no alignment requirement (single node).

255

Memory Management in Linux

Name
find_min_pfn_with_active_regions — Find the minimum PFN registered

Synopsis

unsigned long find_min_pfn_with_active_regions (void);

Arguments

void no arguments

Description

It returns the minimum PFN based on information provided via memblock_set_node.

256

Memory Management in Linux

Name
free_area_init_nodes — Initialise all pg_data_t and zone data

Synopsis

void free_area_init_nodes (unsigned long * max_zone_pfn);

Arguments

max_zone_pfn an array of max PFNs for each zone

Description

This will call free_area_init_node for each active node in the system. Using the page ranges pro-
vided by memblock_set_node, the size of each zone in each node and their holes is calculated. If the
maximum PFN between two adjacent zones match, it is assumed that the zone is empty. For example, if
arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed that arch_max_dma32_pfn has no pages. It
is also assumed that a zone starts where the previous one ended. For example, ZONE_DMA32 starts at
arch_max_dma_pfn.

257

Memory Management in Linux

Name
set_dma_reserve — set the specified number of pages reserved in the first zone

Synopsis

void set_dma_reserve (unsigned long new_dma_reserve);

Arguments

new_dma_reserve The number of pages to mark reserved

Description

The per-cpu batchsize and zone watermarks are determined by managed_pages. In the DMA zone, a sig-
nificant percentage may be consumed by kernel image and other unfreeable allocations which can skew
the watermarks badly. This function may optionally be used to account for unfreeable pages in the first
zone (e.g., ZONE_DMA). The effect will be lower watermarks and smaller per-cpu batchsize.

258

Memory Management in Linux

Name
setup_per_zone_wmarks — called when min_free_kbytes changes or when memory is hot-{added|re-
moved}

Synopsis

void setup_per_zone_wmarks (void);

Arguments

void no arguments

Description

Ensures that the watermark[min,low,high] values for each zone are set correctly with respect to
min_free_kbytes.

259

Memory Management in Linux

Name
alloc_contig_range — - tries to allocate given range of pages

Synopsis

int alloc_contig_range (unsigned long start, unsigned long end, unsigned
migratetype);

Arguments

start start PFN to allocate

end one-past-the-last PFN to allocate

migratetype migratetype of the underlaying pageblocks (either #MIGRATE_MOVABLE or #MI-
GRATE_CMA). All pageblocks in range must have the same migratetype and it must
be either of the two.

Description

The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES aligned, however it's the
caller's responsibility to guarantee that we are the only thread that changes migrate type of pageblocks
the pages fall in.

The PFN range must belong to a single zone.

Returns zero on success or negative error code. On success all pages which PFN is in [start, end) are
allocated for the caller and need to be freed with free_contig_range.

260

Memory Management in Linux

Name
mempool_destroy — deallocate a memory pool

Synopsis

void mempool_destroy (mempool_t * pool);

Arguments

pool pointer to the memory pool which was allocated via mempool_create.

Description

Free all reserved elements in pool and pool itself. This function only sleeps if the free_fn function
sleeps.

261

Memory Management in Linux

Name
mempool_create — create a memory pool

Synopsis

mempool_t * mempool_create (int min_nr, mempool_alloc_t * alloc_fn,
mempool_free_t * free_fn, void * pool_data);

Arguments

min_nr the minimum number of elements guaranteed to be allocated for this pool.

alloc_fn user-defined element-allocation function.

free_fn user-defined element-freeing function.

pool_data optional private data available to the user-defined functions.

Description

this function creates and allocates a guaranteed size, preallocated memory pool. The pool can be used from
the mempool_alloc and mempool_free functions. This function might sleep. Both the alloc_fn
and the free_fn functions might sleep - as long as the mempool_alloc function is not called from
IRQ contexts.

262

Memory Management in Linux

Name
mempool_resize — resize an existing memory pool

Synopsis

int mempool_resize (mempool_t * pool, int new_min_nr);

Arguments

pool pointer to the memory pool which was allocated via mempool_create.

new_min_nr the new minimum number of elements guaranteed to be allocated for this pool.

Description

This function shrinks/grows the pool. In the case of growing, it cannot be guaranteed that the pool will be
grown to the new size immediately, but new mempool_free calls will refill it. This function may sleep.

Note, the caller must guarantee that no mempool_destroy is called while this function is running. mem-
pool_alloc & mempool_free might be called (eg. from IRQ contexts) while this function executes.

263

Memory Management in Linux

Name
mempool_alloc — allocate an element from a specific memory pool

Synopsis

void * mempool_alloc (mempool_t * pool, gfp_t gfp_mask);

Arguments

pool pointer to the memory pool which was allocated via mempool_create.

gfp_mask the usual allocation bitmask.

Description

this function only sleeps if the alloc_fn function sleeps or returns NULL. Note that due to preallocation,
this function *never* fails when called from process contexts. (it might fail if called from an IRQ context.)

Note

using __GFP_ZERO is not supported.

264

Memory Management in Linux

Name
mempool_free — return an element to the pool.

Synopsis

void mempool_free (void * element, mempool_t * pool);

Arguments

element pool element pointer.

pool pointer to the memory pool which was allocated via mempool_create.

Description

this function only sleeps if the free_fn function sleeps.

265

Memory Management in Linux

Name
dma_pool_create — Creates a pool of consistent memory blocks, for dma.

Synopsis

struct dma_pool * dma_pool_create (const char * name, struct device *
dev, size_t size, size_t align, size_t boundary);

Arguments

name name of pool, for diagnostics

dev device that will be doing the DMA

size size of the blocks in this pool.

align alignment requirement for blocks; must be a power of two

boundary returned blocks won't cross this power of two boundary

Context

!in_interrupt

Description

Returns a dma allocation pool with the requested characteristics, or null if one can't be created. Given one of
these pools, dma_pool_alloc may be used to allocate memory. Such memory will all have “consistent”
DMA mappings, accessible by the device and its driver without using cache flushing primitives. The actual
size of blocks allocated may be larger than requested because of alignment.

If boundary is nonzero, objects returned from dma_pool_alloc won't cross that size boundary. This
is useful for devices which have addressing restrictions on individual DMA transfers, such as not crossing
boundaries of 4KBytes.

266

Memory Management in Linux

Name
dma_pool_destroy — destroys a pool of dma memory blocks.

Synopsis

void dma_pool_destroy (struct dma_pool * pool);

Arguments

pool dma pool that will be destroyed

Context

!in_interrupt

Description

Caller guarantees that no more memory from the pool is in use, and that nothing will try to use the pool
after this call.

267

Memory Management in Linux

Name
dma_pool_alloc — get a block of consistent memory

Synopsis

void * dma_pool_alloc (struct dma_pool * pool, gfp_t mem_flags, dma_ad-
dr_t * handle);

Arguments

pool dma pool that will produce the block

mem_flags GFP_* bitmask

handle pointer to dma address of block

Description

This returns the kernel virtual address of a currently unused block, and reports its dma address through the
handle. If such a memory block can't be allocated, NULL is returned.

268

Memory Management in Linux

Name
dma_pool_free — put block back into dma pool

Synopsis

void dma_pool_free (struct dma_pool * pool, void * vaddr, dma_addr_t
dma);

Arguments

pool the dma pool holding the block

vaddr virtual address of block

dma dma address of block

Description

Caller promises neither device nor driver will again touch this block unless it is first re-allocated.

269

Memory Management in Linux

Name
dmam_pool_create — Managed dma_pool_create

Synopsis

struct dma_pool * dmam_pool_create (const char * name, struct device *
dev, size_t size, size_t align, size_t allocation);

Arguments

name name of pool, for diagnostics

dev device that will be doing the DMA

size size of the blocks in this pool.

align alignment requirement for blocks; must be a power of two

allocation returned blocks won't cross this boundary (or zero)

Description

Managed dma_pool_create. DMA pool created with this function is automatically destroyed on driver
detach.

270

Memory Management in Linux

Name
dmam_pool_destroy — Managed dma_pool_destroy

Synopsis

void dmam_pool_destroy (struct dma_pool * pool);

Arguments

pool dma pool that will be destroyed

Description

Managed dma_pool_destroy.

271

Memory Management in Linux

Name
balance_dirty_pages_ratelimited — balance dirty memory state

Synopsis

void balance_dirty_pages_ratelimited (struct address_space * mapping);

Arguments

mapping address_space which was dirtied

Description

Processes which are dirtying memory should call in here once for each page which was newly dirtied. The
function will periodically check the system's dirty state and will initiate writeback if needed.

On really big machines, get_writeback_state is expensive, so try to avoid calling it too often (ratelimiting).
But once we're over the dirty memory limit we decrease the ratelimiting by a lot, to prevent individual
processes from overshooting the limit by (ratelimit_pages) each.

272

Memory Management in Linux

Name
tag_pages_for_writeback — tag pages to be written by write_cache_pages

Synopsis

void tag_pages_for_writeback (struct address_space * mapping, pgoff_t
start, pgoff_t end);

Arguments

mapping address space structure to write

start starting page index

end ending page index (inclusive)

Description

This function scans the page range from start to end (inclusive) and tags all pages that have DIRTY
tag set with a special TOWRITE tag. The idea is that write_cache_pages (or whoever calls this function)
will then use TOWRITE tag to identify pages eligible for writeback. This mechanism is used to avoid
livelocking of writeback by a process steadily creating new dirty pages in the file (thus it is important for
this function to be quick so that it can tag pages faster than a dirtying process can create them).

273

Memory Management in Linux

Name
write_cache_pages — walk the list of dirty pages of the given address space and write all of them.

Synopsis

int write_cache_pages (struct address_space * mapping, struct write-
back_control * wbc, writepage_t writepage, void * data);

Arguments

mapping address space structure to write

wbc subtract the number of written pages from *wbc->nr_to_write

writepage function called for each page

data data passed to writepage function

Description

If a page is already under I/O, write_cache_pages skips it, even if it's dirty. This is desirable behav-
iour for memory-cleaning writeback, but it is INCORRECT for data-integrity system calls such as fsync.
fsync and msync need to guarantee that all the data which was dirty at the time the call was made
get new I/O started against them. If wbc->sync_mode is WB_SYNC_ALL then we were called for data
integrity and we must wait for existing IO to complete.

To avoid livelocks (when other process dirties new pages), we first tag pages which should be written
back with TOWRITE tag and only then start writing them. For data-integrity sync we have to be careful
so that we do not miss some pages (e.g., because some other process has cleared TOWRITE tag we set).
The rule we follow is that TOWRITE tag can be cleared only by the process clearing the DIRTY tag (and
submitting the page for IO).

274

Memory Management in Linux

Name
generic_writepages — walk the list of dirty pages of the given address space and writepage all of them.

Synopsis

int generic_writepages (struct address_space * mapping, struct write-
back_control * wbc);

Arguments

mapping address space structure to write

wbc subtract the number of written pages from *wbc->nr_to_write

Description

This is a library function, which implements the writepages address_space_operation.

275

Memory Management in Linux

Name
write_one_page — write out a single page and optionally wait on I/O

Synopsis

int write_one_page (struct page * page, int wait);

Arguments

page the page to write

wait if true, wait on writeout

Description

The page must be locked by the caller and will be unlocked upon return.

write_one_page returns a negative error code if I/O failed.

276

Memory Management in Linux

Name
wait_for_stable_page — wait for writeback to finish, if necessary.

Synopsis

void wait_for_stable_page (struct page * page);

Arguments

page The page to wait on.

Description

This function determines if the given page is related to a backing device that requires page contents to be
held stable during writeback. If so, then it will wait for any pending writeback to complete.

277

Memory Management in Linux

Name
truncate_inode_pages_range — truncate range of pages specified by start & end byte offsets

Synopsis

void truncate_inode_pages_range (struct address_space * mapping, loff_t
lstart, loff_t lend);

Arguments

mapping mapping to truncate

lstart offset from which to truncate

lend offset to which to truncate (inclusive)

Description

Truncate the page cache, removing the pages that are between specified offsets (and zeroing out partial
pages if lstart or lend + 1 is not page aligned).

Truncate takes two passes - the first pass is nonblocking. It will not block on page locks and it will not
block on writeback. The second pass will wait. This is to prevent as much IO as possible in the affected
region. The first pass will remove most pages, so the search cost of the second pass is low.

We pass down the cache-hot hint to the page freeing code. Even if the mapping is large, it is probably the
case that the final pages are the most recently touched, and freeing happens in ascending file offset order.

Note that since ->invalidatepage accepts range to invalidate truncate_inode_pages_range is able to
handle cases where lend + 1 is not page aligned properly.

278

Memory Management in Linux

Name
truncate_inode_pages — truncate *all* the pages from an offset

Synopsis

void truncate_inode_pages (struct address_space * mapping, loff_t
lstart);

Arguments

mapping mapping to truncate

lstart offset from which to truncate

Description

Called under (and serialised by) inode->i_mutex.

Note

When this function returns, there can be a page in the process of deletion (inside
__delete_from_page_cache) in the specified range. Thus mapping->nrpages can be non-zero
when this function returns even after truncation of the whole mapping.

279

Memory Management in Linux

Name
truncate_inode_pages_final — truncate *all* pages before inode dies

Synopsis

void truncate_inode_pages_final (struct address_space * mapping);

Arguments

mapping mapping to truncate

Description

Called under (and serialized by) inode->i_mutex.

Filesystems have to use this in the .evict_inode path to inform the VM that this is the final truncate and
the inode is going away.

280

Memory Management in Linux

Name
invalidate_mapping_pages — Invalidate all the unlocked pages of one inode

Synopsis

unsigned long invalidate_mapping_pages (struct address_space * mapping,
pgoff_t start, pgoff_t end);

Arguments

mapping the address_space which holds the pages to invalidate

start the offset 'from' which to invalidate

end the offset 'to' which to invalidate (inclusive)

Description

This function only removes the unlocked pages, if you want to remove all the pages of one inode, you
must call truncate_inode_pages.

invalidate_mapping_pages will not block on IO activity. It will not invalidate pages which are
dirty, locked, under writeback or mapped into pagetables.

281

Memory Management in Linux

Name
invalidate_inode_pages2_range — remove range of pages from an address_space

Synopsis

int invalidate_inode_pages2_range (struct address_space * mapping,
pgoff_t start, pgoff_t end);

Arguments

mapping the address_space

start the page offset 'from' which to invalidate

end the page offset 'to' which to invalidate (inclusive)

Description

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Returns -EBUSY if any pages could not be invalidated.

282

Memory Management in Linux

Name
invalidate_inode_pages2 — remove all pages from an address_space

Synopsis

int invalidate_inode_pages2 (struct address_space * mapping);

Arguments

mapping the address_space

Description

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Returns -EBUSY if any pages could not be invalidated.

283

Memory Management in Linux

Name
truncate_pagecache — unmap and remove pagecache that has been truncated

Synopsis

void truncate_pagecache (struct inode * inode, loff_t newsize);

Arguments

inode inode

newsize new file size

Description

inode's new i_size must already be written before truncate_pagecache is called.

This function should typically be called before the filesystem releases resources associated with the freed
range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk for-
mat, and the filesystem would not have to deal with situations such as writepage being called for a page
that has already had its underlying blocks deallocated.

284

Memory Management in Linux

Name
truncate_setsize — update inode and pagecache for a new file size

Synopsis

void truncate_setsize (struct inode * inode, loff_t newsize);

Arguments

inode inode

newsize new file size

Description

truncate_setsize updates i_size and performs pagecache truncation (if necessary) to newsize. It will be
typically be called from the filesystem's setattr function when ATTR_SIZE is passed in.

Must be called with a lock serializing truncates and writes (generally i_mutex but e.g. xfs uses a different
lock) and before all filesystem specific block truncation has been performed.

285

Memory Management in Linux

Name
pagecache_isize_extended — update pagecache after extension of i_size

Synopsis

void pagecache_isize_extended (struct inode * inode, loff_t from, loff_t
to);

Arguments

inode inode for which i_size was extended

from original inode size

to new inode size

Description

Handle extension of inode size either caused by extending truncate or by write starting after current i_size.
We mark the page straddling current i_size RO so that page_mkwrite is called on the nearest write
access to the page. This way filesystem can be sure that page_mkwrite is called on the page before
user writes to the page via mmap after the i_size has been changed.

The function must be called after i_size is updated so that page fault coming after we unlock the page
will already see the new i_size. The function must be called while we still hold i_mutex - this not only
makes sure i_size is stable but also that userspace cannot observe new i_size value before we are prepared
to store mmap writes at new inode size.

286

Memory Management in Linux

Name
truncate_pagecache_range — unmap and remove pagecache that is hole-punched

Synopsis

void truncate_pagecache_range (struct inode * inode, loff_t lstart,
loff_t lend);

Arguments

inode inode

lstart offset of beginning of hole

lend offset of last byte of hole

Description

This function should typically be called before the filesystem releases resources associated with the freed
range (eg. deallocates blocks). This way, pagecache will always stay logically coherent with on-disk for-
mat, and the filesystem would not have to deal with situations such as writepage being called for a page
that has already had its underlying blocks deallocated.

287

Chapter 5. Kernel IPC facilities
IPC utilities

288

Kernel IPC facilities

Name
ipc_init — initialise ipc subsystem

Synopsis

int ipc_init (void);

Arguments

void no arguments

Description

The various sysv ipc resources (semaphores, messages and shared memory) are initialised.

A callback routine is registered into the memory hotplug notifier

chain

since msgmni scales to lowmem this callback routine will be called upon successful memory add / remove
to recompute msmgni.

289

Kernel IPC facilities

Name
ipc_init_ids — initialise ipc identifiers

Synopsis

void ipc_init_ids (struct ipc_ids * ids);

Arguments

ids ipc identifier set

Description

Set up the sequence range to use for the ipc identifier range (limited below IPCMNI) then initialise the
ids idr.

290

Kernel IPC facilities

Name
ipc_init_proc_interface — create a proc interface for sysipc types using a seq_file interface.

Synopsis

void ipc_init_proc_interface (const char * path, const char * header,
int ids, int (*show) (struct seq_file *, void *));

Arguments

path Path in procfs

header Banner to be printed at the beginning of the file.

ids ipc id table to iterate.

show show routine.

291

Kernel IPC facilities

Name
ipc_findkey — find a key in an ipc identifier set

Synopsis

struct kern_ipc_perm * ipc_findkey (struct ipc_ids * ids, key_t key);

Arguments

ids ipc identifier set

key key to find

Description

Returns the locked pointer to the ipc structure if found or NULL otherwise. If key is found ipc points to
the owning ipc structure

Called with ipc_ids.rwsem held.

292

Kernel IPC facilities

Name
ipc_get_maxid — get the last assigned id

Synopsis

int ipc_get_maxid (struct ipc_ids * ids);

Arguments

ids ipc identifier set

Description

Called with ipc_ids.rwsem held.

293

Kernel IPC facilities

Name
ipc_addid — add an ipc identifier

Synopsis

int ipc_addid (struct ipc_ids * ids, struct kern_ipc_perm * new, int
size);

Arguments

ids ipc identifier set

new new ipc permission set

size limit for the number of used ids

Description

Add an entry 'new' to the ipc ids idr. The permissions object is initialised and the first free entry is set up
and the id assigned is returned. The 'new' entry is returned in a locked state on success. On failure the entry
is not locked and a negative err-code is returned.

Called with writer ipc_ids.rwsem held.

294

Kernel IPC facilities

Name
ipcget_new — create a new ipc object

Synopsis

int ipcget_new (struct ipc_namespace * ns, struct ipc_ids * ids, const
struct ipc_ops * ops, struct ipc_params * params);

Arguments

ns ipc namespace

ids ipc identifier set

ops the actual creation routine to call

params its parameters

Description

This routine is called by sys_msgget, sys_semget and sys_shmget when the key is IPC_PRIVATE.

295

Kernel IPC facilities

Name
ipc_check_perms — check security and permissions for an ipc object

Synopsis

int ipc_check_perms (struct ipc_namespace * ns, struct kern_ipc_perm *
ipcp, const struct ipc_ops * ops, struct ipc_params * params);

Arguments

ns ipc namespace

ipcp ipc permission set

ops the actual security routine to call

params its parameters

Description

This routine is called by sys_msgget, sys_semget and sys_shmget when the key is not IPC_PRI-
VATE and that key already exists in the ds IDR.

On success, the ipc id is returned.

It is called with ipc_ids.rwsem and ipcp->lock held.

296

Kernel IPC facilities

Name
ipcget_public — get an ipc object or create a new one

Synopsis

int ipcget_public (struct ipc_namespace * ns, struct ipc_ids * ids,
const struct ipc_ops * ops, struct ipc_params * params);

Arguments

ns ipc namespace

ids ipc identifier set

ops the actual creation routine to call

params its parameters

Description

This routine is called by sys_msgget, sys_semget and sys_shmget when the key is not IPC_PRI-
VATE. It adds a new entry if the key is not found and does some permission / security checkings if the
key is found.

On success, the ipc id is returned.

297

Kernel IPC facilities

Name
ipc_rmid — remove an ipc identifier

Synopsis

void ipc_rmid (struct ipc_ids * ids, struct kern_ipc_perm * ipcp);

Arguments

ids ipc identifier set

ipcp ipc perm structure containing the identifier to remove

Description

ipc_ids.rwsem (as a writer) and the spinlock for this ID are held before this function is called, and remain
locked on the exit.

298

Kernel IPC facilities

Name
ipc_alloc — allocate ipc space

Synopsis

void * ipc_alloc (int size);

Arguments

size size desired

Description

Allocate memory from the appropriate pools and return a pointer to it. NULL is returned if the allocation
fails

299

Kernel IPC facilities

Name
ipc_free — free ipc space

Synopsis

void ipc_free (void * ptr, int size);

Arguments

ptr pointer returned by ipc_alloc

size size of block

Description

Free a block created with ipc_alloc. The caller must know the size used in the allocation call.

300

Kernel IPC facilities

Name
ipc_rcu_alloc — allocate ipc and rcu space

Synopsis

void * ipc_rcu_alloc (int size);

Arguments

size size desired

Description

Allocate memory for the rcu header structure + the object. Returns the pointer to the object or NULL
upon failure.

301

Kernel IPC facilities

Name
ipcperms — check ipc permissions

Synopsis

int ipcperms (struct ipc_namespace * ns, struct kern_ipc_perm * ipcp,
short flag);

Arguments

ns ipc namespace

ipcp ipc permission set

flag desired permission set

Description

Check user, group, other permissions for access to ipc resources. return 0 if allowed

flag will most probably be 0 or S_...UGO from <linux/stat.h>

302

Kernel IPC facilities

Name
kernel_to_ipc64_perm — convert kernel ipc permissions to user

Synopsis

void kernel_to_ipc64_perm (struct kern_ipc_perm * in, struct ipc64_perm
* out);

Arguments

in kernel permissions

out new style ipc permissions

Description

Turn the kernel object in into a set of permissions descriptions for returning to userspace (out).

303

Kernel IPC facilities

Name
ipc64_perm_to_ipc_perm — convert new ipc permissions to old

Synopsis

void ipc64_perm_to_ipc_perm (struct ipc64_perm * in, struct ipc_perm
* out);

Arguments

in new style ipc permissions

out old style ipc permissions

Description

Turn the new style permissions object in into a compatibility object and store it into the out pointer.

304

Kernel IPC facilities

Name
ipc_obtain_object_idr —

Synopsis

struct kern_ipc_perm * ipc_obtain_object_idr (struct ipc_ids * ids, int
id);

Arguments

ids ipc identifier set

id ipc id to look for

Description

Look for an id in the ipc ids idr and return associated ipc object.

Call inside the RCU critical section. The ipc object is *not* locked on exit.

305

Kernel IPC facilities

Name
ipc_lock — lock an ipc structure without rwsem held

Synopsis

struct kern_ipc_perm * ipc_lock (struct ipc_ids * ids, int id);

Arguments

ids ipc identifier set

id ipc id to look for

Description

Look for an id in the ipc ids idr and lock the associated ipc object.

The ipc object is locked on successful exit.

306

Kernel IPC facilities

Name
ipc_obtain_object_check —

Synopsis

struct kern_ipc_perm * ipc_obtain_object_check (struct ipc_ids * ids,
int id);

Arguments

ids ipc identifier set

id ipc id to look for

Description

Similar to ipc_obtain_object_idr but also checks the ipc object reference counter.

Call inside the RCU critical section. The ipc object is *not* locked on exit.

307

Kernel IPC facilities

Name
ipcget — Common sys_*get code

Synopsis

int ipcget (struct ipc_namespace * ns, struct ipc_ids * ids, const
struct ipc_ops * ops, struct ipc_params * params);

Arguments

ns namespace

ids ipc identifier set

ops operations to be called on ipc object creation, permission checks and further checks

params the parameters needed by the previous operations.

Description

Common routine called by sys_msgget, sys_semget and sys_shmget.

308

Kernel IPC facilities

Name
ipc_update_perm — update the permissions of an ipc object

Synopsis

int ipc_update_perm (struct ipc64_perm * in, struct kern_ipc_perm *
out);

Arguments

in the permission given as input.

out the permission of the ipc to set.

309

Kernel IPC facilities

Name
ipcctl_pre_down_nolock — retrieve an ipc and check permissions for some IPC_XXX cmd

Synopsis

struct kern_ipc_perm * ipcctl_pre_down_nolock (struct ipc_namespace *
ns, struct ipc_ids * ids, int id, int cmd, struct ipc64_perm * perm,
int extra_perm);

Arguments

ns ipc namespace

ids the table of ids where to look for the ipc

id the id of the ipc to retrieve

cmd the cmd to check

perm the permission to set

extra_perm one extra permission parameter used by msq

Description

This function does some common audit and permissions check for some IPC_XXX cmd and is called from
semctl_down, shmctl_down and msgctl_down. It must be called without any lock held and - retrieves the
ipc with the given id in the given table. - performs some audit and permission check, depending on the
given cmd - returns a pointer to the ipc object or otherwise, the corresponding error.

Call holding the both the rwsem and the rcu read lock.

310

Kernel IPC facilities

Name
ipc_parse_version — ipc call version

Synopsis

int ipc_parse_version (int * cmd);

Arguments

cmd pointer to command

Description

Return IPC_64 for new style IPC and IPC_OLD for old style IPC. The cmd value is turned from an
encoding command and version into just the command code.

311

Chapter 6. FIFO Buffer
kfifo interface

312

FIFO Buffer

Name
DECLARE_KFIFO_PTR — macro to declare a fifo pointer object

Synopsis

DECLARE_KFIFO_PTR (fifo, type);

Arguments

fifo name of the declared fifo

type type of the fifo elements

313

FIFO Buffer

Name
DECLARE_KFIFO — macro to declare a fifo object

Synopsis

DECLARE_KFIFO (fifo, type, size);

Arguments

fifo name of the declared fifo

type type of the fifo elements

size the number of elements in the fifo, this must be a power of 2

314

FIFO Buffer

Name
INIT_KFIFO — Initialize a fifo declared by DECLARE_KFIFO

Synopsis

INIT_KFIFO (fifo);

Arguments

fifo name of the declared fifo datatype

315

FIFO Buffer

Name
DEFINE_KFIFO — macro to define and initialize a fifo

Synopsis

DEFINE_KFIFO (fifo, type, size);

Arguments

fifo name of the declared fifo datatype

type type of the fifo elements

size the number of elements in the fifo, this must be a power of 2

Note

the macro can be used for global and local fifo data type variables.

316

FIFO Buffer

Name
kfifo_initialized — Check if the fifo is initialized

Synopsis

kfifo_initialized (fifo);

Arguments

fifo address of the fifo to check

Description

Return true if fifo is initialized, otherwise false. Assumes the fifo was 0 before.

317

FIFO Buffer

Name
kfifo_esize — returns the size of the element managed by the fifo

Synopsis

kfifo_esize (fifo);

Arguments

fifo address of the fifo to be used

318

FIFO Buffer

Name
kfifo_recsize — returns the size of the record length field

Synopsis

kfifo_recsize (fifo);

Arguments

fifo address of the fifo to be used

319

FIFO Buffer

Name
kfifo_size — returns the size of the fifo in elements

Synopsis

kfifo_size (fifo);

Arguments

fifo address of the fifo to be used

320

FIFO Buffer

Name
kfifo_reset — removes the entire fifo content

Synopsis

kfifo_reset (fifo);

Arguments

fifo address of the fifo to be used

Note

usage of kfifo_reset is dangerous. It should be only called when the fifo is exclusived locked or when
it is secured that no other thread is accessing the fifo.

321

FIFO Buffer

Name
kfifo_reset_out — skip fifo content

Synopsis

kfifo_reset_out (fifo);

Arguments

fifo address of the fifo to be used

Note

The usage of kfifo_reset_out is safe until it will be only called from the reader thread and there
is only one concurrent reader. Otherwise it is dangerous and must be handled in the same way as kfi-
fo_reset.

322

FIFO Buffer

Name
kfifo_len — returns the number of used elements in the fifo

Synopsis

kfifo_len (fifo);

Arguments

fifo address of the fifo to be used

323

FIFO Buffer

Name
kfifo_is_empty — returns true if the fifo is empty

Synopsis

kfifo_is_empty (fifo);

Arguments

fifo address of the fifo to be used

324

FIFO Buffer

Name
kfifo_is_full — returns true if the fifo is full

Synopsis

kfifo_is_full (fifo);

Arguments

fifo address of the fifo to be used

325

FIFO Buffer

Name
kfifo_avail — returns the number of unused elements in the fifo

Synopsis

kfifo_avail (fifo);

Arguments

fifo address of the fifo to be used

326

FIFO Buffer

Name
kfifo_skip — skip output data

Synopsis

kfifo_skip (fifo);

Arguments

fifo address of the fifo to be used

327

FIFO Buffer

Name
kfifo_peek_len — gets the size of the next fifo record

Synopsis

kfifo_peek_len (fifo);

Arguments

fifo address of the fifo to be used

Description

This function returns the size of the next fifo record in number of bytes.

328

FIFO Buffer

Name
kfifo_alloc — dynamically allocates a new fifo buffer

Synopsis

kfifo_alloc (fifo, size, gfp_mask);

Arguments

fifo pointer to the fifo

size the number of elements in the fifo, this must be a power of 2

gfp_mask get_free_pages mask, passed to kmalloc

Description

This macro dynamically allocates a new fifo buffer.

The numer of elements will be rounded-up to a power of 2. The fifo will be release with kfifo_free.
Return 0 if no error, otherwise an error code.

329

FIFO Buffer

Name
kfifo_free — frees the fifo

Synopsis

kfifo_free (fifo);

Arguments

fifo the fifo to be freed

330

FIFO Buffer

Name
kfifo_init — initialize a fifo using a preallocated buffer

Synopsis

kfifo_init (fifo, buffer, size);

Arguments

fifo the fifo to assign the buffer

buffer the preallocated buffer to be used

size the size of the internal buffer, this have to be a power of 2

Description

This macro initialize a fifo using a preallocated buffer.

The numer of elements will be rounded-up to a power of 2. Return 0 if no error, otherwise an error code.

331

FIFO Buffer

Name
kfifo_put — put data into the fifo

Synopsis

kfifo_put (fifo, val);

Arguments

fifo address of the fifo to be used

val the data to be added

Description

This macro copies the given value into the fifo. It returns 0 if the fifo was full. Otherwise it returns the
number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

332

FIFO Buffer

Name
kfifo_get — get data from the fifo

Synopsis

kfifo_get (fifo, val);

Arguments

fifo address of the fifo to be used

val address where to store the data

Description

This macro reads the data from the fifo. It returns 0 if the fifo was empty. Otherwise it returns the number
processed elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

333

FIFO Buffer

Name
kfifo_peek — get data from the fifo without removing

Synopsis

kfifo_peek (fifo, val);

Arguments

fifo address of the fifo to be used

val address where to store the data

Description

This reads the data from the fifo without removing it from the fifo. It returns 0 if the fifo was empty.
Otherwise it returns the number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

334

FIFO Buffer

Name
kfifo_in — put data into the fifo

Synopsis

kfifo_in (fifo, buf, n);

Arguments

fifo address of the fifo to be used

buf the data to be added

n number of elements to be added

Description

This macro copies the given buffer into the fifo and returns the number of copied elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

335

FIFO Buffer

Name
kfifo_in_spinlocked — put data into the fifo using a spinlock for locking

Synopsis

kfifo_in_spinlocked (fifo, buf, n, lock);

Arguments

fifo address of the fifo to be used

buf the data to be added

n number of elements to be added

lock pointer to the spinlock to use for locking

Description

This macro copies the given values buffer into the fifo and returns the number of copied elements.

336

FIFO Buffer

Name
kfifo_out — get data from the fifo

Synopsis

kfifo_out (fifo, buf, n);

Arguments

fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

Description

This macro get some data from the fifo and return the numbers of elements copied.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

337

FIFO Buffer

Name
kfifo_out_spinlocked — get data from the fifo using a spinlock for locking

Synopsis

kfifo_out_spinlocked (fifo, buf, n, lock);

Arguments

fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

lock pointer to the spinlock to use for locking

Description

This macro get the data from the fifo and return the numbers of elements copied.

338

FIFO Buffer

Name
kfifo_from_user — puts some data from user space into the fifo

Synopsis

kfifo_from_user (fifo, from, len, copied);

Arguments

fifo address of the fifo to be used

from pointer to the data to be added

len the length of the data to be added

copied pointer to output variable to store the number of copied bytes

Description

This macro copies at most len bytes from the from into the fifo, depending of the available space and
returns -EFAULT/0.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

339

FIFO Buffer

Name
kfifo_to_user — copies data from the fifo into user space

Synopsis

kfifo_to_user (fifo, to, len, copied);

Arguments

fifo address of the fifo to be used

to where the data must be copied

len the size of the destination buffer

copied pointer to output variable to store the number of copied bytes

Description

This macro copies at most len bytes from the fifo into the to buffer and returns -EFAULT/0.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

340

FIFO Buffer

Name
kfifo_dma_in_prepare — setup a scatterlist for DMA input

Synopsis

kfifo_dma_in_prepare (fifo, sgl, nents, len);

Arguments

fifo address of the fifo to be used

sgl pointer to the scatterlist array

nents number of entries in the scatterlist array

len number of elements to transfer

Description

This macro fills a scatterlist for DMA input. It returns the number entries in the scatterlist array.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

341

FIFO Buffer

Name
kfifo_dma_in_finish — finish a DMA IN operation

Synopsis

kfifo_dma_in_finish (fifo, len);

Arguments

fifo address of the fifo to be used

len number of bytes to received

Description

This macro finish a DMA IN operation. The in counter will be updated by the len parameter. No error
checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

342

FIFO Buffer

Name
kfifo_dma_out_prepare — setup a scatterlist for DMA output

Synopsis

kfifo_dma_out_prepare (fifo, sgl, nents, len);

Arguments

fifo address of the fifo to be used

sgl pointer to the scatterlist array

nents number of entries in the scatterlist array

len number of elements to transfer

Description

This macro fills a scatterlist for DMA output which at most len bytes to transfer. It returns the number
entries in the scatterlist array. A zero means there is no space available and the scatterlist is not filled.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

343

FIFO Buffer

Name
kfifo_dma_out_finish — finish a DMA OUT operation

Synopsis

kfifo_dma_out_finish (fifo, len);

Arguments

fifo address of the fifo to be used

len number of bytes transferred

Description

This macro finish a DMA OUT operation. The out counter will be updated by the len parameter. No error
checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

344

FIFO Buffer

Name
kfifo_out_peek — gets some data from the fifo

Synopsis

kfifo_out_peek (fifo, buf, n);

Arguments

fifo address of the fifo to be used

buf pointer to the storage buffer

n max. number of elements to get

Description

This macro get the data from the fifo and return the numbers of elements copied. The data is not removed
from the fifo.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

345

Chapter 7. relay interface support
Relay interface support is designed to provide an efficient mechanism for tools and facilities to relay large
amounts of data from kernel space to user space.

relay interface

346

relay interface support

Name
relay_buf_full — boolean, is the channel buffer full?

Synopsis

int relay_buf_full (struct rchan_buf * buf);

Arguments

buf channel buffer

Description

Returns 1 if the buffer is full, 0 otherwise.

347

relay interface support

Name
relay_reset — reset the channel

Synopsis

void relay_reset (struct rchan * chan);

Arguments

chan the channel

Description

This has the effect of erasing all data from all channel buffers and restarting the channel in its initial state.
The buffers are not freed, so any mappings are still in effect.

NOTE. Care should be taken that the channel isn't actually being used by anything when this call is made.

348

relay interface support

Name
relay_open — create a new relay channel

Synopsis

struct rchan * relay_open (const char * base_filename, struct dentry
* parent, size_t subbuf_size, size_t n_subbufs, struct rchan_callbacks
* cb, void * private_data);

Arguments

base_filename base name of files to create, NULL for buffering only

parent dentry of parent directory, NULL for root directory or buffer

subbuf_size size of sub-buffers

n_subbufs number of sub-buffers

cb client callback functions

private_data user-defined data

Description

Returns channel pointer if successful, NULL otherwise.

Creates a channel buffer for each cpu using the sizes and attributes specified. The created channel buffer
files will be named base_filename0...base_filenameN-1. File permissions will be S_IRUSR.

349

relay interface support

Name
relay_switch_subbuf — switch to a new sub-buffer

Synopsis

size_t relay_switch_subbuf (struct rchan_buf * buf, size_t length);

Arguments

buf channel buffer

length size of current event

Description

Returns either the length passed in or 0 if full.

Performs sub-buffer-switch tasks such as invoking callbacks, updating padding counts, waking up readers,
etc.

350

relay interface support

Name
relay_subbufs_consumed — update the buffer's sub-buffers-consumed count

Synopsis

void relay_subbufs_consumed (struct rchan * chan, unsigned int cpu,
size_t subbufs_consumed);

Arguments

chan the channel

cpu the cpu associated with the channel buffer to update

subbufs_consumed number of sub-buffers to add to current buf's count

Description

Adds to the channel buffer's consumed sub-buffer count. subbufs_consumed should be the number of sub-
buffers newly consumed, not the total consumed.

NOTE. Kernel clients don't need to call this function if the channel mode is 'overwrite'.

351

relay interface support

Name
relay_close — close the channel

Synopsis

void relay_close (struct rchan * chan);

Arguments

chan the channel

Description

Closes all channel buffers and frees the channel.

352

relay interface support

Name
relay_flush — close the channel

Synopsis

void relay_flush (struct rchan * chan);

Arguments

chan the channel

Description

Flushes all channel buffers, i.e. forces buffer switch.

353

relay interface support

Name
relay_mmap_buf — mmap channel buffer to process address space

Synopsis

int relay_mmap_buf (struct rchan_buf * buf, struct vm_area_struct *
vma);

Arguments

buf relay channel buffer

vma vm_area_struct describing memory to be mapped

Description

Returns 0 if ok, negative on error

Caller should already have grabbed mmap_sem.

354

relay interface support

Name
relay_alloc_buf — allocate a channel buffer

Synopsis

void * relay_alloc_buf (struct rchan_buf * buf, size_t * size);

Arguments

buf the buffer struct

size total size of the buffer

Description

Returns a pointer to the resulting buffer, NULL if unsuccessful. The passed in size will get page aligned,
if it isn't already.

355

relay interface support

Name
relay_create_buf — allocate and initialize a channel buffer

Synopsis

struct rchan_buf * relay_create_buf (struct rchan * chan);

Arguments

chan the relay channel

Description

Returns channel buffer if successful, NULL otherwise.

356

relay interface support

Name
relay_destroy_channel — free the channel struct

Synopsis

void relay_destroy_channel (struct kref * kref);

Arguments

kref target kernel reference that contains the relay channel

Description

Should only be called from kref_put.

357

relay interface support

Name
relay_destroy_buf — destroy an rchan_buf struct and associated buffer

Synopsis

void relay_destroy_buf (struct rchan_buf * buf);

Arguments

buf the buffer struct

358

relay interface support

Name
relay_remove_buf — remove a channel buffer

Synopsis

void relay_remove_buf (struct kref * kref);

Arguments

kref target kernel reference that contains the relay buffer

Description

Removes the file from the filesystem, which also frees the rchan_buf_struct and the channel buffer. Should
only be called from kref_put.

359

relay interface support

Name
relay_buf_empty — boolean, is the channel buffer empty?

Synopsis

int relay_buf_empty (struct rchan_buf * buf);

Arguments

buf channel buffer

Description

Returns 1 if the buffer is empty, 0 otherwise.

360

relay interface support

Name
wakeup_readers — wake up readers waiting on a channel

Synopsis

void wakeup_readers (unsigned long data);

Arguments

data contains the channel buffer

Description

This is the timer function used to defer reader waking.

361

relay interface support

Name
__relay_reset — reset a channel buffer

Synopsis

void __relay_reset (struct rchan_buf * buf, unsigned int init);

Arguments

buf the channel buffer

init 1 if this is a first-time initialization

Description

See relay_reset for description of effect.

362

relay interface support

Name
relay_close_buf — close a channel buffer

Synopsis

void relay_close_buf (struct rchan_buf * buf);

Arguments

buf channel buffer

Description

Marks the buffer finalized and restores the default callbacks. The channel buffer and channel buffer data
structure are then freed automatically when the last reference is given up.

363

relay interface support

Name
relay_hotcpu_callback — CPU hotplug callback

Synopsis

int relay_hotcpu_callback (struct notifier_block * nb, unsigned long
action, void * hcpu);

Arguments

nb notifier block

action hotplug action to take

hcpu CPU number

Description

Returns the success/failure of the operation. (NOTIFY_OK, NOTIFY_BAD)

364

relay interface support

Name
relay_late_setup_files — triggers file creation

Synopsis

int relay_late_setup_files (struct rchan * chan, const char * base_file-
name, struct dentry * parent);

Arguments

chan channel to operate on

base_filename base name of files to create

parent dentry of parent directory, NULL for root directory

Description

Returns 0 if successful, non-zero otherwise.

Use to setup files for a previously buffer-only channel. Useful to do early tracing in kernel, before VFS
is up, for example.

365

relay interface support

Name
relay_file_open — open file op for relay files

Synopsis

int relay_file_open (struct inode * inode, struct file * filp);

Arguments

inode the inode

filp the file

Description

Increments the channel buffer refcount.

366

relay interface support

Name
relay_file_mmap — mmap file op for relay files

Synopsis

int relay_file_mmap (struct file * filp, struct vm_area_struct * vma);

Arguments

filp the file

vma the vma describing what to map

Description

Calls upon relay_mmap_buf to map the file into user space.

367

relay interface support

Name
relay_file_poll — poll file op for relay files

Synopsis

unsigned int relay_file_poll (struct file * filp, poll_table * wait);

Arguments

filp the file

wait poll table

Description

Poll implemention.

368

relay interface support

Name
relay_file_release — release file op for relay files

Synopsis

int relay_file_release (struct inode * inode, struct file * filp);

Arguments

inode the inode

filp the file

Description

Decrements the channel refcount, as the filesystem is no longer using it.

369

relay interface support

Name
relay_file_read_subbuf_avail — return bytes available in sub-buffer

Synopsis

size_t relay_file_read_subbuf_avail (size_t read_pos, struct rchan_buf
* buf);

Arguments

read_pos file read position

buf relay channel buffer

370

relay interface support

Name
relay_file_read_start_pos — find the first available byte to read

Synopsis

size_t relay_file_read_start_pos (size_t read_pos, struct rchan_buf *
buf);

Arguments

read_pos file read position

buf relay channel buffer

Description

If the read_pos is in the middle of padding, return the position of the first actually available byte,
otherwise return the original value.

371

relay interface support

Name
relay_file_read_end_pos — return the new read position

Synopsis

size_t relay_file_read_end_pos (struct rchan_buf * buf, size_t read_pos,
size_t count);

Arguments

buf relay channel buffer

read_pos file read position

count number of bytes to be read

372

Chapter 8. Module Support
Module Loading

373

Module Support

Name
__request_module — try to load a kernel module

Synopsis

int __request_module (bool wait, const char * fmt, ...);

Arguments

wait wait (or not) for the operation to complete

fmt printf style format string for the name of the module @...: arguments as specified in the format
string

... variable arguments

Description

Load a module using the user mode module loader. The function returns zero on success or a negative
errno code or positive exit code from “modprobe” on failure. Note that a successful module load does not
mean the module did not then unload and exit on an error of its own. Callers must check that the service
they requested is now available not blindly invoke it.

If module auto-loading support is disabled then this function becomes a no-operation.

374

Module Support

Name
call_usermodehelper_setup — prepare to call a usermode helper

Synopsis

struct subprocess_info * call_usermodehelper_setup (char * path, char **
argv, char ** envp, gfp_t gfp_mask, int (*init) (struct subprocess_in-
fo *info, struct cred *new), void (*cleanup) (struct subprocess_info
*info), void * data);

Arguments

path path to usermode executable

argv arg vector for process

envp environment for process

gfp_mask gfp mask for memory allocation

init an init function

cleanup a cleanup function

data arbitrary context sensitive data

Description

Returns either NULL on allocation failure, or a subprocess_info structure. This should be passed to cal-
l_usermodehelper_exec to exec the process and free the structure.

The init function is used to customize the helper process prior to exec. A non-zero return code causes the
process to error out, exit, and return the failure to the calling process

The cleanup function is just before ethe subprocess_info is about to be freed. This can be used for freeing
the argv and envp. The Function must be runnable in either a process context or the context in which
call_usermodehelper_exec is called.

375

Module Support

Name
call_usermodehelper_exec — start a usermode application

Synopsis

int call_usermodehelper_exec (struct subprocess_info * sub_info, int
wait);

Arguments

sub_info information about the subprocessa

wait wait for the application to finish and return status. when UMH_NO_WAIT don't wait at all,
but you get no useful error back when the program couldn't be exec'ed. This makes it safe
to call from interrupt context.

Description

Runs a user-space application. The application is started asynchronously if wait is not set, and runs as a
child of system workqueues. (ie. it runs with full root capabilities and optimized affinity).

376

Module Support

Name
call_usermodehelper — prepare and start a usermode application

Synopsis

int call_usermodehelper (char * path, char ** argv, char ** envp, int
wait);

Arguments

path path to usermode executable

argv arg vector for process

envp environment for process

wait wait for the application to finish and return status. when UMH_NO_WAIT don't wait at all, but
you get no useful error back when the program couldn't be exec'ed. This makes it safe to call from
interrupt context.

Description

This function is the equivalent to use call_usermodehelper_setup and call_usermode-
helper_exec.

Inter Module support
Refer to the file kernel/module.c for more information.

377

Chapter 9. Hardware Interfaces
Interrupt Handling

378

Hardware Interfaces

Name
synchronize_hardirq — wait for pending hard IRQ handlers (on other CPUs)

Synopsis

bool synchronize_hardirq (unsigned int irq);

Arguments

irq interrupt number to wait for

Description

This function waits for any pending hard IRQ handlers for this interrupt to complete before returning. If
you use this function while holding a resource the IRQ handler may need you will deadlock. It does not
take associated threaded handlers into account.

Do not use this for shutdown scenarios where you must be sure that all parts (hardirq and threaded handler)
have completed.

Returns

false if a threaded handler is active.

This function may be called - with care - from IRQ context.

379

Hardware Interfaces

Name
synchronize_irq — wait for pending IRQ handlers (on other CPUs)

Synopsis

void synchronize_irq (unsigned int irq);

Arguments

irq interrupt number to wait for

Description

This function waits for any pending IRQ handlers for this interrupt to complete before returning. If you
use this function while holding a resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

380

Hardware Interfaces

Name
irq_set_affinity_notifier — control notification of IRQ affinity changes

Synopsis

int irq_set_affinity_notifier (unsigned int irq, struct irq_affini-
ty_notify * notify);

Arguments

irq Interrupt for which to enable/disable notification

notify Context for notification, or NULL to disable notification. Function pointers must be initialised;
the other fields will be initialised by this function.

Description

Must be called in process context. Notification may only be enabled after the IRQ is allocated and must
be disabled before the IRQ is freed using free_irq.

381

Hardware Interfaces

Name
irq_set_vcpu_affinity — Set vcpu affinity for the interrupt

Synopsis

int irq_set_vcpu_affinity (unsigned int irq, void * vcpu_info);

Arguments

irq interrupt number to set affinity

vcpu_info vCPU specific data

Description

This function uses the vCPU specific data to set the vCPU affinity for an irq. The vCPU specific da-
ta is passed from outside, such as KVM. One example code path is as below: KVM -> IOMMU ->
irq_set_vcpu_affinity.

382

Hardware Interfaces

Name
disable_irq_nosync — disable an irq without waiting

Synopsis

void disable_irq_nosync (unsigned int irq);

Arguments

irq Interrupt to disable

Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike disable_irq, this function
does not ensure existing instances of the IRQ handler have completed before returning.

This function may be called from IRQ context.

383

Hardware Interfaces

Name
disable_irq — disable an irq and wait for completion

Synopsis

void disable_irq (unsigned int irq);

Arguments

irq Interrupt to disable

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any pending
IRQ handlers for this interrupt to complete before returning. If you use this function while holding a
resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

384

Hardware Interfaces

Name
disable_hardirq — disables an irq and waits for hardirq completion

Synopsis

bool disable_hardirq (unsigned int irq);

Arguments

irq Interrupt to disable

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any pending
hard IRQ handlers for this interrupt to complete before returning. If you use this function while holding
a resource the hard IRQ handler may need you will deadlock.

When used to optimistically disable an interrupt from atomic context the return value must be checked.

Returns

false if a threaded handler is active.

This function may be called - with care - from IRQ context.

385

Hardware Interfaces

Name
enable_irq — enable handling of an irq

Synopsis

void enable_irq (unsigned int irq);

Arguments

irq Interrupt to enable

Description

Undoes the effect of one call to disable_irq. If this matches the last disable, processing of interrupts
on this IRQ line is re-enabled.

This function may be called from IRQ context only when desc->irq_data.chip->bus_lock and desc->chip-
>bus_sync_unlock are NULL !

386

Hardware Interfaces

Name
irq_set_irq_wake — control irq power management wakeup

Synopsis

int irq_set_irq_wake (unsigned int irq, unsigned int on);

Arguments

irq interrupt to control

on enable/disable power management wakeup

Description

Enable/disable power management wakeup mode, which is disabled by default. Enables and disables must
match, just as they match for non-wakeup mode support.

Wakeup mode lets this IRQ wake the system from sleep states like “suspend to RAM”.

387

Hardware Interfaces

Name
irq_wake_thread — wake the irq thread for the action identified by dev_id

Synopsis

void irq_wake_thread (unsigned int irq, void * dev_id);

Arguments

irq Interrupt line

dev_id Device identity for which the thread should be woken

388

Hardware Interfaces

Name
setup_irq — setup an interrupt

Synopsis

int setup_irq (unsigned int irq, struct irqaction * act);

Arguments

irq Interrupt line to setup

act irqaction for the interrupt

Description

Used to statically setup interrupts in the early boot process.

389

Hardware Interfaces

Name
remove_irq — free an interrupt

Synopsis

void remove_irq (unsigned int irq, struct irqaction * act);

Arguments

irq Interrupt line to free

act irqaction for the interrupt

Description

Used to remove interrupts statically setup by the early boot process.

390

Hardware Interfaces

Name
free_irq — free an interrupt allocated with request_irq

Synopsis

void free_irq (unsigned int irq, void * dev_id);

Arguments

irq Interrupt line to free

dev_id Device identity to free

Description

Remove an interrupt handler. The handler is removed and if the interrupt line is no longer in use by any
driver it is disabled. On a shared IRQ the caller must ensure the interrupt is disabled on the card it drives
before calling this function. The function does not return until any executing interrupts for this IRQ have
completed.

This function must not be called from interrupt context.

391

Hardware Interfaces

Name
request_threaded_irq — allocate an interrupt line

Synopsis

int request_threaded_irq (unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags, const char * devname,
void * dev_id);

Arguments

irq Interrupt line to allocate

handler Function to be called when the IRQ occurs. Primary handler for threaded interrupts If
NULL and thread_fn != NULL the default primary handler is installed

thread_fn Function called from the irq handler thread If NULL, no irq thread is created

irqflags Interrupt type flags

devname An ascii name for the claiming device

dev_id A cookie passed back to the handler function

Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. From the point this
call is made your handler function may be invoked. Since your handler function must clear any interrupt
the board raises, you must take care both to initialise your hardware and to set up the interrupt handler
in the right order.

If you want to set up a threaded irq handler for your device then you need to supply handler
and thread_fn. handler is still called in hard interrupt context and has to check whether the in-
terrupt originates from the device. If yes it needs to disable the interrupt on the device and return
IRQ_WAKE_THREAD which will wake up the handler thread and run thread_fn. This split handler
design is necessary to support shared interrupts.

Dev_id must be globally unique. Normally the address of the device data structure is used as the cookie.
Since the handler receives this value it makes sense to use it.

If your interrupt is shared you must pass a non NULL dev_id as this is required when freeing the interrupt.

Flags

IRQF_SHARED Interrupt is shared IRQF_TRIGGER_* Specify active edge(s) or level

392

Hardware Interfaces

Name
request_any_context_irq — allocate an interrupt line

Synopsis

int request_any_context_irq (unsigned int irq, irq_handler_t handler,
unsigned long flags, const char * name, void * dev_id);

Arguments

irq Interrupt line to allocate

handler Function to be called when the IRQ occurs. Threaded handler for threaded interrupts.

flags Interrupt type flags

name An ascii name for the claiming device

dev_id A cookie passed back to the handler function

Description

This call allocates interrupt resources and enables the interrupt line and IRQ handling. It selects either a
hardirq or threaded handling method depending on the context.

On failure, it returns a negative value. On success, it returns either IRQC_IS_HARDIRQ or
IRQC_IS_NESTED.

393

Hardware Interfaces

Name
free_percpu_irq — free an interrupt allocated with request_percpu_irq

Synopsis

void free_percpu_irq (unsigned int irq, void __percpu * dev_id);

Arguments

irq Interrupt line to free

dev_id Device identity to free

Description

Remove a percpu interrupt handler. The handler is removed, but the interrupt line is not disabled. This
must be done on each CPU before calling this function. The function does not return until any executing
interrupts for this IRQ have completed.

This function must not be called from interrupt context.

394

Hardware Interfaces

Name
request_percpu_irq — allocate a percpu interrupt line

Synopsis

int request_percpu_irq (unsigned int irq, irq_handler_t handler, const
char * devname, void __percpu * dev_id);

Arguments

irq Interrupt line to allocate

handler Function to be called when the IRQ occurs.

devname An ascii name for the claiming device

dev_id A percpu cookie passed back to the handler function

Description

This call allocates interrupt resources and enables the interrupt on the local CPU. If the interrupt is supposed
to be enabled on other CPUs, it has to be done on each CPU using enable_percpu_irq.

Dev_id must be globally unique. It is a per-cpu variable, and the handler gets called with the interrupted
CPU's instance of that variable.

395

Hardware Interfaces

Name
irq_get_irqchip_state — returns the irqchip state of a interrupt.

Synopsis

int irq_get_irqchip_state (unsigned int irq, enum irqchip_irq_state
which, bool * state);

Arguments

irq Interrupt line that is forwarded to a VM

which One of IRQCHIP_STATE_* the caller wants to know about

state a pointer to a boolean where the state is to be storeed

Description

This call snapshots the internal irqchip state of an interrupt, returning into state the bit corresponding
to stage which

This function should be called with preemption disabled if the interrupt controller has per-cpu registers.

396

Hardware Interfaces

Name
irq_set_irqchip_state — set the state of a forwarded interrupt.

Synopsis

int irq_set_irqchip_state (unsigned int irq, enum irqchip_irq_state
which, bool val);

Arguments

irq Interrupt line that is forwarded to a VM

which State to be restored (one of IRQCHIP_STATE_*)

val Value corresponding to which

Description

This call sets the internal irqchip state of an interrupt, depending on the value of which.

This function should be called with preemption disabled if the interrupt controller has per-cpu registers.

DMA Channels

397

Hardware Interfaces

Name
request_dma — request and reserve a system DMA channel

Synopsis

int request_dma (unsigned int dmanr, const char * device_id);

Arguments

dmanr DMA channel number

device_id reserving device ID string, used in /proc/dma

398

Hardware Interfaces

Name
free_dma — free a reserved system DMA channel

Synopsis

void free_dma (unsigned int dmanr);

Arguments

dmanr DMA channel number

Resources Management

399

Hardware Interfaces

Name
request_resource_conflict — request and reserve an I/O or memory resource

Synopsis

struct resource * request_resource_conflict (struct resource * root,
struct resource * new);

Arguments

root root resource descriptor

new resource descriptor desired by caller

Description

Returns 0 for success, conflict resource on error.

400

Hardware Interfaces

Name
reallocate_resource — allocate a slot in the resource tree given range & alignment. The resource will be
relocated if the new size cannot be reallocated in the current location.

Synopsis

int reallocate_resource (struct resource * root, struct resource * old,
resource_size_t newsize, struct resource_constraint * constraint);

Arguments

root root resource descriptor

old resource descriptor desired by caller

newsize new size of the resource descriptor

constraint the size and alignment constraints to be met.

401

Hardware Interfaces

Name
lookup_resource — find an existing resource by a resource start address

Synopsis

struct resource * lookup_resource (struct resource * root, re-
source_size_t start);

Arguments

root root resource descriptor

start resource start address

Description

Returns a pointer to the resource if found, NULL otherwise

402

Hardware Interfaces

Name
insert_resource_conflict — Inserts resource in the resource tree

Synopsis

struct resource * insert_resource_conflict (struct resource * parent,
struct resource * new);

Arguments

parent parent of the new resource

new new resource to insert

Description

Returns 0 on success, conflict resource if the resource can't be inserted.

This function is equivalent to request_resource_conflict when no conflict happens. If a conflict happens,
and the conflicting resources entirely fit within the range of the new resource, then the new resource is
inserted and the conflicting resources become children of the new resource.

This function is intended for producers of resources, such as FW modules and bus drivers.

403

Hardware Interfaces

Name
insert_resource_expand_to_fit — Insert a resource into the resource tree

Synopsis

void insert_resource_expand_to_fit (struct resource * root, struct re-
source * new);

Arguments

root root resource descriptor

new new resource to insert

Description

Insert a resource into the resource tree, possibly expanding it in order to make it encompass any conflicting
resources.

404

Hardware Interfaces

Name
resource_alignment — calculate resource's alignment

Synopsis

resource_size_t resource_alignment (struct resource * res);

Arguments

res resource pointer

Description

Returns alignment on success, 0 (invalid alignment) on failure.

405

Hardware Interfaces

Name
release_mem_region_adjustable — release a previously reserved memory region

Synopsis

int release_mem_region_adjustable (struct resource * parent, re-
source_size_t start, resource_size_t size);

Arguments

parent parent resource descriptor

start resource start address

size resource region size

Description

This interface is intended for memory hot-delete. The requested region is released from a currently busy
memory resource. The requested region must either match exactly or fit into a single busy resource entry.
In the latter case, the remaining resource is adjusted accordingly. Existing children of the busy memory
resource must be immutable in the request.

Note

- Additional release conditions, such as overlapping region, can be supported after they are confirmed as
valid cases. - When a busy memory resource gets split into two entries, the code assumes that all children
remain in the lower address entry for simplicity. Enhance this logic when necessary.

406

Hardware Interfaces

Name
request_resource — request and reserve an I/O or memory resource

Synopsis

int request_resource (struct resource * root, struct resource * new);

Arguments

root root resource descriptor

new resource descriptor desired by caller

Description

Returns 0 for success, negative error code on error.

407

Hardware Interfaces

Name
release_resource — release a previously reserved resource

Synopsis

int release_resource (struct resource * old);

Arguments

old resource pointer

408

Hardware Interfaces

Name
region_intersects — determine intersection of region with known resources

Synopsis

int region_intersects (resource_size_t start, size_t size, unsigned long
flags, unsigned long desc);

Arguments

start region start address

size size of region

flags flags of resource (in iomem_resource)

desc descriptor of resource (in iomem_resource) or IORES_DESC_NONE

Description

Check if the specified region partially overlaps or fully eclipses a resource identified by flags and de-
sc (optional with IORES_DESC_NONE). Return REGION_DISJOINT if the region does not overlap
flags/desc, return REGION_MIXED if the region overlaps flags/desc and another resource, and
return REGION_INTERSECTS if the region overlaps flags/desc and no other defined resource. Note
that REGION_INTERSECTS is also returned in the case when the specified region overlaps RAM and
undefined memory holes.

region_intersect is used by memory remapping functions to ensure the user is not remapping RAM
and is a vast speed up over walking through the resource table page by page.

409

Hardware Interfaces

Name
allocate_resource — allocate empty slot in the resource tree given range & alignment. The resource will
be reallocated with a new size if it was already allocated

Synopsis

int allocate_resource (struct resource * root, struct resource * new,
resource_size_t size, resource_size_t min, resource_size_t max, re-
source_size_t align, resource_size_t (*alignf) (void *, const struct
resource *, resource_size_t, resource_size_t), void * alignf_data);

Arguments

root root resource descriptor

new resource descriptor desired by caller

size requested resource region size

min minimum boundary to allocate

max maximum boundary to allocate

align alignment requested, in bytes

alignf alignment function, optional, called if not NULL

alignf_data arbitrary data to pass to the alignf function

410

Hardware Interfaces

Name
insert_resource — Inserts a resource in the resource tree

Synopsis

int insert_resource (struct resource * parent, struct resource * new);

Arguments

parent parent of the new resource

new new resource to insert

Description

Returns 0 on success, -EBUSY if the resource can't be inserted.

This function is intended for producers of resources, such as FW modules and bus drivers.

411

Hardware Interfaces

Name
remove_resource — Remove a resource in the resource tree

Synopsis

int remove_resource (struct resource * old);

Arguments

old resource to remove

Description

Returns 0 on success, -EINVAL if the resource is not valid.

This function removes a resource previously inserted by insert_resource or insert_re-
source_conflict, and moves the children (if any) up to where they were before. insert_re-
source and insert_resource_conflict insert a new resource, and move any conflicting re-
sources down to the children of the new resource.

insert_resource, insert_resource_conflict and remove_resource are intended for
producers of resources, such as FW modules and bus drivers.

412

Hardware Interfaces

Name
adjust_resource — modify a resource's start and size

Synopsis

int adjust_resource (struct resource * res, resource_size_t start, re-
source_size_t size);

Arguments

res resource to modify

start new start value

size new size

Description

Given an existing resource, change its start and size to match the arguments. Returns 0 on success, -EBUSY
if it can't fit. Existing children of the resource are assumed to be immutable.

413

Hardware Interfaces

Name
__request_region — create a new busy resource region

Synopsis

struct resource * __request_region (struct resource * parent, re-
source_size_t start, resource_size_t n, const char * name, int flags);

Arguments

parent parent resource descriptor

start resource start address

n resource region size

name reserving caller's ID string

flags IO resource flags

414

Hardware Interfaces

Name
__release_region — release a previously reserved resource region

Synopsis

void __release_region (struct resource * parent, resource_size_t start,
resource_size_t n);

Arguments

parent parent resource descriptor

start resource start address

n resource region size

Description

The described resource region must match a currently busy region.

415

Hardware Interfaces

Name
devm_request_resource — request and reserve an I/O or memory resource

Synopsis

int devm_request_resource (struct device * dev, struct resource * root,
struct resource * new);

Arguments

dev device for which to request the resource

root root of the resource tree from which to request the resource

new descriptor of the resource to request

Description

This is a device-managed version of request_resource. There is usually no need to release resources
requested by this function explicitly since that will be taken care of when the device is unbound from
its driver. If for some reason the resource needs to be released explicitly, because of ordering issues for
example, drivers must call devm_release_resource rather than the regular release_resource.

When a conflict is detected between any existing resources and the newly requested resource, an error
message will be printed.

Returns 0 on success or a negative error code on failure.

416

Hardware Interfaces

Name
devm_release_resource — release a previously requested resource

Synopsis

void devm_release_resource (struct device * dev, struct resource * new);

Arguments

dev device for which to release the resource

new descriptor of the resource to release

Description

Releases a resource previously requested using devm_request_resource.

MTRR Handling

417

Hardware Interfaces

Name
arch_phys_wc_add — add a WC MTRR and handle errors if PAT is unavailable

Synopsis

int arch_phys_wc_add (unsigned long base, unsigned long size);

Arguments

base Physical base address

size Size of region

Description

If PAT is available, this does nothing. If PAT is unavailable, it attempts to add a WC MTRR covering size
bytes starting at base and logs an error if this fails.

The called should provide a power of two size on an equivalent power of two boundary.

Drivers must store the return value to pass to mtrr_del_wc_if_needed, but drivers should not try to interpret
that return value.

PCI Support Library

418

Hardware Interfaces

Name
pci_bus_max_busnr — returns maximum PCI bus number of given bus' children

Synopsis

unsigned char pci_bus_max_busnr (struct pci_bus * bus);

Arguments

bus pointer to PCI bus structure to search

Description

Given a PCI bus, returns the highest PCI bus number present in the set including the given PCI bus and
its list of child PCI buses.

419

Hardware Interfaces

Name
pci_find_capability — query for devices' capabilities

Synopsis

int pci_find_capability (struct pci_dev * dev, int cap);

Arguments

dev PCI device to query

cap capability code

Description

Tell if a device supports a given PCI capability. Returns the address of the requested capability structure
within the device's PCI configuration space or 0 in case the device does not support it. Possible values
for cap:

PCI_CAP_ID_PM Power Management PCI_CAP_ID_AGP Accelerated Graphics Port
PCI_CAP_ID_VPD Vital Product Data PCI_CAP_ID_SLOTID Slot Identification
PCI_CAP_ID_MSI Message Signalled Interrupts PCI_CAP_ID_CHSWP CompactPCI HotSwap
PCI_CAP_ID_PCIX PCI-X PCI_CAP_ID_EXP PCI Express

420

Hardware Interfaces

Name
pci_bus_find_capability — query for devices' capabilities

Synopsis

int pci_bus_find_capability (struct pci_bus * bus, unsigned int devfn,
int cap);

Arguments

bus the PCI bus to query

devfn PCI device to query

cap capability code

Description

Like pci_find_capability but works for pci devices that do not have a pci_dev structure set up yet.

Returns the address of the requested capability structure within the device's PCI configuration space or 0
in case the device does not support it.

421

Hardware Interfaces

Name
pci_find_next_ext_capability — Find an extended capability

Synopsis

int pci_find_next_ext_capability (struct pci_dev * dev, int start, int
cap);

Arguments

dev PCI device to query

start address at which to start looking (0 to start at beginning of list)

cap capability code

Description

Returns the address of the next matching extended capability structure within the device's PCI configu-
ration space or 0 if the device does not support it. Some capabilities can occur several times, e.g., the
vendor-specific capability, and this provides a way to find them all.

422

Hardware Interfaces

Name
pci_find_ext_capability — Find an extended capability

Synopsis

int pci_find_ext_capability (struct pci_dev * dev, int cap);

Arguments

dev PCI device to query

cap capability code

Description

Returns the address of the requested extended capability structure within the device's PCI configuration
space or 0 if the device does not support it. Possible values for cap:

PCI_EXT_CAP_ID_ERR Advanced Error Reporting PCI_EXT_CAP_ID_VC Virtual Channel
PCI_EXT_CAP_ID_DSN Device Serial Number PCI_EXT_CAP_ID_PWR Power Budgeting

423

Hardware Interfaces

Name
pci_find_next_ht_capability — query a device's Hypertransport capabilities

Synopsis

int pci_find_next_ht_capability (struct pci_dev * dev, int pos, int
ht_cap);

Arguments

dev PCI device to query

pos Position from which to continue searching

ht_cap Hypertransport capability code

Description

To be used in conjunction with pci_find_ht_capability to search for all capabilities matching
ht_cap. pos should always be a value returned from pci_find_ht_capability.

NB. To be 100% safe against broken PCI devices, the caller should take steps to avoid an infinite loop.

424

Hardware Interfaces

Name
pci_find_ht_capability — query a device's Hypertransport capabilities

Synopsis

int pci_find_ht_capability (struct pci_dev * dev, int ht_cap);

Arguments

dev PCI device to query

ht_cap Hypertransport capability code

Description

Tell if a device supports a given Hypertransport capability. Returns an address within the device's PCI
configuration space or 0 in case the device does not support the request capability. The address points to
the PCI capability, of type PCI_CAP_ID_HT, which has a Hypertransport capability matching ht_cap.

425

Hardware Interfaces

Name
pci_find_parent_resource — return resource region of parent bus of given region

Synopsis

struct resource * pci_find_parent_resource (const struct pci_dev * dev,
struct resource * res);

Arguments

dev PCI device structure contains resources to be searched

res child resource record for which parent is sought

Description

For given resource region of given device, return the resource region of parent bus the given region is
contained in.

426

Hardware Interfaces

Name
pci_find_pcie_root_port — return PCIe Root Port

Synopsis

struct pci_dev * pci_find_pcie_root_port (struct pci_dev * dev);

Arguments

dev PCI device to query

Description

Traverse up the parent chain and return the PCIe Root Port PCI Device for a given PCI Device.

427

Hardware Interfaces

Name
__pci_complete_power_transition — Complete power transition of a PCI device

Synopsis

int __pci_complete_power_transition (struct pci_dev * dev, pci_power_t
state);

Arguments

dev PCI device to handle.

state State to put the device into.

Description

This function should not be called directly by device drivers.

428

Hardware Interfaces

Name
pci_set_power_state — Set the power state of a PCI device

Synopsis

int pci_set_power_state (struct pci_dev * dev, pci_power_t state);

Arguments

dev PCI device to handle.

state PCI power state (D0, D1, D2, D3hot) to put the device into.

Description

Transition a device to a new power state, using the platform firmware and/or the device's PCI PM registers.

RETURN VALUE

-EINVAL if the requested state is invalid. -EIO if device does not support PCI PM or its PM capabilities
register has a wrong version, or device doesn't support the requested state. 0 if device already is in the
requested state. 0 if device's power state has been successfully changed.

429

Hardware Interfaces

Name
pci_choose_state — Choose the power state of a PCI device

Synopsis

pci_power_t pci_choose_state (struct pci_dev * dev, pm_message_t state);

Arguments

dev PCI device to be suspended

state target sleep state for the whole system. This is the value that is passed to suspend function.

Description

Returns PCI power state suitable for given device and given system message.

430

Hardware Interfaces

Name
pci_save_state — save the PCI configuration space of a device before suspending

Synopsis

int pci_save_state (struct pci_dev * dev);

Arguments

dev - PCI device that we're dealing with

431

Hardware Interfaces

Name
pci_restore_state — Restore the saved state of a PCI device

Synopsis

void pci_restore_state (struct pci_dev * dev);

Arguments

dev - PCI device that we're dealing with

432

Hardware Interfaces

Name
pci_store_saved_state — Allocate and return an opaque struct containing the device saved state.

Synopsis

struct pci_saved_state * pci_store_saved_state (struct pci_dev * dev);

Arguments

dev PCI device that we're dealing with

Description

Return NULL if no state or error.

433

Hardware Interfaces

Name
pci_load_saved_state — Reload the provided save state into struct pci_dev.

Synopsis

int pci_load_saved_state (struct pci_dev * dev, struct pci_saved_state
* state);

Arguments

dev PCI device that we're dealing with

state Saved state returned from pci_store_saved_state

434

Hardware Interfaces

Name
pci_load_and_free_saved_state — Reload the save state pointed to by state, and free the memory allocated
for it.

Synopsis

int pci_load_and_free_saved_state (struct pci_dev * dev, struct
pci_saved_state ** state);

Arguments

dev PCI device that we're dealing with

state Pointer to saved state returned from pci_store_saved_state

435

Hardware Interfaces

Name
pci_reenable_device — Resume abandoned device

Synopsis

int pci_reenable_device (struct pci_dev * dev);

Arguments

dev PCI device to be resumed

Description

Note this function is a backend of pci_default_resume and is not supposed to be called by normal code,
write proper resume handler and use it instead.

436

Hardware Interfaces

Name
pci_enable_device_io — Initialize a device for use with IO space

Synopsis

int pci_enable_device_io (struct pci_dev * dev);

Arguments

dev PCI device to be initialized

Description

Initialize device before it's used by a driver. Ask low-level code to enable I/O resources. Wake up the
device if it was suspended. Beware, this function can fail.

437

Hardware Interfaces

Name
pci_enable_device_mem — Initialize a device for use with Memory space

Synopsis

int pci_enable_device_mem (struct pci_dev * dev);

Arguments

dev PCI device to be initialized

Description

Initialize device before it's used by a driver. Ask low-level code to enable Memory resources. Wake up
the device if it was suspended. Beware, this function can fail.

438

Hardware Interfaces

Name
pci_enable_device — Initialize device before it's used by a driver.

Synopsis

int pci_enable_device (struct pci_dev * dev);

Arguments

dev PCI device to be initialized

Description

Initialize device before it's used by a driver. Ask low-level code to enable I/O and memory. Wake up the
device if it was suspended. Beware, this function can fail.

Note we don't actually enable the device many times if we call this function repeatedly (we just increment
the count).

439

Hardware Interfaces

Name
pcim_enable_device — Managed pci_enable_device

Synopsis

int pcim_enable_device (struct pci_dev * pdev);

Arguments

pdev PCI device to be initialized

Description

Managed pci_enable_device.

440

Hardware Interfaces

Name
pcim_pin_device — Pin managed PCI device

Synopsis

void pcim_pin_device (struct pci_dev * pdev);

Arguments

pdev PCI device to pin

Description

Pin managed PCI device pdev. Pinned device won't be disabled on driver detach. pdev must have been
enabled with pcim_enable_device.

441

Hardware Interfaces

Name
pci_disable_device — Disable PCI device after use

Synopsis

void pci_disable_device (struct pci_dev * dev);

Arguments

dev PCI device to be disabled

Description

Signal to the system that the PCI device is not in use by the system anymore. This only involves disabling
PCI bus-mastering, if active.

Note we don't actually disable the device until all callers of pci_enable_device have called
pci_disable_device.

442

Hardware Interfaces

Name
pci_set_pcie_reset_state — set reset state for device dev

Synopsis

int pci_set_pcie_reset_state (struct pci_dev * dev, enum pcie_reset_s-
tate state);

Arguments

dev the PCIe device reset

state Reset state to enter into

Description

Sets the PCI reset state for the device.

443

Hardware Interfaces

Name
pci_pme_capable — check the capability of PCI device to generate PME#

Synopsis

bool pci_pme_capable (struct pci_dev * dev, pci_power_t state);

Arguments

dev PCI device to handle.

state PCI state from which device will issue PME#.

444

Hardware Interfaces

Name
pci_pme_active — enable or disable PCI device's PME# function

Synopsis

void pci_pme_active (struct pci_dev * dev, bool enable);

Arguments

dev PCI device to handle.

enable 'true' to enable PME# generation; 'false' to disable it.

Description

The caller must verify that the device is capable of generating PME# before calling this function with
enable equal to 'true'.

445

Hardware Interfaces

Name
__pci_enable_wake — enable PCI device as wakeup event source

Synopsis

int __pci_enable_wake (struct pci_dev * dev, pci_power_t state, bool
runtime, bool enable);

Arguments

dev PCI device affected

state PCI state from which device will issue wakeup events

runtime True if the events are to be generated at run time

enable True to enable event generation; false to disable

Description

This enables the device as a wakeup event source, or disables it. When such events involves platform-spe-
cific hooks, those hooks are called automatically by this routine.

Devices with legacy power management (no standard PCI PM capabilities) always require such platform
hooks.

RETURN VALUE

0 is returned on success -EINVAL is returned if device is not supposed to wake up the system Error code
depending on the platform is returned if both the platform and the native mechanism fail to enable the
generation of wake-up events

446

Hardware Interfaces

Name
pci_wake_from_d3 — enable/disable device to wake up from D3_hot or D3_cold

Synopsis

int pci_wake_from_d3 (struct pci_dev * dev, bool enable);

Arguments

dev PCI device to prepare

enable True to enable wake-up event generation; false to disable

Description

Many drivers want the device to wake up the system from D3_hot or D3_cold and this function allows
them to set that up cleanly - pci_enable_wake should not be called twice in a row to enable wake-
up due to PCI PM vs ACPI ordering constraints.

This function only returns error code if the device is not capable of generating PME# from both D3_hot
and D3_cold, and the platform is unable to enable wake-up power for it.

447

Hardware Interfaces

Name
pci_prepare_to_sleep — prepare PCI device for system-wide transition into a sleep state

Synopsis

int pci_prepare_to_sleep (struct pci_dev * dev);

Arguments

dev Device to handle.

Description

Choose the power state appropriate for the device depending on whether it can wake up the system and/or
is power manageable by the platform (PCI_D3hot is the default) and put the device into that state.

448

Hardware Interfaces

Name
pci_back_from_sleep — turn PCI device on during system-wide transition into working state

Synopsis

int pci_back_from_sleep (struct pci_dev * dev);

Arguments

dev Device to handle.

Description

Disable device's system wake-up capability and put it into D0.

449

Hardware Interfaces

Name
pci_dev_run_wake — Check if device can generate run-time wake-up events.

Synopsis

bool pci_dev_run_wake (struct pci_dev * dev);

Arguments

dev Device to check.

Description

Return true if the device itself is capable of generating wake-up events (through the platform or using
the native PCIe PME) or if the device supports PME and one of its upstream bridges can generate wake-
up events.

450

Hardware Interfaces

Name
pci_common_swizzle — swizzle INTx all the way to root bridge

Synopsis

u8 pci_common_swizzle (struct pci_dev * dev, u8 * pinp);

Arguments

dev the PCI device

pinp pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)

Description

Perform INTx swizzling for a device. This traverses through all PCI-to-PCI bridges all the way up to a
PCI root bus.

451

Hardware Interfaces

Name
pci_release_region — Release a PCI bar

Synopsis

void pci_release_region (struct pci_dev * pdev, int bar);

Arguments

pdev PCI device whose resources were previously reserved by pci_request_region

bar BAR to release

Description

Releases the PCI I/O and memory resources previously reserved by a successful call to pci_request_region.
Call this function only after all use of the PCI regions has ceased.

452

Hardware Interfaces

Name
pci_request_region — Reserve PCI I/O and memory resource

Synopsis

int pci_request_region (struct pci_dev * pdev, int bar, const char *
res_name);

Arguments

pdev PCI device whose resources are to be reserved

bar BAR to be reserved

res_name Name to be associated with resource

Description

Mark the PCI region associated with PCI device pdev BAR bar as being reserved by owner res_name.
Do not access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

453

Hardware Interfaces

Name
pci_request_region_exclusive — Reserved PCI I/O and memory resource

Synopsis

int pci_request_region_exclusive (struct pci_dev * pdev, int bar, const
char * res_name);

Arguments

pdev PCI device whose resources are to be reserved

bar BAR to be reserved

res_name Name to be associated with resource.

Description

Mark the PCI region associated with PCI device pdev BR bar as being reserved by owner res_name.
Do not access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

The key difference that _exclusive makes it that userspace is explicitly not allowed to map the resource
via /dev/mem or sysfs.

454

Hardware Interfaces

Name
pci_release_selected_regions — Release selected PCI I/O and memory resources

Synopsis

void pci_release_selected_regions (struct pci_dev * pdev, int bars);

Arguments

pdev PCI device whose resources were previously reserved

bars Bitmask of BARs to be released

Description

Release selected PCI I/O and memory resources previously reserved. Call this function only after all use
of the PCI regions has ceased.

455

Hardware Interfaces

Name
pci_request_selected_regions — Reserve selected PCI I/O and memory resources

Synopsis

int pci_request_selected_regions (struct pci_dev * pdev, int bars, const
char * res_name);

Arguments

pdev PCI device whose resources are to be reserved

bars Bitmask of BARs to be requested

res_name Name to be associated with resource

456

Hardware Interfaces

Name
pci_release_regions — Release reserved PCI I/O and memory resources

Synopsis

void pci_release_regions (struct pci_dev * pdev);

Arguments

pdev PCI device whose resources were previously reserved by pci_request_regions

Description

Releases all PCI I/O and memory resources previously reserved by a successful call to pci_request_regions.
Call this function only after all use of the PCI regions has ceased.

457

Hardware Interfaces

Name
pci_request_regions — Reserved PCI I/O and memory resources

Synopsis

int pci_request_regions (struct pci_dev * pdev, const char * res_name);

Arguments

pdev PCI device whose resources are to be reserved

res_name Name to be associated with resource.

Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner res_name. Do not
access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

458

Hardware Interfaces

Name
pci_request_regions_exclusive — Reserved PCI I/O and memory resources

Synopsis

int pci_request_regions_exclusive (struct pci_dev * pdev, const char
* res_name);

Arguments

pdev PCI device whose resources are to be reserved

res_name Name to be associated with resource.

Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner res_name. Do not
access any address inside the PCI regions unless this call returns successfully.

pci_request_regions_exclusive will mark the region so that /dev/mem and the sysfs MMIO
access will not be allowed.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

459

Hardware Interfaces

Name
pci_set_master — enables bus-mastering for device dev

Synopsis

void pci_set_master (struct pci_dev * dev);

Arguments

dev the PCI device to enable

Description

Enables bus-mastering on the device and calls pcibios_set_master to do the needed arch specific
settings.

460

Hardware Interfaces

Name
pci_clear_master — disables bus-mastering for device dev

Synopsis

void pci_clear_master (struct pci_dev * dev);

Arguments

dev the PCI device to disable

461

Hardware Interfaces

Name
pci_set_cacheline_size — ensure the CACHE_LINE_SIZE register is programmed

Synopsis

int pci_set_cacheline_size (struct pci_dev * dev);

Arguments

dev the PCI device for which MWI is to be enabled

Description

Helper function for pci_set_mwi. Originally copied from drivers/net/acenic.c. Copyright 1998-2001 by
Jes Sorensen, <jestrained-monkey.org>.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

462

Hardware Interfaces

Name
pci_set_mwi — enables memory-write-invalidate PCI transaction

Synopsis

int pci_set_mwi (struct pci_dev * dev);

Arguments

dev the PCI device for which MWI is enabled

Description

Enables the Memory-Write-Invalidate transaction in PCI_COMMAND.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

463

Hardware Interfaces

Name
pci_try_set_mwi — enables memory-write-invalidate PCI transaction

Synopsis

int pci_try_set_mwi (struct pci_dev * dev);

Arguments

dev the PCI device for which MWI is enabled

Description

Enables the Memory-Write-Invalidate transaction in PCI_COMMAND. Callers are not required to check
the return value.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

464

Hardware Interfaces

Name
pci_clear_mwi — disables Memory-Write-Invalidate for device dev

Synopsis

void pci_clear_mwi (struct pci_dev * dev);

Arguments

dev the PCI device to disable

Description

Disables PCI Memory-Write-Invalidate transaction on the device

465

Hardware Interfaces

Name
pci_intx — enables/disables PCI INTx for device dev

Synopsis

void pci_intx (struct pci_dev * pdev, int enable);

Arguments

pdev the PCI device to operate on

enable boolean: whether to enable or disable PCI INTx

Description

Enables/disables PCI INTx for device dev

466

Hardware Interfaces

Name
pci_intx_mask_supported — probe for INTx masking support

Synopsis

bool pci_intx_mask_supported (struct pci_dev * dev);

Arguments

dev the PCI device to operate on

Description

Check if the device dev support INTx masking via the config space command word.

467

Hardware Interfaces

Name
pci_check_and_mask_intx — mask INTx on pending interrupt

Synopsis

bool pci_check_and_mask_intx (struct pci_dev * dev);

Arguments

dev the PCI device to operate on

Description

Check if the device dev has its INTx line asserted, mask it and return true in that case. False is returned
if not interrupt was pending.

468

Hardware Interfaces

Name
pci_check_and_unmask_intx — unmask INTx if no interrupt is pending

Synopsis

bool pci_check_and_unmask_intx (struct pci_dev * dev);

Arguments

dev the PCI device to operate on

Description

Check if the device dev has its INTx line asserted, unmask it if not and return true. False is returned and
the mask remains active if there was still an interrupt pending.

469

Hardware Interfaces

Name
pci_wait_for_pending_transaction — waits for pending transaction

Synopsis

int pci_wait_for_pending_transaction (struct pci_dev * dev);

Arguments

dev the PCI device to operate on

Description

Return 0 if transaction is pending 1 otherwise.

470

Hardware Interfaces

Name
pci_reset_bridge_secondary_bus — Reset the secondary bus on a PCI bridge.

Synopsis

void pci_reset_bridge_secondary_bus (struct pci_dev * dev);

Arguments

dev Bridge device

Description

Use the bridge control register to assert reset on the secondary bus. Devices on the secondary bus are left
in power-on state.

471

Hardware Interfaces

Name
__pci_reset_function — reset a PCI device function

Synopsis

int __pci_reset_function (struct pci_dev * dev);

Arguments

dev PCI device to reset

Description

Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.

The device function is presumed to be unused when this function is called. Resetting the device will make
the contents of PCI configuration space random, so any caller of this must be prepared to reinitialise the
device including MSI, bus mastering, BARs, decoding IO and memory spaces, etc.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
a single function.

472

Hardware Interfaces

Name
__pci_reset_function_locked — reset a PCI device function while holding the dev mutex lock.

Synopsis

int __pci_reset_function_locked (struct pci_dev * dev);

Arguments

dev PCI device to reset

Description

Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.

The device function is presumed to be unused and the caller is holding the device mutex lock when this
function is called. Resetting the device will make the contents of PCI configuration space random, so any
caller of this must be prepared to reinitialise the device including MSI, bus mastering, BARs, decoding
IO and memory spaces, etc.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
a single function.

473

Hardware Interfaces

Name
pci_reset_function — quiesce and reset a PCI device function

Synopsis

int pci_reset_function (struct pci_dev * dev);

Arguments

dev PCI device to reset

Description

Some devices allow an individual function to be reset without affecting other functions in the same device.
The PCI device must be responsive to PCI config space in order to use this function.

This function does not just reset the PCI portion of a device, but clears all the state associated with the
device. This function differs from __pci_reset_function in that it saves and restores device state over the
reset.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
a single function.

474

Hardware Interfaces

Name
pci_try_reset_function — quiesce and reset a PCI device function

Synopsis

int pci_try_reset_function (struct pci_dev * dev);

Arguments

dev PCI device to reset

Description

Same as above, except return -EAGAIN if unable to lock device.

475

Hardware Interfaces

Name
pci_probe_reset_slot — probe whether a PCI slot can be reset

Synopsis

int pci_probe_reset_slot (struct pci_slot * slot);

Arguments

slot PCI slot to probe

Description

Return 0 if slot can be reset, negative if a slot reset is not supported.

476

Hardware Interfaces

Name
pci_reset_slot — reset a PCI slot

Synopsis

int pci_reset_slot (struct pci_slot * slot);

Arguments

slot PCI slot to reset

Description

A PCI bus may host multiple slots, each slot may support a reset mechanism independent of other slots.
For instance, some slots may support slot power control. In the case of a 1:1 bus to slot architecture, this
function may wrap the bus reset to avoid spurious slot related events such as hotplug. Generally a slot reset
should be attempted before a bus reset. All of the function of the slot and any subordinate buses behind
the slot are reset through this function. PCI config space of all devices in the slot and behind the slot is
saved before and restored after reset.

Return 0 on success, non-zero on error.

477

Hardware Interfaces

Name
pci_try_reset_slot — Try to reset a PCI slot

Synopsis

int pci_try_reset_slot (struct pci_slot * slot);

Arguments

slot PCI slot to reset

Description

Same as above except return -EAGAIN if the slot cannot be locked

478

Hardware Interfaces

Name
pci_probe_reset_bus — probe whether a PCI bus can be reset

Synopsis

int pci_probe_reset_bus (struct pci_bus * bus);

Arguments

bus PCI bus to probe

Description

Return 0 if bus can be reset, negative if a bus reset is not supported.

479

Hardware Interfaces

Name
pci_reset_bus — reset a PCI bus

Synopsis

int pci_reset_bus (struct pci_bus * bus);

Arguments

bus top level PCI bus to reset

Description

Do a bus reset on the given bus and any subordinate buses, saving and restoring state of all devices.

Return 0 on success, non-zero on error.

480

Hardware Interfaces

Name
pci_try_reset_bus — Try to reset a PCI bus

Synopsis

int pci_try_reset_bus (struct pci_bus * bus);

Arguments

bus top level PCI bus to reset

Description

Same as above except return -EAGAIN if the bus cannot be locked

481

Hardware Interfaces

Name
pcix_get_max_mmrbc — get PCI-X maximum designed memory read byte count

Synopsis

int pcix_get_max_mmrbc (struct pci_dev * dev);

Arguments

dev PCI device to query

Returns mmrbc

maximum designed memory read count in bytes or appropriate error value.

482

Hardware Interfaces

Name
pcix_get_mmrbc — get PCI-X maximum memory read byte count

Synopsis

int pcix_get_mmrbc (struct pci_dev * dev);

Arguments

dev PCI device to query

Returns mmrbc

maximum memory read count in bytes or appropriate error value.

483

Hardware Interfaces

Name
pcix_set_mmrbc — set PCI-X maximum memory read byte count

Synopsis

int pcix_set_mmrbc (struct pci_dev * dev, int mmrbc);

Arguments

dev PCI device to query

mmrbc maximum memory read count in bytes valid values are 512, 1024, 2048, 4096

Description

If possible sets maximum memory read byte count, some bridges have erratas that prevent this.

484

Hardware Interfaces

Name
pcie_get_readrq — get PCI Express read request size

Synopsis

int pcie_get_readrq (struct pci_dev * dev);

Arguments

dev PCI device to query

Description

Returns maximum memory read request in bytes or appropriate error value.

485

Hardware Interfaces

Name
pcie_set_readrq — set PCI Express maximum memory read request

Synopsis

int pcie_set_readrq (struct pci_dev * dev, int rq);

Arguments

dev PCI device to query

rq maximum memory read count in bytes valid values are 128, 256, 512, 1024, 2048, 4096

Description

If possible sets maximum memory read request in bytes

486

Hardware Interfaces

Name
pcie_get_mps — get PCI Express maximum payload size

Synopsis

int pcie_get_mps (struct pci_dev * dev);

Arguments

dev PCI device to query

Description

Returns maximum payload size in bytes

487

Hardware Interfaces

Name
pcie_set_mps — set PCI Express maximum payload size

Synopsis

int pcie_set_mps (struct pci_dev * dev, int mps);

Arguments

dev PCI device to query

mps maximum payload size in bytes valid values are 128, 256, 512, 1024, 2048, 4096

Description

If possible sets maximum payload size

488

Hardware Interfaces

Name
pcie_get_minimum_link — determine minimum link settings of a PCI device

Synopsis

int pcie_get_minimum_link (struct pci_dev * dev, enum pci_bus_speed *
speed, enum pcie_link_width * width);

Arguments

dev PCI device to query

speed storage for minimum speed

width storage for minimum width

Description

This function will walk up the PCI device chain and determine the minimum link width and speed of the
device.

489

Hardware Interfaces

Name
pci_select_bars — Make BAR mask from the type of resource

Synopsis

int pci_select_bars (struct pci_dev * dev, unsigned long flags);

Arguments

dev the PCI device for which BAR mask is made

flags resource type mask to be selected

Description

This helper routine makes bar mask from the type of resource.

490

Hardware Interfaces

Name
pci_add_dynid — add a new PCI device ID to this driver and re-probe devices

Synopsis

int pci_add_dynid (struct pci_driver * drv, unsigned int vendor, unsigned
int device, unsigned int subvendor, unsigned int subdevice, unsigned
int class, unsigned int class_mask, unsigned long driver_data);

Arguments

drv target pci driver

vendor PCI vendor ID

device PCI device ID

subvendor PCI subvendor ID

subdevice PCI subdevice ID

class PCI class

class_mask PCI class mask

driver_data private driver data

Description

Adds a new dynamic pci device ID to this driver and causes the driver to probe for all devices again. drv
must have been registered prior to calling this function.

CONTEXT

Does GFP_KERNEL allocation.

RETURNS

0 on success, -errno on failure.

491

Hardware Interfaces

Name
pci_match_id — See if a pci device matches a given pci_id table

Synopsis

const struct pci_device_id * pci_match_id (const struct pci_device_id
* ids, struct pci_dev * dev);

Arguments

ids array of PCI device id structures to search in

dev the PCI device structure to match against.

Description

Used by a driver to check whether a PCI device present in the system is in its list of supported devices.
Returns the matching pci_device_id structure or NULL if there is no match.

Deprecated, don't use this as it will not catch any dynamic ids that a driver might want to check for.

492

Hardware Interfaces

Name
__pci_register_driver — register a new pci driver

Synopsis

int __pci_register_driver (struct pci_driver * drv, struct module *
owner, const char * mod_name);

Arguments

drv the driver structure to register

owner owner module of drv

mod_name module name string

Description

Adds the driver structure to the list of registered drivers. Returns a negative value on error, otherwise 0. If
no error occurred, the driver remains registered even if no device was claimed during registration.

493

Hardware Interfaces

Name
pci_unregister_driver — unregister a pci driver

Synopsis

void pci_unregister_driver (struct pci_driver * drv);

Arguments

drv the driver structure to unregister

Description

Deletes the driver structure from the list of registered PCI drivers, gives it a chance to clean up by calling
its remove function for each device it was responsible for, and marks those devices as driverless.

494

Hardware Interfaces

Name
pci_dev_driver — get the pci_driver of a device

Synopsis

struct pci_driver * pci_dev_driver (const struct pci_dev * dev);

Arguments

dev the device to query

Description

Returns the appropriate pci_driver structure or NULL if there is no registered driver for the device.

495

Hardware Interfaces

Name
pci_dev_get — increments the reference count of the pci device structure

Synopsis

struct pci_dev * pci_dev_get (struct pci_dev * dev);

Arguments

dev the device being referenced

Description

Each live reference to a device should be refcounted.

Drivers for PCI devices should normally record such references in their probe methods, when they bind
to a device, and release them by calling pci_dev_put, in their disconnect methods.

A pointer to the device with the incremented reference counter is returned.

496

Hardware Interfaces

Name
pci_dev_put — release a use of the pci device structure

Synopsis

void pci_dev_put (struct pci_dev * dev);

Arguments

dev device that's been disconnected

Description

Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the device is freed.

497

Hardware Interfaces

Name
pci_stop_and_remove_bus_device — remove a PCI device and any children

Synopsis

void pci_stop_and_remove_bus_device (struct pci_dev * dev);

Arguments

dev the device to remove

Description

Remove a PCI device from the device lists, informing the drivers that the device has been removed. We
also remove any subordinate buses and children in a depth-first manner.

For each device we remove, delete the device structure from the device lists, remove the /proc entry, and
notify userspace (/sbin/hotplug).

498

Hardware Interfaces

Name
pci_find_bus — locate PCI bus from a given domain and bus number

Synopsis

struct pci_bus * pci_find_bus (int domain, int busnr);

Arguments

domain number of PCI domain to search

busnr number of desired PCI bus

Description

Given a PCI bus number and domain number, the desired PCI bus is located in the global list of PCI buses.
If the bus is found, a pointer to its data structure is returned. If no bus is found, NULL is returned.

499

Hardware Interfaces

Name
pci_find_next_bus — begin or continue searching for a PCI bus

Synopsis

struct pci_bus * pci_find_next_bus (const struct pci_bus * from);

Arguments

from Previous PCI bus found, or NULL for new search.

Description

Iterates through the list of known PCI buses. A new search is initiated by passing NULL as the from
argument. Otherwise if from is not NULL, searches continue from next device on the global list.

500

Hardware Interfaces

Name
pci_get_slot — locate PCI device for a given PCI slot

Synopsis

struct pci_dev * pci_get_slot (struct pci_bus * bus, unsigned int devfn);

Arguments

bus PCI bus on which desired PCI device resides

devfn encodes number of PCI slot in which the desired PCI device resides and the logical device
number within that slot in case of multi-function devices.

Description

Given a PCI bus and slot/function number, the desired PCI device is located in the list of PCI devices. If
the device is found, its reference count is increased and this function returns a pointer to its data structure.
The caller must decrement the reference count by calling pci_dev_put. If no device is found, NULL
is returned.

501

Hardware Interfaces

Name
pci_get_domain_bus_and_slot — locate PCI device for a given PCI domain (segment), bus, and slot

Synopsis

struct pci_dev * pci_get_domain_bus_and_slot (int domain, unsigned int
bus, unsigned int devfn);

Arguments

domain PCI domain/segment on which the PCI device resides.

bus PCI bus on which desired PCI device resides

devfn encodes number of PCI slot in which the desired PCI device resides and the logical device
number within that slot in case of multi-function devices.

Description

Given a PCI domain, bus, and slot/function number, the desired PCI device is located in the list of PCI
devices. If the device is found, its reference count is increased and this function returns a pointer to its
data structure. The caller must decrement the reference count by calling pci_dev_put. If no device is
found, NULL is returned.

502

Hardware Interfaces

Name
pci_get_subsys — begin or continue searching for a PCI device by vendor/subvendor/device/subdevice id

Synopsis

struct pci_dev * pci_get_subsys (unsigned int vendor, unsigned int
device, unsigned int ss_vendor, unsigned int ss_device, struct pci_dev
* from);

Arguments

vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor ids

device PCI device id to match, or PCI_ANY_ID to match all device ids

ss_vendor PCI subsystem vendor id to match, or PCI_ANY_ID to match all vendor ids

ss_device PCI subsystem device id to match, or PCI_ANY_ID to match all device ids

from Previous PCI device found in search, or NULL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching vendor, device,
ss_vendor and ss_device, a pointer to its device structure is returned, and the reference count to
the device is incremented. Otherwise, NULL is returned. A new search is initiated by passing NULL as the
from argument. Otherwise if from is not NULL, searches continue from next device on the global list.
The reference count for from is always decremented if it is not NULL.

503

Hardware Interfaces

Name
pci_get_device — begin or continue searching for a PCI device by vendor/device id

Synopsis

struct pci_dev * pci_get_device (unsigned int vendor, unsigned int
device, struct pci_dev * from);

Arguments

vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor ids

device PCI device id to match, or PCI_ANY_ID to match all device ids

from Previous PCI device found in search, or NULL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching vendor and
device, the reference count to the device is incremented and a pointer to its device structure is returned.
Otherwise, NULL is returned. A new search is initiated by passing NULL as the from argument. Otherwise
if from is not NULL, searches continue from next device on the global list. The reference count for from
is always decremented if it is not NULL.

504

Hardware Interfaces

Name
pci_get_class — begin or continue searching for a PCI device by class

Synopsis

struct pci_dev * pci_get_class (unsigned int class, struct pci_dev *
from);

Arguments

class search for a PCI device with this class designation

from Previous PCI device found in search, or NULL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching class, the
reference count to the device is incremented and a pointer to its device structure is returned. Otherwise,
NULL is returned. A new search is initiated by passing NULL as the from argument. Otherwise if from is
not NULL, searches continue from next device on the global list. The reference count for from is always
decremented if it is not NULL.

505

Hardware Interfaces

Name
pci_dev_present — Returns 1 if device matching the device list is present, 0 if not.

Synopsis

int pci_dev_present (const struct pci_device_id * ids);

Arguments

ids A pointer to a null terminated list of struct pci_device_id structures that describe the type of PCI
device the caller is trying to find.

Obvious fact

You do not have a reference to any device that might be found by this function, so if that device is removed
from the system right after this function is finished, the value will be stale. Use this function to find devices
that are usually built into a system, or for a general hint as to if another device happens to be present at
this specific moment in time.

506

Hardware Interfaces

Name
pci_msi_mask_irq — Generic irq chip callback to mask PCI/MSI interrupts

Synopsis

void pci_msi_mask_irq (struct irq_data * data);

Arguments

data pointer to irqdata associated to that interrupt

507

Hardware Interfaces

Name
pci_msi_unmask_irq — Generic irq chip callback to unmask PCI/MSI interrupts

Synopsis

void pci_msi_unmask_irq (struct irq_data * data);

Arguments

data pointer to irqdata associated to that interrupt

508

Hardware Interfaces

Name
pci_msi_vec_count — Return the number of MSI vectors a device can send

Synopsis

int pci_msi_vec_count (struct pci_dev * dev);

Arguments

dev device to report about

Description

This function returns the number of MSI vectors a device requested via Multiple Message Capable register.
It returns a negative errno if the device is not capable sending MSI interrupts. Otherwise, the call succeeds
and returns a power of two, up to a maximum of 2^5 (32), according to the MSI specification.

509

Hardware Interfaces

Name
pci_msix_vec_count — return the number of device's MSI-X table entries

Synopsis

int pci_msix_vec_count (struct pci_dev * dev);

Arguments

dev pointer to the pci_dev data structure of MSI-X device function This function returns the number
of device's MSI-X table entries and therefore the number of MSI-X vectors device is capable of
sending. It returns a negative errno if the device is not capable of sending MSI-X interrupts.

510

Hardware Interfaces

Name
pci_enable_msix — configure device's MSI-X capability structure

Synopsis

int pci_enable_msix (struct pci_dev * dev, struct msix_entry * entries,
int nvec);

Arguments

dev pointer to the pci_dev data structure of MSI-X device function

entries pointer to an array of MSI-X entries (optional)

nvec number of MSI-X irqs requested for allocation by device driver

Description

Setup the MSI-X capability structure of device function with the number of requested irqs upon its software
driver call to request for MSI-X mode enabled on its hardware device function. A return of zero indicates
the successful configuration of MSI-X capability structure with new allocated MSI-X irqs. A return of < 0
indicates a failure. Or a return of > 0 indicates that driver request is exceeding the number of irqs or MSI-
X vectors available. Driver should use the returned value to re-send its request.

511

Hardware Interfaces

Name
pci_msi_enabled — is MSI enabled?

Synopsis

int pci_msi_enabled (void);

Arguments

void no arguments

Description

Returns true if MSI has not been disabled by the command-line option pci=nomsi.

512

Hardware Interfaces

Name
pci_enable_msi_range — configure device's MSI capability structure

Synopsis

int pci_enable_msi_range (struct pci_dev * dev, int minvec, int maxvec);

Arguments

dev device to configure

minvec minimal number of interrupts to configure

maxvec maximum number of interrupts to configure

Description

This function tries to allocate a maximum possible number of interrupts in a range between minvec
and maxvec. It returns a negative errno if an error occurs. If it succeeds, it returns the actual number
of interrupts allocated and updates the dev's irq member to the lowest new interrupt number; the other
interrupt numbers allocated to this device are consecutive.

513

Hardware Interfaces

Name
pci_enable_msix_range — configure device's MSI-X capability structure

Synopsis

int pci_enable_msix_range (struct pci_dev * dev, struct msix_entry *
entries, int minvec, int maxvec);

Arguments

dev pointer to the pci_dev data structure of MSI-X device function

entries pointer to an array of MSI-X entries

minvec minimum number of MSI-X irqs requested

maxvec maximum number of MSI-X irqs requested

Description

Setup the MSI-X capability structure of device function with a maximum possible number of interrupts in
the range between minvec and maxvec upon its software driver call to request for MSI-X mode enabled
on its hardware device function. It returns a negative errno if an error occurs. If it succeeds, it returns
the actual number of interrupts allocated and indicates the successful configuration of MSI-X capability
structure with new allocated MSI-X interrupts.

514

Hardware Interfaces

Name
pci_alloc_irq_vectors_affinity — allocate multiple IRQs for a device

Synopsis

int pci_alloc_irq_vectors_affinity (struct pci_dev * dev, unsigned int
min_vecs, unsigned int max_vecs, unsigned int flags, const struct
irq_affinity * affd);

Arguments

dev PCI device to operate on

min_vecs minimum number of vectors required (must be >= 1)

max_vecs maximum (desired) number of vectors

flags flags or quirks for the allocation

affd optional description of the affinity requirements

Description

Allocate up to max_vecs interrupt vectors for dev, using MSI-X or MSI vectors if available, and fall
back to a single legacy vector if neither is available. Return the number of vectors allocated, (which might
be smaller than max_vecs) if successful, or a negative error code on error. If less than min_vecs
interrupt vectors are available for dev the function will fail with -ENOSPC.

To get the Linux IRQ number used for a vector that can be passed to request_irq use the
pci_irq_vector helper.

515

Hardware Interfaces

Name
pci_free_irq_vectors — free previously allocated IRQs for a device

Synopsis

void pci_free_irq_vectors (struct pci_dev * dev);

Arguments

dev PCI device to operate on

Description

Undoes the allocations and enabling in pci_alloc_irq_vectors.

516

Hardware Interfaces

Name
pci_irq_vector — return Linux IRQ number of a device vector

Synopsis

int pci_irq_vector (struct pci_dev * dev, unsigned int nr);

Arguments

dev PCI device to operate on

nr device-relative interrupt vector index (0-based).

517

Hardware Interfaces

Name
pci_irq_get_affinity — return the affinity of a particular msi vector

Synopsis

const struct cpumask * pci_irq_get_affinity (struct pci_dev * dev, int
nr);

Arguments

dev PCI device to operate on

nr device-relative interrupt vector index (0-based).

518

Hardware Interfaces

Name
pci_msi_create_irq_domain — Create a MSI interrupt domain

Synopsis

struct irq_domain * pci_msi_create_irq_domain (struct fwnode_handle *
fwnode, struct msi_domain_info * info, struct irq_domain * parent);

Arguments

fwnode Optional fwnode of the interrupt controller

info MSI domain info

parent Parent irq domain

Description

Updates the domain and chip ops and creates a MSI interrupt domain.

Returns

A domain pointer or NULL in case of failure.

519

Hardware Interfaces

Name
pci_bus_alloc_resource — allocate a resource from a parent bus

Synopsis

int pci_bus_alloc_resource (struct pci_bus * bus, struct resource *
res, resource_size_t size, resource_size_t align, resource_size_t min,
unsigned long type_mask, resource_size_t (*alignf) (void *, const struct
resource *, resource_size_t, resource_size_t), void * alignf_data);

Arguments

bus PCI bus

res resource to allocate

size size of resource to allocate

align alignment of resource to allocate

min minimum /proc/iomem address to allocate

type_mask IORESOURCE_* type flags

alignf resource alignment function

alignf_data data argument for resource alignment function

Description

Given the PCI bus a device resides on, the size, minimum address, alignment and type, try to find an
acceptable resource allocation for a specific device resource.

520

Hardware Interfaces

Name
pci_bus_add_device — start driver for a single device

Synopsis

void pci_bus_add_device (struct pci_dev * dev);

Arguments

dev device to add

Description

This adds add sysfs entries and start device drivers

521

Hardware Interfaces

Name
pci_bus_add_devices — start driver for PCI devices

Synopsis

void pci_bus_add_devices (const struct pci_bus * bus);

Arguments

bus bus to check for new devices

Description

Start driver for PCI devices and add some sysfs entries.

522

Hardware Interfaces

Name
pci_bus_set_ops — Set raw operations of pci bus

Synopsis

struct pci_ops * pci_bus_set_ops (struct pci_bus * bus, struct pci_ops
* ops);

Arguments

bus pci bus struct

ops new raw operations

Description

Return previous raw operations

523

Hardware Interfaces

Name
pci_read_vpd — Read one entry from Vital Product Data

Synopsis

ssize_t pci_read_vpd (struct pci_dev * dev, loff_t pos, size_t count,
void * buf);

Arguments

dev pci device struct

pos offset in vpd space

count number of bytes to read

buf pointer to where to store result

524

Hardware Interfaces

Name
pci_write_vpd — Write entry to Vital Product Data

Synopsis

ssize_t pci_write_vpd (struct pci_dev * dev, loff_t pos, size_t count,
const void * buf);

Arguments

dev pci device struct

pos offset in vpd space

count number of bytes to write

buf buffer containing write data

525

Hardware Interfaces

Name
pci_set_vpd_size — Set size of Vital Product Data space

Synopsis

int pci_set_vpd_size (struct pci_dev * dev, size_t len);

Arguments

dev pci device struct

len size of vpd space

526

Hardware Interfaces

Name
pci_cfg_access_lock — Lock PCI config reads/writes

Synopsis

void pci_cfg_access_lock (struct pci_dev * dev);

Arguments

dev pci device struct

Description

When access is locked, any userspace reads or writes to config space and concurrent lock requests will
sleep until access is allowed via pci_cfg_access_unlocked again.

527

Hardware Interfaces

Name
pci_cfg_access_trylock — try to lock PCI config reads/writes

Synopsis

bool pci_cfg_access_trylock (struct pci_dev * dev);

Arguments

dev pci device struct

Description

Same as pci_cfg_access_lock, but will return 0 if access is already locked, 1 otherwise. This function can
be used from atomic contexts.

528

Hardware Interfaces

Name
pci_cfg_access_unlock — Unlock PCI config reads/writes

Synopsis

void pci_cfg_access_unlock (struct pci_dev * dev);

Arguments

dev pci device struct

Description

This function allows PCI config accesses to resume.

529

Hardware Interfaces

Name
pci_lost_interrupt — reports a lost PCI interrupt

Synopsis

enum pci_lost_interrupt_reason pci_lost_interrupt (struct pci_dev *
pdev);

Arguments

pdev device whose interrupt is lost

Description

The primary function of this routine is to report a lost interrupt in a standard way which users can recognise
(instead of blaming the driver).

Returns

a suggestion for fixing it (although the driver is not required to act on this).

530

Hardware Interfaces

Name
__ht_create_irq — create an irq and attach it to a device.

Synopsis

int __ht_create_irq (struct pci_dev * dev, int idx, ht_irq_update_t *
update);

Arguments

dev The hypertransport device to find the irq capability on.

idx Which of the possible irqs to attach to.

update Function to be called when changing the htirq message

Description

The irq number of the new irq or a negative error value is returned.

531

Hardware Interfaces

Name
ht_create_irq — create an irq and attach it to a device.

Synopsis

int ht_create_irq (struct pci_dev * dev, int idx);

Arguments

dev The hypertransport device to find the irq capability on.

idx Which of the possible irqs to attach to.

Description

ht_create_irq needs to be called for all hypertransport devices that generate irqs.

The irq number of the new irq or a negative error value is returned.

532

Hardware Interfaces

Name
ht_destroy_irq — destroy an irq created with ht_create_irq

Synopsis

void ht_destroy_irq (unsigned int irq);

Arguments

irq irq to be destroyed

Description

This reverses ht_create_irq removing the specified irq from existence. The irq should be free before this
happens.

533

Hardware Interfaces

Name
pci_scan_slot — scan a PCI slot on a bus for devices.

Synopsis

int pci_scan_slot (struct pci_bus * bus, int devfn);

Arguments

bus PCI bus to scan

devfn slot number to scan (must have zero function.)

Description

Scan a PCI slot on the specified PCI bus for devices, adding discovered devices to the bus->devices list.
New devices will not have is_added set.

Returns the number of new devices found.

534

Hardware Interfaces

Name
pci_rescan_bus — scan a PCI bus for devices.

Synopsis

unsigned int pci_rescan_bus (struct pci_bus * bus);

Arguments

bus PCI bus to scan

Description

Scan a PCI bus and child buses for new devices, adds them, and enables them.

Returns the max number of subordinate bus discovered.

535

Hardware Interfaces

Name
pci_create_slot — create or increment refcount for physical PCI slot

Synopsis

struct pci_slot * pci_create_slot (struct pci_bus * parent, int slot_nr,
const char * name, struct hotplug_slot * hotplug);

Arguments

parent struct pci_bus of parent bridge

slot_nr PCI_SLOT(pci_dev->devfn) or -1 for placeholder

name user visible string presented in /sys/bus/pci/slots/<name>

hotplug set if caller is hotplug driver, NULL otherwise

Description

PCI slots have first class attributes such as address, speed, width, and a struct pci_slot is used to manage
them. This interface will either return a new struct pci_slot to the caller, or if the pci_slot already exists,
its refcount will be incremented.

Slots are uniquely identified by a pci_bus, slot_nr tuple.

There are known platforms with broken firmware that assign the same name to multiple slots. Workaround
these broken platforms by renaming the slots on behalf of the caller. If firmware assigns name N to

multiple slots

The first slot is assigned N The second slot is assigned N-1 The third slot is assigned N-2 etc.

Placeholder slots

In most cases, pci_bus, slot_nr will be sufficient to uniquely identify a slot. There is one notable
exception - pSeries (rpaphp), where the slot_nr cannot be determined until a device is actually inserted
into the slot. In this scenario, the caller may pass -1 for slot_nr.

The following semantics are imposed when the caller passes slot_nr == -1. First, we no longer check
for an existing struct pci_slot, as there may be many slots with slot_nr of -1. The other change in
semantics is user-visible, which is the 'address' parameter presented in sysfs will

consist solely of a dddd

bb tuple, where dddd is the PCI domain of the struct pci_bus and bb is the bus number. In other words,
the devfn of the 'placeholder' slot will not be displayed.

536

Hardware Interfaces

Name
pci_destroy_slot — decrement refcount for physical PCI slot

Synopsis

void pci_destroy_slot (struct pci_slot * slot);

Arguments

slot struct pci_slot to decrement

Description

struct pci_slot is refcounted, so destroying them is really easy; we just call kobject_put on its kobj and
let our release methods do the rest.

537

Hardware Interfaces

Name
pci_hp_create_module_link — create symbolic link to the hotplug driver module.

Synopsis

void pci_hp_create_module_link (struct pci_slot * pci_slot);

Arguments

pci_slot struct pci_slot

Description

Helper function for pci_hotplug_core.c to create symbolic link to the hotplug driver module.

538

Hardware Interfaces

Name
pci_hp_remove_module_link — remove symbolic link to the hotplug driver module.

Synopsis

void pci_hp_remove_module_link (struct pci_slot * pci_slot);

Arguments

pci_slot struct pci_slot

Description

Helper function for pci_hotplug_core.c to remove symbolic link to the hotplug driver module.

539

Hardware Interfaces

Name
pci_enable_rom — enable ROM decoding for a PCI device

Synopsis

int pci_enable_rom (struct pci_dev * pdev);

Arguments

pdev PCI device to enable

Description

Enable ROM decoding on dev. This involves simply turning on the last bit of the PCI ROM BAR. Note
that some cards may share address decoders between the ROM and other resources, so enabling it may
disable access to MMIO registers or other card memory.

540

Hardware Interfaces

Name
pci_disable_rom — disable ROM decoding for a PCI device

Synopsis

void pci_disable_rom (struct pci_dev * pdev);

Arguments

pdev PCI device to disable

Description

Disable ROM decoding on a PCI device by turning off the last bit in the ROM BAR.

541

Hardware Interfaces

Name
pci_map_rom — map a PCI ROM to kernel space

Synopsis

void __iomem * pci_map_rom (struct pci_dev * pdev, size_t * size);

Arguments

pdev pointer to pci device struct

size pointer to receive size of pci window over ROM

Return

kernel virtual pointer to image of ROM

Map a PCI ROM into kernel space. If ROM is boot video ROM, the shadow BIOS copy will be returned
instead of the actual ROM.

542

Hardware Interfaces

Name
pci_unmap_rom — unmap the ROM from kernel space

Synopsis

void pci_unmap_rom (struct pci_dev * pdev, void __iomem * rom);

Arguments

pdev pointer to pci device struct

rom virtual address of the previous mapping

Description

Remove a mapping of a previously mapped ROM

543

Hardware Interfaces

Name
pci_platform_rom — provides a pointer to any ROM image provided by the platform

Synopsis

void __iomem * pci_platform_rom (struct pci_dev * pdev, size_t * size);

Arguments

pdev pointer to pci device struct

size pointer to receive size of pci window over ROM

544

Hardware Interfaces

Name
pci_enable_sriov — enable the SR-IOV capability

Synopsis

int pci_enable_sriov (struct pci_dev * dev, int nr_virtfn);

Arguments

dev the PCI device

nr_virtfn number of virtual functions to enable

Description

Returns 0 on success, or negative on failure.

545

Hardware Interfaces

Name
pci_disable_sriov — disable the SR-IOV capability

Synopsis

void pci_disable_sriov (struct pci_dev * dev);

Arguments

dev the PCI device

546

Hardware Interfaces

Name
pci_num_vf — return number of VFs associated with a PF device_release_driver

Synopsis

int pci_num_vf (struct pci_dev * dev);

Arguments

dev the PCI device

Description

Returns number of VFs, or 0 if SR-IOV is not enabled.

547

Hardware Interfaces

Name
pci_vfs_assigned — returns number of VFs are assigned to a guest

Synopsis

int pci_vfs_assigned (struct pci_dev * dev);

Arguments

dev the PCI device

Description

Returns number of VFs belonging to this device that are assigned to a guest. If device is not a physical
function returns 0.

548

Hardware Interfaces

Name
pci_sriov_set_totalvfs — - reduce the TotalVFs available

Synopsis

int pci_sriov_set_totalvfs (struct pci_dev * dev, u16 numvfs);

Arguments

dev the PCI PF device

numvfs number that should be used for TotalVFs supported

Description

Should be called from PF driver's probe routine with device's mutex held.

Returns 0 if PF is an SRIOV-capable device and value of numvfs valid. If not a PF return -ENOSYS; if
numvfs is invalid return -EINVAL; if VFs already enabled, return -EBUSY.

549

Hardware Interfaces

Name
pci_sriov_get_totalvfs — - get total VFs supported on this device

Synopsis

int pci_sriov_get_totalvfs (struct pci_dev * dev);

Arguments

dev the PCI PF device

Description

For a PCIe device with SRIOV support, return the PCIe SRIOV capability value of TotalVFs or the value
of driver_max_VFs if the driver reduced it. Otherwise 0.

550

Hardware Interfaces

Name
pci_read_legacy_io — read byte(s) from legacy I/O port space

Synopsis

ssize_t pci_read_legacy_io (struct file * filp, struct kobject * kobj,
struct bin_attribute * bin_attr, char * buf, loff_t off, size_t count);

Arguments

filp open sysfs file

kobj kobject corresponding to file to read from

bin_attr struct bin_attribute for this file

buf buffer to store results

off offset into legacy I/O port space

count number of bytes to read

Description

Reads 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback routine (pci_legacy_read).

551

Hardware Interfaces

Name
pci_write_legacy_io — write byte(s) to legacy I/O port space

Synopsis

ssize_t pci_write_legacy_io (struct file * filp, struct kobject * kobj,
struct bin_attribute * bin_attr, char * buf, loff_t off, size_t count);

Arguments

filp open sysfs file

kobj kobject corresponding to file to read from

bin_attr struct bin_attribute for this file

buf buffer containing value to be written

off offset into legacy I/O port space

count number of bytes to write

Description

Writes 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback routine (pci_lega-
cy_write).

552

Hardware Interfaces

Name
pci_mmap_legacy_mem — map legacy PCI memory into user memory space

Synopsis

int pci_mmap_legacy_mem (struct file * filp, struct kobject * kobj,
struct bin_attribute * attr, struct vm_area_struct * vma);

Arguments

filp open sysfs file

kobj kobject corresponding to device to be mapped

attr struct bin_attribute for this file

vma struct vm_area_struct passed to mmap

Description

Uses an arch specific callback, pci_mmap_legacy_mem_page_range, to mmap legacy memory space (first
meg of bus space) into application virtual memory space.

553

Hardware Interfaces

Name
pci_mmap_legacy_io — map legacy PCI IO into user memory space

Synopsis

int pci_mmap_legacy_io (struct file * filp, struct kobject * kobj,
struct bin_attribute * attr, struct vm_area_struct * vma);

Arguments

filp open sysfs file

kobj kobject corresponding to device to be mapped

attr struct bin_attribute for this file

vma struct vm_area_struct passed to mmap

Description

Uses an arch specific callback, pci_mmap_legacy_io_page_range, to mmap legacy IO space (first meg of
bus space) into application virtual memory space. Returns -ENOSYS if the operation isn't supported

554

Hardware Interfaces

Name
pci_adjust_legacy_attr — adjustment of legacy file attributes

Synopsis

void pci_adjust_legacy_attr (struct pci_bus * b, enum pci_mmap_state
mmap_type);

Arguments

b bus to create files under

mmap_type I/O port or memory

Description

Stub implementation. Can be overridden by arch if necessary.

555

Hardware Interfaces

Name
pci_create_legacy_files — create legacy I/O port and memory files

Synopsis

void pci_create_legacy_files (struct pci_bus * b);

Arguments

b bus to create files under

Description

Some platforms allow access to legacy I/O port and ISA memory space on a per-bus basis. This routine
creates the files and ties them into their associated read, write and mmap files from pci-sysfs.c

On error unwind, but don't propagate the error to the caller as it is ok to set up the PCI bus without these
files.

556

Hardware Interfaces

Name
pci_mmap_resource — map a PCI resource into user memory space

Synopsis

int pci_mmap_resource (struct kobject * kobj, struct bin_attribute *
attr, struct vm_area_struct * vma, int write_combine);

Arguments

kobj kobject for mapping

attr struct bin_attribute for the file being mapped

vma struct vm_area_struct passed into the mmap

write_combine 1 for write_combine mapping

Description

Use the regular PCI mapping routines to map a PCI resource into userspace.

557

Hardware Interfaces

Name
pci_remove_resource_files — cleanup resource files

Synopsis

void pci_remove_resource_files (struct pci_dev * pdev);

Arguments

pdev dev to cleanup

Description

If we created resource files for pdev, remove them from sysfs and free their resources.

558

Hardware Interfaces

Name
pci_create_resource_files — create resource files in sysfs for dev

Synopsis

int pci_create_resource_files (struct pci_dev * pdev);

Arguments

pdev dev in question

Description

Walk the resources in pdev creating files for each resource available.

559

Hardware Interfaces

Name
pci_write_rom — used to enable access to the PCI ROM display

Synopsis

ssize_t pci_write_rom (struct file * filp, struct kobject * kobj, struct
bin_attribute * bin_attr, char * buf, loff_t off, size_t count);

Arguments

filp sysfs file

kobj kernel object handle

bin_attr struct bin_attribute for this file

buf user input

off file offset

count number of byte in input

Description

writing anything except 0 enables it

560

Hardware Interfaces

Name
pci_read_rom — read a PCI ROM

Synopsis

ssize_t pci_read_rom (struct file * filp, struct kobject * kobj, struct
bin_attribute * bin_attr, char * buf, loff_t off, size_t count);

Arguments

filp sysfs file

kobj kernel object handle

bin_attr struct bin_attribute for this file

buf where to put the data we read from the ROM

off file offset

count number of bytes to read

Description

Put count bytes starting at off into buf from the ROM in the PCI device corresponding to kobj.

561

Hardware Interfaces

Name
pci_remove_sysfs_dev_files — cleanup PCI specific sysfs files

Synopsis

void pci_remove_sysfs_dev_files (struct pci_dev * pdev);

Arguments

pdev device whose entries we should free

Description

Cleanup when pdev is removed from sysfs.

PCI Hotplug Support Library

562

Hardware Interfaces

Name
__pci_hp_register — register a hotplug_slot with the PCI hotplug subsystem

Synopsis

int __pci_hp_register (struct hotplug_slot * slot, struct pci_bus *
bus, int devnr, const char * name, struct module * owner, const char
* mod_name);

Arguments

slot pointer to the struct hotplug_slot to register

bus bus this slot is on

devnr device number

name name registered with kobject core

owner caller module owner

mod_name caller module name

Description

Registers a hotplug slot with the pci hotplug subsystem, which will allow userspace interaction to the slot.

Returns 0 if successful, anything else for an error.

563

Hardware Interfaces

Name
pci_hp_deregister — deregister a hotplug_slot with the PCI hotplug subsystem

Synopsis

int pci_hp_deregister (struct hotplug_slot * slot);

Arguments

slot pointer to the struct hotplug_slot to deregister

Description

The slot must have been registered with the pci hotplug subsystem previously with a call to pci_h-
p_register.

Returns 0 if successful, anything else for an error.

564

Hardware Interfaces

Name
pci_hp_change_slot_info — changes the slot's information structure in the core

Synopsis

int pci_hp_change_slot_info (struct hotplug_slot * slot, struct hot-
plug_slot_info * info);

Arguments

slot pointer to the slot whose info has changed

info pointer to the info copy into the slot's info structure

Description

slot must have been registered with the pci hotplug subsystem previously with a call to pci_hp_reg-
ister.

Returns 0 if successful, anything else for an error.

565

Chapter 10. Firmware Interfaces
DMI Interfaces

566

Firmware Interfaces

Name
dmi_check_system — check system DMI data

Synopsis

int dmi_check_system (const struct dmi_system_id * list);

Arguments

list array of dmi_system_id structures to match against All non-null elements of the list must match
their slot's (field index's) data (i.e., each list string must be a substring of the specified DMI slot's
string data) to be considered a successful match.

Description

Walk the blacklist table running matching functions until someone returns non zero or we hit the end.
Callback function is called for each successful match. Returns the number of matches.

567

Firmware Interfaces

Name
dmi_first_match — find dmi_system_id structure matching system DMI data

Synopsis

const struct dmi_system_id * dmi_first_match (const struct dmi_system_id
* list);

Arguments

list array of dmi_system_id structures to match against All non-null elements of the list must match
their slot's (field index's) data (i.e., each list string must be a substring of the specified DMI slot's
string data) to be considered a successful match.

Description

Walk the blacklist table until the first match is found. Return the pointer to the matching entry or NULL
if there's no match.

568

Firmware Interfaces

Name
dmi_get_system_info — return DMI data value

Synopsis

const char * dmi_get_system_info (int field);

Arguments

field data index (see enum dmi_field)

Description

Returns one DMI data value, can be used to perform complex DMI data checks.

569

Firmware Interfaces

Name
dmi_name_in_vendors — Check if string is in the DMI system or board vendor name

Synopsis

int dmi_name_in_vendors (const char * str);

Arguments

str Case sensitive Name

570

Firmware Interfaces

Name
dmi_find_device — find onboard device by type/name

Synopsis

const struct dmi_device * dmi_find_device (int type, const char * name,
const struct dmi_device * from);

Arguments

type device type or DMI_DEV_TYPE_ANY to match all device types

name device name string or NULL to match all

from previous device found in search, or NULL for new search.

Description

Iterates through the list of known onboard devices. If a device is found with a matching vendor and
device, a pointer to its device structure is returned. Otherwise, NULL is returned. A new search is initiated
by passing NULL as the from argument. If from is not NULL, searches continue from next device.

571

Firmware Interfaces

Name
dmi_get_date — parse a DMI date

Synopsis

bool dmi_get_date (int field, int * yearp, int * monthp, int * dayp);

Arguments

field data index (see enum dmi_field)

yearp optional out parameter for the year

monthp optional out parameter for the month

dayp optional out parameter for the day

Description

The date field is assumed to be in the form resembling [mm[/dd]]/yy[yy] and the result is stored in the out
parameters any or all of which can be omitted.

If the field doesn't exist, all out parameters are set to zero and false is returned. Otherwise, true is returned
with any invalid part of date set to zero.

On return, year, month and day are guaranteed to be in the range of [0,9999], [0,12] and [0,31] respectively.

572

Firmware Interfaces

Name
dmi_walk — Walk the DMI table and get called back for every record

Synopsis

int dmi_walk (void (*decode) (const struct dmi_header *, void *), void
* private_data);

Arguments

decode Callback function

private_data Private data to be passed to the callback function

Description

Returns -1 when the DMI table can't be reached, 0 on success.

573

Firmware Interfaces

Name
dmi_match — compare a string to the dmi field (if exists)

Synopsis

bool dmi_match (enum dmi_field f, const char * str);

Arguments

f DMI field identifier

str string to compare the DMI field to

Description

Returns true if the requested field equals to the str (including NULL).

EDD Interfaces

574

Firmware Interfaces

Name
edd_show_raw_data — copies raw data to buffer for userspace to parse

Synopsis

ssize_t edd_show_raw_data (struct edd_device * edev, char * buf);

Arguments

edev target edd_device

buf output buffer

Returns

number of bytes written, or -EINVAL on failure

575

Firmware Interfaces

Name
edd_release — free edd structure

Synopsis

void edd_release (struct kobject * kobj);

Arguments

kobj kobject of edd structure

Description

This is called when the refcount of the edd structure reaches 0. This should happen right after we unregister,
but just in case, we use the release callback anyway.

576

Firmware Interfaces

Name
edd_dev_is_type — is this EDD device a 'type' device?

Synopsis

int edd_dev_is_type (struct edd_device * edev, const char * type);

Arguments

edev target edd_device

type a host bus or interface identifier string per the EDD spec

Description

Returns 1 (TRUE) if it is a 'type' device, 0 otherwise.

577

Firmware Interfaces

Name
edd_get_pci_dev — finds pci_dev that matches edev

Synopsis

struct pci_dev * edd_get_pci_dev (struct edd_device * edev);

Arguments

edev edd_device

Description

Returns pci_dev if found, or NULL

578

Firmware Interfaces

Name
edd_init — creates sysfs tree of EDD data

Synopsis

int edd_init (void);

Arguments

void no arguments

579

Chapter 11. Security Framework

580

Security Framework

Name
security_init — initializes the security framework

Synopsis
int security_init (void);

Arguments
void no arguments

Description

This should be called early in the kernel initialization sequence.

581

Security Framework

Name
security_module_enable — Load given security module on boot ?

Synopsis
int security_module_enable (const char * module);

Arguments
module the name of the module

Description
Each LSM must pass this method before registering its own operations to avoid security registration races.
This method may also be used to check if your LSM is currently loaded during kernel initialization.

Return true if
-The passed LSM is the one chosen by user at boot time, -or the passed LSM is configured as the default
and the user did not choose an alternate LSM at boot time. Otherwise, return false.

582

Security Framework

Name
securityfs_create_file — create a file in the securityfs filesystem

Synopsis
struct dentry * securityfs_create_file (const char * name, umode_t mode,
struct dentry * parent, void * data, const struct file_operations *
fops);

Arguments
name a pointer to a string containing the name of the file to create.

mode the permission that the file should have

parent a pointer to the parent dentry for this file. This should be a directory dentry if set. If this para-
meter is NULL, then the file will be created in the root of the securityfs filesystem.

data a pointer to something that the caller will want to get to later on. The inode.i_private pointer
will point to this value on the open call.

fops a pointer to a struct file_operations that should be used for this file.

Description
This is the basic “create a file” function for securityfs. It allows for a wide range of flexibility in creating
a file, or a directory (if you want to create a directory, the securityfs_create_dir function is
recommended to be used instead).

This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the securi-
tyfs_remove function when the file is to be removed (no automatic cleanup happens if your module
is unloaded, you are responsible here). If an error occurs, the function will return the error value (via
ERR_PTR).

If securityfs is not enabled in the kernel, the value -ENODEV is returned.

583

Security Framework

Name
securityfs_create_dir — create a directory in the securityfs filesystem

Synopsis
struct dentry * securityfs_create_dir (const char * name, struct dentry
* parent);

Arguments
name a pointer to a string containing the name of the directory to create.

parent a pointer to the parent dentry for this file. This should be a directory dentry if set. If this para-
meter is NULL, then the directory will be created in the root of the securityfs filesystem.

Description
This function creates a directory in securityfs with the given name.

This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the securi-
tyfs_remove function when the file is to be removed (no automatic cleanup happens if your module is
unloaded, you are responsible here). If an error occurs, NULL will be returned.

If securityfs is not enabled in the kernel, the value -ENODEV is returned. It is not wise to check for this
value, but rather, check for NULL or !NULL instead as to eliminate the need for #ifdef in the calling code.

584

Security Framework

Name
securityfs_remove — removes a file or directory from the securityfs filesystem

Synopsis
void securityfs_remove (struct dentry * dentry);

Arguments
dentry a pointer to a the dentry of the file or directory to be removed.

Description
This function removes a file or directory in securityfs that was previously created with a call to another
securityfs function (like securityfs_create_file or variants thereof.)

This function is required to be called in order for the file to be removed. No automatic cleanup of files will
happen when a module is removed; you are responsible here.

585

Chapter 12. Audit Interfaces

586

Audit Interfaces

Name
audit_log_start — obtain an audit buffer

Synopsis
struct audit_buffer * audit_log_start (struct audit_context * ctx, gfp_t
gfp_mask, int type);

Arguments
ctx audit_context (may be NULL)

gfp_mask type of allocation

type audit message type

Description
Returns audit_buffer pointer on success or NULL on error.

Obtain an audit buffer. This routine does locking to obtain the audit buffer, but then no locking is required
for calls to audit_log_*format. If the task (ctx) is a task that is currently in a syscall, then the syscall is
marked as auditable and an audit record will be written at syscall exit. If there is no associated task, then
task context (ctx) should be NULL.

587

Audit Interfaces

Name
audit_log_format — format a message into the audit buffer.

Synopsis
void audit_log_format (struct audit_buffer * ab, const char * fmt, ...);

Arguments
ab audit_buffer

fmt format string @...: optional parameters matching fmt string

... variable arguments

Description
All the work is done in audit_log_vformat.

588

Audit Interfaces

Name
audit_log_end — end one audit record

Synopsis
void audit_log_end (struct audit_buffer * ab);

Arguments
ab the audit_buffer

Description
netlink_unicast cannot be called inside an irq context because it blocks (last arg, flags, is not set to
MSG_DONTWAIT), so the audit buffer is placed on a queue and a tasklet is scheduled to remove them
from the queue outside the irq context. May be called in any context.

589

Audit Interfaces

Name
audit_log — Log an audit record

Synopsis
void audit_log (struct audit_context * ctx, gfp_t gfp_mask, int type,
const char * fmt, ...);

Arguments
ctx audit context

gfp_mask type of allocation

type audit message type

fmt format string to use @...: variable parameters matching the format string

... variable arguments

Description
This is a convenience function that calls audit_log_start, audit_log_vformat, and audit_log_end. It may
be called in any context.

590

Audit Interfaces

Name
audit_log_secctx — Converts and logs SELinux context

Synopsis
void audit_log_secctx (struct audit_buffer * ab, u32 secid);

Arguments
ab audit_buffer

secid security number

Description
This is a helper function that calls security_secid_to_secctx to convert secid to secctx and then adds the
(converted) SELinux context to the audit log by calling audit_log_format, thus also preventing leak of
internal secid to userspace. If secid cannot be converted audit_panic is called.

591

Audit Interfaces

Name
audit_alloc — allocate an audit context block for a task

Synopsis
int audit_alloc (struct task_struct * tsk);

Arguments
tsk task

Description
Filter on the task information and allocate a per-task audit context if necessary. Doing so turns on system
call auditing for the specified task. This is called from copy_process, so no lock is needed.

592

Audit Interfaces

Name
__audit_free — free a per-task audit context

Synopsis
void __audit_free (struct task_struct * tsk);

Arguments
tsk task whose audit context block to free

Description
Called from copy_process and do_exit

593

Audit Interfaces

Name
__audit_syscall_entry — fill in an audit record at syscall entry

Synopsis
void __audit_syscall_entry (int major, unsigned long a1, unsigned long
a2, unsigned long a3, unsigned long a4);

Arguments
major major syscall type (function)

a1 additional syscall register 1

a2 additional syscall register 2

a3 additional syscall register 3

a4 additional syscall register 4

Description
Fill in audit context at syscall entry. This only happens if the audit context was created when the task was
created and the state or filters demand the audit context be built. If the state from the per-task filter or from
the per-syscall filter is AUDIT_RECORD_CONTEXT, then the record will be written at syscall exit time
(otherwise, it will only be written if another part of the kernel requests that it be written).

594

Audit Interfaces

Name
__audit_syscall_exit — deallocate audit context after a system call

Synopsis
void __audit_syscall_exit (int success, long return_code);

Arguments
success success value of the syscall

return_code return value of the syscall

Description
Tear down after system call. If the audit context has been marked as auditable (either because of the
AUDIT_RECORD_CONTEXT state from filtering, or because some other part of the kernel wrote an
audit message), then write out the syscall information. In call cases, free the names stored from getname.

595

Audit Interfaces

Name
__audit_reusename — fill out filename with info from existing entry

Synopsis
struct filename * __audit_reusename (const __user char * uptr);

Arguments
uptr userland ptr to pathname

Description
Search the audit_names list for the current audit context. If there is an existing entry with a matching “uptr”
then return the filename associated with that audit_name. If not, return NULL.

596

Audit Interfaces

Name
__audit_getname — add a name to the list

Synopsis
void __audit_getname (struct filename * name);

Arguments
name name to add

Description
Add a name to the list of audit names for this context. Called from fs/namei.c:getname.

597

Audit Interfaces

Name
__audit_inode — store the inode and device from a lookup

Synopsis
void __audit_inode (struct filename * name, const struct dentry * dentry,
unsigned int flags);

Arguments
name name being audited

dentry dentry being audited

flags attributes for this particular entry

598

Audit Interfaces

Name
auditsc_get_stamp — get local copies of audit_context values

Synopsis
int auditsc_get_stamp (struct audit_context * ctx, struct timespec *
t, unsigned int * serial);

Arguments
ctx audit_context for the task

t timespec to store time recorded in the audit_context

serial serial value that is recorded in the audit_context

Description
Also sets the context as auditable.

599

Audit Interfaces

Name
audit_set_loginuid — set current task's audit_context loginuid

Synopsis
int audit_set_loginuid (kuid_t loginuid);

Arguments
loginuid loginuid value

Description
Returns 0.

Called (set) from fs/proc/base.c::proc_loginuid_write.

600

Audit Interfaces

Name
__audit_mq_open — record audit data for a POSIX MQ open

Synopsis
void __audit_mq_open (int oflag, umode_t mode, struct mq_attr * attr);

Arguments
oflag open flag

mode mode bits

attr queue attributes

601

Audit Interfaces

Name
__audit_mq_sendrecv — record audit data for a POSIX MQ timed send/receive

Synopsis
void __audit_mq_sendrecv (mqd_t mqdes, size_t msg_len, unsigned int
msg_prio, const struct timespec * abs_timeout);

Arguments
mqdes MQ descriptor

msg_len Message length

msg_prio Message priority

abs_timeout Message timeout in absolute time

602

Audit Interfaces

Name
__audit_mq_notify — record audit data for a POSIX MQ notify

Synopsis
void __audit_mq_notify (mqd_t mqdes, const struct sigevent * notifica-
tion);

Arguments
mqdes MQ descriptor

notification Notification event

603

Audit Interfaces

Name
__audit_mq_getsetattr — record audit data for a POSIX MQ get/set attribute

Synopsis
void __audit_mq_getsetattr (mqd_t mqdes, struct mq_attr * mqstat);

Arguments
mqdes MQ descriptor

mqstat MQ flags

604

Audit Interfaces

Name
__audit_ipc_obj — record audit data for ipc object

Synopsis
void __audit_ipc_obj (struct kern_ipc_perm * ipcp);

Arguments
ipcp ipc permissions

605

Audit Interfaces

Name
__audit_ipc_set_perm — record audit data for new ipc permissions

Synopsis
void __audit_ipc_set_perm (unsigned long qbytes, uid_t uid, gid_t gid,
umode_t mode);

Arguments
qbytes msgq bytes

uid msgq user id

gid msgq group id

mode msgq mode (permissions)

Description
Called only after audit_ipc_obj.

606

Audit Interfaces

Name
__audit_socketcall — record audit data for sys_socketcall

Synopsis
int __audit_socketcall (int nargs, unsigned long * args);

Arguments
nargs number of args, which should not be more than AUDITSC_ARGS.

args args array

607

Audit Interfaces

Name
__audit_fd_pair — record audit data for pipe and socketpair

Synopsis
void __audit_fd_pair (int fd1, int fd2);

Arguments
fd1 the first file descriptor

fd2 the second file descriptor

608

Audit Interfaces

Name
__audit_sockaddr — record audit data for sys_bind, sys_connect, sys_sendto

Synopsis
int __audit_sockaddr (int len, void * a);

Arguments
len data length in user space

a data address in kernel space

Description
Returns 0 for success or NULL context or < 0 on error.

609

Audit Interfaces

Name
__audit_signal_info — record signal info for shutting down audit subsystem

Synopsis
int __audit_signal_info (int sig, struct task_struct * t);

Arguments
sig signal value

t task being signaled

Description
If the audit subsystem is being terminated, record the task (pid) and uid that is doing that.

610

Audit Interfaces

Name
__audit_log_bprm_fcaps — store information about a loading bprm and relevant fcaps

Synopsis
int __audit_log_bprm_fcaps (struct linux_binprm * bprm, const struct
cred * new, const struct cred * old);

Arguments
bprm pointer to the bprm being processed

new the proposed new credentials

old the old credentials

Description
Simply check if the proc already has the caps given by the file and if not store the priv escalation info for
later auditing at the end of the syscall

-Eric

611

Audit Interfaces

Name
__audit_log_capset — store information about the arguments to the capset syscall

Synopsis
void __audit_log_capset (const struct cred * new, const struct cred
* old);

Arguments
new the new credentials

old the old (current) credentials

Description
Record the arguments userspace sent to sys_capset for later printing by the audit system if applicable

612

Audit Interfaces

Name
audit_core_dumps — record information about processes that end abnormally

Synopsis
void audit_core_dumps (long signr);

Arguments
signr signal value

Description
If a process ends with a core dump, something fishy is going on and we should record the event for
investigation.

613

Audit Interfaces

Name
audit_rule_change — apply all rules to the specified message type

Synopsis
int audit_rule_change (int type, __u32 portid, int seq, void * data,
size_t datasz);

Arguments
type audit message type

portid target port id for netlink audit messages

seq netlink audit message sequence (serial) number

data payload data

datasz size of payload data

614

Audit Interfaces

Name
audit_list_rules_send — list the audit rules

Synopsis
int audit_list_rules_send (struct sk_buff * request_skb, int seq);

Arguments
request_skb skb of request we are replying to (used to target the reply)

seq netlink audit message sequence (serial) number

615

Audit Interfaces

Name
parent_len — find the length of the parent portion of a pathname

Synopsis
int parent_len (const char * path);

Arguments
path pathname of which to determine length

616

Audit Interfaces

Name
audit_compare_dname_path — compare given dentry name with last component in given path. Return of
0 indicates a match.

Synopsis
int audit_compare_dname_path (const char * dname, const char * path,
int parentlen);

Arguments
dname dentry name that we're comparing

path full pathname that we're comparing

parentlen length of the parent if known. Passing in AUDIT_NAME_FULL here indicates that we
must compute this value.

617

Chapter 13. Accounting Framework

618

Accounting Framework

Name
sys_acct — enable/disable process accounting

Synopsis
long sys_acct (const char __user * name);

Arguments
name file name for accounting records or NULL to shutdown accounting

Description
Returns 0 for success or negative errno values for failure.

sys_acct is the only system call needed to implement process accounting. It takes the name of the file
where accounting records should be written. If the filename is NULL, accounting will be shutdown.

619

Accounting Framework

Name
acct_collect — collect accounting information into pacct_struct

Synopsis
void acct_collect (long exitcode, int group_dead);

Arguments
exitcode task exit code

group_dead not 0, if this thread is the last one in the process.

620

Accounting Framework

Name
acct_process —

Synopsis
void acct_process (void);

Arguments
void no arguments

Description

handles process accounting for an exiting task

621

Chapter 14. Block Devices

622

Block Devices

Name
blk_delay_queue — restart queueing after defined interval

Synopsis
void blk_delay_queue (struct request_queue * q, unsigned long msecs);

Arguments
q The struct request_queue in question

msecs Delay in msecs

Description
Sometimes queueing needs to be postponed for a little while, to allow resources to come back. This function
will make sure that queueing is restarted around the specified time. Queue lock must be held.

623

Block Devices

Name
blk_start_queue_async — asynchronously restart a previously stopped queue

Synopsis
void blk_start_queue_async (struct request_queue * q);

Arguments
q The struct request_queue in question

Description
blk_start_queue_async will clear the stop flag on the queue, and ensure that the request_fn for
the queue is run from an async context.

624

Block Devices

Name
blk_start_queue — restart a previously stopped queue

Synopsis
void blk_start_queue (struct request_queue * q);

Arguments
q The struct request_queue in question

Description
blk_start_queue will clear the stop flag on the queue, and call the request_fn for the queue if it was
in a stopped state when entered. Also see blk_stop_queue. Queue lock must be held.

625

Block Devices

Name
blk_stop_queue — stop a queue

Synopsis
void blk_stop_queue (struct request_queue * q);

Arguments
q The struct request_queue in question

Description
The Linux block layer assumes that a block driver will consume all entries on the request queue when
the request_fn strategy is called. Often this will not happen, because of hardware limitations (queue depth
settings). If a device driver gets a 'queue full' response, or if it simply chooses not to queue more I/O at
one point, it can call this function to prevent the request_fn from being called until the driver has signalled
it's ready to go again. This happens by calling blk_start_queue to restart queue operations. Queue
lock must be held.

626

Block Devices

Name
blk_sync_queue — cancel any pending callbacks on a queue

Synopsis
void blk_sync_queue (struct request_queue * q);

Arguments
q the queue

Description
The block layer may perform asynchronous callback activity on a queue, such as calling the unplug func-
tion after a timeout. A block device may call blk_sync_queue to ensure that any such activity is cancelled,
thus allowing it to release resources that the callbacks might use. The caller must already have made sure
that its ->make_request_fn will not re-add plugging prior to calling this function.

This function does not cancel any asynchronous activity arising out of elevator or throttling code. That
would require elevator_exit and blkcg_exit_queue to be called with queue lock initialized.

627

Block Devices

Name
__blk_run_queue_uncond — run a queue whether or not it has been stopped

Synopsis
void __blk_run_queue_uncond (struct request_queue * q);

Arguments
q The queue to run

Description
Invoke request handling on a queue if there are any pending requests. May be used to restart request
handling after a request has completed. This variant runs the queue whether or not the queue has been
stopped. Must be called with the queue lock held and interrupts disabled. See also blk_run_queue.

628

Block Devices

Name
__blk_run_queue — run a single device queue

Synopsis
void __blk_run_queue (struct request_queue * q);

Arguments
q The queue to run

Description
See blk_run_queue. This variant must be called with the queue lock held and interrupts disabled.

629

Block Devices

Name
blk_run_queue_async — run a single device queue in workqueue context

Synopsis
void blk_run_queue_async (struct request_queue * q);

Arguments
q The queue to run

Description
Tells kblockd to perform the equivalent of blk_run_queue on behalf of us. The caller must hold the
queue lock.

630

Block Devices

Name
blk_run_queue — run a single device queue

Synopsis
void blk_run_queue (struct request_queue * q);

Arguments
q The queue to run

Description
Invoke request handling on this queue, if it has pending work to do. May be used to restart queueing when
a request has completed.

631

Block Devices

Name
blk_queue_bypass_start — enter queue bypass mode

Synopsis
void blk_queue_bypass_start (struct request_queue * q);

Arguments
q queue of interest

Description
In bypass mode, only the dispatch FIFO queue of q is used. This function makes q enter bypass mode and
drains all requests which were throttled or issued before. On return, it's guaranteed that no request is being
throttled or has ELVPRIV set and blk_queue_bypass true inside queue or RCU read lock.

632

Block Devices

Name
blk_queue_bypass_end — leave queue bypass mode

Synopsis
void blk_queue_bypass_end (struct request_queue * q);

Arguments
q queue of interest

Description
Leave bypass mode and restore the normal queueing behavior.

633

Block Devices

Name
blk_cleanup_queue — shutdown a request queue

Synopsis
void blk_cleanup_queue (struct request_queue * q);

Arguments
q request queue to shutdown

Description
Mark q DYING, drain all pending requests, mark q DEAD, destroy and put it. All future requests will
be failed immediately with -ENODEV.

634

Block Devices

Name
blk_init_queue — prepare a request queue for use with a block device

Synopsis
struct request_queue * blk_init_queue (request_fn_proc * rfn, spinlock_t
* lock);

Arguments
rfn The function to be called to process requests that have been placed on the queue.

lock Request queue spin lock

Description
If a block device wishes to use the standard request handling procedures, which sorts requests and coalesces
adjacent requests, then it must call blk_init_queue. The function rfn will be called when there are
requests on the queue that need to be processed. If the device supports plugging, then rfn may not be
called immediately when requests are available on the queue, but may be called at some time later instead.
Plugged queues are generally unplugged when a buffer belonging to one of the requests on the queue is
needed, or due to memory pressure.

rfn is not required, or even expected, to remove all requests off the queue, but only as many as it can
handle at a time. If it does leave requests on the queue, it is responsible for arranging that the requests
get dealt with eventually.

The queue spin lock must be held while manipulating the requests on the request queue; this lock will be
taken also from interrupt context, so irq disabling is needed for it.

Function returns a pointer to the initialized request queue, or NULL if it didn't succeed.

Note
blk_init_queue must be paired with a blk_cleanup_queue call when the block device is deac-
tivated (such as at module unload).

635

Block Devices

Name
blk_rq_set_block_pc — initialize a request to type BLOCK_PC

Synopsis
void blk_rq_set_block_pc (struct request * rq);

Arguments
rq request to be initialized

636

Block Devices

Name
blk_requeue_request — put a request back on queue

Synopsis
void blk_requeue_request (struct request_queue * q, struct request *
rq);

Arguments
q request queue where request should be inserted

rq request to be inserted

Description
Drivers often keep queueing requests until the hardware cannot accept more, when that condition happens
we need to put the request back on the queue. Must be called with queue lock held.

637

Block Devices

Name
part_round_stats — Round off the performance stats on a struct disk_stats.

Synopsis
void part_round_stats (int cpu, struct hd_struct * part);

Arguments
cpu cpu number for stats access

part target partition

Description
The average IO queue length and utilisation statistics are maintained by observing the current state of the
queue length and the amount of time it has been in this state for.

Normally, that accounting is done on IO completion, but that can result in more than a second's worth of
IO being accounted for within any one second, leading to >100% utilisation. To deal with that, we call
this function to do a round-off before returning the results when reading /proc/diskstats. This accounts
immediately for all queue usage up to the current jiffies and restarts the counters again.

638

Block Devices

Name
generic_make_request — hand a buffer to its device driver for I/O

Synopsis
blk_qc_t generic_make_request (struct bio * bio);

Arguments
bio The bio describing the location in memory and on the device.

Description
generic_make_request is used to make I/O requests of block devices. It is passed a struct bio, which
describes the I/O that needs to be done.

generic_make_request does not return any status. The success/failure status of the request, along
with notification of completion, is delivered asynchronously through the bio->bi_end_io function de-
scribed (one day) else where.

The caller of generic_make_request must make sure that bi_io_vec are set to describe the memory buffer,
and that bi_dev and bi_sector are set to describe the device address, and the bi_end_io and optionally
bi_private are set to describe how completion notification should be signaled.

generic_make_request and the drivers it calls may use bi_next if this bio happens to be merged with some-
one else, and may resubmit the bio to a lower device by calling into generic_make_request recursively,
which means the bio should NOT be touched after the call to ->make_request_fn.

639

Block Devices

Name
submit_bio — submit a bio to the block device layer for I/O

Synopsis
blk_qc_t submit_bio (struct bio * bio);

Arguments
bio The struct bio which describes the I/O

Description
submit_bio is very similar in purpose to generic_make_request, and uses that function to do
most of the work. Both are fairly rough interfaces; bio must be presetup and ready for I/O.

640

Block Devices

Name
blk_insert_cloned_request — Helper for stacking drivers to submit a request

Synopsis
int blk_insert_cloned_request (struct request_queue * q, struct request
* rq);

Arguments
q the queue to submit the request

rq the request being queued

641

Block Devices

Name
blk_rq_err_bytes — determine number of bytes till the next failure boundary

Synopsis
unsigned int blk_rq_err_bytes (const struct request * rq);

Arguments
rq request to examine

Description
A request could be merge of IOs which require different failure handling. This function determines the
number of bytes which can be failed from the beginning of the request without crossing into area which
need to be retried further.

Return
The number of bytes to fail.

Context
queue_lock must be held.

642

Block Devices

Name
blk_peek_request — peek at the top of a request queue

Synopsis
struct request * blk_peek_request (struct request_queue * q);

Arguments
q request queue to peek at

Description
Return the request at the top of q. The returned request should be started using blk_start_request
before LLD starts processing it.

Return
Pointer to the request at the top of q if available. Null otherwise.

Context
queue_lock must be held.

643

Block Devices

Name
blk_start_request — start request processing on the driver

Synopsis
void blk_start_request (struct request * req);

Arguments
req request to dequeue

Description
Dequeue req and start timeout timer on it. This hands off the request to the driver.

Block internal functions which don't want to start timer should call blk_dequeue_request.

Context
queue_lock must be held.

644

Block Devices

Name
blk_fetch_request — fetch a request from a request queue

Synopsis
struct request * blk_fetch_request (struct request_queue * q);

Arguments
q request queue to fetch a request from

Description
Return the request at the top of q. The request is started on return and LLD can start processing it imme-
diately.

Return
Pointer to the request at the top of q if available. Null otherwise.

Context
queue_lock must be held.

645

Block Devices

Name
blk_update_request — Special helper function for request stacking drivers

Synopsis
bool blk_update_request (struct request * req, int error, unsigned int
nr_bytes);

Arguments
req the request being processed

error 0 for success, < 0 for error

nr_bytes number of bytes to complete req

Description
Ends I/O on a number of bytes attached to req, but doesn't complete the request structure even if req
doesn't have leftover. If req has leftover, sets it up for the next range of segments.

This special helper function is only for request stacking drivers (e.g. request-based dm) so that they can
handle partial completion. Actual device drivers should use blk_end_request instead.

Passing the result of blk_rq_bytes as nr_bytes guarantees false return from this function.

Return
false - this request doesn't have any more data true - this request has more data

646

Block Devices

Name
blk_unprep_request — unprepare a request

Synopsis
void blk_unprep_request (struct request * req);

Arguments
req the request

Description
This function makes a request ready for complete resubmission (or completion). It happens only after all
error handling is complete, so represents the appropriate moment to deallocate any resources that were
allocated to the request in the prep_rq_fn. The queue lock is held when calling this.

647

Block Devices

Name
blk_end_request — Helper function for drivers to complete the request.

Synopsis
bool blk_end_request (struct request * rq, int error, unsigned int
nr_bytes);

Arguments
rq the request being processed

error 0 for success, < 0 for error

nr_bytes number of bytes to complete

Description
Ends I/O on a number of bytes attached to rq. If rq has leftover, sets it up for the next range of segments.

Return
false - we are done with this request true - still buffers pending for this request

648

Block Devices

Name
blk_end_request_all — Helper function for drives to finish the request.

Synopsis
void blk_end_request_all (struct request * rq, int error);

Arguments
rq the request to finish

error 0 for success, < 0 for error

Description
Completely finish rq.

649

Block Devices

Name
blk_end_request_cur — Helper function to finish the current request chunk.

Synopsis
bool blk_end_request_cur (struct request * rq, int error);

Arguments
rq the request to finish the current chunk for

error 0 for success, < 0 for error

Description
Complete the current consecutively mapped chunk from rq.

Return
false - we are done with this request true - still buffers pending for this request

650

Block Devices

Name
blk_end_request_err — Finish a request till the next failure boundary.

Synopsis
bool blk_end_request_err (struct request * rq, int error);

Arguments
rq the request to finish till the next failure boundary for

error must be negative errno

Description
Complete rq till the next failure boundary.

Return
false - we are done with this request true - still buffers pending for this request

651

Block Devices

Name
__blk_end_request — Helper function for drivers to complete the request.

Synopsis
bool __blk_end_request (struct request * rq, int error, unsigned int
nr_bytes);

Arguments
rq the request being processed

error 0 for success, < 0 for error

nr_bytes number of bytes to complete

Description
Must be called with queue lock held unlike blk_end_request.

Return
false - we are done with this request true - still buffers pending for this request

652

Block Devices

Name
__blk_end_request_all — Helper function for drives to finish the request.

Synopsis
void __blk_end_request_all (struct request * rq, int error);

Arguments
rq the request to finish

error 0 for success, < 0 for error

Description
Completely finish rq. Must be called with queue lock held.

653

Block Devices

Name
__blk_end_request_cur — Helper function to finish the current request chunk.

Synopsis
bool __blk_end_request_cur (struct request * rq, int error);

Arguments
rq the request to finish the current chunk for

error 0 for success, < 0 for error

Description
Complete the current consecutively mapped chunk from rq. Must be called with queue lock held.

Return
false - we are done with this request true - still buffers pending for this request

654

Block Devices

Name
__blk_end_request_err — Finish a request till the next failure boundary.

Synopsis
bool __blk_end_request_err (struct request * rq, int error);

Arguments
rq the request to finish till the next failure boundary for

error must be negative errno

Description
Complete rq till the next failure boundary. Must be called with queue lock held.

Return
false - we are done with this request true - still buffers pending for this request

655

Block Devices

Name
rq_flush_dcache_pages — Helper function to flush all pages in a request

Synopsis
void rq_flush_dcache_pages (struct request * rq);

Arguments
rq the request to be flushed

Description
Flush all pages in rq.

656

Block Devices

Name
blk_lld_busy — Check if underlying low-level drivers of a device are busy

Synopsis
int blk_lld_busy (struct request_queue * q);

Arguments
q the queue of the device being checked

Description
Check if underlying low-level drivers of a device are busy. If the drivers want to export their busy state,
they must set own exporting function using blk_queue_lld_busy first.

Basically, this function is used only by request stacking drivers to stop dispatching requests to underlying
devices when underlying devices are busy. This behavior helps more I/O merging on the queue of the
request stacking driver and prevents I/O throughput regression on burst I/O load.

Return
0 - Not busy (The request stacking driver should dispatch request) 1 - Busy (The request stacking driver
should stop dispatching request)

657

Block Devices

Name
blk_rq_unprep_clone — Helper function to free all bios in a cloned request

Synopsis
void blk_rq_unprep_clone (struct request * rq);

Arguments
rq the clone request to be cleaned up

Description
Free all bios in rq for a cloned request.

658

Block Devices

Name
blk_rq_prep_clone — Helper function to setup clone request

Synopsis
int blk_rq_prep_clone (struct request * rq, struct request * rq_src,
struct bio_set * bs, gfp_t gfp_mask, int (*bio_ctr) (struct bio *,
struct bio *, void *), void * data);

Arguments
rq the request to be setup

rq_src original request to be cloned

bs bio_set that bios for clone are allocated from

gfp_mask memory allocation mask for bio

bio_ctr setup function to be called for each clone bio. Returns 0 for success, non 0 for failure.

data private data to be passed to bio_ctr

Description
Clones bios in rq_src to rq, and copies attributes of rq_src to rq. The actual data parts of rq_src
(e.g. ->cmd, ->sense) are not copied, and copying such parts is the caller's responsibility. Also, pages
which the original bios are pointing to are not copied and the cloned bios just point same pages. So cloned
bios must be completed before original bios, which means the caller must complete rq before rq_src.

659

Block Devices

Name
blk_start_plug — initialize blk_plug and track it inside the task_struct

Synopsis
void blk_start_plug (struct blk_plug * plug);

Arguments
plug The struct blk_plug that needs to be initialized

Description
Tracking blk_plug inside the task_struct will help with auto-flushing the pending I/O should the task end up
blocking between blk_start_plug and blk_finish_plug. This is important from a performance
perspective, but also ensures that we don't deadlock. For instance, if the task is blocking for a memory
allocation, memory reclaim could end up wanting to free a page belonging to that request that is currently
residing in our private plug. By flushing the pending I/O when the process goes to sleep, we avoid this
kind of deadlock.

660

Block Devices

Name
blk_pm_runtime_init — Block layer runtime PM initialization routine

Synopsis
void blk_pm_runtime_init (struct request_queue * q, struct device *
dev);

Arguments
q the queue of the device

dev the device the queue belongs to

Description
Initialize runtime-PM-related fields for q and start auto suspend for dev. Drivers that want to take advan-
tage of request-based runtime PM should call this function after dev has been initialized, and its request
queue q has been allocated, and runtime PM for it can not happen yet(either due to disabled/forbidden or
its usage_count > 0). In most cases, driver should call this function before any I/O has taken place.

This function takes care of setting up using auto suspend for the device, the autosuspend delay is set to
-1 to make runtime suspend impossible until an updated value is either set by user or by driver. Drivers
do not need to touch other autosuspend settings.

The block layer runtime PM is request based, so only works for drivers that use request as their IO unit
instead of those directly use bio's.

661

Block Devices

Name
blk_pre_runtime_suspend — Pre runtime suspend check

Synopsis
int blk_pre_runtime_suspend (struct request_queue * q);

Arguments
q the queue of the device

Description
This function will check if runtime suspend is allowed for the device by examining if there are any requests
pending in the queue. If there are requests pending, the device can not be runtime suspended; otherwise,
the queue's status will be updated to SUSPENDING and the driver can proceed to suspend the device.

For the not allowed case, we mark last busy for the device so that runtime PM core will try to autosuspend
it some time later.

This function should be called near the start of the device's runtime_suspend callback.

Return
0 - OK to runtime suspend the device -EBUSY - Device should not be runtime suspended

662

Block Devices

Name
blk_post_runtime_suspend — Post runtime suspend processing

Synopsis
void blk_post_runtime_suspend (struct request_queue * q, int err);

Arguments
q the queue of the device

err return value of the device's runtime_suspend function

Description
Update the queue's runtime status according to the return value of the device's runtime suspend function
and mark last busy for the device so that PM core will try to auto suspend the device at a later time.

This function should be called near the end of the device's runtime_suspend callback.

663

Block Devices

Name
blk_pre_runtime_resume — Pre runtime resume processing

Synopsis
void blk_pre_runtime_resume (struct request_queue * q);

Arguments
q the queue of the device

Description
Update the queue's runtime status to RESUMING in preparation for the runtime resume of the device.

This function should be called near the start of the device's runtime_resume callback.

664

Block Devices

Name
blk_post_runtime_resume — Post runtime resume processing

Synopsis
void blk_post_runtime_resume (struct request_queue * q, int err);

Arguments
q the queue of the device

err return value of the device's runtime_resume function

Description
Update the queue's runtime status according to the return value of the device's runtime_resume function. If
it is successfully resumed, process the requests that are queued into the device's queue when it is resuming
and then mark last busy and initiate autosuspend for it.

This function should be called near the end of the device's runtime_resume callback.

665

Block Devices

Name
blk_set_runtime_active — Force runtime status of the queue to be active

Synopsis
void blk_set_runtime_active (struct request_queue * q);

Arguments
q the queue of the device

Description
If the device is left runtime suspended during system suspend the resume hook typically resumes the device
and corrects runtime status accordingly. However, that does not affect the queue runtime PM status which
is still “suspended”. This prevents processing requests from the queue.

This function can be used in driver's resume hook to correct queue runtime PM status and re-enable peeking
requests from the queue. It should be called before first request is added to the queue.

666

Block Devices

Name
__blk_drain_queue — drain requests from request_queue

Synopsis
void __blk_drain_queue (struct request_queue * q, bool drain_all);

Arguments
q queue to drain

drain_all whether to drain all requests or only the ones w/ ELVPRIV

Description
Drain requests from q. If drain_all is set, all requests are drained. If not, only ELVPRIV requests are
drained. The caller is responsible for ensuring that no new requests which need to be drained are queued.

667

Block Devices

Name
rq_ioc — determine io_context for request allocation

Synopsis
struct io_context * rq_ioc (struct bio * bio);

Arguments
bio request being allocated is for this bio (can be NULL)

Description
Determine io_context to use for request allocation for bio. May return NULL if current->io_context
doesn't exist.

668

Block Devices

Name
__get_request — get a free request

Synopsis
struct request * __get_request (struct request_list * rl, unsigned int
op, struct bio * bio, gfp_t gfp_mask);

Arguments
rl request list to allocate from

op operation and flags

bio bio to allocate request for (can be NULL)

gfp_mask allocation mask

Description
Get a free request from q. This function may fail under memory pressure or if q is dead.

Must be called with q->queue_lock held and, Returns ERR_PTR on failure, with q->queue_lock held.
Returns request pointer on success, with q->queue_lock *not held*.

669

Block Devices

Name
get_request — get a free request

Synopsis
struct request * get_request (struct request_queue * q, unsigned int
op, struct bio * bio, gfp_t gfp_mask);

Arguments
q request_queue to allocate request from

op operation and flags

bio bio to allocate request for (can be NULL)

gfp_mask allocation mask

Description
Get a free request from q. If __GFP_DIRECT_RECLAIM is set in gfp_mask, this function keeps retry-
ing under memory pressure and fails iff q is dead.

Must be called with q->queue_lock held and, Returns ERR_PTR on failure, with q->queue_lock held.
Returns request pointer on success, with q->queue_lock *not held*.

670

Block Devices

Name
blk_attempt_plug_merge — try to merge with current's plugged list

Synopsis
bool blk_attempt_plug_merge (struct request_queue * q, struct bio * bio,
unsigned int * request_count, struct request ** same_queue_rq);

Arguments
q request_queue new bio is being queued at

bio new bio being queued

request_count out parameter for number of traversed plugged requests

same_queue_rq pointer to struct request that gets filled in when another request associated with q is
found on the plug list (optional, may be NULL)

Description
Determine whether bio being queued on q can be merged with a request on current's plugged list.
Returns true if merge was successful, otherwise false.

Plugging coalesces IOs from the same issuer for the same purpose without going through q->queue_lock.
As such it's more of an issuing mechanism than scheduling, and the request, while may have elvpriv data,
is not added on the elevator at this point. In addition, we don't have reliable access to the elevator outside
queue lock. Only check basic merging parameters without querying the elevator.

Caller must ensure !blk_queue_nomerges(q) beforehand.

671

Block Devices

Name
blk_cloned_rq_check_limits — Helper function to check a cloned request for new the queue limits

Synopsis
int blk_cloned_rq_check_limits (struct request_queue * q, struct request
* rq);

Arguments
q the queue

rq the request being checked

Description
rq may have been made based on weaker limitations of upper-level queues in request stacking drivers,
and it may violate the limitation of q. Since the block layer and the underlying device driver trust rq after
it is inserted to q, it should be checked against q before the insertion using this generic function.

Request stacking drivers like request-based dm may change the queue limits when retrying requests on
other queues. Those requests need to be checked against the new queue limits again during dispatch.

672

Block Devices

Name
blk_end_bidi_request — Complete a bidi request

Synopsis
bool blk_end_bidi_request (struct request * rq, int error, unsigned int
nr_bytes, unsigned int bidi_bytes);

Arguments
rq the request to complete

error 0 for success, < 0 for error

nr_bytes number of bytes to complete rq

bidi_bytes number of bytes to complete rq->next_rq

Description
Ends I/O on a number of bytes attached to rq and rq->next_rq. Drivers that supports bidi can safely call
this member for any type of request, bidi or uni. In the later case bidi_bytes is just ignored.

Return
false - we are done with this request true - still buffers pending for this request

673

Block Devices

Name
__blk_end_bidi_request — Complete a bidi request with queue lock held

Synopsis
bool __blk_end_bidi_request (struct request * rq, int error, unsigned
int nr_bytes, unsigned int bidi_bytes);

Arguments
rq the request to complete

error 0 for success, < 0 for error

nr_bytes number of bytes to complete rq

bidi_bytes number of bytes to complete rq->next_rq

Description
Identical to blk_end_bidi_request except that queue lock is assumed to be locked on entry and
remains so on return.

Return
false - we are done with this request true - still buffers pending for this request

674

Block Devices

Name
blk_rq_map_user_iov — map user data to a request, for REQ_TYPE_BLOCK_PC usage

Synopsis
int blk_rq_map_user_iov (struct request_queue * q, struct request *
rq, struct rq_map_data * map_data, const struct iov_iter * iter, gfp_t
gfp_mask);

Arguments
q request queue where request should be inserted

rq request to map data to

map_data pointer to the rq_map_data holding pages (if necessary)

iter iovec iterator

gfp_mask memory allocation flags

Description
Data will be mapped directly for zero copy I/O, if possible. Otherwise a kernel bounce buffer is used.

A matching blk_rq_unmap_user must be issued at the end of I/O, while still in process context.

Note
The mapped bio may need to be bounced through blk_queue_bounce before being submitted to the
device, as pages mapped may be out of reach. It's the callers responsibility to make sure this happens. The
original bio must be passed back in to blk_rq_unmap_user for proper unmapping.

675

Block Devices

Name
blk_rq_unmap_user — unmap a request with user data

Synopsis
int blk_rq_unmap_user (struct bio * bio);

Arguments
bio start of bio list

Description
Unmap a rq previously mapped by blk_rq_map_user. The caller must supply the original rq->bio
from the blk_rq_map_user return, since the I/O completion may have changed rq->bio.

676

Block Devices

Name
blk_rq_map_kern — map kernel data to a request, for REQ_TYPE_BLOCK_PC usage

Synopsis
int blk_rq_map_kern (struct request_queue * q, struct request * rq, void
* kbuf, unsigned int len, gfp_t gfp_mask);

Arguments
q request queue where request should be inserted

rq request to fill

kbuf the kernel buffer

len length of user data

gfp_mask memory allocation flags

Description
Data will be mapped directly if possible. Otherwise a bounce buffer is used. Can be called multiple times
to append multiple buffers.

677

Block Devices

Name
blk_release_queue — release a struct request_queue when it is no longer needed

Synopsis
void blk_release_queue (struct kobject * kobj);

Arguments
kobj the kobj belonging to the request queue to be released

Description
blk_release_queue is the pair to blk_init_queue or blk_queue_make_request. It should be
called when a request queue is being released; typically when a block device is being de-registered. Cur-
rently, its primary task it to free all the struct request structures that were allocated to the queue and the
queue itself.

Note
The low level driver must have finished any outstanding requests first via blk_cleanup_queue.

678

Block Devices

Name
blk_queue_prep_rq — set a prepare_request function for queue

Synopsis
void blk_queue_prep_rq (struct request_queue * q, prep_rq_fn * pfn);

Arguments
q queue

pfn prepare_request function

Description
It's possible for a queue to register a prepare_request callback which is invoked before the request is handed
to the request_fn. The goal of the function is to prepare a request for I/O, it can be used to build a cdb
from the request data for instance.

679

Block Devices

Name
blk_queue_unprep_rq — set an unprepare_request function for queue

Synopsis
void blk_queue_unprep_rq (struct request_queue * q, unprep_rq_fn * ufn);

Arguments
q queue

ufn unprepare_request function

Description
It's possible for a queue to register an unprepare_request callback which is invoked before the request is
finally completed. The goal of the function is to deallocate any data that was allocated in the prepare_re-
quest callback.

680

Block Devices

Name
blk_set_default_limits — reset limits to default values

Synopsis
void blk_set_default_limits (struct queue_limits * lim);

Arguments
lim the queue_limits structure to reset

Description
Returns a queue_limit struct to its default state.

681

Block Devices

Name
blk_set_stacking_limits — set default limits for stacking devices

Synopsis
void blk_set_stacking_limits (struct queue_limits * lim);

Arguments
lim the queue_limits structure to reset

Description
Returns a queue_limit struct to its default state. Should be used by stacking drivers like DM that have no
internal limits.

682

Block Devices

Name
blk_queue_make_request — define an alternate make_request function for a device

Synopsis
void blk_queue_make_request (struct request_queue * q, make_request_fn
* mfn);

Arguments
q the request queue for the device to be affected

mfn the alternate make_request function

Description
The normal way for struct bios to be passed to a device driver is for them to be collected into requests on
a request queue, and then to allow the device driver to select requests off that queue when it is ready. This
works well for many block devices. However some block devices (typically virtual devices such as md or
lvm) do not benefit from the processing on the request queue, and are served best by having the requests
passed directly to them. This can be achieved by providing a function to blk_queue_make_request.

Caveat
The driver that does this *must* be able to deal appropriately with buffers in “highmemory”. This can be
accomplished by either calling __bio_kmap_atomic to get a temporary kernel mapping, or by calling
blk_queue_bounce to create a buffer in normal memory.

683

Block Devices

Name
blk_queue_bounce_limit — set bounce buffer limit for queue

Synopsis
void blk_queue_bounce_limit (struct request_queue * q, u64 max_addr);

Arguments
q the request queue for the device

max_addr the maximum address the device can handle

Description
Different hardware can have different requirements as to what pages it can do I/O directly to. A low level
driver can call blk_queue_bounce_limit to have lower memory pages allocated as bounce buffers for doing
I/O to pages residing above max_addr.

684

Block Devices

Name
blk_queue_max_hw_sectors — set max sectors for a request for this queue

Synopsis
void blk_queue_max_hw_sectors (struct request_queue * q, unsigned int
max_hw_sectors);

Arguments
q the request queue for the device

max_hw_sectors max hardware sectors in the usual 512b unit

Description
Enables a low level driver to set a hard upper limit, max_hw_sectors, on the size of requests. max_hw_sec-
tors is set by the device driver based upon the capabilities of the I/O controller.

max_dev_sectors is a hard limit imposed by the storage device for READ/WRITE requests. It is set by
the disk driver.

max_sectors is a soft limit imposed by the block layer for filesystem type requests. This value can be
overridden on a per-device basis in /sys/block/<device>/queue/max_sectors_kb. The soft limit can not
exceed max_hw_sectors.

685

Block Devices

Name
blk_queue_chunk_sectors — set size of the chunk for this queue

Synopsis
void blk_queue_chunk_sectors (struct request_queue * q, unsigned int
chunk_sectors);

Arguments
q the request queue for the device

chunk_sectors chunk sectors in the usual 512b unit

Description
If a driver doesn't want IOs to cross a given chunk size, it can set this limit and prevent merging across
chunks. Note that the chunk size must currently be a power-of-2 in sectors. Also note that the block layer
must accept a page worth of data at any offset. So if the crossing of chunks is a hard limitation in the
driver, it must still be prepared to split single page bios.

686

Block Devices

Name
blk_queue_max_discard_sectors — set max sectors for a single discard

Synopsis
void blk_queue_max_discard_sectors (struct request_queue * q, unsigned
int max_discard_sectors);

Arguments
q the request queue for the device

max_discard_sectors maximum number of sectors to discard

687

Block Devices

Name
blk_queue_max_write_same_sectors — set max sectors for a single write same

Synopsis
void blk_queue_max_write_same_sectors (struct request_queue * q, un-
signed int max_write_same_sectors);

Arguments
q the request queue for the device

max_write_same_sectors maximum number of sectors to write per command

688

Block Devices

Name
blk_queue_max_write_zeroes_sectors — set max sectors for a single write zeroes

Synopsis
void blk_queue_max_write_zeroes_sectors (struct request_queue * q, un-
signed int max_write_zeroes_sectors);

Arguments
q the request queue for the device

max_write_zeroes_sectors maximum number of sectors to write per command

689

Block Devices

Name
blk_queue_max_segments — set max hw segments for a request for this queue

Synopsis
void blk_queue_max_segments (struct request_queue * q, unsigned short
max_segments);

Arguments
q the request queue for the device

max_segments max number of segments

Description
Enables a low level driver to set an upper limit on the number of hw data segments in a request.

690

Block Devices

Name
blk_queue_max_segment_size — set max segment size for blk_rq_map_sg

Synopsis
void blk_queue_max_segment_size (struct request_queue * q, unsigned int
max_size);

Arguments
q the request queue for the device

max_size max size of segment in bytes

Description
Enables a low level driver to set an upper limit on the size of a coalesced segment

691

Block Devices

Name
blk_queue_logical_block_size — set logical block size for the queue

Synopsis
void blk_queue_logical_block_size (struct request_queue * q, unsigned
short size);

Arguments
q the request queue for the device

size the logical block size, in bytes

Description
This should be set to the lowest possible block size that the storage device can address. The default of
512 covers most hardware.

692

Block Devices

Name
blk_queue_physical_block_size — set physical block size for the queue

Synopsis
void blk_queue_physical_block_size (struct request_queue * q, unsigned
int size);

Arguments
q the request queue for the device

size the physical block size, in bytes

Description
This should be set to the lowest possible sector size that the hardware can operate on without reverting
to read-modify-write operations.

693

Block Devices

Name
blk_queue_alignment_offset — set physical block alignment offset

Synopsis
void blk_queue_alignment_offset (struct request_queue * q, unsigned int
offset);

Arguments
q the request queue for the device

offset alignment offset in bytes

Description
Some devices are naturally misaligned to compensate for things like the legacy DOS partition table 63-
sector offset. Low-level drivers should call this function for devices whose first sector is not naturally
aligned.

694

Block Devices

Name
blk_limits_io_min — set minimum request size for a device

Synopsis
void blk_limits_io_min (struct queue_limits * limits, unsigned int min);

Arguments
limits the queue limits

min smallest I/O size in bytes

Description
Some devices have an internal block size bigger than the reported hardware sector size. This function can
be used to signal the smallest I/O the device can perform without incurring a performance penalty.

695

Block Devices

Name
blk_queue_io_min — set minimum request size for the queue

Synopsis
void blk_queue_io_min (struct request_queue * q, unsigned int min);

Arguments
q the request queue for the device

min smallest I/O size in bytes

Description
Storage devices may report a granularity or preferred minimum I/O size which is the smallest request the
device can perform without incurring a performance penalty. For disk drives this is often the physical block
size. For RAID arrays it is often the stripe chunk size. A properly aligned multiple of minimum_io_size
is the preferred request size for workloads where a high number of I/O operations is desired.

696

Block Devices

Name
blk_limits_io_opt — set optimal request size for a device

Synopsis
void blk_limits_io_opt (struct queue_limits * limits, unsigned int opt);

Arguments
limits the queue limits

opt smallest I/O size in bytes

Description
Storage devices may report an optimal I/O size, which is the device's preferred unit for sustained I/O. This
is rarely reported for disk drives. For RAID arrays it is usually the stripe width or the internal track size. A
properly aligned multiple of optimal_io_size is the preferred request size for workloads where sustained
throughput is desired.

697

Block Devices

Name
blk_queue_io_opt — set optimal request size for the queue

Synopsis
void blk_queue_io_opt (struct request_queue * q, unsigned int opt);

Arguments
q the request queue for the device

opt optimal request size in bytes

Description
Storage devices may report an optimal I/O size, which is the device's preferred unit for sustained I/O. This
is rarely reported for disk drives. For RAID arrays it is usually the stripe width or the internal track size. A
properly aligned multiple of optimal_io_size is the preferred request size for workloads where sustained
throughput is desired.

698

Block Devices

Name
blk_queue_stack_limits — inherit underlying queue limits for stacked drivers

Synopsis
void blk_queue_stack_limits (struct request_queue * t, struct re-
quest_queue * b);

Arguments
t the stacking driver (top)

b the underlying device (bottom)

699

Block Devices

Name
blk_stack_limits — adjust queue_limits for stacked devices

Synopsis
int blk_stack_limits (struct queue_limits * t, struct queue_limits *
b, sector_t start);

Arguments
t the stacking driver limits (top device)

b the underlying queue limits (bottom, component device)

start first data sector within component device

Description
This function is used by stacking drivers like MD and DM to ensure that all component devices have
compatible block sizes and alignments. The stacking driver must provide a queue_limits struct (top) and
then iteratively call the stacking function for all component (bottom) devices. The stacking function will
attempt to combine the values and ensure proper alignment.

Returns 0 if the top and bottom queue_limits are compatible. The top device's block sizes and alignment
offsets may be adjusted to ensure alignment with the bottom device. If no compatible sizes and alignments
exist, -1 is returned and the resulting top queue_limits will have the misaligned flag set to indicate that
the alignment_offset is undefined.

700

Block Devices

Name
bdev_stack_limits — adjust queue limits for stacked drivers

Synopsis
int bdev_stack_limits (struct queue_limits * t, struct block_device *
bdev, sector_t start);

Arguments
t the stacking driver limits (top device)

bdev the component block_device (bottom)

start first data sector within component device

Description
Merges queue limits for a top device and a block_device. Returns 0 if alignment didn't change. Returns
-1 if adding the bottom device caused misalignment.

701

Block Devices

Name
disk_stack_limits — adjust queue limits for stacked drivers

Synopsis
void disk_stack_limits (struct gendisk * disk, struct block_device *
bdev, sector_t offset);

Arguments
disk MD/DM gendisk (top)

bdev the underlying block device (bottom)

offset offset to beginning of data within component device

Description
Merges the limits for a top level gendisk and a bottom level block_device.

702

Block Devices

Name
blk_queue_dma_pad — set pad mask

Synopsis
void blk_queue_dma_pad (struct request_queue * q, unsigned int mask);

Arguments
q the request queue for the device

mask pad mask

Description
Set dma pad mask.

Appending pad buffer to a request modifies the last entry of a scatter list such that it includes the pad buffer.

703

Block Devices

Name
blk_queue_update_dma_pad — update pad mask

Synopsis
void blk_queue_update_dma_pad (struct request_queue * q, unsigned int
mask);

Arguments
q the request queue for the device

mask pad mask

Description
Update dma pad mask.

Appending pad buffer to a request modifies the last entry of a scatter list such that it includes the pad buffer.

704

Block Devices

Name
blk_queue_dma_drain — Set up a drain buffer for excess dma.

Synopsis
int blk_queue_dma_drain (struct request_queue * q, dma_drain_needed_fn
* dma_drain_needed, void * buf, unsigned int size);

Arguments
q the request queue for the device

dma_drain_needed fn which returns non-zero if drain is necessary

buf physically contiguous buffer

size size of the buffer in bytes

Description
Some devices have excess DMA problems and can't simply discard (or zero fill) the unwanted piece of
the transfer. They have to have a real area of memory to transfer it into. The use case for this is ATAPI
devices in DMA mode. If the packet command causes a transfer bigger than the transfer size some HBAs
will lock up if there aren't DMA elements to contain the excess transfer. What this API does is adjust the
queue so that the buf is always appended silently to the scatterlist.

Note
This routine adjusts max_hw_segments to make room for appending the drain buffer. If you call
blk_queue_max_segments after calling this routine, you must set the limit to one fewer than your
device can support otherwise there won't be room for the drain buffer.

705

Block Devices

Name
blk_queue_segment_boundary — set boundary rules for segment merging

Synopsis
void blk_queue_segment_boundary (struct request_queue * q, unsigned long
mask);

Arguments
q the request queue for the device

mask the memory boundary mask

706

Block Devices

Name
blk_queue_virt_boundary — set boundary rules for bio merging

Synopsis
void blk_queue_virt_boundary (struct request_queue * q, unsigned long
mask);

Arguments
q the request queue for the device

mask the memory boundary mask

707

Block Devices

Name
blk_queue_dma_alignment — set dma length and memory alignment

Synopsis
void blk_queue_dma_alignment (struct request_queue * q, int mask);

Arguments
q the request queue for the device

mask alignment mask

description
set required memory and length alignment for direct dma transactions. this is used when building direct
io requests for the queue.

708

Block Devices

Name
blk_queue_update_dma_alignment — update dma length and memory alignment

Synopsis
void blk_queue_update_dma_alignment (struct request_queue * q, int
mask);

Arguments
q the request queue for the device

mask alignment mask

description
update required memory and length alignment for direct dma transactions. If the requested alignment is
larger than the current alignment, then the current queue alignment is updated to the new value, otherwise
it is left alone. The design of this is to allow multiple objects (driver, device, transport etc) to set their
respective alignments without having them interfere.

709

Block Devices

Name
blk_set_queue_depth — tell the block layer about the device queue depth

Synopsis
void blk_set_queue_depth (struct request_queue * q, unsigned int depth);

Arguments
q the request queue for the device

depth queue depth

710

Block Devices

Name
blk_queue_write_cache — configure queue's write cache

Synopsis
void blk_queue_write_cache (struct request_queue * q, bool wc, bool
fua);

Arguments
q the request queue for the device

wc write back cache on or off

fua device supports FUA writes, if true

Description
Tell the block layer about the write cache of q.

711

Block Devices

Name
blk_execute_rq_nowait — insert a request into queue for execution

Synopsis
void blk_execute_rq_nowait (struct request_queue * q, struct gendisk *
bd_disk, struct request * rq, int at_head, rq_end_io_fn * done);

Arguments
q queue to insert the request in

bd_disk matching gendisk

rq request to insert

at_head insert request at head or tail of queue

done I/O completion handler

Description
Insert a fully prepared request at the back of the I/O scheduler queue for execution. Don't wait for com-
pletion.

Note
This function will invoke done directly if the queue is dead.

712

Block Devices

Name
blk_execute_rq — insert a request into queue for execution

Synopsis
int blk_execute_rq (struct request_queue * q, struct gendisk * bd_disk,
struct request * rq, int at_head);

Arguments
q queue to insert the request in

bd_disk matching gendisk

rq request to insert

at_head insert request at head or tail of queue

Description
Insert a fully prepared request at the back of the I/O scheduler queue for execution and wait for completion.

713

Block Devices

Name
blkdev_issue_flush — queue a flush

Synopsis
int blkdev_issue_flush (struct block_device * bdev, gfp_t gfp_mask,
sector_t * error_sector);

Arguments
bdev blockdev to issue flush for

gfp_mask memory allocation flags (for bio_alloc)

error_sector error sector

Description
Issue a flush for the block device in question. Caller can supply room for storing the error offset in case
of a flush error, if they wish to. If WAIT flag is not passed then caller may check only what request was
pushed in some internal queue for later handling.

714

Block Devices

Name
blkdev_issue_discard — queue a discard

Synopsis
int blkdev_issue_discard (struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);

Arguments
bdev blockdev to issue discard for

sector start sector

nr_sects number of sectors to discard

gfp_mask memory allocation flags (for bio_alloc)

flags BLKDEV_IFL_* flags to control behaviour

Description
Issue a discard request for the sectors in question.

715

Block Devices

Name
blkdev_issue_write_same — queue a write same operation

Synopsis
int blkdev_issue_write_same (struct block_device * bdev, sector_t sec-
tor, sector_t nr_sects, gfp_t gfp_mask, struct page * page);

Arguments
bdev target blockdev

sector start sector

nr_sects number of sectors to write

gfp_mask memory allocation flags (for bio_alloc)

page page containing data

Description
Issue a write same request for the sectors in question.

716

Block Devices

Name
__blkdev_issue_zeroout — generate number of zero filed write bios

Synopsis
int __blkdev_issue_zeroout (struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio ** biop, bool discard);

Arguments
bdev blockdev to issue

sector start sector

nr_sects number of sectors to write

gfp_mask memory allocation flags (for bio_alloc)

biop pointer to anchor bio

discard discard flag

Description
Generate and issue number of bios with zerofiled pages.

717

Block Devices

Name
blkdev_issue_zeroout — zero-fill a block range

Synopsis
int blkdev_issue_zeroout (struct block_device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, bool discard);

Arguments
bdev blockdev to write

sector start sector

nr_sects number of sectors to write

gfp_mask memory allocation flags (for bio_alloc)

discard whether to discard the block range

Description
Zero-fill a block range. If the discard flag is set and the block device guarantees that subsequent READ
operations to the block range in question will return zeroes, the blocks will be discarded. Should the discard
request fail, if the discard flag is not set, or if discard_zeroes_data is not supported, this function will
resort to zeroing the blocks manually, thus provisioning (allocating, anchoring) them. If the block device
supports WRITE ZEROES or WRITE SAME command(s), blkdev_issue_zeroout will use it to
optimize the process of clearing the block range. Otherwise the zeroing will be performed using regular
WRITE calls.

718

Block Devices

Name
blk_queue_find_tag — find a request by its tag and queue

Synopsis
struct request * blk_queue_find_tag (struct request_queue * q, int tag);

Arguments
q The request queue for the device

tag The tag of the request

Notes
Should be used when a device returns a tag and you want to match it with a request.

no locks need be held.

719

Block Devices

Name
blk_free_tags — release a given set of tag maintenance info

Synopsis
void blk_free_tags (struct blk_queue_tag * bqt);

Arguments
bqt the tag map to free

Description
Drop the reference count on bqt and frees it when the last reference is dropped.

720

Block Devices

Name
blk_queue_free_tags — release tag maintenance info

Synopsis
void blk_queue_free_tags (struct request_queue * q);

Arguments
q the request queue for the device

Notes
This is used to disable tagged queuing to a device, yet leave queue in function.

721

Block Devices

Name
blk_init_tags — initialize the tag info for an external tag map

Synopsis
struct blk_queue_tag * blk_init_tags (int depth, int alloc_policy);

Arguments
depth the maximum queue depth supported

alloc_policy tag allocation policy

722

Block Devices

Name
blk_queue_init_tags — initialize the queue tag info

Synopsis
int blk_queue_init_tags (struct request_queue * q, int depth, struct
blk_queue_tag * tags, int alloc_policy);

Arguments
q the request queue for the device

depth the maximum queue depth supported

tags the tag to use

alloc_policy tag allocation policy

Description
Queue lock must be held here if the function is called to resize an existing map.

723

Block Devices

Name
blk_queue_resize_tags — change the queueing depth

Synopsis
int blk_queue_resize_tags (struct request_queue * q, int new_depth);

Arguments
q the request queue for the device

new_depth the new max command queueing depth

Notes
Must be called with the queue lock held.

724

Block Devices

Name
blk_queue_end_tag — end tag operations for a request

Synopsis
void blk_queue_end_tag (struct request_queue * q, struct request * rq);

Arguments
q the request queue for the device

rq the request that has completed

Description
Typically called when end_that_request_first returns 0, meaning all transfers have been done
for a request. It's important to call this function before end_that_request_last, as that will put the
request back on the free list thus corrupting the internal tag list.

Notes
queue lock must be held.

725

Block Devices

Name
blk_queue_start_tag — find a free tag and assign it

Synopsis
int blk_queue_start_tag (struct request_queue * q, struct request * rq);

Arguments
q the request queue for the device

rq the block request that needs tagging

Description
This can either be used as a stand-alone helper, or possibly be assigned as the queue prep_rq_fn (in which
case struct request automagically gets a tag assigned). Note that this function assumes that any type of
request can be queued! if this is not true for your device, you must check the request type before calling
this function. The request will also be removed from the request queue, so it's the drivers responsibility to
readd it if it should need to be restarted for some reason.

Notes
queue lock must be held.

726

Block Devices

Name
blk_queue_invalidate_tags — invalidate all pending tags

Synopsis
void blk_queue_invalidate_tags (struct request_queue * q);

Arguments
q the request queue for the device

Description
Hardware conditions may dictate a need to stop all pending requests. In this case, we will safely clear the
block side of the tag queue and readd all requests to the request queue in the right order.

Notes
queue lock must be held.

727

Block Devices

Name
__blk_queue_free_tags — release tag maintenance info

Synopsis
void __blk_queue_free_tags (struct request_queue * q);

Arguments
q the request queue for the device

Notes
blk_cleanup_queue will take care of calling this function, if tagging has been used. So there's no
need to call this directly.

728

Block Devices

Name
blk_rq_count_integrity_sg — Count number of integrity scatterlist elements

Synopsis
int blk_rq_count_integrity_sg (struct request_queue * q, struct bio *
bio);

Arguments
q request queue

bio bio with integrity metadata attached

Description
Returns the number of elements required in a scatterlist corresponding to the integrity metadata in a bio.

729

Block Devices

Name
blk_rq_map_integrity_sg — Map integrity metadata into a scatterlist

Synopsis
int blk_rq_map_integrity_sg (struct request_queue * q, struct bio * bio,
struct scatterlist * sglist);

Arguments
q request queue

bio bio with integrity metadata attached

sglist target scatterlist

Description
Map the integrity vectors in request into a scatterlist. The scatterlist must be big enough to hold all elements.
I.e. sized using blk_rq_count_integrity_sg.

730

Block Devices

Name
blk_integrity_compare — Compare integrity profile of two disks

Synopsis
int blk_integrity_compare (struct gendisk * gd1, struct gendisk * gd2);

Arguments
gd1 Disk to compare

gd2 Disk to compare

Description
Meta-devices like DM and MD need to verify that all sub-devices use the same integrity format before
advertising to upper layers that they can send/receive integrity metadata. This function can be used to
check whether two gendisk devices have compatible integrity formats.

731

Block Devices

Name
blk_integrity_register — Register a gendisk as being integrity-capable

Synopsis
void blk_integrity_register (struct gendisk * disk, struct blk_integrity
* template);

Arguments
disk struct gendisk pointer to make integrity-aware

template block integrity profile to register

Description
When a device needs to advertise itself as being able to send/receive integrity metadata it must use this
function to register the capability with the block layer. The template is a blk_integrity struct with values
appropriate for the underlying hardware. See Documentation/block/data-integrity.txt.

732

Block Devices

Name
blk_integrity_unregister — Unregister block integrity profile

Synopsis
void blk_integrity_unregister (struct gendisk * disk);

Arguments
disk disk whose integrity profile to unregister

Description
This function unregisters the integrity capability from a block device.

733

Block Devices

Name
blk_trace_ioctl — handle the ioctls associated with tracing

Synopsis
int blk_trace_ioctl (struct block_device * bdev, unsigned cmd, char
__user * arg);

Arguments
bdev the block device

cmd the ioctl cmd

arg the argument data, if any

734

Block Devices

Name
blk_trace_shutdown — stop and cleanup trace structures

Synopsis
void blk_trace_shutdown (struct request_queue * q);

Arguments
q the request queue associated with the device

735

Block Devices

Name
blk_add_trace_rq — Add a trace for a request oriented action

Synopsis
void blk_add_trace_rq (struct request_queue * q, struct request * rq,
unsigned int nr_bytes, u32 what);

Arguments
q queue the io is for

rq the source request

nr_bytes number of completed bytes

what the action

Description
Records an action against a request. Will log the bio offset + size.

736

Block Devices

Name
blk_add_trace_bio — Add a trace for a bio oriented action

Synopsis
void blk_add_trace_bio (struct request_queue * q, struct bio * bio, u32
what, int error);

Arguments
q queue the io is for

bio the source bio

what the action

error error, if any

Description
Records an action against a bio. Will log the bio offset + size.

737

Block Devices

Name
blk_add_trace_bio_remap — Add a trace for a bio-remap operation

Synopsis
void blk_add_trace_bio_remap (void * ignore, struct request_queue * q,
struct bio * bio, dev_t dev, sector_t from);

Arguments
ignore trace callback data parameter (not used)

q queue the io is for

bio the source bio

dev target device

from source sector

Description
Device mapper or raid target sometimes need to split a bio because it spans a stripe (or similar). Add a
trace for that action.

738

Block Devices

Name
blk_add_trace_rq_remap — Add a trace for a request-remap operation

Synopsis
void blk_add_trace_rq_remap (void * ignore, struct request_queue * q,
struct request * rq, dev_t dev, sector_t from);

Arguments
ignore trace callback data parameter (not used)

q queue the io is for

rq the source request

dev target device

from source sector

Description
Device mapper remaps request to other devices. Add a trace for that action.

739

Block Devices

Name
blk_mangle_minor — scatter minor numbers apart

Synopsis
int blk_mangle_minor (int minor);

Arguments
minor minor number to mangle

Description
Scatter consecutively allocated minor number apart if MANGLE_DEVT is enabled. Mangling twice
gives the original value.

RETURNS
Mangled value.

CONTEXT
Don't care.

740

Block Devices

Name
blk_alloc_devt — allocate a dev_t for a partition

Synopsis
int blk_alloc_devt (struct hd_struct * part, dev_t * devt);

Arguments
part partition to allocate dev_t for

devt out parameter for resulting dev_t

Description
Allocate a dev_t for block device.

RETURNS
0 on success, allocated dev_t is returned in *devt. -errno on failure.

CONTEXT
Might sleep.

741

Block Devices

Name
blk_free_devt — free a dev_t

Synopsis
void blk_free_devt (dev_t devt);

Arguments
devt dev_t to free

Description
Free devt which was allocated using blk_alloc_devt.

CONTEXT
Might sleep.

742

Block Devices

Name
disk_replace_part_tbl — replace disk->part_tbl in RCU-safe way

Synopsis
void disk_replace_part_tbl (struct gendisk * disk, struct disk_part_tbl
* new_ptbl);

Arguments
disk disk to replace part_tbl for

new_ptbl new part_tbl to install

Description
Replace disk->part_tbl with new_ptbl in RCU-safe way. The original ptbl is freed using RCU callback.

LOCKING
Matching bd_mutx locked.

743

Block Devices

Name
disk_expand_part_tbl — expand disk->part_tbl

Synopsis
int disk_expand_part_tbl (struct gendisk * disk, int partno);

Arguments
disk disk to expand part_tbl for

partno expand such that this partno can fit in

Description
Expand disk->part_tbl such that partno can fit in. disk->part_tbl uses RCU to allow unlocked derefer-
encing for stats and other stuff.

LOCKING
Matching bd_mutex locked, might sleep.

RETURNS
0 on success, -errno on failure.

744

Block Devices

Name
disk_block_events — block and flush disk event checking

Synopsis
void disk_block_events (struct gendisk * disk);

Arguments
disk disk to block events for

Description
On return from this function, it is guaranteed that event checking isn't in progress and won't happen until
unblocked by disk_unblock_events. Events blocking is counted and the actual unblocking happens
after the matching number of unblocks are done.

Note that this intentionally does not block event checking from disk_clear_events.

CONTEXT
Might sleep.

745

Block Devices

Name
disk_unblock_events — unblock disk event checking

Synopsis
void disk_unblock_events (struct gendisk * disk);

Arguments
disk disk to unblock events for

Description
Undo disk_block_events. When the block count reaches zero, it starts events polling if configured.

CONTEXT
Don't care. Safe to call from irq context.

746

Block Devices

Name
disk_flush_events — schedule immediate event checking and flushing

Synopsis
void disk_flush_events (struct gendisk * disk, unsigned int mask);

Arguments
disk disk to check and flush events for

mask events to flush

Description
Schedule immediate event checking on disk if not blocked. Events in mask are scheduled to be cleared
from the driver. Note that this doesn't clear the events from disk->ev.

CONTEXT
If mask is non-zero must be called with bdev->bd_mutex held.

747

Block Devices

Name
disk_clear_events — synchronously check, clear and return pending events

Synopsis
unsigned int disk_clear_events (struct gendisk * disk, unsigned int
mask);

Arguments
disk disk to fetch and clear events from

mask mask of events to be fetched and cleared

Description
Disk events are synchronously checked and pending events in mask are cleared and returned. This ignores
the block count.

CONTEXT
Might sleep.

748

Block Devices

Name
disk_get_part — get partition

Synopsis
struct hd_struct * disk_get_part (struct gendisk * disk, int partno);

Arguments
disk disk to look partition from

partno partition number

Description
Look for partition partno from disk. If found, increment reference count and return it.

CONTEXT
Don't care.

RETURNS
Pointer to the found partition on success, NULL if not found.

749

Block Devices

Name
disk_part_iter_init — initialize partition iterator

Synopsis
void disk_part_iter_init (struct disk_part_iter * piter, struct gendisk
* disk, unsigned int flags);

Arguments
piter iterator to initialize

disk disk to iterate over

flags DISK_PITER_* flags

Description
Initialize piter so that it iterates over partitions of disk.

CONTEXT
Don't care.

750

Block Devices

Name
disk_part_iter_next — proceed iterator to the next partition and return it

Synopsis
struct hd_struct * disk_part_iter_next (struct disk_part_iter * piter);

Arguments
piter iterator of interest

Description
Proceed piter to the next partition and return it.

CONTEXT
Don't care.

751

Block Devices

Name
disk_part_iter_exit — finish up partition iteration

Synopsis
void disk_part_iter_exit (struct disk_part_iter * piter);

Arguments
piter iter of interest

Description
Called when iteration is over. Cleans up piter.

CONTEXT
Don't care.

752

Block Devices

Name
disk_map_sector_rcu — map sector to partition

Synopsis
struct hd_struct * disk_map_sector_rcu (struct gendisk * disk, sector_t
sector);

Arguments
disk gendisk of interest

sector sector to map

Description
Find out which partition sector maps to on disk. This is primarily used for stats accounting.

CONTEXT
RCU read locked. The returned partition pointer is valid only while preemption is disabled.

RETURNS
Found partition on success, part0 is returned if no partition matches

753

Block Devices

Name
register_blkdev — register a new block device

Synopsis
int register_blkdev (unsigned int major, const char * name);

Arguments
major the requested major device number [1..255]. If major=0, try to allocate any unused major num-

ber.

name the name of the new block device as a zero terminated string

Description
The name must be unique within the system.

The return value depends on the major input parameter. - if a major device number was requested in
range [1..255] then the function returns zero on success, or a negative error code - if any unused major
number was requested with major=0 parameter then the return value is the allocated major number in
range [1..255] or a negative error code otherwise

754

Block Devices

Name
device_add_disk — add partitioning information to kernel list

Synopsis
void device_add_disk (struct device * parent, struct gendisk * disk);

Arguments
parent parent device for the disk

disk per-device partitioning information

Description
This function registers the partitioning information in disk with the kernel.

FIXME
error handling

755

Block Devices

Name
get_gendisk — get partitioning information for a given device

Synopsis
struct gendisk * get_gendisk (dev_t devt, int * partno);

Arguments
devt device to get partitioning information for

partno returned partition index

Description
This function gets the structure containing partitioning information for the given device devt.

756

Block Devices

Name
bdget_disk — do bdget by gendisk and partition number

Synopsis
struct block_device * bdget_disk (struct gendisk * disk, int partno);

Arguments
disk gendisk of interest

partno partition number

Description
Find partition partno from disk, do bdget on it.

CONTEXT
Don't care.

RETURNS
Resulting block_device on success, NULL on failure.

757

Chapter 15. Char devices

758

Char devices

Name
register_chrdev_region — register a range of device numbers

Synopsis
int register_chrdev_region (dev_t from, unsigned count, const char *
name);

Arguments
from the first in the desired range of device numbers; must include the major number.

count the number of consecutive device numbers required

name the name of the device or driver.

Description
Return value is zero on success, a negative error code on failure.

759

Char devices

Name
alloc_chrdev_region — register a range of char device numbers

Synopsis
int alloc_chrdev_region (dev_t * dev, unsigned baseminor, unsigned
count, const char * name);

Arguments
dev output parameter for first assigned number

baseminor first of the requested range of minor numbers

count the number of minor numbers required

name the name of the associated device or driver

Description
Allocates a range of char device numbers. The major number will be chosen dynamically, and returned
(along with the first minor number) in dev. Returns zero or a negative error code.

760

Char devices

Name
__register_chrdev — create and register a cdev occupying a range of minors

Synopsis
int __register_chrdev (unsigned int major, unsigned int baseminor, un-
signed int count, const char * name, const struct file_operations *
fops);

Arguments
major major device number or 0 for dynamic allocation

baseminor first of the requested range of minor numbers

count the number of minor numbers required

name name of this range of devices

fops file operations associated with this devices

Description
If major == 0 this functions will dynamically allocate a major and return its number.

If major > 0 this function will attempt to reserve a device with the given major number and will return
zero on success.

Returns a -ve errno on failure.

The name of this device has nothing to do with the name of the device in /dev. It only helps to keep track
of the different owners of devices. If your module name has only one type of devices it's ok to use e.g.
the name of the module here.

761

Char devices

Name
unregister_chrdev_region — unregister a range of device numbers

Synopsis
void unregister_chrdev_region (dev_t from, unsigned count);

Arguments
from the first in the range of numbers to unregister

count the number of device numbers to unregister

Description
This function will unregister a range of count device numbers, starting with from. The caller should
normally be the one who allocated those numbers in the first place...

762

Char devices

Name
__unregister_chrdev — unregister and destroy a cdev

Synopsis
void __unregister_chrdev (unsigned int major, unsigned int baseminor,
unsigned int count, const char * name);

Arguments
major major device number

baseminor first of the range of minor numbers

count the number of minor numbers this cdev is occupying

name name of this range of devices

Description
Unregister and destroy the cdev occupying the region described by major, baseminor and count.
This function undoes what __register_chrdev did.

763

Char devices

Name
cdev_add — add a char device to the system

Synopsis
int cdev_add (struct cdev * p, dev_t dev, unsigned count);

Arguments
p the cdev structure for the device

dev the first device number for which this device is responsible

count the number of consecutive minor numbers corresponding to this device

Description
cdev_add adds the device represented by p to the system, making it live immediately. A negative error
code is returned on failure.

764

Char devices

Name
cdev_del — remove a cdev from the system

Synopsis
void cdev_del (struct cdev * p);

Arguments
p the cdev structure to be removed

Description
cdev_del removes p from the system, possibly freeing the structure itself.

765

Char devices

Name
cdev_alloc — allocate a cdev structure

Synopsis
struct cdev * cdev_alloc (void);

Arguments
void no arguments

Description

Allocates and returns a cdev structure, or NULL on failure.

766

Char devices

Name
cdev_init — initialize a cdev structure

Synopsis
void cdev_init (struct cdev * cdev, const struct file_operations * fops);

Arguments
cdev the structure to initialize

fops the file_operations for this device

Description
Initializes cdev, remembering fops, making it ready to add to the system with cdev_add.

767

Chapter 16. Miscellaneous Devices

768

Miscellaneous Devices

Name
misc_register — register a miscellaneous device

Synopsis
int misc_register (struct miscdevice * misc);

Arguments
misc device structure

Description
Register a miscellaneous device with the kernel. If the minor number is set to MISC_DYNAMIC_MINOR a
minor number is assigned and placed in the minor field of the structure. For other cases the minor number
requested is used.

The structure passed is linked into the kernel and may not be destroyed until it has been unregistered. By
default, an open syscall to the device sets file->private_data to point to the structure. Drivers don't need
open in fops for this.

A zero is returned on success and a negative errno code for failure.

769

Miscellaneous Devices

Name
misc_deregister — unregister a miscellaneous device

Synopsis
void misc_deregister (struct miscdevice * misc);

Arguments
misc device to unregister

Description
Unregister a miscellaneous device that was previously successfully registered with misc_register.

770

Chapter 17. Clock Framework
The clock framework defines programming interfaces to support software management of the system clock
tree. This framework is widely used with System-On-Chip (SOC) platforms to support power management
and various devices which may need custom clock rates. Note that these "clocks" don't relate to timekeep-
ing or real time clocks (RTCs), each of which have separate frameworks. These struct clk instances may
be used to manage for example a 96 MHz signal that is used to shift bits into and out of peripherals or
busses, or otherwise trigger synchronous state machine transitions in system hardware.

Power management is supported by explicit software clock gating: unused clocks are disabled, so the
system doesn't waste power changing the state of transistors that aren't in active use. On some systems
this may be backed by hardware clock gating, where clocks are gated without being disabled in software.
Sections of chips that are powered but not clocked may be able to retain their last state. This low power
state is often called a retention mode. This mode still incurs leakage currents, especially with finer circuit
geometries, but for CMOS circuits power is mostly used by clocked state changes.

Power-aware drivers only enable their clocks when the device they manage is in active use. Also, system
sleep states often differ according to which clock domains are active: while a "standby" state may allow
wakeup from several active domains, a "mem" (suspend-to-RAM) state may require a more wholesale
shutdown of clocks derived from higher speed PLLs and oscillators, limiting the number of possible wake-
up event sources. A driver's suspend method may need to be aware of system-specific clock constraints
on the target sleep state.

Some platforms support programmable clock generators. These can be used by external chips of various
kinds, such as other CPUs, multimedia codecs, and devices with strict requirements for interface clocking.

771

Clock Framework

Name
struct clk_notifier — associate a clk with a notifier

Synopsis

struct clk_notifier {
 struct clk * clk;
 struct srcu_notifier_head notifier_head;
 struct list_head node;
};

Members
clk struct clk * to associate the notifier with

notifier_head a blocking_notifier_head for this clk

node linked list pointers

Description
A list of struct clk_notifier is maintained by the notifier code. An entry is created whenever code registers
the first notifier on a particular clk. Future notifiers on that clk are added to the notifier_head.

772

Clock Framework

Name
struct clk_notifier_data — rate data to pass to the notifier callback

Synopsis

struct clk_notifier_data {
 struct clk * clk;
 unsigned long old_rate;
 unsigned long new_rate;
};

Members
clk struct clk * being changed

old_rate previous rate of this clk

new_rate new rate of this clk

Description
For a pre-notifier, old_rate is the clk's rate before this rate change, and new_rate is what the rate will be
in the future. For a post-notifier, old_rate and new_rate are both set to the clk's current rate (this was done
to optimize the implementation).

773

Clock Framework

Name
clk_notifier_register — change notifier callback

Synopsis
int clk_notifier_register (struct clk * clk, struct notifier_block *
nb);

Arguments
clk clock whose rate we are interested in

nb notifier block with callback function pointer

ProTip
debugging across notifier chains can be frustrating. Make sure that your notifier callback function prints
a nice big warning in case of failure.

774

Clock Framework

Name
clk_notifier_unregister — change notifier callback

Synopsis
int clk_notifier_unregister (struct clk * clk, struct notifier_block
* nb);

Arguments
clk clock whose rate we are no longer interested in

nb notifier block which will be unregistered

775

Clock Framework

Name
clk_get_accuracy — obtain the clock accuracy in ppb (parts per billion) for a clock source.

Synopsis
long clk_get_accuracy (struct clk * clk);

Arguments
clk clock source

Description
This gets the clock source accuracy expressed in ppb. A perfect clock returns 0.

776

Clock Framework

Name
clk_set_phase — adjust the phase shift of a clock signal

Synopsis
int clk_set_phase (struct clk * clk, int degrees);

Arguments
clk clock signal source

degrees number of degrees the signal is shifted

Description
Shifts the phase of a clock signal by the specified degrees. Returns 0 on success, -EERROR otherwise.

777

Clock Framework

Name
clk_get_phase — return the phase shift of a clock signal

Synopsis
int clk_get_phase (struct clk * clk);

Arguments
clk clock signal source

Description
Returns the phase shift of a clock node in degrees, otherwise returns -EERROR.

778

Clock Framework

Name
clk_is_match — check if two clk's point to the same hardware clock

Synopsis
bool clk_is_match (const struct clk * p, const struct clk * q);

Arguments
p clk compared against q

q clk compared against p

Description
Returns true if the two struct clk pointers both point to the same hardware clock node. Put differently,
returns true if struct clk *p and struct clk *q share the same struct clk_core object.

Returns false otherwise. Note that two NULL clks are treated as matching.

779

Clock Framework

Name
clk_prepare — prepare a clock source

Synopsis
int clk_prepare (struct clk * clk);

Arguments
clk clock source

Description
This prepares the clock source for use.

Must not be called from within atomic context.

780

Clock Framework

Name
clk_unprepare — undo preparation of a clock source

Synopsis
void clk_unprepare (struct clk * clk);

Arguments
clk clock source

Description
This undoes a previously prepared clock. The caller must balance the number of prepare and unprepare
calls.

Must not be called from within atomic context.

781

Clock Framework

Name
clk_get — lookup and obtain a reference to a clock producer.

Synopsis
struct clk * clk_get (struct device * dev, const char * id);

Arguments
dev device for clock “consumer”

id clock consumer ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR condition containing errno.
The implementation uses dev and id to determine the clock consumer, and thereby the clock producer.
(IOW, id may be identical strings, but clk_get may return different clock producers depending on dev.)

Drivers must assume that the clock source is not enabled.

clk_get should not be called from within interrupt context.

782

Clock Framework

Name
devm_clk_get — lookup and obtain a managed reference to a clock producer.

Synopsis
struct clk * devm_clk_get (struct device * dev, const char * id);

Arguments
dev device for clock “consumer”

id clock consumer ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR condition containing errno.
The implementation uses dev and id to determine the clock consumer, and thereby the clock producer.
(IOW, id may be identical strings, but clk_get may return different clock producers depending on dev.)

Drivers must assume that the clock source is not enabled.

devm_clk_get should not be called from within interrupt context.

The clock will automatically be freed when the device is unbound from the bus.

783

Clock Framework

Name
clk_enable — inform the system when the clock source should be running.

Synopsis
int clk_enable (struct clk * clk);

Arguments
clk clock source

Description
If the clock can not be enabled/disabled, this should return success.

May be called from atomic contexts.

Returns success (0) or negative errno.

784

Clock Framework

Name
clk_disable — inform the system when the clock source is no longer required.

Synopsis
void clk_disable (struct clk * clk);

Arguments
clk clock source

Description
Inform the system that a clock source is no longer required by a driver and may be shut down.

May be called from atomic contexts.

Implementation detail
if the clock source is shared between multiple drivers, clk_enable calls must be balanced by the same
number of clk_disable calls for the clock source to be disabled.

785

Clock Framework

Name
clk_get_rate — obtain the current clock rate (in Hz) for a clock source. This is only valid once the clock
source has been enabled.

Synopsis
unsigned long clk_get_rate (struct clk * clk);

Arguments
clk clock source

786

Clock Framework

Name
clk_put — "free" the clock source

Synopsis
void clk_put (struct clk * clk);

Arguments
clk clock source

Note
drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.

clk_put should not be called from within interrupt context.

787

Clock Framework

Name
devm_clk_put — "free" a managed clock source

Synopsis
void devm_clk_put (struct device * dev, struct clk * clk);

Arguments
dev device used to acquire the clock

clk clock source acquired with devm_clk_get

Note
drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.

clk_put should not be called from within interrupt context.

788

Clock Framework

Name
clk_round_rate — adjust a rate to the exact rate a clock can provide

Synopsis
long clk_round_rate (struct clk * clk, unsigned long rate);

Arguments
clk clock source

rate desired clock rate in Hz

Description
This answers the question “if I were to pass rate to clk_set_rate, what clock rate would I end up
with?” without changing the hardware in any way. In other words:

rate = clk_round_rate(clk, r);

and

clk_set_rate(clk, r); rate = clk_get_rate(clk);

are equivalent except the former does not modify the clock hardware in any way.

Returns rounded clock rate in Hz, or negative errno.

789

Clock Framework

Name
clk_set_rate — set the clock rate for a clock source

Synopsis
int clk_set_rate (struct clk * clk, unsigned long rate);

Arguments
clk clock source

rate desired clock rate in Hz

Description
Returns success (0) or negative errno.

790

Clock Framework

Name
clk_has_parent — check if a clock is a possible parent for another

Synopsis
bool clk_has_parent (struct clk * clk, struct clk * parent);

Arguments
clk clock source

parent parent clock source

Description
This function can be used in drivers that need to check that a clock can be the parent of another without
actually changing the parent.

Returns true if parent is a possible parent for clk, false otherwise.

791

Clock Framework

Name
clk_set_rate_range — set a rate range for a clock source

Synopsis
int clk_set_rate_range (struct clk * clk, unsigned long min, unsigned
long max);

Arguments
clk clock source

min desired minimum clock rate in Hz, inclusive

max desired maximum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

792

Clock Framework

Name
clk_set_min_rate — set a minimum clock rate for a clock source

Synopsis
int clk_set_min_rate (struct clk * clk, unsigned long rate);

Arguments
clk clock source

rate desired minimum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

793

Clock Framework

Name
clk_set_max_rate — set a maximum clock rate for a clock source

Synopsis
int clk_set_max_rate (struct clk * clk, unsigned long rate);

Arguments
clk clock source

rate desired maximum clock rate in Hz, inclusive

Description
Returns success (0) or negative errno.

794

Clock Framework

Name
clk_set_parent — set the parent clock source for this clock

Synopsis
int clk_set_parent (struct clk * clk, struct clk * parent);

Arguments
clk clock source

parent parent clock source

Description
Returns success (0) or negative errno.

795

Clock Framework

Name
clk_get_parent — get the parent clock source for this clock

Synopsis
struct clk * clk_get_parent (struct clk * clk);

Arguments
clk clock source

Description
Returns struct clk corresponding to parent clock source, or valid IS_ERR condition containing errno.

796

Clock Framework

Name
clk_get_sys — get a clock based upon the device name

Synopsis
struct clk * clk_get_sys (const char * dev_id, const char * con_id);

Arguments
dev_id device name

con_id connection ID

Description
Returns a struct clk corresponding to the clock producer, or valid IS_ERR condition containing errno.
The implementation uses dev_id and con_id to determine the clock consumer, and thereby the clock
producer. In contrast to clk_get this function takes the device name instead of the device itself for
identification.

Drivers must assume that the clock source is not enabled.

clk_get_sys should not be called from within interrupt context.

797

	The Linux Kernel API
	Table of Contents
	Chapter 1. Data Types
	Doubly Linked Lists
	list_add
	list_add_tail
	__list_del_entry
	list_replace
	list_del_init
	list_move
	list_move_tail
	list_is_last
	list_empty
	list_empty_careful
	list_rotate_left
	list_is_singular
	list_cut_position
	list_splice
	list_splice_tail
	list_splice_init
	list_splice_tail_init
	list_entry
	list_first_entry
	list_last_entry
	list_first_entry_or_null
	list_next_entry
	list_prev_entry
	list_for_each
	list_for_each_prev
	list_for_each_safe
	list_for_each_prev_safe
	list_for_each_entry
	list_for_each_entry_reverse
	list_prepare_entry
	list_for_each_entry_continue
	list_for_each_entry_continue_reverse
	list_for_each_entry_from
	list_for_each_entry_safe
	list_for_each_entry_safe_continue
	list_for_each_entry_safe_from
	list_for_each_entry_safe_reverse
	list_safe_reset_next
	hlist_for_each_entry
	hlist_for_each_entry_continue
	hlist_for_each_entry_from
	hlist_for_each_entry_safe

	Chapter 2. Basic C Library Functions
	String Conversions
	simple_strtoull
	simple_strtoul
	simple_strtol
	simple_strtoll
	vsnprintf
	vscnprintf
	snprintf
	scnprintf
	vsprintf
	sprintf
	vbin_printf
	bstr_printf
	bprintf
	vsscanf
	sscanf
	kstrtol
	kstrtoul
	kstrtoull
	kstrtoll
	kstrtouint
	kstrtoint
	kstrtobool

	String Manipulation
	strncasecmp
	strcpy
	strncpy
	strlcpy
	strscpy
	strcat
	strncat
	strlcat
	strcmp
	strncmp
	strchr
	strchrnul
	strrchr
	strnchr
	skip_spaces
	strim
	strlen
	strnlen
	strspn
	strcspn
	strpbrk
	strsep
	sysfs_streq
	match_string
	memset
	memzero_explicit
	memcpy
	memmove
	memcmp
	memscan
	strstr
	strnstr
	memchr
	memchr_inv
	strreplace

	Bit Operations
	set_bit
	__set_bit
	clear_bit
	__change_bit
	change_bit
	test_and_set_bit
	test_and_set_bit_lock
	__test_and_set_bit
	test_and_clear_bit
	__test_and_clear_bit
	test_and_change_bit
	test_bit
	__ffs
	ffz
	ffs
	fls
	fls64

	Chapter 3. Basic Kernel Library Functions
	Bitmap Operations
	__bitmap_shift_right
	__bitmap_shift_left
	bitmap_find_next_zero_area_off
	__bitmap_parse
	bitmap_parse_user
	bitmap_print_to_pagebuf
	bitmap_parselist_user
	bitmap_remap
	bitmap_bitremap
	bitmap_onto
	bitmap_fold
	bitmap_find_free_region
	bitmap_release_region
	bitmap_allocate_region
	bitmap_from_u32array
	bitmap_to_u32array
	bitmap_copy_le
	__bitmap_parselist
	bitmap_pos_to_ord
	bitmap_ord_to_pos

	Command-line Parsing
	get_option
	get_options
	memparse

	CRC Functions
	crc7_be
	crc16
	crc_itu_t
	lib/crc32.c
	crc_ccitt

	idr/ida Functions
	idr_preload
	idr_alloc
	idr_alloc_cyclic
	idr_remove
	idr_destroy
	idr_for_each
	idr_get_next
	idr_replace
	idr_init
	ida_pre_get
	ida_get_new_above
	ida_remove
	ida_destroy
	ida_simple_get
	ida_simple_remove
	ida_init

	Chapter 4. Memory Management in Linux
	The Slab Cache
	kmalloc
	kmalloc_array
	kcalloc
	kzalloc
	kzalloc_node
	kmem_cache_alloc
	kmem_cache_alloc_node
	kmem_cache_free
	kfree
	ksize
	kfree_const
	kstrdup
	kstrdup_const
	kstrndup
	kmemdup
	memdup_user
	memdup_user_nul
	get_user_pages_fast

	User Space Memory Access
	__copy_to_user_inatomic
	__copy_to_user
	__copy_from_user
	clear_user
	__clear_user
	_copy_to_user
	_copy_from_user

	More Memory Management Functions
	read_cache_pages
	page_cache_sync_readahead
	page_cache_async_readahead
	delete_from_page_cache
	filemap_flush
	filemap_fdatawait_range
	filemap_fdatawait
	filemap_write_and_wait_range
	replace_page_cache_page
	add_to_page_cache_locked
	add_page_wait_queue
	unlock_page
	end_page_writeback
	__lock_page
	page_cache_next_hole
	page_cache_prev_hole
	find_get_entry
	find_lock_entry
	pagecache_get_page
	find_get_pages_contig
	find_get_pages_tag
	find_get_entries_tag
	generic_file_read_iter
	filemap_fault
	read_cache_page
	read_cache_page_gfp
	__generic_file_write_iter
	generic_file_write_iter
	try_to_release_page
	zap_vma_ptes
	vm_insert_page
	vm_insert_pfn
	remap_pfn_range
	vm_iomap_memory
	unmap_mapping_range
	follow_pfn
	vm_unmap_aliases
	vm_unmap_ram
	vm_map_ram
	unmap_kernel_range_noflush
	unmap_kernel_range
	vfree
	vunmap
	vmap
	vmalloc
	vzalloc
	vmalloc_user
	vmalloc_node
	vzalloc_node
	vmalloc_32
	vmalloc_32_user
	remap_vmalloc_range_partial
	remap_vmalloc_range
	alloc_vm_area
	__get_pfnblock_flags_mask
	set_pfnblock_flags_mask
	alloc_pages_exact_nid
	nr_free_zone_pages
	nr_free_pagecache_pages
	find_next_best_node
	free_bootmem_with_active_regions
	sparse_memory_present_with_active_regions
	get_pfn_range_for_nid
	absent_pages_in_range
	node_map_pfn_alignment
	find_min_pfn_with_active_regions
	free_area_init_nodes
	set_dma_reserve
	setup_per_zone_wmarks
	alloc_contig_range
	mempool_destroy
	mempool_create
	mempool_resize
	mempool_alloc
	mempool_free
	dma_pool_create
	dma_pool_destroy
	dma_pool_alloc
	dma_pool_free
	dmam_pool_create
	dmam_pool_destroy
	balance_dirty_pages_ratelimited
	tag_pages_for_writeback
	write_cache_pages
	generic_writepages
	write_one_page
	wait_for_stable_page
	truncate_inode_pages_range
	truncate_inode_pages
	truncate_inode_pages_final
	invalidate_mapping_pages
	invalidate_inode_pages2_range
	invalidate_inode_pages2
	truncate_pagecache
	truncate_setsize
	pagecache_isize_extended
	truncate_pagecache_range

	Chapter 5. Kernel IPC facilities
	IPC utilities
	ipc_init
	ipc_init_ids
	ipc_init_proc_interface
	ipc_findkey
	ipc_get_maxid
	ipc_addid
	ipcget_new
	ipc_check_perms
	ipcget_public
	ipc_rmid
	ipc_alloc
	ipc_free
	ipc_rcu_alloc
	ipcperms
	kernel_to_ipc64_perm
	ipc64_perm_to_ipc_perm
	ipc_obtain_object_idr
	ipc_lock
	ipc_obtain_object_check
	ipcget
	ipc_update_perm
	ipcctl_pre_down_nolock
	ipc_parse_version

	Chapter 6. FIFO Buffer
	kfifo interface
	DECLARE_KFIFO_PTR
	DECLARE_KFIFO
	INIT_KFIFO
	DEFINE_KFIFO
	kfifo_initialized
	kfifo_esize
	kfifo_recsize
	kfifo_size
	kfifo_reset
	kfifo_reset_out
	kfifo_len
	kfifo_is_empty
	kfifo_is_full
	kfifo_avail
	kfifo_skip
	kfifo_peek_len
	kfifo_alloc
	kfifo_free
	kfifo_init
	kfifo_put
	kfifo_get
	kfifo_peek
	kfifo_in
	kfifo_in_spinlocked
	kfifo_out
	kfifo_out_spinlocked
	kfifo_from_user
	kfifo_to_user
	kfifo_dma_in_prepare
	kfifo_dma_in_finish
	kfifo_dma_out_prepare
	kfifo_dma_out_finish
	kfifo_out_peek

	Chapter 7. relay interface support
	relay interface
	relay_buf_full
	relay_reset
	relay_open
	relay_switch_subbuf
	relay_subbufs_consumed
	relay_close
	relay_flush
	relay_mmap_buf
	relay_alloc_buf
	relay_create_buf
	relay_destroy_channel
	relay_destroy_buf
	relay_remove_buf
	relay_buf_empty
	wakeup_readers
	__relay_reset
	relay_close_buf
	relay_hotcpu_callback
	relay_late_setup_files
	relay_file_open
	relay_file_mmap
	relay_file_poll
	relay_file_release
	relay_file_read_subbuf_avail
	relay_file_read_start_pos
	relay_file_read_end_pos

	Chapter 8. Module Support
	Module Loading
	__request_module
	call_usermodehelper_setup
	call_usermodehelper_exec
	call_usermodehelper

	Inter Module support

	Chapter 9. Hardware Interfaces
	Interrupt Handling
	synchronize_hardirq
	synchronize_irq
	irq_set_affinity_notifier
	irq_set_vcpu_affinity
	disable_irq_nosync
	disable_irq
	disable_hardirq
	enable_irq
	irq_set_irq_wake
	irq_wake_thread
	setup_irq
	remove_irq
	free_irq
	request_threaded_irq
	request_any_context_irq
	free_percpu_irq
	request_percpu_irq
	irq_get_irqchip_state
	irq_set_irqchip_state

	DMA Channels
	request_dma
	free_dma

	Resources Management
	request_resource_conflict
	reallocate_resource
	lookup_resource
	insert_resource_conflict
	insert_resource_expand_to_fit
	resource_alignment
	release_mem_region_adjustable
	request_resource
	release_resource
	region_intersects
	allocate_resource
	insert_resource
	remove_resource
	adjust_resource
	__request_region
	__release_region
	devm_request_resource
	devm_release_resource

	MTRR Handling
	arch_phys_wc_add

	PCI Support Library
	pci_bus_max_busnr
	pci_find_capability
	pci_bus_find_capability
	pci_find_next_ext_capability
	pci_find_ext_capability
	pci_find_next_ht_capability
	pci_find_ht_capability
	pci_find_parent_resource
	pci_find_pcie_root_port
	__pci_complete_power_transition
	pci_set_power_state
	pci_choose_state
	pci_save_state
	pci_restore_state
	pci_store_saved_state
	pci_load_saved_state
	pci_load_and_free_saved_state
	pci_reenable_device
	pci_enable_device_io
	pci_enable_device_mem
	pci_enable_device
	pcim_enable_device
	pcim_pin_device
	pci_disable_device
	pci_set_pcie_reset_state
	pci_pme_capable
	pci_pme_active
	__pci_enable_wake
	pci_wake_from_d3
	pci_prepare_to_sleep
	pci_back_from_sleep
	pci_dev_run_wake
	pci_common_swizzle
	pci_release_region
	pci_request_region
	pci_request_region_exclusive
	pci_release_selected_regions
	pci_request_selected_regions
	pci_release_regions
	pci_request_regions
	pci_request_regions_exclusive
	pci_set_master
	pci_clear_master
	pci_set_cacheline_size
	pci_set_mwi
	pci_try_set_mwi
	pci_clear_mwi
	pci_intx
	pci_intx_mask_supported
	pci_check_and_mask_intx
	pci_check_and_unmask_intx
	pci_wait_for_pending_transaction
	pci_reset_bridge_secondary_bus
	__pci_reset_function
	__pci_reset_function_locked
	pci_reset_function
	pci_try_reset_function
	pci_probe_reset_slot
	pci_reset_slot
	pci_try_reset_slot
	pci_probe_reset_bus
	pci_reset_bus
	pci_try_reset_bus
	pcix_get_max_mmrbc
	pcix_get_mmrbc
	pcix_set_mmrbc
	pcie_get_readrq
	pcie_set_readrq
	pcie_get_mps
	pcie_set_mps
	pcie_get_minimum_link
	pci_select_bars
	pci_add_dynid
	pci_match_id
	__pci_register_driver
	pci_unregister_driver
	pci_dev_driver
	pci_dev_get
	pci_dev_put
	pci_stop_and_remove_bus_device
	pci_find_bus
	pci_find_next_bus
	pci_get_slot
	pci_get_domain_bus_and_slot
	pci_get_subsys
	pci_get_device
	pci_get_class
	pci_dev_present
	pci_msi_mask_irq
	pci_msi_unmask_irq
	pci_msi_vec_count
	pci_msix_vec_count
	pci_enable_msix
	pci_msi_enabled
	pci_enable_msi_range
	pci_enable_msix_range
	pci_alloc_irq_vectors_affinity
	pci_free_irq_vectors
	pci_irq_vector
	pci_irq_get_affinity
	pci_msi_create_irq_domain
	pci_bus_alloc_resource
	pci_bus_add_device
	pci_bus_add_devices
	pci_bus_set_ops
	pci_read_vpd
	pci_write_vpd
	pci_set_vpd_size
	pci_cfg_access_lock
	pci_cfg_access_trylock
	pci_cfg_access_unlock
	pci_lost_interrupt
	__ht_create_irq
	ht_create_irq
	ht_destroy_irq
	pci_scan_slot
	pci_rescan_bus
	pci_create_slot
	pci_destroy_slot
	pci_hp_create_module_link
	pci_hp_remove_module_link
	pci_enable_rom
	pci_disable_rom
	pci_map_rom
	pci_unmap_rom
	pci_platform_rom
	pci_enable_sriov
	pci_disable_sriov
	pci_num_vf
	pci_vfs_assigned
	pci_sriov_set_totalvfs
	pci_sriov_get_totalvfs
	pci_read_legacy_io
	pci_write_legacy_io
	pci_mmap_legacy_mem
	pci_mmap_legacy_io
	pci_adjust_legacy_attr
	pci_create_legacy_files
	pci_mmap_resource
	pci_remove_resource_files
	pci_create_resource_files
	pci_write_rom
	pci_read_rom
	pci_remove_sysfs_dev_files

	PCI Hotplug Support Library
	__pci_hp_register
	pci_hp_deregister
	pci_hp_change_slot_info

	Chapter 10. Firmware Interfaces
	DMI Interfaces
	dmi_check_system
	dmi_first_match
	dmi_get_system_info
	dmi_name_in_vendors
	dmi_find_device
	dmi_get_date
	dmi_walk
	dmi_match

	EDD Interfaces
	edd_show_raw_data
	edd_release
	edd_dev_is_type
	edd_get_pci_dev
	edd_init

	Chapter 11. Security Framework
	security_init
	security_module_enable
	securityfs_create_file
	securityfs_create_dir
	securityfs_remove

	Chapter 12. Audit Interfaces
	audit_log_start
	audit_log_format
	audit_log_end
	audit_log
	audit_log_secctx
	audit_alloc
	__audit_free
	__audit_syscall_entry
	__audit_syscall_exit
	__audit_reusename
	__audit_getname
	__audit_inode
	auditsc_get_stamp
	audit_set_loginuid
	__audit_mq_open
	__audit_mq_sendrecv
	__audit_mq_notify
	__audit_mq_getsetattr
	__audit_ipc_obj
	__audit_ipc_set_perm
	__audit_socketcall
	__audit_fd_pair
	__audit_sockaddr
	__audit_signal_info
	__audit_log_bprm_fcaps
	__audit_log_capset
	audit_core_dumps
	audit_rule_change
	audit_list_rules_send
	parent_len
	audit_compare_dname_path

	Chapter 13. Accounting Framework
	sys_acct
	acct_collect
	acct_process

	Chapter 14. Block Devices
	blk_delay_queue
	blk_start_queue_async
	blk_start_queue
	blk_stop_queue
	blk_sync_queue
	__blk_run_queue_uncond
	__blk_run_queue
	blk_run_queue_async
	blk_run_queue
	blk_queue_bypass_start
	blk_queue_bypass_end
	blk_cleanup_queue
	blk_init_queue
	blk_rq_set_block_pc
	blk_requeue_request
	part_round_stats
	generic_make_request
	submit_bio
	blk_insert_cloned_request
	blk_rq_err_bytes
	blk_peek_request
	blk_start_request
	blk_fetch_request
	blk_update_request
	blk_unprep_request
	blk_end_request
	blk_end_request_all
	blk_end_request_cur
	blk_end_request_err
	__blk_end_request
	__blk_end_request_all
	__blk_end_request_cur
	__blk_end_request_err
	rq_flush_dcache_pages
	blk_lld_busy
	blk_rq_unprep_clone
	blk_rq_prep_clone
	blk_start_plug
	blk_pm_runtime_init
	blk_pre_runtime_suspend
	blk_post_runtime_suspend
	blk_pre_runtime_resume
	blk_post_runtime_resume
	blk_set_runtime_active
	__blk_drain_queue
	rq_ioc
	__get_request
	get_request
	blk_attempt_plug_merge
	blk_cloned_rq_check_limits
	blk_end_bidi_request
	__blk_end_bidi_request
	blk_rq_map_user_iov
	blk_rq_unmap_user
	blk_rq_map_kern
	blk_release_queue
	blk_queue_prep_rq
	blk_queue_unprep_rq
	blk_set_default_limits
	blk_set_stacking_limits
	blk_queue_make_request
	blk_queue_bounce_limit
	blk_queue_max_hw_sectors
	blk_queue_chunk_sectors
	blk_queue_max_discard_sectors
	blk_queue_max_write_same_sectors
	blk_queue_max_write_zeroes_sectors
	blk_queue_max_segments
	blk_queue_max_segment_size
	blk_queue_logical_block_size
	blk_queue_physical_block_size
	blk_queue_alignment_offset
	blk_limits_io_min
	blk_queue_io_min
	blk_limits_io_opt
	blk_queue_io_opt
	blk_queue_stack_limits
	blk_stack_limits
	bdev_stack_limits
	disk_stack_limits
	blk_queue_dma_pad
	blk_queue_update_dma_pad
	blk_queue_dma_drain
	blk_queue_segment_boundary
	blk_queue_virt_boundary
	blk_queue_dma_alignment
	blk_queue_update_dma_alignment
	blk_set_queue_depth
	blk_queue_write_cache
	blk_execute_rq_nowait
	blk_execute_rq
	blkdev_issue_flush
	blkdev_issue_discard
	blkdev_issue_write_same
	__blkdev_issue_zeroout
	blkdev_issue_zeroout
	blk_queue_find_tag
	blk_free_tags
	blk_queue_free_tags
	blk_init_tags
	blk_queue_init_tags
	blk_queue_resize_tags
	blk_queue_end_tag
	blk_queue_start_tag
	blk_queue_invalidate_tags
	__blk_queue_free_tags
	blk_rq_count_integrity_sg
	blk_rq_map_integrity_sg
	blk_integrity_compare
	blk_integrity_register
	blk_integrity_unregister
	blk_trace_ioctl
	blk_trace_shutdown
	blk_add_trace_rq
	blk_add_trace_bio
	blk_add_trace_bio_remap
	blk_add_trace_rq_remap
	blk_mangle_minor
	blk_alloc_devt
	blk_free_devt
	disk_replace_part_tbl
	disk_expand_part_tbl
	disk_block_events
	disk_unblock_events
	disk_flush_events
	disk_clear_events
	disk_get_part
	disk_part_iter_init
	disk_part_iter_next
	disk_part_iter_exit
	disk_map_sector_rcu
	register_blkdev
	device_add_disk
	get_gendisk
	bdget_disk

	Chapter 15. Char devices
	register_chrdev_region
	alloc_chrdev_region
	__register_chrdev
	unregister_chrdev_region
	__unregister_chrdev
	cdev_add
	cdev_del
	cdev_alloc
	cdev_init

	Chapter 16. Miscellaneous Devices
	misc_register
	misc_deregister

	Chapter 17. Clock Framework
	struct clk_notifier
	struct clk_notifier_data
	clk_notifier_register
	clk_notifier_unregister
	clk_get_accuracy
	clk_set_phase
	clk_get_phase
	clk_is_match
	clk_prepare
	clk_unprepare
	clk_get
	devm_clk_get
	clk_enable
	clk_disable
	clk_get_rate
	clk_put
	devm_clk_put
	clk_round_rate
	clk_set_rate
	clk_has_parent
	clk_set_rate_range
	clk_set_min_rate
	clk_set_max_rate
	clk_set_parent
	clk_get_parent
	clk_get_sys

