The Linux Kernel Tracepoint API

Jason Baron <j bar on@ edhat . con®
William Cohen <wcohen@ edhat . conp

The Linux Kernel Tracepoint API
by Jason Baron and William Cohen

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O g 11 oo 1o (o o PP 1
220 1 (O PP 2
trace irg NanaIEr_BNEIYi e 3
trace irg NaNAIEr _EXIT ... e 4
TrACE SOFTIIO ENITY .eee ettt ettt e et et eeena s 5
TrACE SOFTIITL EXIT ... eeeit ettt ettt ettt ettt e e e et e e e enbaaaees 6
U o o L (o J = T TP SOPPTT 7
B S GIN A L it e e e e et e et a e e ean s 8
TraCe _SIGNAI_GENEIEIE .. .oeee ettt 9
trace SIgNal_EIIVEN ... e 10
Y oo Gl [L PP 11
trace block _touCh DUFFEr e 12
trace blocK_dirty DUFFEr ... e 13
trace DlOCK 1 @DOM ... e 14
trace DIOCK IO FEOUBUEoeeeieii e e 15
trace BIOCK g COMPIELE .. .ot 16
trace DIOCK 1O NSt ..ot e et e e e e e 17
TraCE DIOCK 1O TSSUB .. ettt ettt e e et e et e et e e ean e aeees 18
trace bloCK D0 DOUNCEiiiie e 19
trace block bio COMPIELE i e 20
trace block _bio baCkmergeooouiii 21
trace blocK Do frONTMEITE e e e aens 22
trace DlOCK D0 QUEUEceeeiie e e e 23
TrACE DIOCK _GEIIT . ..ve ettt ettt anaas 24
trace DIOCK _SIEEDIT .. 25
TraCe DIOCK _PIUG e 26
trace BIOCK _UNPIUGeeeeieeeee e 27
TraCe DIOCK _SPIIT oo e e e 28
trace blOCK DO FEMaD ..o e 29
trace DIOCK IO FEMEID ...ttt e e et e e e e eees 30
B WOPKOUEUE ...ttt ettt ettt e e et e e et n e e e e b 31
trace WOrkQUEUE QUEUE WOFK ... iceiiiie et et e e e e e eaens 32
trace_ workqueue activate WOrKooiiuiiiii e 33
trace WOrkQUEUE EXECULE SEAIoeeiiiii et e e e e e 34
trace WOrkQUEUE EXECULE ENAieee e e et ean e eees 35

Chapter 1. Introduction

Tracepoints are static probe points that are located in strategic points throughout the kernel. 'Probes’ reg-
ister/unregister with tracepoints via a callback mechanism. The 'probes’ are strictly typed functions that
are passed a unique set of parameters defined by each tracepoint.

From this simple callback mechanism, ‘probes’ can be used to profile, debug, and understand kernel be-
havior. There are anumber of tools that provide a framework for using 'probes’. These tools include Sys-
temtap, ftrace, and LTTng.

Tracepoints are defined in anumber of header filesviavarious macros. Thus, the purpose of this document
isto provide a clear accounting of the available tracepoints. The intention is to understand not only what
tracepoints are available but a so to understand where future tracepoints might be added.

The API presented has functions of the form: trace_tracepoi nt name(functi on parane-
t er s) . These are the tracepoints callbacks that are found throughout the code. Registering and unregis-
tering probes with these callback sitesis covered inthe Docunent ati on/ t race/ * directory.

Chapter 2. IRQ

IRQ

Name
trace irq_handler_entry — called immediately before the irq action handler

Synopsis
void trace_irq_handler_entry (int irq, struct irgaction * action);
Arguments

irq irq number

action pointer to struct irgaction

Description

The struct irgaction pointed to by act i on contains various information about the handler, including the
device name, act i on->name, and the deviceid, act i on->dev_id. When used in conjunction with the

irq_handler_exit tracepoint, we can figure out irg handler latencies.

IRQ

Name

trace irq_handler_exit — called immediately after theirq action handler returns

Synopsis

void trace_irqg_handler_exit (int irqg, struct irqaction * action, int
ret);

Arguments

irq irq number
action pointer to struct irgaction

ret return value

Description

If theret value is set to IRQ_HANDLED, then we know that the corresponding act i on->handler
scuccessully handled this irg. Otherwise, the irg might be a shared irq line, or the irq was not handled
successfully. Can be used in conjunction with theirg_handler_entry to understand irg handler latencies.

IRQ

Name

trace_softirq_entry — called immediately before the softirq handler
Synopsis

void trace_softirg_entry (unsigned int vec_nr);
Arguments

vec_nr softirg vector number
Description

When used in combination with the softirq_exit tracepoint we can determine the softirq handler routine.

IRQ

Name

trace softirq_exit — called immediately after the softirg handler returns
Synopsis

void trace_softirg_exit (unsigned int vec_nr);
Arguments

vec_nr softirg vector number
Description

When used in combination with the softirq_entry tracepoint we can determine the softirg handler routine.

IRQ

Name
trace_softirq_raise — called immediately when a softirq is raised

Synopsis
void trace_softirg_raise (unsigned int vec_nr);

Arguments

vec_nr softirg vector number

Description

When used in combination with the softirq_entry tracepoint we can determine the softirg raise to run
latency.

Chapter 3. SIGNAL

SIGNAL

Name

trace_signal_generate — called when asignal is generated

Synopsis

void trace_signal _generate (int sig, struct siginfo * info, struct
task_struct * task, int group, int result);

Arguments
sig signal number
info pointer to struct siginfo

t ask pointer to struct task_struct
group shared or private

result TRACE_SIGNAL_*

Description

Current process sends a 'sig' signal to 'task’ process with 'info' siginfo. If 'info' is SEND_SIG_NOINFO
or SEND_SIG PRIV, 'info' is not a pointer and you can't accessits field. Instead, SEND_SIG_NOINFO
meansthat si_codeis SI_USER, and SEND_SIG PRIV meansthat si_codeis SI_KERNEL.

SIGNAL

Name
trace_signal_deliver — called when asignal is delivered

Synopsis

void trace_signal _deliver (int sig, struct siginfo * info, struct
k_sigaction * ka);

Arguments

sig signa number
i nfo pointer to struct siginfo

ka pointer to struct k_sigaction

Description

A 'sig' signal isdeliveredto current processwith 'info' siginfo, and it will be handled by 'ka. ka->sa.sa_han-
dler can be SIG_IGN or SIG_DFL. Note that some signals reported by signal_generate tracepoint can be
lost, ignored or modified (by debugger) before hitting this tracepoint. This means, this can show which
signals are actually delivered, but matching generated signals and delivered signals may not be correct.

10

Chapter 4. Block IO

11

Block 1O

Name
trace_block_touch buffer — mark a buffer accessed
Synopsis
voi d trace_bl ock_touch_buffer (struct buffer _head * bh):
Arguments
bh buffer_head being touched
Description

Called fromt ouch_buf f er.

12

Block 1O

Name
trace_block_dirty_buffer — mark a buffer dirty
Synopsis
void trace_block dirty buffer (struct buffer _head * bh):
Arguments
bh buffer_head being dirtied
Description

Called frommar k_buffer_dirty.

13

Block 1O

Name
trace _block_rq_abort — abort block operation request

Synopsis

void trace_bl ock_rq_abort (struct request_queue * q, struct request *
ra);

Arguments
g queue containing the block operation request

rgq block IO operation request

Description

Called immediately after pending block 10 operation request r q in queue q is aborted. The fieldsin the
operation request r g can be examined to determine which device and sectors the pending operation would

acCess.

14

Block 1O

Name

trace_block_rq_requeue — place block 10 request back on a queue

Synopsis

void trace_bl ock_rq_requeue (struct request_queue * (g, struct request
*ora);

Arguments

g queue holding operation

rgq block IO operation request

Description

The block operation request r q is being placed back into queue g. For some reason the request was not
completed and needs to be put back in the queue.

15

Block 1O

Name

trace_block_rq_complete — block 10 operation completed by device driver

Synopsis

void trace_block_rq_complete (struct request_queue * g, struct request
* rq, unsigned int nr_bytes);

Arguments
q gueue containing the block operation request
rq block operations request

nr_bytes number of completed bytes

Description

The block_rq_complete tracepoint event indicates that some portion of operation request has been com-
pleted by the device driver. If ther g->bio is NULL, then there is absolutely no additional work to do for
the request. If r g->bio is non-NULL then there is additional work required to complete the request.

16

Block 1O

Name

trace _block_rq_insert — insert block operation request into queue

Synopsis

void trace_block_rqg_insert (struct request_queue * (¢, struct request
*ora);

Arguments
q target queue

rgq block IO operation request

Description

Called immediately before block operation request r q isinserted into queue . The fieldsin the operation
request r g struct can be examined to determine which device and sectors the pending operation would

acCess.

17

Block 1O

Name

trace_block_rq_issue — issue pending block 10 request operation to device driver

Synopsis

void trace_bl ock_rq_issue (struct request_queue * q, struct request *
ra);

Arguments

g queue holding operation

rgq block IO operation operation request

Description

Called when block operation request r g from queue q is sent to a device driver for processing.

18

Block 1O

Name

trace_block_bio_bounce — used bounce buffer when processing block operation

Synopsis

void trace_bl ock_bi o_bounce (struct request_queue * q,
bi 0) ;

Arguments

q gueue holding the block operation

bi o block operation

Description

struct bio *

A bounce buffer was used to handle the block operation bi o0 in g. This occurs when hardware limitations
prevent a direct transfer of data between the bi o data memory area and the 10 device. Use of a bounce

buffer requires extra copying of data and decreases performance.

19

Block 1O

Name

trace_block_bio_complete — completed all work on the block operation

Synopsis

void trace_bl ock_bio_conplete (struct request_queue * ¢, struct bio *
bio, int error);

Arguments

q gueue holding the block operation
bi o block operation completed

error ioerror vaue

Description

This tracepoint indicates there is no further work to do on this block 10 operation bi o.

20

Block 1O

Name

trace _block_bio_backmerge — merging block operation to the end of an existing operation

Synopsis

voi d trace_bl ock_bi o_backmerge (struct request_queue * q, struct request
* rq, struct bio * bio);

Arguments

q gueue holding operation
rq request bioisbeing merged into

bi 0 new block operation to merge

Description

Merging block request bi o to the end of an existing block request in queue q.

21

Block 1O

Name

trace _block_bio_frontmerge — merging block operation to the beginning of an existing operation

Synopsis

void trace_bl ock_bio _frontnerge (struct request_queue * (, struct re-
quest * rq, struct bio * bio);

Arguments

q gueue holding operation
rq request bioisbeing merged into

bi 0 new block operation to merge

Description

Merging block 1O operation bi o to the beginning of an existing block operation in queue g.

22

Block 1O

Name

trace_block_bio_queue — putting new block 10 operation in queue

Synopsis

voi d trace_bl ock_bi o_queue (struct request_queue * ¢, struct bio * bio);

Arguments

q gueue holding operation

bi o new block operation

Description

About to place the block 10 operation bi o into queueq.

23

Block 1O

Name
trace_block_getrqg — get afree request entry in queue for block 1O operations
Synopsis
void trace_block getrq (struct request_queue * g, struct bio * bio,
int rw;
Arguments
q gueue for operations

bi o pending block 10 operation

rw low bitindicatesaread (0) or awrite (1)

Description

A request struct for queue g has been allocated to handle the block 1O operation bi o.

24

Block 1O

Name
trace_block_sleeprq — waiting to get afree request entry in queue for block 10 operation
Synopsis
void trace_bl ock_sleeprg (struct request_queue * g, struct bio * bio,
int rw;
Arguments

q queue for operation
bi o pending block 10 operation

rw low bitindicatesaread (0) or awrite (1)

Description

In the case where arequest struct cannot be provided for queue g the process needs to wait for an request
struct to become available. This tracepoint event is generated each time the process goes to leep waiting

for request struct become available.

25

Block 1O

Name
trace_block_plug — keep operations requests in request queue

Synopsis

void trace_bl ock_plug (struct request_queue * q);
Arguments

q request queueto plug

Description

Plug the request queue q. Do not allow block operation requests to be sent to the device driver. Instead,
accumulate requests in the queue to improve throughput performance of the block device.

26

Block 1O

Name

trace_block _unplug — release of operations requests in request queue

Synopsis

voi d trace_bl ock_unplug (struct request_queue * g, unsigned int depth,
bool explicit);

Arguments
q reguest queue to unplug
depth number of requests just added to the queue

explicit whether thiswasan explicit unplug, or onefromschedul e

Description

Unplug request queue q because device driver is scheduled to work on elements in the request queue.

27

Block 1O

Name

trace_block_split — split asingle bio struct into two bio structs

Synopsis

void trace_block _split (struct request_queue * g, struct bio * bio,
unsi gned int new sector);

Arguments
q gueue containing the bio
bi o block operation being split

new_sect or The starting sector for the new bio

Description

The bio request bi o in request queue q needs to be split into two bio requests. The newly created bi o
request starts at new_sect or . This split may be required due to hardware limitation such as operation

crossing device boundariesin a RAID system.

28

Block 1O

Name

trace_block_bio_remap — map request for alogical deviceto the raw device

Synopsis

void trace_bl ock_bio_remap (struct request_queue * g, struct bio * bio,
dev_t dev, sector_t fron);

Arguments
q gueue holding the operation
bi o revised operation
dev devicefor the operation

from original sector for the operation

Description

An operation for alogical device has been mapped to the raw block device.

29

Block 1O

Name
trace_block_rq_remap — map request for a block operation request

Synopsis

void trace_bl ock_rqg_remap (struct request_queue * q, struct request
rq, dev_t dev, sector_t from;

*

Arguments

q gueue holding the operation
rq block 10 operation request
dev devicefor the operation

from original sector for the operation

Description

The block operation request r g in g has been remapped. The block operation request r g holds the current
information and f r omhold the original sector.

30

Chapter 5. Workqueue

31

Workqueue

Name

trace_workqueue_queue work — called when awork gets queued

Synopsis

void trace_workqueue_queue_work (unsigned int req_cpu, st ruct
pool _wor kqueue * pwg, struct work_struct * work);

Arguments
req_cpu therequested cpu
pwg pointer to struct pool _workqueue
wor k pointer to struct work_struct
Description

This event occurs when a work is queued immediately or once a delayed work is actually queued on a
workqueue (ie: once the delay has been reached).

32

Workqueue

Name

trace_workqueue_activate work — called when awork gets activated

Synopsis

voi d trace_workqueue_activate_work (struct work_struct * work);

Arguments

wor k pointer to struct work_struct

Description

This event occurs when aqueued work is put on the active queue, which happensimmediately after queue-
ing unlessmax_act i ve limit isreached.

33

Workqueue

Name

trace_workqueue_execute start — called immediately before the workqueue callback

Synopsis

voi d trace_workqueue_execute_start (struct work_struct * work);

Arguments

wor k pointer to struct work_struct

Description

Allows to track workqueue execution.

Workqueue

Name

trace_workqueue_execute_end — called immediately after the workqueue callback

Synopsis

voi d trace_workqueue_execute_end (struct work_struct * work);

Arguments

wor k pointer to struct work_struct

Description

Allows to track workqueue execution.

35

	The Linux Kernel Tracepoint API
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. IRQ
	trace_irq_handler_entry
	trace_irq_handler_exit
	trace_softirq_entry
	trace_softirq_exit
	trace_softirq_raise

	Chapter 3. SIGNAL
	trace_signal_generate
	trace_signal_deliver

	Chapter 4. Block IO
	trace_block_touch_buffer
	trace_block_dirty_buffer
	trace_block_rq_abort
	trace_block_rq_requeue
	trace_block_rq_complete
	trace_block_rq_insert
	trace_block_rq_issue
	trace_block_bio_bounce
	trace_block_bio_complete
	trace_block_bio_backmerge
	trace_block_bio_frontmerge
	trace_block_bio_queue
	trace_block_getrq
	trace_block_sleeprq
	trace_block_plug
	trace_block_unplug
	trace_block_split
	trace_block_bio_remap
	trace_block_rq_remap

	Chapter 5. Workqueue
	trace_workqueue_queue_work
	trace_workqueue_activate_work
	trace_workqueue_execute_start
	trace_workqueue_execute_end

