W1: Dallas' 1-wire bus

David Fries <Davi d@ri es. net >

W1: Dallas' 1-wire bus
by David Fries
Copyright © 2013

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

1. W1 APl internal to the KErMEl ... e 1
W21 APl internal to the KErNElo e 1
ArVErSWIIWILN Lo e 1
AMVEISWIIWILLC ..ot e et e e e et e et e e et e e et eeanaees 8
driversWL/WL family.h ... 10
AriverSWLWL FAMIlY.C ... 12
ArVErSWI/WIL INE.C vt e e e e e et e e e e et e e een e eeneees 14
driversW/W1 netlink.n ... 16
ArVErSWI/WIL T0.C vttt e e et e e et e e et e et e e e e eeens 21

Chapter 1. W1 APl internal to the kernel
W1 APl internal to the kernel

drivers/wl/w1l.h

W1 core functions.

W1 API internal to the kernel

Name

struct wl_reg_num — broken out slave device id

Synopsis

struct wl_reg _num{

#i f defined(__LI TTLE_ENDI AN _BI TFI ELD)
_u6b4d famly:8;
__u64 id:48;
__u6b4 crc:8;

#el i f defined(__BI G_ENDI AN _BI TFI ELD)
__u6b4 crc:8;
__u64 id:48;
_u6b4d famly:8;

#el se
#error
#endi f

s
Members

family

id

Ccrc

crc

family

"Pl ease fix <asni byteorder. h>"

identifies the type of device
aong with family isthe unique device id
checksum of the other bytes
checksum of the other bytes
aong with family isthe unique device id

identifies the type of device

W1 API internal to the kernel

Name

struct wl_slave — holds a single slave device on the bus

Synopsis

struct wl_sl ave {
struct nodul e * owner;
unsi gned char name[WL_ MAXNAMELEN] ;
struct list_head wl_sl ave_entry;
struct wl_reg_numreg_num
atomc_t refcnt;
int ttl;
unsi gned | ong fl ags;
struct wl_master * nmaster,
struct wi famly * famly;
void * fam |y data
struct device dev;

s
Members
owner Points to the one wire “wire” kernel module.

name[W1 MAXNAME- Deviceid is ascii.

LEN]

wl _save entry datafor thelinked list

reg_num the slaveid in binary

refcnt reference count, delete when O

ttl decrement per search this dlaveisn't found, deatch at O

flags bit flags for W1_SLAVE_ACTIVE W1 _SLAVE_DETACH
master buswhich this slaveison

family module for device family type

family_data pointer for use by the family module

dev kernel device identifier

W1 API internal to the kernel

Name

struct wl_bus master — operations available on a bus master

Synopsis

struct wl _bus_naster {
void * data
u8 (* read _bit) (void *);
void (* wite_bit) (void *, u8);
u8 (* touch_bit) (void *, u8);
u8 (* read_byte) (void *);
void (* wite_byte) (void *, u8);
u8 (* read_block) (void *, u8 *, int);
void (* wite_block) (void *, const u8 *, int);
ug8 (* triplet) (void *, u8);
u8 (* reset_bus) (void *);
u8 (* set_pullup) (void *, int);
void (* search) (void *, struct wl_master *,u8, wl_slave_found_call back);

s

Members

Note

data
read bit
write_bit

touch_bit

read byte
write_byte
read block
write_block

triplet

reset_bus

set_pullup

search

the first parameter in all the functions below
Samplethelinelevel r et ur n thelevel read (O or 1)
Setstheline level

the lowest-level function for devices that really support the 1-wire protocol.
touch_hit(0) = write-0 cycle touch_bit(1) = write-1/ read cycler et ur n the bit read
(Oor1

Reads a bytes. Same as 8 touch_bhit(1) calls. r et ur n the byte read
Writes a byte. Same as 8 touch_bit(x) calls.

Sameasaseriesof r ead_byt e callsr et ur n the number of bytes read
Sameasaseriesof wite byte cdls

Combines two reads and a smart write for ROM searchesr et ur n bitO=Id bitl=com-
p_id bit2=dir_taken

long write-0 with aread for the presence pulse detection r et ur n -1=Error, 0=Device
present, 1=No device present

Put out astrong pull-up pulse of the specified duration. r et ur n -1=Error, 0=completed

Really nice hardware can handles the different types of ROM search wl master* is
passed to the dlave found callback. u8 is search_type, W1 SEARCH or W1 ALAR-
M_SEARCH

read bit and write_bit are very low level functions and should only be used with hardware that doesn't
really support 1-wire operations, like a parallel/serial port. Either defineread bit and write_bit OR define,
at minimum, touch_hit and reset_bus.

W1 API internal to the kernel

Name
enum w1l master flags— bitfields used in wl_master.flags

Synopsis

enum wl_naster_flags {
WL._ABORT_SEARCH,
WL_WARN_MAX_COUNT

s

Constants
W1 ABORT_SEARCH abort searching early on shutdown

W1 WARN_MAX_COUNIimit warning when the maximum count is reached

W1 API internal to the kernel

Name

struct wl_master — one per bus master

Synopsis

struct wl_master ({

struct list_head wl_master_entry;

struct nmodul e *

owner ;

unsi gned char name[W._MAXNAMELEN] ;
struct mutex list_mnutex;

struct list _head slist;

struct |ist_head async_list;

i nt max_sl ave_count;

int slave_count;

unsi gned | ong attenpts;

int slave ttl;

int initialized;

u32 id;

i nt search_count;

u64 search_id;

atonmic_t refcnt;

void * priv;

i nt enabl e_pul | up;

int pullup_duration;

l ong fl ags;

struct task_struct
struct mutex nutex;

* thread;

struct mutex bus_nutex;
struct device _driver * driver;

struct device dev;

struct wl _bus naster * bus_master;

u32 seq;
b

Members
wl master_entry
owner

name[W1_MAXNAME-
LEN]

list_mutex

slist

async_list
max_slave _count
dave count

attempts

master linked list
module owner

dynamically allocate bus name

protect dlist and async _list

linked list of slaves

linked list of netlink commands to execute
maximum number of slaves to search for at atime
current number of slaves known

number of searches ran

W1 API internal to the kernel

dave ttl number of searches before aslave istimed out
initialized prevent init/removal race conditions

id w1 bus number

search_count number of automatic searchesto run, -1 unlimited
search_id allows continuing a search

refcnt reference count

priv private data storage

enable_pullup alows a strong pullup

pullup_duration time for the next strong pullup

flags one of wl_master_flags

thread thread for bus search and netlink commands
mutex protect most of wl_master

bus mutex pretect concurrent bus access

driver sysfsdriver

dev sysfs device

bus master io operations available

seq sequence number used for netlink broadcasts

W1 API internal to the kernel

Name

struct wl_async_cmd — execute callback from the w1l process kthread
Synopsis
struct wl_async_cnd {

struct |ist_head async_entry;
void (* cb) (struct wl master *dev, struct wl_async_cnd *async_cnd);

b
Members

async_entry link entry

cb callback function, must list_del and destroy thislist before returning
Description

When inserted into the wl _master async list, wl process will execute the callback. Embed this into the
structure with the command details.

drivers/wl/wl.c

W1 core functions.

W1 API internal to the kernel

Name
w1_search — Performs aROM Search & registers any devices found.
Synopsis
voi d wl_search (struct wl_naster * dev, us8 search_type,

wl_ sl ave_found_cal |l back ch);
Arguments
dev The master deviceto search

search_type W1 SEARCH tosearchall devices, or W1_ALARM_SEARCH to return only devices
in the alarmed state

cb Function to call when adeviceisfound
Description

The 1-wire search is a simple binary tree search. For each bit of the address, we read two bits and write
one bit. The bit written will put to sleep all devies that don't match that bit. When the two reads differ, the
direction choice is obvious. When both bits are 0, we must choose a path to take. When we can scan all
64 bits without having to choose a path, we are done.

See “Application note 187 1-wire search algorithm” at www.maxim-ic.com

W1 API internal to the kernel

Name

w1 _process callbacks — execute each dev->async _list callback entry
Synopsis

int wi process_call backs (struct wl naster * dev);
Arguments

dev w1l master device

Description

Thew1 master list_mutex must be held.

Return

1 if there were commands to executed O otherwise

drivers/wl/wl family.h

Allows registering device family operations.

10

W1 API internal to the kernel

Name

struct wl_family_ops — operations for afamily type

Synopsis

struct wi_famly ops {
int (* add_slave) (struct wl_slave *);
void (* renmove_slave) (struct wl_slave *);
const struct attribute group ** groups;

b

Members
add_dave add dslave
remove slave remove slave
groups sysfs group

11

W1 API internal to the kernel

Name

struct wl_family — reference counted family structure.

Synopsis

struct wi_famly {
struct list_head famly entry;
u8 fid;
struct wi_famly ops * fops;
atomc_t refcnt;

b

Members
family_entry family linked list
fid 8 bit family identifier
fops operations for this family
refent reference counter

drivers/wl/wl family.c

Allows registering device family operations.

12

W1 API internal to the kernel

Name

w1l register_family — register adevice family driver
Synopsis

int wlL register_famly (struct wil famly * newf);
Arguments

newf family to register

13

W1 API internal to the kernel

Name

w1l unregister_family — unregister adevice family driver

Synopsis

void wl_unregister famly (struct wi famly * fent);

Arguments

fent family to unregister

drivers/iwl/wl int.c

W1 interna initialization for master devices.

14

W1 API internal to the kernel

Name

w1l add master_device — registers anew master device
Synopsis

int wi add_master_device (struct wl bus _nmaster * naster);
Arguments

mast er master bus device to register

15

W1 API internal to the kernel

Name

w1l _remove master_device — unregister amaster device

Synopsis

void wl_renove_master _device (struct wl _bus naster * bm;

Arguments

bm master bus device to remove

drivers/wl/wl netlink.h

W1 external netlink API structures and commands.

16

W1 API internal to the kernel

Name
enum wl_cn_msg_flags— bitfield flags for struct cn_msg.flags

Synopsis

enumwl _cn_nsg_flags {
WL_CN_BUNDLE
}
Constants

W1 CN_BUN- Request bundling replies into fewer messagse. Be prepared to handle multiple struct
DLE cn_msg, struct wl_netlink_msg, and struct w1l _netlink_cmd in one packet.

17

W1 API internal to the kernel

Name
enum wl_netlink_message types — message type

Synopsis

enum w1l _netlink_nessage_types {
WL._SLAVE_ADD,
WL._SLAVE_REMOVE,
WL._MASTER_ADD,
WL._MASTER_REMOVE,
WL._MASTER_CMD,
WL._SLAVE_CMD,
WL_LI ST_MASTERS

s

Constants
W1 SLAVE ADD notification that a slave device was added
W1 SLAVE RE- notification that a slave device was removed
MOVE

W1 MASTER _ADD notification that a new bus master was added

W1 MASTER RE- notification that a bus masterwas removed
MOVE

W1 MASTER CMD initiate operations on a specific master
W1 SLAVE CMD sends reset, selects the slave, then does a read/write/touch operation

W1 LIST_MASTERS used to determine the bus master identifiers

18

W1 API internal to the kernel

Name
struct wl_netlink_msg — holds w1 message type, id, and result

Synopsis

struct wl_netlink _msg {

__u8 type;
__u8 status;
__ulé len;
uni on id;
__u8 data[0];
s
Members
type one of enum wl_netlink_message_types
status kernel feedback for success O or errno failure value
len length of datafollowing wl netlink_msg
id union holding master busid (msg.id) and slave deviceid (id[8]).

data[0] start address of any following data
Description

The base message structure for wl messages over netlink. The netlink connector data sequence is, struct
nlmsghdr, struct cn_msg, then one or more struct wl _netlink_msg (each with optional data).

19

W1 API internal to the kernel

Name

enum wl _commands — commands available for master or slave operations

Synopsis

enum wl_conmmands {
WL._CMD_READ,
WL._CMD_WRI TE,
WL._CMD_SEARCH,
WL._CNMD_ALARM SEARCH,
WL._CVD_TQUCH,
W._CMD_RESET,
WL._CMD_SLAVE_ADD,
WL._CMD_SLAVE_REMOVE,
WL_CMD LI ST_SLAVES,

WL_CMVD_MAX
s
Constants
W1 _CMD_READ read len bytes
W1 CMD_WRITE write len bytes
W1 CMD_SEARCH initiate a standard search, returns only the slave devices found during that
search
W1 CMD_ALAR- search for devices that are currently alarming
M_SEARCH
W1 CMD_TOUCH Touches a series of bytes.
W1 CMD_RESET sends a bus reset on the given master

W1 CMD_SLAVE ADD adds a slave to the given master, 8 byte dlave id at data]0]

W1 CMD_SLAVE RE- removes aslave to the given master, 8 byte slaveid at data[0]
MOVE

W1 CMD_LIST_SLAVES list of davesregistered on this master

W1 CMD_MAX number of available commands

20

W1 API internal to the kernel

Name

struct wl _netlink_cmd — holds the command and data

Synopsis

struct wl_netlink cnd {

__u8 cnd;
__u8 res;
__ulé len;
__u8 data[0];
s
Members
cmd one of enum wl_commands
res reserved
len length of datafollowing w1l netlink_cmd

data[0] start address of any following data

Description

One or more struct wl_netlink_cmd is placed starting at w1l netlink_msg.data each with optional data.

drivers/iwl/wl io.c

W1 input/output.

21

W1 API internal to the kernel

Name
w1 write 8 — Writes 8 bits.

Synopsis

void wi_ wite 8 (struct wl _master * dev, u8 byte);
Arguments

dev themaster device

byt e thebytetowrite

22

W1 API internal to the kernel

Name
wl read 8 — Reads 8 hits.

Synopsis
u8 wi_read 8 (struct wl_master * dev);

Arguments

dev the master device

Return

the byte read

23

W1 API internal to the kernel

Name

w1l write block — Writes a series of bytes.
Synopsis

void wi_wite block (struct wl naster * dev, const u8 * buf, int |en);
Arguments

dev themaster device

buf pointer to the datato write

[en the number of bytesto write

24

W1 API internal to the kernel

Name

w1l _touch_block — Touches a series of bytes.
Synopsis

void wl_touch_block (struct wl naster * dev, u8 * buf, int len);
Arguments

dev themaster device

buf pointer to the datato write

[en the number of bytesto write

25

W1 API internal to the kernel

Name
w1l _read block — Reads a series of bytes.

Synopsis

u8 wi_read _block (struct wl naster * dev, u8 * buf, int len);
Arguments

dev themaster device

buf pointer to the buffer to fill

| en the number of bytesto read

Return

the number of bytes read

26

W1 API internal to the kernel

Name

w1l reset_bus— Issues areset bus sequence.
Synopsis
int wlL reset_bus (struct wl naster * dev);

Arguments

dev the master device

Return

0=Device present, 1=No device present or error

27

W1 API internal to the kernel

Name
w1l reset select slave — reset and select adave

Synopsis

int wlL reset_sel ect_slave (struct wl_slave * sl);
Arguments

sl thedaveto select

Description

Resets the bus and then sel ects the slave by sending either a skip rom or arom match. A skip romisissued
if there isonly one device registered on the bus. The w1 master lock must be held.

Return

O=success, anything else=error

28

W1 API internal to the kernel

Name

w1l reset_resume_command — resume instead of another match ROM
Synopsis

int wl reset_resunme_comand (struct wl _nmaster * dev);
Arguments

dev the master device

Description

When the workflow with a slave amongst many requires several successive commands a reset between
each, thisfunction issimilar to doing areset then amatch ROM for the last matched ROM. The advantage
being that the matched ROM step is skipped in favor of the resume command. The slave must support
the command of course.

If the bus has only one slave, traditionnaly the match ROM is skipped and a “ SKIP ROM” is done for
efficiency. On multi-slave busses, this doesn't work of course, but the resume command is the next best
thing.

The w1 master lock must be held.

29

W1 API internal to the kernel

Name
w1 _next_pullup — register for astrong pullup

Synopsis
void wl_next _pullup (struct wl master * dev, int delay);
Arguments
dev the master device
del ay timein milliseconds
Description
Put out a strong pull-up of the specified duration after the next write operation. Not all hardware supports
strong pullups. Hardware that doesn't support strong pullups will sleep for the given time after the write

operation without a strong pullup. Thisis a one shot request for the next write, specifying zero will clear
aprevious request. The wl master lock must be held.

Return

O=success, anything else=error

30

W1 API internal to the kernel

Name

w1 _touch_bit — Generates awrite-0 or write-1 cycle and samplesthe level.
Synopsis

u8 wil_touch bit (struct wi _nmaster * dev, int bit);
Arguments

dev themaster device

bit O0-writeaO,1-writeaOreadtheleve

31

W1 API internal to the kernel

Name

w1l write bit — Generates awrite-0 or write-1 cycle.
Synopsis

void wi_wite bit (struct wl naster * dev, int bit);
Arguments

dev themaster device

bit bittowrite

Description

Only call if dev->bus_master->touch_bit isNULL

32

W1 API internal to the kernel

Name

w1l pre write— pre-write operations
Synopsis
void wl_pre wite (struct wl_naster * dev);

Arguments

dev the master device

Description

Pre-write operation, currently only supporting strong pullups. Program the hardware for a strong pullup,
if one has been requested and the hardware supportsit.

33

W1 API internal to the kernel

Name

w1l post_write — post-write options
Synopsis
void wl_post _wite (struct wl _nmaster * dev);

Arguments

dev the master device

Description

Post-write operation, currently only supporting strong pullups. If astrong pullup was requested, clear it if
the hardware supports them, or execute the delay otherwise, in either case clear the request.

W1 API internal to the kernel

Name

w1l _read bit — Generates awrite-1 cycle and samplesthe level.
Synopsis
u8 wl _read bit (struct wl_naster * dev);

Arguments

dev the master device

Description

Only call if dev->bus_master->touch_bit isNULL

35

W1 API internal to the kernel

Name
w1l triplet — * Doesatriplet - used for searching ROM addresses.

Synopsis
u8 wi_triplet (struct wi master * dev, int bdir);
Arguments

dev the master device

bdi r thebit towriteif bothid_bit and comp_hit are 0
Return bits

bit 0 =id _bit bit 1 = comp_bit bit 2 = dir_taken If both bits 0 & 1 are set, the search should be restarted.
Return

bit fields - see above

36

	W1: Dallas' 1-wire bus
	Table of Contents
	Chapter 1. W1 API internal to the kernel
	W1 API internal to the kernel
	drivers/w1/w1.h
	struct w1_reg_num
	struct w1_slave
	struct w1_bus_master
	enum w1_master_flags
	struct w1_master
	struct w1_async_cmd

	drivers/w1/w1.c
	w1_search
	w1_process_callbacks

	drivers/w1/w1_family.h
	struct w1_family_ops
	struct w1_family

	drivers/w1/w1_family.c
	w1_register_family
	w1_unregister_family

	drivers/w1/w1_int.c
	w1_add_master_device
	w1_remove_master_device

	drivers/w1/w1_netlink.h
	enum w1_cn_msg_flags
	enum w1_netlink_message_types
	struct w1_netlink_msg
	enum w1_commands
	struct w1_netlink_cmd

	drivers/w1/w1_io.c
	w1_write_8
	w1_read_8
	w1_write_block
	w1_touch_block
	w1_read_block
	w1_reset_bus
	w1_reset_select_slave
	w1_reset_resume_command
	w1_next_pullup
	w1_touch_bit
	w1_write_bit
	w1_pre_write
	w1_post_write
	w1_read_bit
	w1_triplet

