
The Userspace I/O HOWTO
Hans-Jürgen Koch

The Userspace I/O HOWTO
Hans-Jürgen Koch

Publication date 2006-12-11
Copyright © 2006-2008 Hans-Jürgen Koch.
Copyright © 2009 Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)

Abstract

This HOWTO describes concept and usage of Linux kernel's Userspace I/O system.

This documentation is Free Software licensed under the terms of the GPL version 2.

Table of Contents
1. About this document .. 1

Translations .. 1
Preface .. 1
Acknowledgments ... 1
Feedback ... 1

2. About UIO ... 2
How UIO works ... 2

3. Writing your own kernel module .. 5
struct uio_info .. 5
Adding an interrupt handler .. 6
Using uio_pdrv for platform devices .. 7
Using uio_pdrv_genirq for platform devices .. 7
Using uio_dmem_genirq for platform devices .. 7

4. Writing a driver in userspace ... 9
Getting information about your UIO device ... 9
mmap() device memory ... 9
Waiting for interrupts .. 9

5. Generic PCI UIO driver .. 11
Making the driver recognize the device ... 11
Things to know about uio_pci_generic .. 11
Writing userspace driver using uio_pci_generic .. 12
Example code using uio_pci_generic .. 12

A. Further information ... 14

iii

Chapter 1. About this document
Translations

If you know of any translations for this document, or you are interested in translating it, please email me
<hjk@hansjkoch.de>.

Preface
For many types of devices, creating a Linux kernel driver is overkill. All that is really needed is some way
to handle an interrupt and provide access to the memory space of the device. The logic of controlling the
device does not necessarily have to be within the kernel, as the device does not need to take advantage
of any of other resources that the kernel provides. One such common class of devices that are like this
are for industrial I/O cards.

To address this situation, the userspace I/O system (UIO) was designed. For typical industrial I/O cards,
only a very small kernel module is needed. The main part of the driver will run in user space. This simplifies
development and reduces the risk of serious bugs within a kernel module.

Please note that UIO is not an universal driver interface. Devices that are already handled well by other
kernel subsystems (like networking or serial or USB) are no candidates for an UIO driver. Hardware that
is ideally suited for an UIO driver fulfills all of the following:

• The device has memory that can be mapped. The device can be controlled completely by writing to
this memory.

• The device usually generates interrupts.

• The device does not fit into one of the standard kernel subsystems.

Acknowledgments
I'd like to thank Thomas Gleixner and Benedikt Spranger of Linutronix, who have not only written most
of the UIO code, but also helped greatly writing this HOWTO by giving me all kinds of background
information.

Feedback
Find something wrong with this document? (Or perhaps something right?) I would love to hear from you.
Please email me at <hjk@hansjkoch.de>.

1

Chapter 2. About UIO
If you use UIO for your card's driver, here's what you get:

• only one small kernel module to write and maintain.

• develop the main part of your driver in user space, with all the tools and libraries you're used to.

• bugs in your driver won't crash the kernel.

• updates of your driver can take place without recompiling the kernel.

How UIO works
Each UIO device is accessed through a device file and several sysfs attribute files. The device file will be
called /dev/uio0 for the first device, and /dev/uio1, /dev/uio2 and so on for subsequent devices.

/dev/uioX is used to access the address space of the card. Just use mmap() to access registers or RAM
locations of your card.

Interrupts are handled by reading from /dev/uioX. A blocking read() from /dev/uioX will return
as soon as an interrupt occurs. You can also use select() on /dev/uioX to wait for an interrupt.
The integer value read from /dev/uioX represents the total interrupt count. You can use this number
to figure out if you missed some interrupts.

For some hardware that has more than one interrupt source internally, but not separate IRQ mask and
status registers, there might be situations where userspace cannot determine what the interrupt source was
if the kernel handler disables them by writing to the chip's IRQ register. In such a case, the kernel has to
disable the IRQ completely to leave the chip's register untouched. Now the userspace part can determine
the cause of the interrupt, but it cannot re-enable interrupts. Another cornercase is chips where re-enabling
interrupts is a read-modify-write operation to a combined IRQ status/acknowledge register. This would
be racy if a new interrupt occurred simultaneously.

To address these problems, UIO also implements a write() function. It is normally not used and can be
ignored for hardware that has only a single interrupt source or has separate IRQ mask and status registers.
If you need it, however, a write to /dev/uioX will call the irqcontrol() function implemented by
the driver. You have to write a 32-bit value that is usually either 0 or 1 to disable or enable interrupts. If a
driver does not implement irqcontrol(), write() will return with -ENOSYS.

To handle interrupts properly, your custom kernel module can provide its own interrupt handler. It will
automatically be called by the built-in handler.

For cards that don't generate interrupts but need to be polled, there is the possibility to set up a timer that
triggers the interrupt handler at configurable time intervals. This interrupt simulation is done by calling
uio_event_notify() from the timer's event handler.

Each driver provides attributes that are used to read or write variables. These attributes are accessible
through sysfs files. A custom kernel driver module can add its own attributes to the device owned by the
uio driver, but not added to the UIO device itself at this time. This might change in the future if it would
be found to be useful.

The following standard attributes are provided by the UIO framework:

• name: The name of your device. It is recommended to use the name of your kernel module for this.

2

About UIO

• version: A version string defined by your driver. This allows the user space part of your driver to
deal with different versions of the kernel module.

• event: The total number of interrupts handled by the driver since the last time the device node was read.

These attributes appear under the /sys/class/uio/uioX directory. Please note that this directory
might be a symlink, and not a real directory. Any userspace code that accesses it must be able to handle this.

Each UIO device can make one or more memory regions available for memory mapping. This is necessary
because some industrial I/O cards require access to more than one PCI memory region in a driver.

Each mapping has its own directory in sysfs, the first mapping appears as /sys/class/uio/uioX/
maps/map0/. Subsequent mappings create directories map1/, map2/, and so on. These directories will
only appear if the size of the mapping is not 0.

Each mapX/ directory contains four read-only files that show attributes of the memory:

• name: A string identifier for this mapping. This is optional, the string can be empty. Drivers can set
this to make it easier for userspace to find the correct mapping.

• addr: The address of memory that can be mapped.

• size: The size, in bytes, of the memory pointed to by addr.

• offset: The offset, in bytes, that has to be added to the pointer returned by mmap() to get to the
actual device memory. This is important if the device's memory is not page aligned. Remember that
pointers returned by mmap() are always page aligned, so it is good style to always add this offset.

From userspace, the different mappings are distinguished by adjusting the offset parameter of the
mmap() call. To map the memory of mapping N, you have to use N times the page size as your offset:

offset = N * getpagesize();

Sometimes there is hardware with memory-like regions that can not be mapped with the technique de-
scribed here, but there are still ways to access them from userspace. The most common example are x86 io-
ports. On x86 systems, userspace can access these ioports using ioperm(), iopl(), inb(), outb(),
and similar functions.

Since these ioport regions can not be mapped, they will not appear under /sys/class/uio/uioX/
maps/ like the normal memory described above. Without information about the port regions a hardware
has to offer, it becomes difficult for the userspace part of the driver to find out which ports belong to
which UIO device.

To address this situation, the new directory /sys/class/uio/uioX/portio/ was added. It only
exists if the driver wants to pass information about one or more port regions to userspace. If that is the case,
subdirectories named port0, port1, and so on, will appear underneath /sys/class/uio/uioX/
portio/.

Each portX/ directory contains four read-only files that show name, start, size, and type of the port
region:

• name: A string identifier for this port region. The string is optional and can be empty. Drivers can set
it to make it easier for userspace to find a certain port region.

• start: The first port of this region.

3

About UIO

• size: The number of ports in this region.

• porttype: A string describing the type of port.

4

Chapter 3. Writing your own kernel
module

Please have a look at uio_cif.c as an example. The following paragraphs explain the different sections
of this file.

struct uio_info
This structure tells the framework the details of your driver, Some of the members are required, others
are optional.

• const char *name: Required. The name of your driver as it will appear in sysfs. I recommend
using the name of your module for this.

• const char *version: Required. This string appears in /sys/class/uio/uioX/version.

• struct uio_mem mem[MAX_UIO_MAPS]: Required if you have memory that can be mapped
with mmap(). For each mapping you need to fill one of the uio_mem structures. See the description
below for details.

• struct uio_port port[MAX_UIO_PORTS_REGIONS]: Required if you want to pass in-
formation about ioports to userspace. For each port region you need to fill one of the uio_port struc-
tures. See the description below for details.

• long irq: Required. If your hardware generates an interrupt, it's your modules task to determine the
irq number during initialization. If you don't have a hardware generated interrupt but want to trigger the
interrupt handler in some other way, set irq to UIO_IRQ_CUSTOM. If you had no interrupt at all, you
could set irq to UIO_IRQ_NONE, though this rarely makes sense.

• unsigned long irq_flags: Required if you've set irq to a hardware interrupt number. The
flags given here will be used in the call to request_irq().

• int (*mmap)(struct uio_info *info, struct vm_area_struct *vma): Optional.
If you need a special mmap() function, you can set it here. If this pointer is not NULL, your mmap()
will be called instead of the built-in one.

• int (*open)(struct uio_info *info, struct inode *inode) : Optional. You
might want to have your own open(), e.g. to enable interrupts only when your device is actually used.

• int (*release)(struct uio_info *info, struct inode *inode) : Optional. If
you define your own open(), you will probably also want a custom release() function.

• int (*irqcontrol)(struct uio_info *info, s32 irq_on) : Optional. If you need
to be able to enable or disable interrupts from userspace by writing to /dev/uioX, you can implement
this function. The parameter irq_on will be 0 to disable interrupts and 1 to enable them.

Usually, your device will have one or more memory regions that can be mapped to user space. For each
region, you have to set up a struct uio_mem in the mem[] array. Here's a description of the fields
of struct uio_mem:

• const char *name: Optional. Set this to help identify the memory region, it will show up in the
corresponding sysfs node.

5

Writing your own kernel module

• int memtype: Required if the mapping is used. Set this to UIO_MEM_PHYS if you you have physical
memory on your card to be mapped. Use UIO_MEM_LOGICAL for logical memory (e.g. allocated with
kmalloc()). There's also UIO_MEM_VIRTUAL for virtual memory.

• phys_addr_t addr: Required if the mapping is used. Fill in the address of your memory block.
This address is the one that appears in sysfs.

• resource_size_t size: Fill in the size of the memory block that addr points to. If size is zero,
the mapping is considered unused. Note that you must initialize size with zero for all unused mappings.

• void *internal_addr: If you have to access this memory region from within your kernel module,
you will want to map it internally by using something like ioremap(). Addresses returned by this
function cannot be mapped to user space, so you must not store it in addr. Use internal_addr
instead to remember such an address.

Please do not touch the map element of struct uio_mem! It is used by the UIO framework to set up
sysfs files for this mapping. Simply leave it alone.

Sometimes, your device can have one or more port regions which can not be mapped to userspace. But if
there are other possibilities for userspace to access these ports, it makes sense to make information about
the ports available in sysfs. For each region, you have to set up a struct uio_port in the port[]
array. Here's a description of the fields of struct uio_port:

• char *porttype: Required. Set this to one of the predefined constants. Use UIO_PORT_X86 for
the ioports found in x86 architectures.

• unsigned long start: Required if the port region is used. Fill in the number of the first port
of this region.

• unsigned long size: Fill in the number of ports in this region. If size is zero, the region is
considered unused. Note that you must initialize size with zero for all unused regions.

Please do not touch the portio element of struct uio_port! It is used internally by the UIO
framework to set up sysfs files for this region. Simply leave it alone.

Adding an interrupt handler
What you need to do in your interrupt handler depends on your hardware and on how you want to handle it.
You should try to keep the amount of code in your kernel interrupt handler low. If your hardware requires
no action that you have to perform after each interrupt, then your handler can be empty.

If, on the other hand, your hardware needs some action to be performed after each interrupt, then you
must do it in your kernel module. Note that you cannot rely on the userspace part of your driver. Your
userspace program can terminate at any time, possibly leaving your hardware in a state where proper
interrupt handling is still required.

There might also be applications where you want to read data from your hardware at each interrupt and
buffer it in a piece of kernel memory you've allocated for that purpose. With this technique you could
avoid loss of data if your userspace program misses an interrupt.

A note on shared interrupts: Your driver should support interrupt sharing whenever this is possible. It is
possible if and only if your driver can detect whether your hardware has triggered the interrupt or not. This
is usually done by looking at an interrupt status register. If your driver sees that the IRQ bit is actually set,
it will perform its actions, and the handler returns IRQ_HANDLED. If the driver detects that it was not
your hardware that caused the interrupt, it will do nothing and return IRQ_NONE, allowing the kernel to
call the next possible interrupt handler.

6

Writing your own kernel module

If you decide not to support shared interrupts, your card won't work in computers with no free interrupts. As
this frequently happens on the PC platform, you can save yourself a lot of trouble by supporting interrupt
sharing.

Using uio_pdrv for platform devices
In many cases, UIO drivers for platform devices can be handled in a generic way. In the same place where
you define your struct platform_device, you simply also implement your interrupt handler and
fill your struct uio_info. A pointer to this struct uio_info is then used as platform_data
for your platform device.

You also need to set up an array of struct resource containing addresses and sizes of your memory
mappings. This information is passed to the driver using the .resource and .num_resources ele-
ments of struct platform_device.

You now have to set the .name element of struct platform_device to "uio_pdrv" to use
the generic UIO platform device driver. This driver will fill the mem[] array according to the resources
given, and register the device.

The advantage of this approach is that you only have to edit a file you need to edit anyway. You do not
have to create an extra driver.

Using uio_pdrv_genirq for platform devices
Especially in embedded devices, you frequently find chips where the irq pin is tied to its own dedicated
interrupt line. In such cases, where you can be really sure the interrupt is not shared, we can take the concept
of uio_pdrv one step further and use a generic interrupt handler. That's what uio_pdrv_genirq
does.

The setup for this driver is the same as described above for uio_pdrv, except that you do not imple-
ment an interrupt handler. The .handler element of struct uio_info must remain NULL. The
.irq_flags element must not contain IRQF_SHARED.

You will set the .name element of struct platform_device to "uio_pdrv_genirq" to use
this driver.

The generic interrupt handler of uio_pdrv_genirq will simply disable the interrupt line using
disable_irq_nosync(). After doing its work, userspace can reenable the interrupt by writing
0x00000001 to the UIO device file. The driver already implements an irq_control() to make this
possible, you must not implement your own.

Using uio_pdrv_genirq not only saves a few lines of interrupt handler code. You also do not need
to know anything about the chip's internal registers to create the kernel part of the driver. All you need to
know is the irq number of the pin the chip is connected to.

Using uio_dmem_genirq for platform devices
In addition to statically allocated memory ranges, they may also be a desire to use dynamically allocated
regions in a user space driver. In particular, being able to access memory made available through the dma-
mapping API, may be particularly useful. The uio_dmem_genirq driver provides a way to accomplish
this.

This driver is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt
configuration and handling.

7

Writing your own kernel module

Set the .name element of struct platform_device to "uio_dmem_genirq" to use this driver.

When using this driver, fill in the .platform_data element of struct platform_device, which
is of type struct uio_dmem_genirq_pdata and which contains the following elements:

• struct uio_info uioinfo: The same structure used as the uio_pdrv_genirq platform data

• unsigned int *dynamic_region_sizes: Pointer to list of sizes of dynamic memory regions
to be mapped into user space.

• unsigned int num_dynamic_regions: Number of elements in dynamic_region_sizes
array.

The dynamic regions defined in the platform data will be appended to the mem[] array after the platform
device resources, which implies that the total number of static and dynamic memory regions cannot exceed
MAX_UIO_MAPS.

The dynamic memory regions will be allocated when the UIO device file, /dev/uioX is opened. Similar
to static memory resources, the memory region information for dynamic regions is then visible via sysfs
at /sys/class/uio/uioX/maps/mapY/*. The dynamic memory regions will be freed when the
UIO device file is closed. When no processes are holding the device file open, the address returned to
userspace is ~0.

8

Chapter 4. Writing a driver in
userspace

Once you have a working kernel module for your hardware, you can write the userspace part of your driver.
You don't need any special libraries, your driver can be written in any reasonable language, you can use
floating point numbers and so on. In short, you can use all the tools and libraries you'd normally use for
writing a userspace application.

Getting information about your UIO device
Information about all UIO devices is available in sysfs. The first thing you should do in your driver is
check name and version to make sure your talking to the right device and that its kernel driver has
the version you expect.

You should also make sure that the memory mapping you need exists and has the size you expect.

There is a tool called lsuio that lists UIO devices and their attributes. It is available here:

http://www.osadl.org/projects/downloads/UIO/user/ [http://www.osadl.org/projects/downloads/UIO/
user/]

With lsuio you can quickly check if your kernel module is loaded and which attributes it exports. Have
a look at the manpage for details.

The source code of lsuio can serve as an example for getting information about an UIO device. The file
uio_helper.c contains a lot of functions you could use in your userspace driver code.

mmap() device memory
After you made sure you've got the right device with the memory mappings you need, all you have to do
is to call mmap() to map the device's memory to userspace.

The parameter offset of the mmap() call has a special meaning for UIO devices: It is used to select
which mapping of your device you want to map. To map the memory of mapping N, you have to use N
times the page size as your offset:

 offset = N * getpagesize();

N starts from zero, so if you've got only one memory range to map, set offset = 0. A drawback of this
technique is that memory is always mapped beginning with its start address.

Waiting for interrupts
After you successfully mapped your devices memory, you can access it like an ordinary array. Usually, you
will perform some initialization. After that, your hardware starts working and will generate an interrupt as
soon as it's finished, has some data available, or needs your attention because an error occurred.

/dev/uioX is a read-only file. A read() will always block until an interrupt occurs. There is only one
legal value for the count parameter of read(), and that is the size of a signed 32 bit integer (4). Any

9

http://www.osadl.org/projects/downloads/UIO/user/
http://www.osadl.org/projects/downloads/UIO/user/
http://www.osadl.org/projects/downloads/UIO/user/

Writing a driver in userspace

other value for count causes read() to fail. The signed 32 bit integer read is the interrupt count of your
device. If the value is one more than the value you read the last time, everything is OK. If the difference
is greater than one, you missed interrupts.

You can also use select() on /dev/uioX.

10

Chapter 5. Generic PCI UIO driver
The generic driver is a kernel module named uio_pci_generic. It can work with any device compliant
to PCI 2.3 (circa 2002) and any compliant PCI Express device. Using this, you only need to write the
userspace driver, removing the need to write a hardware-specific kernel module.

Making the driver recognize the device
Since the driver does not declare any device ids, it will not get loaded automatically and will not automat-
ically bind to any devices, you must load it and allocate id to the driver yourself. For example:

 modprobe uio_pci_generic
 echo "8086 10f5" > /sys/bus/pci/drivers/uio_pci_generic/new_id

If there already is a hardware specific kernel driver for your device, the generic driver still won't bind to
it, in this case if you want to use the generic driver (why would you?) you'll have to manually unbind the
hardware specific driver and bind the generic driver, like this:

 echo -n 0000:00:19.0 > /sys/bus/pci/drivers/e1000e/unbind
 echo -n 0000:00:19.0 > /sys/bus/pci/drivers/uio_pci_generic/bind

You can verify that the device has been bound to the driver by looking for it in sysfs, for example like
the following:

 ls -l /sys/bus/pci/devices/0000:00:19.0/driver

Which if successful should print

 .../0000:00:19.0/driver -> ../../../bus/pci/drivers/uio_pci_generic

Note that the generic driver will not bind to old PCI 2.2 devices. If binding the device failed, run the
following command:

 dmesg

and look in the output for failure reasons

Things to know about uio_pci_generic
Interrupts are handled using the Interrupt Disable bit in the PCI command register and Interrupt Status bit
in the PCI status register. All devices compliant to PCI 2.3 (circa 2002) and all compliant PCI Express
devices should support these bits. uio_pci_generic detects this support, and won't bind to devices which
do not support the Interrupt Disable Bit in the command register.

11

Generic PCI UIO driver

On each interrupt, uio_pci_generic sets the Interrupt Disable bit. This prevents the device from generating
further interrupts until the bit is cleared. The userspace driver should clear this bit before blocking and
waiting for more interrupts.

Writing userspace driver using uio_pci_generic
Userspace driver can use pci sysfs interface, or the libpci libray that wraps it, to talk to the device and to
re-enable interrupts by writing to the command register.

Example code using uio_pci_generic
Here is some sample userspace driver code using uio_pci_generic:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>

int main()
{
 int uiofd;
 int configfd;
 int err;
 int i;
 unsigned icount;
 unsigned char command_high;

 uiofd = open("/dev/uio0", O_RDONLY);
 if (uiofd < 0) {
 perror("uio open:");
 return errno;
 }
 configfd = open("/sys/class/uio/uio0/device/config", O_RDWR);
 if (configfd < 0) {
 perror("config open:");
 return errno;
 }

 /* Read and cache command value */
 err = pread(configfd, &command_high, 1, 5);
 if (err != 1) {
 perror("command config read:");
 return errno;
 }
 command_high &= ~0x4;

 for(i = 0;; ++i) {
 /* Print out a message, for debugging. */
 if (i == 0)

12

Generic PCI UIO driver

 fprintf(stderr, "Started uio test driver.\n");
 else
 fprintf(stderr, "Interrupts: %d\n", icount);

 /**/
 /* Here we got an interrupt from the
 device. Do something to it. */
 /**/

 /* Re-enable interrupts. */
 err = pwrite(configfd, &command_high, 1, 5);
 if (err != 1) {
 perror("config write:");
 break;
 }

 /* Wait for next interrupt. */
 err = read(uiofd, &icount, 4);
 if (err != 4) {
 perror("uio read:");
 break;
 }

 }
 return errno;
}

13

Appendix A. Further information
• OSADL homepage. [http://www.osadl.org]

• Linutronix homepage. [http://www.linutronix.de]

14

http://www.osadl.org
http://www.osadl.org
http://www.linutronix.de
http://www.linutronix.de

	The Userspace I/O HOWTO
	Table of Contents
	Chapter 1. About this document
	Translations
	Preface
	Acknowledgments
	Feedback

	Chapter 2. About UIO
	How UIO works

	Chapter 3. Writing your own kernel module
	struct uio_info
	Adding an interrupt handler
	Using uio_pdrv for platform devices
	Using uio_pdrv_genirq for platform devices
	Using uio_dmem_genirq for platform devices

	Chapter 4. Writing a driver in userspace
	Getting information about your UIO device
	mmap() device memory
	Waiting for interrupts

	Chapter 5. Generic PCI UIO driver
	Making the driver recognize the device
	Things to know about uio_pci_generic
	Writing userspace driver using uio_pci_generic
	Example code using uio_pci_generic

	Appendix A. Further information

