Linux GPU Driver Developer's Guide

Jesse Barnes, Intel Corporation <j esse. barnes@ nt el . con®
Laurent Pinchart, Ideas on board SPRL <| au-
rent. pi nchart @deasonboard. conp
Daniel Vetter, Intel Corporation <dani el . vetter@fw | . ch>
Lukas Wunner <l ukas@wnner . de>

Linux GPU Driver Developer's Guide

by Jesse Barnes, Laurent Pinchart, Daniel Vetter, and Lukas Wunner
Copyright © 2008-2009, 2013-2014 Intel Corporation

Copyright © 2012 Laurent Pinchart

Copyright © 2015 Lukas Wunner

The contents of this file may be used under the terms of the GNU General Public License version 2 (the "GPL") as distributed in the kernel source
COPYING file.

Table of Contents

. DRIM GO ..ottt ettt ettt e r et ettt e et 1
O | oo (01 o o RSP P PP TPPPTT 4
2. DRM INEEINAIS ..ottt ettt ettt 5

Driver INItaliZaII0Nceueieiiii e 5
Driver INFOrMELIONoiiiii et e e e e eees 5
Device Instance and Driver Handlingccouuiiiiiiiniiiiiecc e 6
DIIVEN LOB ...covviiieiiii ettt e e e 14
Bus-specific Device Registration and PCl SUPPOItcccvuiveiiiiinieiiiiiieeeciii, 15

MEMOry MAaNAJEIMENTceeeiiie it e e e enes 21
The Trandation Table Manager (TTM) .o.uuiiiiiiii e 21
The Graphics Execution Manager (GEM)vveiiiiiiiiiiiiieccii e 22
VMA OFfSEt MBNAGJES ... it 39
PRIME BUFfEr Sharingoooeeuuniiiiiii e 57
PRIME FUNCLION REFEIENCES ... coieeiiiieeei e 58
DRM MM RaNGE ATOCEIONuiiiiiiieieiii ettt 66
DRM MM Range Allocator Function Referencescoovveviiviniiiiiiieeecii, 67
CMA Helper FUNCLIONS REFErENCEeiiiiiieiiiii e 89

MOOE SELLING .. eeveeeeei ettt e e e e e e e e 102
Display Modes FUNCtion REFEFENCEcoovviiiiiiiiiieiii e 102
Atomic Mode Setting Function REfErenceccoovveeiiiiiiiiiiiieeece 128
Frame BUffer Creationiieeiiiiieeii e e 153
DUumb BUFfer OBDJECES ... eeeiiieciii e 154
OULPUL POITTING .. 155
LOCKING vttt 155

KMS Initialization and CIEANUPcoevuuiiiiiiieeeee e 155
CRTCS (SIUCE AIM_CITC) ..ueeeereieeeeii ettt ettt et e e e e eeees 155
Planes (Struct drm_plane)o.ueuoiiiii e 157
Encoders (Struct drm_enCoder)vveeeeniiiiii e 158
ConNeCtors (Struct drM_CONNECLON)c.uurieiiiiiee it 159
ClEANUD ...ttt e e e 162
Output discovery and initialization example ... 162
KMS APL FUNCLIONS ...ttt 163
KMS Data SEUCIUIESceiiieriieeee ettt 235
KIMS LOCKING ..ttt e e e e e 263

Mode Setting HElPEr FUNCLIONSiiiiiieiiii e 283
HEIPEr FUNCLIONS ...t 283
CRTC Helper OPerationscoeuuuueiieiiieieiiiae ettt e e e e e eenenns 284
Encoder Helper OPerationsuuiiieiuiiieiiii e 285
Connector Helper OPEIationscceeuuuieieiiee e e 286
Atomic Modeset Helper Functions Referencecoovvvvviiiiiiiiiniciicce, 288
Modeset Helper Functions REfErenCeoovvvviiiiiiiiii e 332
Output Probing Helper FUNCtions REFEIeNCeocvvvvviiiviiiiiieeii e 348
fbdev Helper FUNCLioNS REFEIENCEoiiviiiciii e 357
Display Port Helper Functions Referenceooovvviiiiiiiiiiiiii e, 389
Display Port Dual Mode Adaptor Helper Functions Referencec.ccceevennee. 403
Display Port MST Helper Functions Referenceoooevvevieveniiniciiiinieeennnn, 411
MIPI DSI Helper FUNCtions REFEIENCEoveieiiiiieiiiiieece e 433
EDID Helper FUNCLioNS REFEIENCEuiiiiiiiciiiii e 466
Rectangle Utilities REFEIENCEuiiiiiiiie e 488
Flip-work Helper REFEIENCEoovuiiiiii e 505
HDMI Infoframes Helper REfErenceooovveiiiiiiiiii e 513

Linux GPU Driver Developer's Guide

Plane Helper REFEIENCEiiii i e 525

B I =0 0T o PPN 532

T o 1= 532
LY ST (0] 0= == 543
EXIiSting KIMS Properti€Scivi et e e e 544
Vertical Blankingooiiiiiiiiiiii e 553
Vertical Blanking and Interrupt Handling Functions Reference 554
Open/Close, File Operations and IOCTLScivvieiiiieiiii e 585
OPEN ANA ClOSE . .evniiiiei e e e e e e e e aa s 585

(oY @] o= = 0] 586

@ L 1 S 586
LegaCy SUPPOIt COOEcvvueiiieii e et e e e e e e e e et e e et e e eaneees 591
Legacy SUSPENA/RESUMEiiii e e e e e e e e e e e e et e et e ean e ees 591
LegaCy DIMA SEIVICESuiiiiiieii i et e e e et e et e e e e e aanees 591

3. USErand INTEITACES ...oovvvii e 592
L 10 < g 070 L= PSP SPPPS 592
VBlank event handlingoeiiiiiiiii e 592
T Y 0 P 594
4. drm/i915 INtel GFX DIIVEN ..iiiiiiiiiiii et e e e e e e e e aa s 596
Core Driver INfTaSITUCIUIEvuieeiii e e e e e e e e eees 596
Runtime Power Managementoovuuieiieeiiieeiiie e e e e e e et e eateesnnaeees 596
Interrupt Handlingcovviiiiii e e 612

Intel GVT-g Guest SUPPOIt(VGPU)oiiviiiiiieiie e e 615
Display Hardware Handlingccoieiiiiiiiiicie e e 618
Mode Setting INfrastrUCtUreccoviiiiiiiiie e e 618
Frontbuffer Trackingcoiiiiiii e 618
Display FIFO Underrun REPOIINGcvvvneiiieiiiiieiiie e eeeiieeeiee e e eaneeeaae e 626
Plane Configurationoiiiuiiiiii e e e e e 631
ALOMIC Plane HEIPEIScoviiii e 631

(@10 11010 = 1] o1 s 636
(011 0] 0o 636

High DEfinition AUGIOoiiiii e e e 641

Panel Self Refresh PSR (PSR/SRD)ciieeiiviiiiiiiiieeeeeeeeeii e e e 648
Frame Buffer Compression (FBC)ccouviiiiiiiiiiii e 654
Display Refresh Rate Switching (DRRS)ooviiiiiiiiiiiiicceee e 658
3] 664

CSR firmware support for DMCc.oiiiiiiiiicc e 665
Memory Management and Command SUbMISSIONooevviiiiiiiiiin e 670
T (0 g ol = = = T o 670
BatChbUuffer POOISooiiiiiieeei e 676
Logica Rings, Logical Ring Contexts and EXECliStSccovvviiieiiiiiiiiiiecinens 679
GlODA GTT VIBWS ..ttt e e e e e e s 691

GTT Fences and SWIZZIINGcouueiiieiiii e e e e e 697

(© o 1= o i T 1T T O I 706
Buffer OBJECt EVICIIONuiiiiicii e e e e e 708
Buffer Object Memory Shrinkingcccooviiiiiiiiii e, 710
GuC-based Command SUBMISSIONiiiiiiiiieiiiii e ee e eeai e eenes 713
TP 713

LU O 1= | RS 717

LI = o1 o P 724
1915 ppgtt_create and i915 ppgtt_ rel€aseovevviieiiii i 724

1915 _context_create and 1915_context_freeccovvviiiiiiii i, 724
SWITCR MM 724

LIV =T v =T T 725

Linux GPU Driver Developer's Guide

LY [T 1= U L U 727
Manual switching and manual power CONtrolcccuviviiiiiiiieiiie e, 727
Driver POWEN CONEIOL ... ciuetii e e e e e e e aens 727

6. PUDIIC FUNCLIONS ...ttt e 728
vga switcheroo _register handlerccoovviiiiiiii i 729
vga switcheroo_unregister handleroooiiiiiii i 730
vga switcheroo handler flagsovevviiiii i 731
vga SWItCheroo register CHENtccuiviiiiiiiii e 732
vga switcheroo_register audio CHentcoooeuieiiii i, 733
vga switcheroo _client_probe defercoooiiiiiiiiii 734
vga SWItcheroo get Client Satecocvvuieii i e 735
vga SWItcheroo unregister ClIENtooevviiiiiii e 736
vga switcheroo client fh set ... 737
vga SWItCheroo 10CK daCcoouiiiiiiii e 738
vga switcheroo Unlock ddCcooviiiiiii 739
vga switcheroo_process delayed SWItChviiiiiiiii i 740
vga switcheroo_set dynamic swWitChcooiiiii i, 741
vga switcheroo init domain_PmM_OPScouviiiii e 742
vga switcheroo_init_domain_pm_optimus hdmi_audiocccoeeeiiiiiiiiiiecennnns 743

7. PUDIIC SITUCLUIES ...t e et e e e e e e et e e e e et 744
struct vga switcheroo handlercoooiiiiiiii e 745
struct vga SWItCher00 ClIENT OPS ..v.vvvneiiii e e 746

8. PUDIIC CONSIANES ...vvieeiiii e et e e e e et e e e e aa e 747
PUDIIC CONSLANES ...t e e e e e e e e s 747

9. PriVAe SITUCIUIES ...eevii ettt et e et n e et r e e e aa e n e e e ata e e e eaenns 751
LS LU To AV T= = o YN 752
struct vga SWItCheroo ClIENTcovniiiii e 753

List of Tables

2 PP PP POP PPN 544
4.1. Dual channel PHY (VLV/CHV/BXT) .iouuiiiiiiiie ettt 665
4.2. Single channel PHY (CHV/BXT) vttt 665

Vi

Part |. DRM Core

This first part of the GPU Driver Developer's Guide documents core DRM code, helper libraries for writing drivers
and generic userspace interfaces exposed by DRM drivers.

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 4
2. DRM INEEMNAIS ..ottt ettt et et 5
Driver INITAlIZAIONcoeueieiii et 5
Driver INFOIMELIONoiieeiiie et e e e e e e eeees 5
Device Instance and Driver Handlingccoouiiiiiiiiiiiii e 6
DIIVEN LOBA ...coveiiieiii ettt e e et e e e 14
Bus-specific Device Registration and PCl SUPPOITccovuieiiiiiiieiiiiieeeeiiieeeeei e 15
MEMOrY MANAJEMENTceee ittt et e et et e e et e e e e eaneees 21
The Trandation Table Manager (TTM)uiiiiiiie e 21

The Graphics Execution Manager (GEM)oooiiiiiiiiiiiiie e 22
VIMA OFfSEl MBNAGOET ... ettt e e e 39
PRIME BUFfEr Sharingoooeuiuiiiiiii e e 57
PRIME FUNCLION REFEIENCESciiiiiiiiii e 58
DRM MM RANGE AITOCEIONueiieiieeeei ettt 66
DRM MM Range Allocator Function Referencesooovvvvviiiiiiiii i 67
CMA Helper FUNCLIONS REFEIENCEiiiiiiieiieii e 89
MOOE SELLING . evveeeeeet ettt ettt e ettt e e e e b e e e ab e e e na s 102
Display Modes FUNCtion REFEMENCEuuiiiiiiiiciei e 102
Atomic Mode Setting Function REFErenCeooveviiiiiiiiii e 128
Frame BUFfer Creationiveieeiiieiiiii ettt 153
DUmMb BUFfEr OBJECEScoieiiieeiii e 154
OULPUL POITTING ..t 155
LOCKITG vttt 155
KMS Initialization and ClEANUPcouuuiiiiiiee e 155
CRTCS (SIUCE ArM_CITC) ...eeeevtieeeeei ettt ettt et e eeaens 155
Planes (Struct drm_plane)cooueiiiiii e 157
Encoders (Struct drm_enCOOEY)veieeiiieieiii e e 158
ConNeCtors (Struct drM_CONNECTOT)c.uuiieiiiiiee et 159
ClIEANUD ..ottt ettt e e e e e 162
Output discovery and initialization eXamplecooiiiiiiiiniiiii e 162
KMS APL FUNCLIONS ...ttt et e e 163
KIMS Data SEUCIUIESieeieeise ettt ettt e e e e e e e eaeeees 235
KIMS LOCKING ..ttt ettt ettt ettt e e e et e e e e at e e e enbaneeees 263
Mode Setting HElPer FUNCLIONScoouiiiiiii et 283
HEIPEr FUNCLIONS ...ttt e 283
CRTC HeEIPEr OPEIatioNSeieeeieieiiie ettt ettt e et e e e 284
Encoder Helper OPErationsc.uuiiiuiieiiis et 285
ConNeCtor HelPer OPEIatioNnSceeuuuieiiiiie ettt e e 286
Atomic Modeset Helper Functions REfErenceovvvviiiiiiiiiiic e 288
Modeset Helper FUNCLIONS REFEIENCEuiiiiiiiiiiii e 332
Output Probing Helper FUNCtions REfErencecoouvvviiiiiinieiiiii e 348
fbdev Helper FUNCLioNS REFEIENCEcovvviiiiii e 357
Display Port Helper FUNCLIONS REFEIENCEuiiiiiiieiei e 389
Display Port Dual Mode Adaptor Helper Functions Referencecccccevveveiiineees 403
Display Port MST Helper FUnctions REferenceccoovveiiiiinniiiiiiiecceeecein 411

MIPI DSI Helper FUNCLIONS REFEIENCEuuiiiiiiiieiiiie e 433
EDID Helper FUNCLIONS REFEIENCEuueiiiiiie e 466
Rectangle UtilitieS REFEIENCEu i 488
Flip-work Helper REFEIENCEoouuniiei e 505
HDMI Infoframes Helper REFEIENCEcoovuiiiiiii e 513
Plane Helper REFEIENCE ... oo e 525

DRM Core

JLILL =0 01U o TP 532

[T To 1= P 532
LAY ST (0] 0= == 543
EXIiSting KIMS PropETIES ..vuiiieei e e e e e e e e e e eaens 544
Vertical BlanKingooiiuioiiiiii e 553
Vertical Blanking and Interrupt Handling Functions Referenceccooovvviveiiieennnnnns 554
Open/Close, File Operations and IOCTLSccuuiiiiiieiiieeii e e e e e e e e e e 585
OPEN AN ClIOSE ...vuiiiiiieii et e e e e e e e e e e e et e e et e e e eaens 585

R[N @] o= = 0] 586

1@ L 1 PSPPSR 586
LegaCy SUPPOIT COOEceuueiii e e e e e e e e e s e et e e et e e e e e eanees 591
Legacy SUSPENA/RESUIMIEiii it ce e e e e e e e e e e e e e e e e e et e e s e eeanaes 591
LegaCy DIMA SEIVICES ...uuuiiii i et e et e e e e e e e e e e et e e e e et e e e eanes 591

3. USErand INTEITACESoeviieieii e e 592
[10 < g 070 L= PPN 592
VBlank event handlingoeiuiiiiiii e e 592

Chapter 1. Introduction

The Linux DRM layer contains code intended to support the needs of complex graphics devices, usualy
containing programmable pipelines well suited to 3D graphics acceleration. Graphicsdriversin the kernel
may make use of DRM functions to make tasks like memory management, interrupt handling and DMA
easier, and provide a uniform interface to applications.

A noteonversions: thisguide coversfeaturesfoundinthe DRM tree, including the TTM memory manager,
output configuration and mode setting, and the new vblank internals, in addition to all the regular features
found in current kernels.

[Insert diagram of typical DRM stack here]

Chapter 2. DRM Internals

This chapter documents DRM internals relevant to driver authors and devel opers working to add support
for the latest features to existing drivers.

First, we go over sometypical driver initialization requirements, like setting up command buffers, creating
an initial output configuration, and initializing core services. Subsequent sections cover core internalsin
more detail, providing implementation notes and examples.

The DRM layer provides severa services to graphics drivers, many of them driven by the application
interfacesit provides through libdrm, the library that wraps most of the DRM ioctls. These include vblank
event handling, memory management, output management, framebuffer management, command submis-
sion & fencing, suspend/resume support, and DMA services.

Driver Initialization

At the core of every DRM driver isadrm_driver structure. Driverstypically statically initializeadrm_dri-
ver structure, and then passittodr m dev_al | oc() to alocate a device instance. After the devicein-
stanceisfully initialized it can be registered (which makes it accessible from userspace) using dr m de-
v_register().

Thedrm_driver structure contains static information that describes the driver and featuresit supports, and
pointers to methods that the DRM core will call to implement the DRM API. We will first go through
the drm_driver static information fields, and will then describe individual operations in details as they get
used in later sections.

Driver Information

Driver Features

Driversinform the DRM core about their requirements and supported features by setting appropriate flags
inthedr i ver _f eat ur es field. Since those flags influence the DRM core behaviour since registration
time, most of them must be set to registering the drm_driver instance.

u32 driver_features;

Driver Feature Flags

DRIVER_USE AGP Driver uses AGP interface, the DRM core will manage AGP resources.
DRIVER_RE- Driver needs AGP interface to function. AGP initialization failure will be-
QUIRE_AGP come afatal error.

DRIVER_PCI_DMA Driver is capable of PCI DMA, mapping of PCI DMA buffers to userspace

will be enabled. Deprecated.

DRIVER_SG Driver can perform scatter/gather DMA, alocation and mapping of scat-
ter/gather buffers will be enabled. Deprecated.

DRIVER_HAVE DMA Driver supports DMA, the userspace DMA API will be supported. Depre-
cated.

DRIVER_HAVE IRQ, DRIVER_HAVE_IRQindicateswhether thedriver hasan IRQ handler man-
DRIVER_IRQ SHARED aged by the DRM Core. The core will support simple IRQ handler installa-

DRM Internals

tion when the flag is set. The installation process is described in the section
called “IRQ Registration”.

DRIVER_IRQ_SHARED indicates whether the device & handler support
shared IRQs (note that thisis required of PCI drivers).

DRIVER_GEM Driver use the GEM memory manager.

DRIVER_MODESET Driver supports mode setting interfaces (KMS).

DRIVER_PRIME Driver implements DRM PRIME buffer sharing.

DRIVER_RENDER Driver supports dedicated render nodes.

DRIVER_ATOMIC Driver supports atomic properties. In this case the driver must implement

appropriate obj->atomic_get_property() vfuncsfor any modeset objectswith
driver specific properties.

Major, Minor and Patchlevel

Name,

int major;
int mnor;
i nt patchl evel;

The DRM coreidentifiesdriver versions by amajor, minor and patch level triplet. Theinformationisprint-
ed to the kernel log at initialization time and passed to userspace through the DRM_|OCTL_VERSION
ioctl.

The major and minor numbers are also used to verify the requested driver API version passed to DR-
M_IOCTL_SET _VERSION. When the driver API changes between minor versions, applications can call
DRM_IOCTL_SET VERSION to select aspecific version of the API. If the requested major isn't equal to
thedriver mgjor, or the requested minor islarger than thedriver minor,theDRM_IOCTL_SET VERSION
call will return an error. Otherwise the driver's set_version() method will be called with the requested
version.

Description and Date

char *nane;
char *desc;
char *dat e;

The driver name is printed to the kernel log at initialization time, used for IRQ registration and passed to
userspace through DRM_IOCTL_VERSION.

The driver description is a purely informative string passed to userspace through the DR-
M_IOCTL_VERSION ioctl and otherwise unused by the kernel.

Thedriver date, formatted as YYYYMMDD, is meant to identify the date of the latest modification to the
driver. However, as most drivers fail to update it, its value is mostly useless. The DRM core printsit to
the kernel log at initialization time and passesit to userspace through the DRM_IOCTL_VERSION ioctl.

Device Instance and Driver Handling

A device instance for adrm driver is represented by struct drm_device. Thisis allocated with dr m _de-
v_al | oc, usually frombus-specific->pr obe callbacksimplemented by thedriver. Thedriver then needs

DRM Internals

to initialize all the various subsystems for the drm device like memory management, vblank handling,
modesetting support and intial output configuration plus obviously initialize al the corresponding hard-
ware bits. An important part of thisisalso calling dr m dev_set _uni que to set the userspace-visible
unique name of this device instance. Finally when everything is up and running and ready for userspace
the device instance can be published usingdr m dev_r egi st er.

Thereisalso deprecated support for initalizing deviceinstances using bus-specific helpersand the->| oad
callback. But due to backwards-compatibility needs the device instance have to be published too early,
which requires unpretty global locking to make safe and is therefore only support for existing drivers not
yet converted to the new scheme.

When cleaning up a device instance everything needs to be done in reverse: First unpublish the device
instancewithdr m _dev_unr egi st er . Then clean up any other resources allocated at device initializa-
tion and drop the driver'sreference to drm_device using dr m dev_unr ef .

Note that the lifetime rules for drm_device instance has still alot of historical baggage. Hence use the
reference counting provided by dr m dev_r ef anddr m dev_unr ef only carefully.

Also note that embedding of drm_device is currently not (yet) supported (but it would be easy to add).
Drivers can store driver-private datain the dev_priv field of drm_device.

DRM Internals

Name
drm_put_dev — Unregister and release aDRM device

Synopsis
void drm put _dev (struct drmdevice * dev);
Arguments
dev DRM device
Description
Called at module unload time or when a PCI device is unplugged.
Cleans up all DRM device, calingdr m | ast cl ose.
Note
Use of thisfunction is deprecated. It will eventually go away completely. Please usedr m dev_unr eg-

i ster anddrm dev_unr ef explicitly instead to make sure that the device isn't userspace accessible
any more while teardown isin progress, ensuring that userspace can't access an inconsistent state.

DRM Internals

Name

drm_dev_alloc — Allocate new DRM device
Synopsis

struct drmdevice * drmdev_alloc (struct drmdriver * driver, struct
device * parent);

Arguments
driver DRM driver to allocate device for

par ent Parent device object

Description

Allocate and initialize anew DRM device. No deviceregistrationisdone. Call dr m dev_r egi st er to
advertice the device to user space and register it with other core subsystems. This should be done last in
the device initialization sequence to make sure userspace can't access an inconsistent state.

The initia ref-count of the object is 1. Use dr m dev_r ef and dr m dev_unr ef to take and drop
further ref-counts.

Note that for purely virtual devicespar ent can be NULL.
RETURNS

Pointer to new DRM device, or NULL if out of memory.

DRM Internals

Name

drm_dev_ref — Take reference of aDRM device
Synopsis
void drmdev_ref (struct drmdevice * dev);

Arguments

dev deviceto takereference of or NULL

Description

This increases the ref-count of dev by one. You *must* already own a reference when calling this. Use
dr m_dev_unr ef to drop thisreference again.

This function never fails. However, this function does not provide *any* guarantee whether the deviceis
aive or running. It only provides a reference to the object and the memory associated with it.

10

DRM Internals

Name

drm_dev_unref — Drop reference of aDRM device
Synopsis
void drmdev_unref (struct drmdevice * dev);

Arguments

dev deviceto drop reference of or NULL

Description

This decreases the ref-count of dev by one. The deviceis destroyed if the ref-count drops to zero.

11

DRM Internals

Name
drm_dev_register — Register DRM device

Synopsis

int drmdev_register (struct drmdevice * dev, unsigned |long flags);
Arguments

dev Deviceto register

flags Fagspassedtothedriver's.l oad function

Description

Register the DRM device dev with the system, advertise device to user-space and start normal device
operation. dev must be alocated viadr m dev_al | oc previously.

Never call thistwice on any device!

NOTE
To ensure backward compatibility with existing drivers method this function calls the ->| oad method
after registering the device nodes, creating race conditions. Usage of the ->| oad methods is therefore
deprecated, drivers must perform all initialization before calling dr m dev_r egi st er.

RETURNS

0 on success, negative error code on failure.

12

DRM Internals

Name
drm_dev_unregister — Unregister DRM device

Synopsis

void drmdev_unregi ster (struct drmdevice * dev);
Arguments

dev Deviceto unregister

Description

Unregister the DRM device from the system. This does the reverse of dr m dev_r egi st er but does
not deallocate the device. The caller must call dr m dev_unr ef to drop their final reference.

This should be called first in the device teardown code to make sure userspace can't access the device
instance any more.

13

DRM Internals

Name

drm_dev_set_unique — Set the unique name of aDRM device
Synopsis

int drmdev_set _uni que (struct drmdevice * dev, const char * fm, ...);
Arguments

dev device of which to set the unique name
fnt format string for unique name

variable arguments
Description

Sets the unique name of a DRM device using the specified format string and a variable list of arguments.
Drivers can use this at driver probe timeif the unique name of the devicesthey driveis static.

Return

0 on success or a negative error code on failure.

Driver Load

IRQ Registration

The DRM coretriesto facilitate IRQ handler registration and unregistration by providingdr m i r q_i n-
stall anddrm.irqg_uni nstall functions. Those functions only support a single interrupt per de-
vice, devices that use more than one |RQs need to be handled manually.

Managed IRQ Registration

drm.irq_i nstall startsbycallingthei r q_pr ei nst al | driver operation. Theoperationisoptional
and must make sure that the interrupt will not get fired by clearing all pending interrupt flags or disabling
the interrupt.

The passed-in IRQ will then be requested by acall tor equest _i r g. If the DRIVER_IRQ_SHARED
driver feature flag is set, a shared (IRQF_SHARED) IRQ handler will be requested.

The IRQ handler function must be provided as the mandatory irq_handler driver operation. It will get
passed directly to r equest _i r g and thus has the same prototype as all IRQ handlers. It will get called
with a pointer to the DRM device as the second argument.

Finally the function callsthe optional i r q_posti nst al | driver operation. The operation usually en-
ables interrupts (excluding the vblank interrupt, which is enabled separately), but drivers may choose to
enable/disable interrupts at a different time.

drm.irqg_uninstall issimilarly usedto uninstall an IRQ handler. It starts by waking up all processes
waiting on avblank interrupt to make sure they don't hang, and then callsthe optional i r q_uni nst al |
driver operation. The operation must disable all hardware interrupts. Finally the function frees the IRQ
by calingfree_irq.

14

DRM Internals

Manual IRQ Registration

Drivers that require multiple interrupt handlers can't use the managed IRQ registration functions. In
that case IRQs must be registered and unregistered manually (usually with the r equest _irq and
free_irq functions, or their devm_* equivaent).

When manually registering |RQs, drivers must not set the DRIVER_HAVE_IRQ driver feature flag, and
must not provide the i r g_handl er driver operation. They must set the drm_devicei r g_enabl ed
field to 1 upon registration of the IRQs, and clear it to 0 after unregistering the IRQs.

Memory Manager Initialization

Every DRM driver requires a memory manager which must be initialized at load time. DRM currently
contains two memory managers, the Translation Table Manager (TTM) and the Graphics Execution Man-
ager (GEM). This document describes the use of the GEM memory manager only. See the section called
“Memory management” for details.

Miscellaneous Device Configuration

Another task that may be necessary for PCI devices during configuration is mapping the video BIOS.
On many devices, the VBIOS describes device configuration, LCD panel timings (if any), and contains
flagsindicating device state. Mapping the BIOS can be done using the pci_map_rom() call, aconvenience
function that takes care of mapping the actual ROM, whether it has been shadowed into memory (typically
at address 0xc0000) or exists on the PCI device in the ROM BAR. Note that after the ROM has been
mapped and any necessary information has been extracted, it should be unmapped; on many devices, the
ROM address decoder is shared with other BARSs, so leaving it mapped could cause undesired behaviour
like hangs or memory corruption.

Bus-specific Device Registration and PCIl Support

A number of functions are provided to help with device registration. The functions deal with PCI and
platform devices respectively and are only provided for historical reasons. These are all deprecated and
shouldn't be used in new drivers. Besides that there's afew helpers for pci drivers.

15

DRM Internals

Name
drm_pci_alloc — Allocate a PCI consistent memory block, for DMA.

Synopsis

drmdma_handle t * drmpci_alloc (struct drmdevice * dev, size_t size,
size t align);

Arguments
dev DRM device
size sizeof block to alocate
al i gn alignment of block

Return

A handle to the allocated memory block on success or NULL on failure.

16

DRM Internals

Name

drm_pci_free — Free a PCI consistent memory block
Synopsis

void drmpci _free (struct drmdevice * dev, drmdma_handl e t * dmah);
Arguments

dev DRM device

dmah handleto memory block

17

DRM Internals

Name
drm_get_pci_dev — Register a PCI device with the DRM subsystem

Synopsis

int drmget pci_dev (struct pci_dev * pdev, const struct pci_device id
* ent, struct drmdriver * driver);

Arguments
pdev PCI device
ent entry from the PCI |D table that matches pdev
driver DRM devicedriver

Description

Attempt to getsinter module “drm” information. If we arefirst then register the character device and inter
module information. Try and register, if wefail to register, backout previous work.

NOTE

This function is deprecated, please use dr m dev_al | oc and dr m dev_r egi st er instead and re-
move your ->| oad callback.

Return

0 on success or a negative error code on failure.

18

DRM Internals

Name
drm_pci_init — Register matching PCI devices with the DRM subsystem

Synopsis
int drmpci _init (struct drmdriver * driver, struct pci_driver * pdriv-
er);

Arguments

driver DRM device driver
pdriver PCl devicedriver
Description

Initializes adrm_device structures, registering the stubs and initializing the AGP device.

NOTE
This function is deprecated. Modern modesetting drm drivers should usepci _r egi st er _dri ver di-
rectly, this function only provides shadow-binding support for old legacy drivers on top of that core pci
function.

Return

0 on success or a negative error code on failure.

19

DRM Internals

Name
drm_pci_exit — Unregister matching PCI devices from the DRM subsystem

Synopsis
void drmpci_exit (struct drmdriver * driver, struct pci_driver *
pdriver);

Arguments

driver DRM device driver
pdriver PCl devicedriver
Description

Unregisters one or more devices matched by a PCl driver from the DRM subsystem.

NOTE

This function is deprecated. Modern modesetting drm drivers should use pci _unr egi st er _dri ver
directly, this function only provides shadow-binding support for old legacy drivers on top of that core pci
function.

20

DRM Internals

Name

drm_platform_init — Register a platform device with the DRM subsystem

Synopsis

int drmplatforminit (struct drmdriver * driver, struct platformde-
vice * platformdevice);

Arguments

driver DRM device driver

pl at f orm devi ce platform deviceto register

Description

NOTE

Return

Mem

Registers the specified DRM device driver and platform device with the DRM subsystem, initializing a
drm_device structure and calling the driver's .| oad function.

This function is deprecated, please use dr m dev_al | oc and dr m dev_r egi st er instead and re-
move your ->| oad callback.

0 on success or a negative error code on failure.

ory management

Modern Linux systems require large amount of graphics memory to store frame buffers, textures, vertices
and other graphics-related data. Given the very dynamic nature of many of that data, managing graphics
memory efficiently isthus crucial for the graphics stack and playsacentral roleinthe DRM infrastructure.

The DRM core includes two memory managers, namely Trandation Table Maps (TTM) and Graphics
Execution Manager (GEM). TTM was the first DRM memory manager to be developed and tried to be a
one-size-fits-themall solution. It providesasingle userspace APl to accommodate the need of al hardware,
supporting both Unified Memory Architecture (UMA) devices and devices with dedicated video RAM
(i.e. most discrete video cards). Thisresulted in alarge, complex piece of code that turned out to be hard
to use for driver devel opment.

GEM started as an Intel-sponsored project in reaction to TTM's complexity. Its design philosophy is com-
pletely different: instead of providing a solution to every graphics memory-related problems, GEM iden-
tified common code between drivers and created a support library to shareit. GEM has simpler initializa-
tion and execution requirements than TTM, but has no video RAM management capabilities and is thus
limited to UMA devices.

The Translation Table Manager (TTM)

TTM design background and information belongs here.

TTM initialization

Warning

This section is outdated.

21

DRM Internals

Drivers wishing to support TTM must fill out adrm_bo_driver structure. The structure contains several
fieldswith function pointersfor initializing the TTM, all ocating and freeing memory, waiting for command
completion and fence synchronization, and memory migration. See the radeon_ttm.c file for an example

of usage.

The ttm_global_reference structure is made up of several fields:

struct ttm gl obal reference {
enum ttm gl obal _types gl obal _type;
size_t size;
voi d *obj ect;
int (*init) (struct ttmgl obal _reference *);
void (*release) (struct ttmglobal _reference *);

s

There should be one global reference structure for your memory manager as a whole, and there will be
othersfor each object created by the memory manager at runtime. Y our global TTM should have atype of
TTM_GLOBAL_TTM_MEM. Thesizefield for the global object should be sizeof (struct ttm_mem_glob-
al), and the init and release hooks should point at your driver-specific init and release routines, which
probably eventualy call ttm_mem_global_init and ttm_mem_global_release, respectively.

Once your global TTM accounting structure is set up and initialized by calling ttm_global _item_ref()
on it, you need to create a buffer object TTM to provide a pool for buffer object allocation by clients
and the kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, and its size should
be sizeof (struct ttm_bo_global). Again, driver-specific init and release functions may be provided, likely
eventually calling ttm_bo_global_init() and ttm_bo_global _release(), respectively. Also, like the previous
object, ttm_global_item ref() isused to create an initial reference count for the TTM, which will call your
initialization function.

The Graphics Execution Manager (GEM)

The GEM design approach has resulted in a memory manager that doesn't provide full coverage of all (or
even all common) use casesin itsuserspace or kernel API. GEM exposes a set of standard memory-related
operationsto userspace and aset of helper functionsto drivers, and et driversimplement hardware-specific
operations with their own private API.

The GEM userspace AP is described in the GEM - the Graphics Execution Manager [http://lwn.net/
Articles/283798/] article on LWN. While slightly outdated, the document provides agood overview of the
GEM API principles. Buffer allocation and read and write operations, described as part of the common
GEM API, are currently implemented using driver-specific ioctls.

GEM isdata-agnostic. It manages abstract buffer objectswithout knowing what individual buffers contain.
APIs that require knowledge of buffer contents or purpose, such as buffer allocation or synchronization
primitives, are thus outside of the scope of GEM and must be implemented using driver-specific ioctls.
On afundamental level, GEM involves several operations:

* Memory alocation and freeing

» Command execution

 Aperture management at command execution time

22

http://lwn.net/Articles/283798/
http://lwn.net/Articles/283798/
http://lwn.net/Articles/283798/

DRM Internals

Buffer object alocation isrelatively straightforward and largely provided by Linux's shmem layer, which
provides memory to back each object.

Device-specific operations, such as command execution, pinning, buffer read & write, mapping, and do-
main ownership transfers are left to driver-specific ioctls.

GEM Initialization

Drivers that use GEM must set the DRIVER_GEM bit in the struct drm_driver dri ver _f eat ures
field. The DRM core will then automatically initialize the GEM core before calling the | oad operation.
Behind the scene, thiswill create a DRM Memory Manager object which provides an address space pool
for object allocation.

InaKMS configuration, drivers need to alocate and initialize acommand ring buffer following core GEM
initialization if required by the hardware. UMA devices usually have what is called a "stolen" memory
region, which provides space for the initial framebuffer and large, contiguous memory regions required
by the device. This space is typically not managed by GEM, and must be initialized separately into its
own DRM MM object.

GEM Objects Creation

GEM gplits creation of GEM objects and allocation of the memory that backs them in two distinct oper-
ations.

GEM objects are represented by an instance of struct drm_gem_object. Drivers usually need to extend
GEM objects with private information and thus create a driver-specific GEM object structure type that
embeds an instance of struct drm_gem_object.

To create a GEM object, a driver allocates memory for an instance of its specific GEM object type and
initializes the embedded struct drm_gem object with acall to dr m gem obj ect _i ni t. Thefunction
takes a pointer to the DRM device, a pointer to the GEM object and the buffer object sizein bytes.

GEM uses shmem to allocate anonymous pageable memory. dr m_gem obj ect _i ni t will create an
shmfsfile of the requested size and store it into the struct drm_gem_object f i | p field. The memory is
used as either main storage for the object when the graphics hardware uses system memory directly or
as abacking store otherwise.

Drivers are responsible for the actual physical pages alocation by caling shnem r ead_map-
pi ng_page_gf p for each page. Note that they can decide to allocate pages when initializing the GEM
object, or to delay allocation until the memory is needed (for instance when a page fault occurs as a result
of auserspace memory access or when the driver needsto start a DMA transfer involving the memory).

Anonymous pageable memory allocation is not always desired, for instance when the hardware requires
physically contiguous system memory as is often the case in embedded devices. Drivers can create GEM
objects with no shmfs backing (called private GEM aobjects) by initializing them with a call to dr -

m gem private_object _init instead of dr m_ gem obj ect i ni t. Storage for private GEM
objects must be managed by drivers.

Driversthat do not need to extend GEM abjectswith private information can call thedr m _gem obj ec-
t _al | oc functionto allocate and initialize astruct drm_gem_object instance. The GEM corewill call the
optional driver gem_ i ni t _obj ect operation after initializing the GEM object with dr m_gem ob-
ject_init.

int (*gem.init_object) (struct drm.gem object *obj);

23

DRM Internals

No alloc-and-init function exists for private GEM objects.

GEM Objects Lifetime

All GEM objects are reference-counted by the GEM core. References can be acquired and release by
calling drm gem obj ect _referenceanddrm gem obj ect unref er ence respectively.
The caller must hold the drm_device st r uct _nut ex lock. As a convenience, GEM provides the dr -
m_gem obj ect _r ef erence_unl ocked and dr m_gem obj ect _unr ef er ence_unl ocked
functions that can be called without holding the lock.

When the last reference to a GEM object isreleased the GEM core callsthedrm_driver gem fr ee_ob-
j ect operation. That operation is mandatory for GEM-enabled drivers and must free the GEM object
and all associated resources.

void (*gem free_object) (struct drmgem object *obj);

Driversareresponsible for freeing all GEM object resources, including the resources created by the GEM
core. If an mmap offset has been created for the object (in which casedrm_gem_object::nap_| i st ::nap
isnot NULL) it must be freed by acal todrm gem f ree_nmap_of f set . The shmfs backing store
must bereleased by callingdr m_gem obj ect _r el ease (that function can safely be called if no shmfs
backing store has been created).

GEM Objects Naming

Communication between userspace and the kernel refersto GEM objectsusing local handles, global names
or, more recently, file descriptors. All of those are 32-bit integer values; the usual Linux kernel limits
apply to the file descriptors.

GEM handlesarelocal to aDRM file. Applications get ahandleto a GEM object through a driver-specific
ioctl, and can use that handleto refer to the GEM object in other standard or driver-specificioctls. Closing
aDRM file handle frees all its GEM handles and dereferences the associated GEM objects.

To create a handle for a GEM object drivers cal dr m gem handl e_cr eat e. The function takes a
pointer to the DRM file and the GEM object and returns a locally unique handle. When the handle is
no longer needed drivers delete it with acall to dr m_ gem handl e_del et e. Finally the GEM object
associated with a handle can be retrieved by acall todr m_ gem obj ect _| ookup.

Handles don't take ownership of GEM objects, they only take areference to the object that will be dropped
when the handleis destroyed. To avoid leaking GEM objects, drivers must make sure they drop the refer-
ence(s) they own (such as the initial reference taken at object creation time) as appropriate, without any
specia consideration for the handle. For example, in the particular case of combined GEM object and
handle creation in the implementation of the durb_cr eat e operation, drivers must drop the initial ref-
erence to the GEM object before returning the handle.

GEM names are similar in purpose to handles but are not local to DRM files. They can be passed be-
tween processes to reference a GEM object globally. Names can't be used directly to refer to objects
in the DRM API, applications must convert handles to names and names to handles using the DR-
M_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctlsrespectively. The conversionishandled
by the DRM core without any driver-specific support.

GEM also supports buffer sharing with dma-buf file descriptors through PRIME. GEM-based drivers must
use the provided helpers functions to implement the exporting and importing correctly. See the section
caled “PRIME Buffer Sharing”. Since sharing file descriptors is inherently more secure than the easily
guessable and global GEM namesit is the preferred buffer sharing mechanism. Sharing buffers through

24

DRM Internals

GEM names isonly supported for legacy userspace. Furthermore PRIME also allows cross-device buffer
sharing sinceit is based on dma-bufs.

GEM Objects Mapping

Because mapping operations are fairly heavyweight GEM favours read/write-like access to buffers, im-
plemented through driver-specific ioctls, over mapping buffers to userspace. However, when random ac-
cess to the buffer is needed (to perform software rendering for instance), direct access to the object can
be more efficient.

The mmap system call can't be used directly to map GEM objects, asthey don't have their own file handle.
Two dternative methods currently co-exist to map GEM objects to userspace. The first method uses a
driver-specific ioctl to perform the mapping operation, calling do_mmap under the hood. This is often
considered dubious, seemsto be discouraged for new GEM-enabled drivers, and will thus not be described
here.

The second method uses the mmap system call on the DRM file handle.

void *mmap(void *addr, size_t length, int prot, int flags, int fd,
of f_t offset);

DRM identifies the GEM object to be mapped by afake offset passed through the mmap offset argument.
Prior to being mapped, a GEM object must thus be associated with a fake offset. To do so, drivers must
cal dr m_gem cr eat e_mmap_of f set on the object. The function allocates a fake offset range from
a pool and stores the offset divided by PAGE_SIZE in obj - >map_I| i st. hash. key. Care must be
taken not to call dr m gem cr eat e_nmmap_of f set if afake offset has already been allocated for the
object. This can be tested by obj - >nap_| i st. map being non-NULL.

Once allocated, the fake offset value (obj - >map_| i st. hash. key << PAGE_SHI FT) must be
passed to the application in a driver-specific way and can then be used as the mmap offset argument.

The GEM core provides a helper method dr m_gem _mmap to handle object mapping. The method can be
set directly as the mmap file operation handler. It will look up the GEM object based on the offset value
and set the VMA operations to the drm_driver gem vm ops field. Note that dr m_gem nmap doesn't
map memory to userspace, but relies on the driver-provided fault handler to map pages individualy.

To use dr m_gem map, drivers must fill the struct drm_driver gem vm ops field with a pointer to
VM operations.

struct vmoperations_struct *gemvm ops

struct vmoperations_struct ({
void (*open)(struct vmarea_struct * area);
void (*close)(struct vmarea_struct * area);
int (*fault)(struct vmarea_struct *vma, struct vmfault *vnf);

b

Theopen and cl ose operations must update the GEM object reference count. Drivers can use the dr -
m _gem vm open and dr m_gem vm cl ose helper functions directly as open and close handlers.

The fault operation handler is responsible for mapping individual pages to userspace when a page fault
occurs. Depending on the memory allocation scheme, drivers can allocate pages at fault time, or can decide
to alocate memory for the GEM object at the time the object is created.

Driversthat want to map the GEM object upfront instead of handling page faults can implement their own
mmap file operation handler.

25

DRM Internals

Memory Coherency

When mapped to the device or used in a command buffer, backing pages for an object are flushed to
memory and marked write combined so asto be coherent with the GPU. Likewise, if the CPU accesses an
object after the GPU has finished rendering to the object, then the object must be made coherent with the
CPU's view of memory, usualy involving GPU cache flushing of various kinds. This core CPU<->GPU
coherency management is provided by a device-specific ioctl, which evaluates an object's current domain
and performsany necessary flushing or synchronization to put the object into the desired coherency domain
(note that the object may be busy, i.e. an active render target; in that case, setting the domain blocks the
client and waits for rendering to compl ete before performing any necessary flushing operations).

Command Execution

Perhaps the most important GEM function for GPU devicesis providing acommand execution interface to
clients. Client programs construct command buffers containing referencesto previously allocated memory
objects, and then submit them to GEM. At that point, GEM takes careto bind all the objectsinto the GTT,
execute the buffer, and provide necessary synchronization between clients accessing the same buffers. This
often involves evicting some objects from the GTT and re-binding others (afairly expensive operation),
and providing relocation support which hides fixed GTT offsets from clients. Clients must take care not to
submit command buffers that reference more objects than can fit in the GTT; otherwise, GEM will reject
them and no rendering will occur. Similarly, if several objects in the buffer require fence registers to be
allocated for correct rendering (e.g. 2D blits on pre-965 chips), care must be taken not to require more
fence registers than are available to the client. Such resource management should be abstracted from the
client inlibdrm.

GEM Function Reference

26

DRM Internals

Name
drm_gem_object_init — initialize an allocated shmem-backed GEM object

Synopsis

int drmgemobject _init (struct drmdevice * dev, struct drm gem object
* obj, size t size);

Arguments
dev drm_device the object should be initialized for
obj drm_gem object to initialize
si ze objectsize

Description

Initialize an aready alocated GEM object of the specified size with shmfs backing store.

27

DRM Internals

Name
drm_gem_private object_init — initialize an allocated private GEM object

Synopsis

void drmgemprivate object init (struct drmdevice * dev, struct dr-
m gem obj ect * obj, size_ t size);

Arguments
dev drm_device the object should be initialized for
obj drm_gem object to initialize
si ze objectsize

Description

Initialize an aready alocated GEM object of the specified size with no GEM provided backing store.
Instead the caller is responsible for backing the object and handling it.

28

DRM Internals

Name
drm_gem_handle_delete — deletes the given file-private handle

Synopsis

int drmgem handl e _delete (struct drmfile * filp, u32 handle);

Arguments

filp drm file-private structure to use for the handle look up
handl e userspace handleto delete

Description

Removes the GEM handle fromthef i | p lookup table and if thisis the last handle also cleans up linked
resources like GEM names.

29

DRM Internals

Name
drm_gem_dumb_destroy — dumb fb callback helper for gem based drivers
Synopsis

int drmgemdunb_destroy (struct drmfile * file, struct drmdevice *
dev, uint32_t handle);

Arguments
file drm file-private structure to remove the dumb handle from
dev corresponding drm_device

handl e the dumb handle to remove

Description

This implements the ->dumb_destroy kms driver callback for drivers which use gem to manage their
backing storage.

30

DRM Internals

Name

drm_gem_handle_create — create a gem handle for an object

Synopsis

int drmgemhandle create (struct drmfile * file priv, struct dr-
m gem obj ect * obj, u32 * handl ep);

Arguments
file_priv drmfile-private structure to register the handle for
obj object to register
handl ep pionter to return the created handle to the caller

Description

Createahandlefor thisobject. Thisaddsahandlereferenceto the object, whichincludesaregular reference
count. Callerswill likely want to dereference the object afterwards.

31

DRM Internals

Name
drm_gem_free_mmap_offset — release a fake mmap offset for an object

Synopsis

void drmgem free mmp_offset (struct drm gem object * obj);
Arguments
obj obj in question

Description

Thisroutine frees fake offsets allocated by dr m_ gem cr eat e_rmap_of f set .

32

DRM Internals

Name
drm_gem_create mmap_offset_size — create a fake mmap offset for an object

Synopsis
int drmgemcreate_nmmap_of fset _size (struct drm gem object * obj, size_t
si ze);

Arguments

obj obj in question
si ze thevirtud size

Description

GEM memory mapping works by handing back to userspace afake mmap offset it can usein a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various

memory mapping structures.

This routine allocates and attaches a fake offset for obj , in cases where the virtual size differs from the
physical size (ie. obj->size). Otherwisejust usedr m gem cr eat e_nmmap_of f set.

33

DRM Internals

Name
drm_gem_create_ mmap_offset — create a fake mmap offset for an object

Synopsis

int drmgemcreate nmap_of fset (struct drmgem object * obj);
Arguments

obj obj in question
Description

GEM memory mapping works by handing back to userspace afake mmap offset it can use in a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various
memory mapping structures.

Thisroutine allocates and attaches a fake offset for obj .

DRM Internals

Name
drm_gem_get_pages — helper to allocate backing pages for a GEM object from shmem

Synopsis

struct page ** drm.gem get pages (struct drm gem object * obj);
Arguments

obj obj in question
Description

This reads the page-array of the shmem-backing storage of the given gem object. An array of pagesis
returned. If apageisnot allocated or swapped-out, thiswill allocate/swap-in the required pages. Note that
the whole object is covered by the page-array and pinned in memory.

Usedr m_ gem put _pages to release the array and unpin all pages.

This uses the GFP-mask set on the shmem-mapping (see mappi ng_set _gf p_nask). If you require
other GFP-masks, you have to do those allocations yourself.

Note that you are not allowed to change gfp-zones during runtime. That is, shmem r ead_map-
pi ng_page_gf p must be called with the same gfp_zone(gfp) as set during initialization. If you have
specia zone constraints, set them after dr m_gem i nit _obj ect viamappi ng_set _gf p_nask.
shmem-core takes care to keep pagesin the required zone during swap-in.

35

DRM Internals

Name
drm_gem_put_pages — helper to free backing pages for a GEM object

Synopsis

void drmgem put pages (struct drmgemobject * obj, struct page **
pages, bool dirty, bool accessed);

Arguments
obj obj in question
pages pagesto free
dirty if true, pages will be marked as dirty

accessed if true, the pages will be marked as accessed

36

DRM Internals

Name

drm_gem_object free— free a GEM object

Synopsis

void drm gem object free (struct kref * kref);

Arguments

kref kref of the object to free

Description

Called after the last reference to the object has been lost. Must be called holding struct_ mutex

Frees the object

37

DRM Internals

Name

drm_gem_mmap_obj — memory map a GEM object
Synopsis

int drmgem nmap_obj (struct drmgemobject * obj, unsigned |ong ob-
j _size, struct vmarea_struct * vm);

Arguments
obj the GEM object to map
obj _si ze theobject sizeto be mapped, in bytes
vima VMA for the area to be mapped
Description

Set up the VMA to prepare mapping of the GEM object using the gem_vm_ops provided by the dri-
ver. Depending on their requirements, drivers can either provide a fault handler in their gem_vm_ops
(in which case any accesses to the object will be trapped, to perform migration, GTT binding, surface
register allocation, or performance monitoring), or mmap the buffer memory synchronously after calling
drm_gem_mmap_obj.

This function is mainly intended to implement the DMABUF mmap operation, when the GEM object is
not looked up based on its fake offset. To implement the DRM mmap operation, drivers should use the
dr m_gem rmap function.

dr m_ gem mrap_obj assumesthe user isgranted accessto the buffer whiledr m_gem mmrap prevents
unprivileged users from mapping random objects. So callers must verify access restrictions before calling
this helper.

Return 0 or success or -EINVAL if the object size is smaller than the VMA size, or if no gem_vm_ops
are provided.

38

DRM Internals

Name
drm_gem_mmap — memory map routine for GEM objects
Synopsis
int drmgemmuap (struct file * filp, struct vmarea_struct * vnmm);
Arguments
filp DRM filepointer
vima VMA for the area to be mapped
Description

If adriver supports GEM object mapping, mmap calls on the DRM file descriptor will end up here.

Look up the GEM object based on the offset passed in (vma->vm_pgoff will contain the fake offset we
created whenthe GTT mapioctl wascalled onthe object) and map it withacall todr m gem mrmap_obj .

If the caller is not granted access to the buffer object, the mmap will fail with EACCES. Please see the
vma manager for more information.

VMA Offset Manager

The vma-manager is responsible to map arbitrary driver-dependent memory regions into the linear user
address-space. It provides offsets to the caller which can then be used on the address_space of the drm-
device. It takes care to not overlap regions, size them appropriately and to not confuse mm-core by in-
consistent fake vm_pgoff fields. Drivers shouldn't use this for object placement in VMEM. This manager
should only be used to manage mappingsinto linear user-space VMs.

We use drm_mm as backend to manage object allocations. But it is highly optimized for alloc/free cals,
not lookups. Hence, we use an rb-tree to speed up offset lookups.

Y ou must not use multiple offset managers on asingle address_space. Otherwise, mm-core will be unable
to tear down memory mappings as the VM will no longer be linear.

This offset manager works on page-based addresses. That is, every argument and return code (with the
exception of dr m vira_node_of f set _addr) isgivenin number of pages, not number of bytes. That
means, object sizes and offsets must always be page-aligned (as usual). If you want to get avalid byte-
based user-space address for agiven offset, please seedr m vha_node_of f set _addr.

Additionally to offset management, the vma offset manager also handles access management. For every
open-file context that is allowed to access a given node, you must call dr m vima_node_al | ow. Other-
wise, an nrap call on this open-file with the offset of the node will fail with -EACCES. To revoke access
again, usedr m vima_node_r evoke. However, the caller isresponsible for destroying already existing
mappings, if required.

39

DRM Internals

Name

drm_vma_offset_manager_init — Initialize new offset-manager

Synopsis

void drmvma_offset _manager _init (struct drmvma_of fset manager * ngr,
unsi gned | ong page_of fset, unsigned |ong size);

Arguments
ngr Manager object
page_of fset Offset of available memory area (page-based)
si ze Size of available address space range (page-based)

Description

Initialize a new offset-manager. The offset and area size available for the manager are given as
page_of f set andsi ze. Both areinterpreted as page-numbers, not bytes.

Adding/removing nodes from the manager is locked internally and protected against concurrent access.
However, node allocation and destruction isleft for the caller. While calling into the vma-manager, agiven
node must always be guaranteed to be referenced.

40

DRM Internals

Name
drm_vma _offset_manager_destroy — Destroy offset manager

Synopsis
void drmvna_offset manager destroy (struct drmvma_of fset nanager *
nor);

Arguments

nmgr Manager object

Description

Destroy an object manager which was previoudly created via dr m via_of f set _manager _init.
Thecaller must remove all alocated nodes before destroying the manager. Otherwise, drm_mmwill refuse
to free the requested resources.

The manager must not be accessed after this function is called.

41

DRM Internals

Name
drm_vma offset_lookup_locked — Find node in offset space

Synopsis

struct drmvma_offset _node * drmvna_offset | ookup | ocked (struct dr-
m vma_of f set _nanager * ngr, unsigned |ong start, unsigned | ong pages);

Arguments
ngr Manager object
start Start addressfor object (page-based)

pages Size of object (page-based)

Description

Find a node given a start address and object size. Thisreturnsthe _best match for the given node. That
is, st art may point somewhere into a valid region and the given node will be returned, as long as the
node spans the whole requested area (given the size in number of pages as pages).

Note that before lookup the vma offset manager lookup lock must be acquired with dr m vma_of f -
set | ock_I| ookup. Seethere for an example. This can then be used to implement weakly referenced
lookupsusing kr ef _get _unl ess_zero.

Example
drmvma_of fset | ock | ookup(ngr);
node = drmvma_offset | ookup_| ocked(ngr);
i f (node)
kref _get unl ess_zero(contai ner_of (node, sth, entr));
drm vma_of fset _unl ock_| ookup(ngr);
RETURNS

Returns NULL if no suitable node can be found. Otherwise, the best match is returned. It's the caler's
responsibility to make sure the node doesn't get destroyed before the caller can accessit.

42

DRM Internals

Name
drm_vma offset_add — Add offset node to manager

Synopsis

int drmvma_offset _add (struct drmvna_offset nmanager * ngr, struct
drmvma_of fset _node * node, unsigned |ong pages);

Arguments
ngr Manager object
node Node to be added
pages Allocation size visible to user-space (in number of pages)
Description
Add a node to the offset-manager. If the node was aready added, this does nothing and return 0. pages
is the size of the object given in number of pages. After this call succeeds, you can access the offset of

the node until it is removed again.

If thiscall fails, it is safe to retry the operation or call dr m vima_of f set _r enpve, anyway. However,
no cleanup isrequired in that case.

pages isnot required to be the same size as the underlying memory object that you want to map. It only
limits the size that user-space can map into their address space.

RETURNS

0 on success, negative error code on failure.

43

DRM Internals

Name

drm_vma offset_remove — Remove offset node from manager

Synopsis

void drmvma_offset renpbve (struct drmvna_of f set _nanager * ngr, struct
drm vna_of fset _node * node);

Arguments
ngr Manager object
node Node to be removed

Description

Remove a node from the offset manager. If the node wasn't added before, this does nothing. After this call
returns, the offset and size will be O until a new offset is allocated viadr m vira_of f set _add again.
Helper functionslikedr m vima_node_st art anddrm vrma_node_of f set _addr will return O if
no offset is alocated.

DRM Internals

Name
drm_vma_node_allow — Add open-fileto list of allowed users

Synopsis
int drmvma_node_all ow (struct drmvnma_offset _node * node, struct file
* filp);

Arguments

node Nodeto modify
filp Openfiletoadd
Description

Addfi |l p tothelist of allowed open-files for thisnode. If fi | p isaready on thislist, the ref-count is
incremented.

The list of allowed-usersis preserved acrossdr m vima_of f set _add and dr m vira_of f set _r e-
nove cals. You may even cal it if the nodeis currently not added to any offset-manager.

Y ou must remove all open-files the same number of times as you added them before destroying the node.
Otherwise, you will leak memory.

Thisislocked against concurrent access internally.
RETURNS

0 on success, negative error code on internal failure (out-of-mem)

45

DRM Internals

Name
drm_vma_node_revoke — Remove open-file from list of allowed users

Synopsis
voi d drm vnma_node_revoke (struct drmvnma_offset node * node, struct file
* filp);

Arguments

node Nodeto modify
filp Openfiletoremove

Description

Decrement theref-count of f i | p inthelist of allowed open-fileson node. If the ref-count dropsto zero,
removef i | p fromthelist. Y ou must call thisoncefor every dr m vime_node_al | owonfi | p.

Thisislocked against concurrent access internally.

If fil pisnoton thelist, nothing is done.

46

DRM Internals

Name
drm_vma _node _is alowed — Check whether an open-file is granted access

Synopsis
bool drmvna _node is_allowed (struct drmvna_of fset _node * node, struct
file * filp);

Arguments

node Node to check
filp Open-filetocheck for

Description

Search the list in node whether fi | p is currently on the list of allowed open-files (see dr m vima_n-
ode_al | ow).

Thisislocked against concurrent access internally.

RETURNS

trueiff fi |l pisonthelist

47

DRM Internals

Name
drm_vma offset_exact lookup_locked — Look up node by exact address

Synopsis

struct drmvma_offset _node * drmvna_of fset exact | ookup_| ocked (struct
drm vna_of fset _nmanager * ngr, unsigned | ong start, unsigned | ong pages);

Arguments
ngr Manager object
start Start address (page-based, not byte-based)
pages Size of object (page-based)
Description

Same asdrm vna_of f set | ookup_| ocked but does not alow any offset into the node. It only
returns the exact object with the given start address.

RETURNS

Node at exact start addressst art .

48

DRM Internals

Name

drm_vma_offset_lock lookup — Lock lookup for extended private use
Synopsis

void drmvma_offset | ock | ookup (struct drmvma_of fset _nanager * nyr);
Arguments

nmgr Manager object
Description

Lock VMA manager for extended lookups. Only locked VMA function callsare allowed while holding this
lock. All other contexts are blocked from VMA until the lock is released viadr m vha_of f set _un-
| ock_I ookup.

Usethisif you need totakeareferenceto the objectsreturned by dr m vima_of f set _| ookup_| ocked
before releasing this lock again.

This lock must not be used for anything else than extended lookups. Y ou must not call any other VMA
helpers while holding this lock.

Note

Y ou're in atomic-context while holding this lock!

49

DRM Internals

Name
drm_vma_offset_unlock_|lookup — Unlock lookup for extended private use

Synopsis
void drmvna_offset _unlock | ookup (struct drmvna_offset nanager *
nor);

Arguments

nmgr Manager object

Description

Release lookup-lock. Seedr m vira_of f set _| ock_| ookup for moreinformation.

50

DRM Internals

Name

drm_vma_node_reset — Initialize or reset node object

Synopsis

void drmvma_node reset (struct drmvna_offset _node * node);

Arguments

node Nodetoinitialize or reset

Description
Reset anodetoitsinitial state. This must be called before using it with any VMA offset manager.

This must not be called on an already allocated node, or you will leak memory.

51

DRM Internals

Name
drm_vma_node_start — Return start address for page-based addressing

Synopsis

unsi gned long drmvne_node_start (struct drmvma_offset node * node);
Arguments

node Node to inspect

Description

Return the start address of the given node. This can be used as offset into the linear VM space that is
provided by the VMA offset manager. Note that this can only be used for page-based addressing. If you
need a proper offset for user-space mappings, you must apply “<< PAGE_SHIFT” or use the dr m v-
ma_node_of f set _addr helper instead.

RETURNS

Start address of node for page-based addressing. 0 if the node does not have an offset allocated.

52

DRM Internals

Name

drm_vma_node_size — Return size (page-based)
Synopsis

unsi gned | ong drmvnme_node_si ze (struct drmvne_of fset _node * node);
Arguments

node Node to inspect

Description

Return the size as number of pages for the given node. Thisis the same size that was passed to dr m v-
ma_of f set _add. If no offset is allocated for the node, thisis 0.

RETURNS

Size of node as number of pages. 0 if the node does not have an offset allocated.

53

DRM Internals

Name
drm_vma_node_has offset — Check whether node is added to offset manager

Synopsis

bool drmvna_node has offset (struct drmvna_of fset node * node);
Arguments

node Node to be checked

RETURNS

trueiff the node was previoudly allocated an offset and added to an vma offset manager.

DRM Internals

Name

drm_vma_node_offset_addr — Return sanitized offset for user-space mmaps
Synopsis

__u64 drmvnme_node_of fset _addr (struct drmvna _offset node * node);
Arguments

node Linked offset node

Description

Sameasdr m vima_node_st art but returnsthe address asavalid offset that can be used for user-space
mappings during nmap. This must not be called on unlinked nodes.

RETURNS

Offset of node for byte-based addressing. O if the node does not have an object allocated.

55

DRM Internals

Name

drm_vma_node_unmap — Unmap offset node

Synopsis

void drmvma_node_unmap (struct drmvna_of fset _node * node, struct ad-
dress_space * file_mapping);

Arguments
node Offset node

file_mappi ng Address spacetounmap node from

Description

Unmap al userspace mappings for a given offset node. The mappings must be associated with the
file_mappi ng address-space. If no offset exists nothing is done.

This call is unlocked. The caller must guarantee that dr m vna_of f set _r enpve isnot called on this
node concurrently.

56

DRM Internals

Name

drm_vma_node verify_access— Access verification helper for TTM
Synopsis

int drmvma_node_verify_access (struct drmyvme_offset_node * node,
struct file * filp);

Arguments
node Offset node
filp Open-file
Description

Thischeckswhether f i | p isgranted accesstonode. Itisthesameasdr m vita_node_i s_al | owed
but suitable as drop-in helper for TTM veri fy_access callbacks.

RETURNS

0if accessisgranted, -EACCES otherwise.

PRIME Buffer Sharing

PRIME is the cross device buffer sharing framework in drm, originally created for the OPTIMUS range
of multi-gpu platforms. To userspace PRIME buffers are dma-buf based file descriptors.

Overview and Driver Interface

Similar to GEM global names, PRIME file descriptors are al so used to share buffer objects across process-
es. They offer additional security: asfile descriptors must be explicitly sent over UNIX domain socketsto
be shared between applications, they can't be guessed like the globally unique GEM names.

Drivers that support the PRIME APl must set the DRIVER_PRIME bit in the struct drm_driver dri -
ver _f eat ur es field,andimplement thepr i ne_handl e_to_fdandpri ne_fd_t o_handl e op-
erations.

int (*prime_handle_to fd)(struct drmdevice *dev,
struct drmfile *file_priv, uint32_t handle,
uint32_t flags, int *prinme_fd);
int (*prime_fd_to_handle)(struct drmdevice *dev,
struct drmfile *file_priv, int prine_fd,
ui nt 32_t *handl e);

Those two operations convert a handle to a PRIME file descriptor and vice versa. Drivers must use the
kernel dma-buf buffer sharing framework to manage the PRIME file descriptors. Similar to the mode
setting APl PRIME is agnostic to the underlying buffer object manager, as long as handles are 32bit
unsigned integers.

While non-GEM drivers must implement the operations themselves, GEM drivers must use the dr -
m gem prime_handl e to fdanddrmgem prine_fd_to_handl e helper functions. Those
helpersrely onthedriver gem pri ne_export andgem pri ne_i nport operationsto create adma
buf instance from a GEM object (dma-buf exporter role) and to create a GEM object from a dma-buf
instance (dma-buf importer role).

57

DRM Internals

struct dma_buf * (*gem prinme_export)(struct drm.device *dev,
struct drm . gem object *obj,
int flags);
struct drm.gemobject * (*gemprime_inport)(struct drmdevice *dev,
struct dma_buf *dma_buf);

These two operations are mandatory for GEM drivers that support PRIME.

PRIME Helper Functions

Drivers can implement gem pri me_export andgem pri me_i nport intermsof simpler APIsby
using the helper functionsdr m gem pri nme_export anddrm gem pri me_i nport . These func-
tions implement dma-buf support in terms of six lower-level driver callbacks:

Export callbacks:

-gem pri me_pi n (optiona): prepare a GEM object for exporting

-gem prime_get sg_t abl e: provide a scatter/gather table of pinned pages
-gem pri me_vmap: vmap abuffer exported by your driver

-gem pri me_vunmap: vunmap abuffer exported by your driver

-gem pri me_nmmap (optional): mmap a buffer exported by your driver

Import callback:

-gem prime_i nport_sg_tabl e (import): produceaGEM object from ancther driver's scatter/gath-
er table

PRIME Function References

58

DRM Internals

Name

drm_gem_dmabuf_release — dma_buf release implementation for GEM

Synopsis

void drm gem dmabuf rel ease (struct dna_buf * dma_buf);

Arguments

dma_buf buffer to be released

Description

Generic release function for dma_bufs exported as PRIME buffers. GEM drivers must use this in their
dma_buf ops structure as the release callback.

59

DRM Internals

Name
drm_gem_prime_export — helper library implementation of the export callback
Synopsis
struct dma_buf * drmgem prinme_export (struct drmdevice * dev, struct
drm gem object * obj, int flags);
Arguments
dev drm_device to export from
obj GEM object to export

flags flagslike DRM_CLOEXEC

Description

Thisistheimplementation of the gem_prime_export functionsfor GEM drivers using the PRIME hel pers.

60

DRM Internals

Name
drm_gem_prime_handle_to fd — PRIME export function for GEM drivers

Synopsis

int drmgemprine_handle to fd (struct drm device * dev, struct drmfile
* file_priv, uint32_t handle, uint32 t flags, int * prine_fd);

Arguments
dev dev to export the buffer from
file_priv drmfileprivate structure
handl e buffer handle to export
flags flags like DRM_CLOEXEC

prime_fd pointer to storage for the fd id of the create dma-buf

Description

This is the PRIME export function which must be used mandatorily by GEM drivers to ensure correct
lifetime management of the underlying GEM object. The actual exporting from GEM object to a dma-buf
is done through the gem_prime_export driver callback.

61

DRM Internals

Name

drm_gem_prime_import — helper library implementation of the import callback

Synopsis

struct drmgemobject * drmgemprine_inmport (struct drmdevice * dev,
struct dma_buf * dnma_buf);

Arguments
dev drm_device to import into

dma_buf dma-buf object to import

Description

Thisistheimplementation of the gem_prime_import functionsfor GEM drivers using the PRIME hel pers.

62

DRM Internals

Name
drm_gem_prime_fd _to_handle — PRIME import function for GEM drivers

Synopsis

int drmgemprine fd to handle (struct drm device * dev, struct drmfile
* file_ priv, int prime_fd, uint32_t * handle);

Arguments
dev dev to export the buffer from
file_priv drmfileprivate structure
prime_fd fdid of thedma-buf which should be imported

handl e pointer to storage for the handle of the imported buffer object

Description

This is the PRIME import function which must be used mandatorily by GEM drivers to ensure correct
lifetime management of the underlying GEM object. The actual importing of GEM object from the dma-
buf is done through the gem_import_export driver callback.

63

DRM Internals

Name
drm_prime_pages to_sg — converts a page array into an sg list

Synopsis

struct sg table * drmprine_pages_to_sg (struct page ** pages, unsigned
int nr_pages);

Arguments
pages pointer to the array of page pointers to convert
nr_pages length of the page vector

Description

This helper creates an sg table object from a set of pages the driver is responsible for mapping the pages
into the importers address space for use with dma_buf itself.

DRM Internals

Name
drm_prime_sg to_page addr_arrays— convert an sg table into a page array

Synopsis

int drmprinme_sg to page_addr _arrays (struct sg table * sgt, struct page
** pages, dma_addr_t * addrs, int max_pages);

Arguments
sgt scatter-gather table to convert
pages array of page pointersto store the page array in
addr s optional array to store the dma bus address of each page

max_pages sizeof both the passed-in arrays

Description

Exports an sg table into an array of pages and addresses. This is currently required by the TTM driver in
order to do correct fault handling.

65

DRM Internals

Name
drm_prime_gem_destroy — helper to clean up a PRIME-imported GEM object

Synopsis
void drm prime_gemdestroy (struct drm gem object * obj, struct sg table
* sQ);

Arguments

obj GEM object which was created from a dma-buf

sg thesg-table which was pinned at import time
Description

Thisisthe cleanup functionswhich GEM drivers need to call whenthey usedr m gem pri ne_i nport
to import dma-bufs.

DRM MM Range Allocator

Overview

drm_mm provides a simple range alocator. The drivers are free to use the resource allocator from the
linux coreif it suitsthem, the upside of drm_mm isthat it'sin the DRM core. Which meansthat it's easier
to extend for some of the crazier special purpose needs of gpus.

The main data struct is drm_mm, allocations are tracked in drm_mm_node. Drivers are free to embed
either of them into their own suitable datastructures. drm_mm itself will not do any allocations of its own,
so if drivers choose not to embed nodes they need to till allocate them themselves.

The range allocator also supports reservation of preallocated blocks. Thisis useful for taking over initial
mode setting configurations from the firmware, where an object needsto be created which exactly matches
the firmware's scanout target. Aslong astherangeisstill freeit can be inserted anytime after the allocator
isinitialized, which helps with avoiding looped depencies in the driver load sequence.

drm_mm maintains a stack of most recently freed holes, which of al simplistic datastructures seemsto be
afairly decent approach to clustering allocations and avoiding too much fragmentation. This means free
space searches are O(num_holes). Given that all the fancy features drm_mm supports something better
would befairly complex and since gfx thrashing isafairly steep cliff not areal concern. Removing anode
againis O(1).

drm_mm supports a few features: Alignment and range restrictions can be supplied. Further more every
drm_mm_node has a color value (which is just an opaqua unsigned long) which in conjunction with a
driver callback can be used to implement sophisticated placement restrictions. Thei915 DRM driver uses
this to implement guard pages between incompatible caching domains in the graphics TT.

Two behaviors are supported for searching and alocating: bottom-up and top-down. The default is bot-
tom-up. Top-down allocation can be used if the memory area has different restrictions, or just to reduce
fragmentation.

Finally iteration helpersto walk all nodes and all holes are provided as are some basic allocator dumpers
for debugging.

66

DRM Internals

LRU Scan/Eviction Support

Very often GPUs need to have continuous allocations for a given object. When evicting objects to make
space for a new one it is therefore not most efficient when we simply start to select all objects from the
tail of an LRU until there's a suitable hole: Especially for big objects or nodes that otherwise have special
allocation constraints there's a good chance we evict lots of (smaller) objects unecessarily.

The DRM range alocator supports this use-case through the scanning interfaces. First a scan operation
needs to beinitiaized withdrm mm init_scanordrm nmm.init_scan_w th_range. Thethe
driver adds objects to the roaster (probably by walking an LRU list, but this can be freely implemented)
until a suitable hole is found or there's no further evitable object.

Thethedriver must walk through all objects again in exactly the reverse order to restore the allocator state.
Note that while the alocator is used in the scan mode no other operation is allowed.

Finally the driver evicts all objects selected in the scan. Adding and removing an object is O(1), and since
freeing a node is aso O(1) the overall complexity is O(scanned_objects). So like the free stack which
needs to be walked before a scan operation even begins thisis linear in the number of objects. It doesn't
seem to hurt badly.

DRM MM Range Allocator Function References

67

DRM Internals

Name

drm_mm_reserve_node — insert an pre-initialized node
Synopsis

int drmmmreserve _node (struct drmmm* mm struct drm mm node * node);
Arguments

mm drm_mm allocator to insert node into

node drm_mm_nodeto insert

Description

Thisfunctionsinsertsan already set-up drm_mm_node into the allocator, meaning that start, size and color
must be set by the caller. Thisis useful to initialize the allocator with preallocated objects which must be
set-up before the range allocator can be set-up, e.g. when taking over a firmware framebuffer.

Returns

0 on success, -ENOSPC if there's no hole where node is.

68

DRM Internals

Name
drm_mm_insert_node_generic — search for space and insert node
Synopsis

int drmmm.insert_node_generic (struct drmmm* mm struct drm nmm node
* node, u64 size, unsigned alignnent, unsigned |long color, enumdrmm
m search_flags sflags, enumdrmmmall ocator _flags afl ags);

Arguments
mm drm_mm to allocate from
node preallocate node to insert
si ze size of the alocation

al i gnnent aignment of the allocation

col or opaque tag value to use for this node

sfl ags flagsto fine-tune the allocation search

af | ags flags to fine-tune the allocation behavior
Description

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

69

DRM Internals

Name

drm_mm_insert_node in_range_generic — ranged search for space and insert node
Synopsis

int drmmm.insert _node in_range _generic (struct drmmm* mm struct dr-
m nm node * node, u64 size, unsigned alignnment, unsigned |ong color,
u64 start, u64 end, enum drm nmm search_flags sflags, enumdrmnnm all o-
cator _flags afl ags);

Arguments
mm drm_mm to allocate from
node preallocate node to insert
si ze size of the alocation

al i gnnent aignment of the allocation

col or opaque tag value to use for this node

start start of the allowed range for this node

end end of the allowed range for this node

sfl ags flagsto fine-tune the allocation search

af | ags flags to fine-tune the allocation behavior
Description

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

70

DRM Internals

Name

drm_mm_remove_node — Remove a memory node from the allocator.

Synopsis

void drm mm renove_node (struct drm mmnode * node);
Arguments
node drm_mm_nodeto remove

Description

This just removes a node from its drm_mm allocator. The node does not need to be cleared again before
it can be re-inserted into this or any other drm_mm allocator. It is a bug to call this function on a un-

allocated node.

71

DRM Internals

Name
drm_mm_replace_node — move an allocation from ol d to new

Synopsis
void drm mm repl ace_node (struct drmnmnode * old, struct drm nm node
* new;

Arguments

ol d drm_mm_node to remove from the allocator

new drm_mm_node which should inherit ol d'sallocation

Description

This is useful for when drivers embed the drm_mm_node structure and hence can't move allocations by
reassigning pointers. It's a combination of remove and insert with the guarantee that the allocation start

will match.

72

DRM Internals

Name

drm_mm_init_scan — initialize Iru scanning
Synopsis

void drmmminit_scan (struct drmnmm* nm u64 size, unsigned alignnent,
unsi gned | ong col or);

Arguments
mm drm_mm to scan
si ze size of the alocation

al i gnment aignment of the allocation

col or opague tag value to use for the allocation

Description

Thissimply sets up the scanning routineswith the parametersfor the desired hole. Note that there'sno need
to specify allocation flags, since they only change the place anodeis allocated from within asuitable hole.

Warning

As long as the scan list is non-empty, no other operations than adding/removing nodes to/from the scan
list are allowed.

73

DRM Internals

Name

drm_mm_init_scan_with_range — initialize range-restricted Iru scanning
Synopsis

voiddrmmminit _scan with range (struct drmmm* nm u64 size, unsigned
al i gnment, unsigned |ong color, u64 start, u64 end);

Arguments
mm drm_mm to scan
si ze size of the alocation

al i gnment aignment of the allocation

col or opague tag value to use for the allocation

start start of the allowed range for the allocation

end end of the allowed range for the allocation
Description

Thissimply sets up the scanning routines with the parametersfor the desired hole. Note that there'sno need
to specify allocation flags, since they only change the place anodeis allocated from within asuitable hole.

Warning

As long as the scan list is hon-empty, no other operations than adding/removing nodes to/from the scan
list are allowed.

74

DRM Internals

Name

drm_mm_scan_add_block — add a node to the scan list
Synopsis

bool drm mm scan_add_bl ock (struct drm nm node * node);
Arguments

node drm_mm_nodeto add
Description

Add a node to the scan list that might be freed to make space for the desired hole.

Returns

Trueif ahole has been found, false otherwise.

75

DRM Internals

Name

drm_mm_scan_remove_block — remove a node from the scan list
Synopsis

bool drm mm scan_renove_bl ock (struct drm nm node * node);
Arguments

node drm_mm_nodeto remove

Description

Nodes _must_ be removed in the exact same order from the scan list as they have been added, otherwise
theinternal state of the memory manager will be corrupted.

When the scan list is empty, the selected memory nodes can be freed. An immediately following drm_m-
m_search _freewith!DRM_MM_SEARCH_BEST will then return the just freed block (because its at the
top of the free_stack list).

Returns

Trueif thisblock should be evicted, fal se otherwise. Will always return fal se when no hol e has been found.

76

DRM Internals

Name

drm_mm_clean — checks whether an allocator is clean
Synopsis
bool drmmmclean (struct drmmm?* mj;

Arguments

mm drm_mm allocator to check

Returns

Trueif the allocator is completely free, false if there's till anode alocated init.

77

DRM Internals

Name

drm_mm_init — initialize a drm-mm allocator

Synopsis

void drmmminit (struct drmnmm?* nm u64 start, u64 size);

Arguments

mm the drm_mm structure to initialize
start start of the range managed by nm
size end of the range managed by nm

Description

Note that rmmust be cleared to 0 before calling this function.

78

DRM Internals

Name

drm_mm_takedown — clean up adrm_mm allocator

Synopsis

void drm mm takedown (struct drmmm* nmm;

Arguments

mm drm_mm allocator to clean up

Description

Note that it is abug to call this function on an alocator which is not clean.

79

DRM Internals

Name
drm_mm_debug_table — dump allocator state to dmesg

Synopsis

void drm mm debug table (struct drmmm* mm const char * prefix);
Arguments

mm drm_mm allocator to dump

prefix prefix to usefor dumping to dmesg

80

DRM Internals

Name
drm_mm_dump_table — dump allocator state to aseq file

Synopsis

int drmmmdunp_table (struct seq file * m struct drmmm* nm;
Arguments

m seq filetodumpto

nm drm_mm allocator to dump

81

DRM Internals

Name
drm_mm_node_allocated — checks whether a node is alocated

Synopsis

bool drm mm node_al |l ocated (struct drm nm node * node);
Arguments

node drm_mm_node to check
Description

Drivers should use this helpers for proper encapusulation of drm_mm internals.
Returns

Trueif the node isallocated.

82

DRM Internals

Name

drm_mm_initialized — checks whether an allocator isinitialized
Synopsis

bool drmmminitialized (struct drmnmm?* nm;
Arguments

mm drm_mm to check
Description

Drivers should use this helpers for proper encapusulation of drm_mm internals.
Returns

Trueif the mmisinitialized.

83

DRM Internals

Name

drm_mm_hole_node_start — computes the start of the hole following node
Synopsis

u64 drm mm hol e_node_start (struct drm nm node * hol e_node);
Arguments

hol e_node drm_mm_node which implicitly tracks the following hole

Description

This is useful for driver-sepific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at node->hole_follows.

Returns

Start of the subsequent hole.

DRM Internals

Name

drm_mm_hole_node_end — computes the end of the hole following node
Synopsis

u64 drm nmm hol e_node_end (struct drm nmm node * hol e_node);
Arguments

hol e_node drm_mm_node which implicitly tracks the following hole

Description

This is useful for driver-sepific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at node->hole_follows.

Returns

End of the subsequent hole.

85

DRM Internals

Name

drm_mm_for_each_node — iterator to walk over al allocated nodes

Synopsis
drm nmm for_each_node (entry, nm;

Arguments
entry drm_mm_node structure to assign to in each iteration step
nm drm_mm allocator to walk

Description

Thisiterator walks over al nodesin the range alocator. It isimplemented with list_for_each, so not save
against removal of elements.

86

DRM Internals

Name

drm_mm_for_each_hole — iterator to walk over al holes
Synopsis

drm.mm for_each_hole (entry, mm hole_start, hole_end);

Arguments
entry drm_mm_node used internally to track progress
nm drm_mm allocator to walk

hol e_start ulong variableto assign the hole start to on each iteration
hol e_end ulong variable to assign the hole end to on each iteration
Description

This iterator walks over all holesin the range alocator. It isimplemented with list_for_each, so not save
against removal of elements. ent ry is used internally and will not reflect areal drm_mm_node for the
very first hole. Hence users of thisiterator may not accessit.

Implementation Note

We need to inline list_for_each_entry in order to be able to set hole_start and hole_end on each iteration
while keeping the macro sane.

The__drm_mm_for_each_hole version is similar, but with added support for going backwards.

87

DRM Internals

Name

drm_mm_insert_node — search for space and insert node
Synopsis

int drmmminsert_node (struct drmmm* mm struct drm nm node * node,
u64 size, unsigned alignnment, enum drm nm search flags flags);

Arguments
mm drm_mm to allocate from
node preallocate node to insert
si ze size of the alocation

al i gnnent aignment of the allocation
flags flagsto fine-tune the allocation
Description
Thisisasimplified version of dr m_mm_i nsert _node_generi ¢ withcol or settoO.
The preallocated node must be cleared to 0.
Returns

0 on success, -ENOSPC if there's no suitable hole.

88

DRM Internals

Name

drm_mm_insert_node in_range — ranged search for space and insert node
Synopsis

int drmmminsert _node in_range (struct drmmm* mm struct drm nm node
* node, u64 size, unsigned alignnent, u64 start, u64 end, enumdrmm
m search_flags fl ags);

Arguments
mm drm_mm to allocate from
node preallocate node to insert
si ze size of the alocation

al i gnnent aignment of the allocation

start start of the allowed range for this node

end end of the allowed range for this node

flags flags to fine-tune the allocation
Description

Thisisasimplified version of dr m_ nm i nsert _node_i n_r ange_generi ¢ withcol or settoO.
The preallocated node must be cleared to 0.
Returns

0 on success, -ENOSPC if there's no suitable hole.

CMA Helper Functions Reference

The Contiguous Memory Allocator reserves apool of memory at early boot that is used to service requests
for large blocks of contiguous memory.

The DRM GEM/CMA helpers use this allocator as a means to provide buffer objects that are physically
contiguous in memory. This is useful for display drivers that are unable to map scattered buffers via an
IOMMU.

89

DRM Internals

Name

drm_gem_cma _create — allocate an object with the given size
Synopsis

struct drm gem cna_object * drm gemcna_create (struct drmdevice * drm
size t size);

Arguments

drm DRM device

si ze sizeof the object to allocate
Description

This function createsa CMA GEM aobject and allocates a contiguous chunk of memory as backing store.
The backing memory has the writecombine attribute set.

Returns

A struct drm_gem_cma_object * on success or an ERR_PTR-encoded negative error code on failure.

90

DRM Internals

Name

drm_gem_cma free_object — free resources associated with a CMA GEM object

Synopsis

void drmgemcnma_free object (struct drmgemobject * gemobj);

Arguments

gem obj GEM object to free

Description

This function frees the backing memory of the CMA GEM object, cleans up the GEM object state and
frees the memory used to store the object itself. Drivers using the CMA helpers should set this as their
DRM driver's->gem f r ee_obj ect callback.

91

DRM Internals

Name

drm_gem_cma_dumb_create internal — create a dumb buffer object
Synopsis

int drmgemcnma_dunb create internal (struct drmfile * file_priv,
struct drmdevice * drm struct drm node create_dunmb * args);

Arguments

file_priv DRM file-private structure to create the dumb buffer for

drm DRM device
ar gs IOCTL data
Description

This aigns the pitch and size arguments to the minimum required. Thisis an internal helper that can be
wrapped by a driver to account for hardware with more specific alignment requirements. It should not be
used directly asthe ->dunb_cr eat e callback inaDRM driver.

Returns

0 on success or a negative error code on failure.

92

DRM Internals

Name

drm_gem_cma_dumb_create — create a dumb buffer object
Synopsis

int drmgemcna_dunb create (struct drmfile * file priv, struct dr-
m device * drm struct drmnode create _dunb * args);

Arguments

file_priv DRM file-private structure to create the dumb buffer for

drm DRM device
ar gs IOCTL data
Description

This function computes the pitch of the dumb buffer and rounds it up to an integer number of bytes per
pixel. Drivers for hardware that doesn't have any additional restrictions on the pitch can directly use this
function astheir ->dunb_cr eat e callback.

For hardware with additional restrictions, drivers can adjust the fields set up by userspace and pass the
IOCTL dataalongtothedr m gem crma_dunb_creat e_i nt er nal function.

Returns

0 on success or a negative error code on failure.

93

DRM Internals

Name
drm_gem_cma_dumb_map_offset — return the fake mmap offset for aCMA GEM object

Synopsis

int drmgemcnma_dunb_map offset (struct drmfile * file priv, struct
drmdevice * drm u32 handle, u64 * offset);

Arguments

file_priv DRM file-private structure containing the GEM object

drm DRM device

handl e GEM object handle

of f set return location for the fake mmap offset
Description

This function look up an object by its handle and returns the fake mmap offset associated with it. Drivers
using the CMA helpers should set this astheir DRM driver's->dunb_map_of f set callback.

Returns

0 on success or a negative error code on failure.

94

DRM Internals

Name
drm_gem_cma_mmap — memory-map a CMA GEM object

Synopsis
int drmgemcnma_mmap (struct file * filp, struct vmarea struct * vmm);
Arguments
filp fileobject
vima VMA for the area to be mapped
Description
This function implements an augmented version of the GEM DRM file mmap
operation for CMA objects
In addition to the usual GEM VMA setup it immediately faults in the entire object instead of using on-

demaind faulting. Driverswhich employ the CMA helpers should use thisfunction astheir ->mrap handler
inthe DRM devicefile'sfile_operations structure.

Returns

0 on success or a negative error code on failure.

95

DRM Internals

Name
drm_gem_cma_describe — describe a CMA GEM object for debugfs

Synopsis

void drm gem cna_descri be (struct drmgemcne_object * cna_obj, struct
seq _file * m;

Arguments
cna_obj CMA GEM object
m debugfsfile handle

Description

This function can be used to dump a human-readable representation of the CMA GEM object into a syn-
thetic file.

96

DRM Internals

Name
drm_gem_cma prime_get sg_table — provide a scatter/gather table of pinned pages for a CMA GEM
object

Synopsis

struct sg_table * drmgemcna_prine_get sg_table (struct drm gem object
* obj);

Arguments
obj GEM object

Description

This function exports a scatter/gather table suitable for PRIME usage by calling the standard DMA map-
ping API. Drivers using the CMA helpers should set thisastheir DRM driver's->gem pri me_get _s-
g_t abl e callback.

Returns

A pointer to the scatter/gather table of pinned pages or NULL on failure.

97

DRM Internals

Name

drm_gem_cma _prime_import_sg_table— produceaCMA GEM aobject from another driver's scatter/gath-
er table of pinned pages

Synopsis

struct drmgemobject * drmgemcna_prine_inport_sg table (struct dr-
m devi ce * dev, struct dma_buf_ attachment * attach, struct sg table *

sgt);
Arguments

dev device to import into

attach DMA-BUF attachment

sgt scatter/gather table of pinned pages
Description

This function imports a scatter/gather table exported via DMA-BUF by another driver. Imported buffers
must be physically contiguousin memory (i.e. the scatter/gather table must contain asingle entry). Drivers
that use the CMA helpers should set this as their DRM driver's ->gem pri me_i nport _sg _tabl e
callback.

Returns

A pointer to anewly created GEM object or an ERR_PTR-encoded negative error code on failure.

98

DRM Internals

Name

drm_gem_cma_prime_mmap — memory-map an exported CMA GEM object

Synopsis

int drmgemcrma _prine_nmap (struct drmgemobject * obj, struct
vm area_struct * vma);

Arguments
obj GEM object
vima VMA for the areato be mapped

Description

This function maps a buffer imported via DRM PRIME into a userspace process's address space. Drivers
that use the CMA helpers should set this astheir DRM driver's->gem pri me_nmmap calback.

Returns

0 on success or a negative error code on failure.

99

DRM Internals

Name
drm_gem_cma_prime_vmap — map a CMA GEM object into the kernel's virtual address space

Synopsis
void * drmgemcna_prinme_vmap (struct drmgem object * obj);
Arguments
obj GEM object
Description
This function maps a buffer exported via DRM PRIME into the kernel's virtual address space. Since the
CMA buffersarealready mapped into the kernel virtual address spacethissimply returnsthe cached virtual
address. Drivers using the CMA helpers should set this as their DRM driver's ->gem pri ne_vnap
callback.

Returns

The kernel virtual address of the CMA GEM object's backing store.

100

DRM Internals

Name

drm_gem_cma_prime_vunmap — unmap a CMA GEM abject from the kernel's virtual address space

Synopsis

void drmgemcna_prine_vunnmap (struct drm gem object * obj, void * vad-
dr);

Arguments
obj GEM object

vaddr kernel virtual address where the CMA GEM object was mapped

Description

This function removes a buffer exported via DRM PRIME from the kernel's virtual address space. This
isano-op because CMA buffers cannot be unmapped from kernel space. Drivers using the CMA helpers
should set this astheir DRM driver's->gem pri ne_vunnap callback.

101

DRM Internals

Name
struct drm_gem_cma_object — GEM object backed by CMA memory alocations

Synopsis

struct drm gem crma_object {
struct drm gem obj ect base;
dma_addr _t paddr;
struct sg table * sgt;
voi d * vaddr;

b
Members
base base GEM object
paddr physical address of the backing memory
sot scatter/gather table for imported PRIME buffers

vaddr kernel virtual address of the backing memory

Mode Setting

Driversmust initialize the mode setting core by callingdr m node_confi g_i ni t onthe DRM device.
The function initializes the drm_device node_conf i g field and never fails. Once done, mode configu-
ration must be setup by initializing the following fields.

eint mn width, mn_height;
int max_wi dth, nmax_hei ght;

Minimum and maximum width and height of the frame buffersin pixel units.
e struct drm node_config funcs *funcs;

Mode setting functions.

Display Modes Function Reference

102

DRM Internals

Name

drm_mode is_stereo — check for stereo mode flags

Synopsis

bool drmnode is stereo (const struct drmdisplay _node * node);

Arguments

node drm_display_mode to check

Returns

Trueif the modeis one of the stereo modes (like side-by-side), falseif not.

103

DRM Internals

Name
drm_mode_debug_printmodeline — print a mode to dmesg

Synopsis

void drm node_debug printnodeline (const struct drmdisplay node *
node) ;

Arguments

node modeto print

Description

Describe mode using DRM_DEBUG.

104

DRM Internals

Name

drm_mode_create — create a new display mode
Synopsis

struct drmdisplay node * drm nbde create (struct drmdevice * dev);
Arguments

dev DRM device
Description

Create anew, cleared drm_display_mode with kzalloc, alocate an ID for it and return it.

Returns

Pointer to new mode on success, NULL on error.

105

DRM Internals

Name
drm_mode_destroy — remove a mode

Synopsis
voi d drm node_destroy (struct drmdevice * dev, struct drmdi spl ay_nbde
* node) ;

Arguments

dev DRM device

node modeto remove

Description

Release node's unique ID, then free it node structure itself using kfree.

106

DRM Internals

Name

drm_mode_probed add — add a mode to a connector's probed_mode list

Synopsis

voi d drm node_probed_add (struct drmconnector * connector, struct dr-
m di spl ay_node * node);

Arguments
connect or connector the new mode
node mode data

Description

Add node to connect or 's probed_mode list for later use. This list should then in a second step get
filtered and all the modes actually supported by the hardware moved to the connect or 's modes list.

107

DRM Internals

Name
drm_cvt_mode — create a modeline based on the CVT algorithm

Synopsis

struct drmdisplay node * drmcvt_node (struct drmdevice * dev, int
hdi splay, int vdisplay, int vrefresh, bool reduced, bool interlaced,
bool nargins);

Arguments
dev drm device
hdi spl ay hdisplay size
vdi spl ay vdisplay size
vrefresh vrefresh rate
reduced whether to use reduced blanking
i nterlaced whethertocompute an interlaced mode

mar gi ns whether to add margins (borders)
Description
This function is called to generate the modeline based on CV T agorithm according to the hdisplay, vdis-

play, vrefresh. Itisbased fromthe VESA(TM) Coordinated Video Timing Generator by Graham Loveridge
April 9, 2003 available at

http
Iiwww.elo.utfsm.cl/~el0212/docs/CV Td6rl.xls
Anditiscopied fromxf86CV Tmodein xserver/hw/xfree86/modes/xf86cvt.c. What | have doneisto trans-
late it by using integer calculation.

Returns

The modeline based onthe CV T algorithm stored in adrm_display_mode object. The display mode object
isallocated with dr m_node_cr eat e. Returns NULL when no mode could be allocated.

108

DRM Internals

Name
drm_gtf_mode_complex — create the modeline based on the full GTF agorithm

Synopsis

struct drmdi splay_node * drm gtf_node_conpl ex (struct drm devi ce * dev,
i nt hdisplay, int vdisplay, int vrefresh, bool interlaced, int margins,
int GTF-M int GIF_2C, int GIF K, int GIF_2J);

Arguments
dev drm device
hdi spl ay hdisplay size
vdi spl ay vdisplay size
vrefresh vrefresh rate.

i nterlaced whethertocompute aninterlaced mode

mar gi ns desired margin (borders) size

GIF_M extended GTF formula parameters

GIF_2C extended GTF formula parameters

GIF_K extended GTF formula parameters

GIF_2J extended GTF formula parameters
Description

GTF feature blocks specify C and Jin multiples of 0.5, so we pass them in here multiplied by two. For
aC of 40, passin 80.

Returns

The modeline based on the full GTF algorithm stored in adrm_display _mode object. The display mode
object is allocated with dr m_node_cr eat e. Returns NULL when no mode could be allocated.

109

DRM Internals

Name
drm_gtf _mode — create the modeline based on the GTF agorithm

Synopsis

struct drmdisplay node * drmgtf node (struct drmdevice * dev, int
hdi spl ay, int vdisplay, int vrefresh, bool interlaced, int margins);

Arguments

dev drm device

hdi spl ay hdisplay size

vdi spl ay vdisplay size

vrefresh vrefresh rate.

i nterlaced whethertocompute aninterlaced mode

mar gi ns desired margin (borders) size
Description

return the modeline based on GTF agorithm

Thisfunction is to create the modeline based on the GTF algorithm.
Generalized Timing Formulais derived from

GTF Spreadsheet by Andy Morrish (1/5/97)

available at http
/Iwww.vesa.org

And itiscopied from thefile of xserver/hw/xfree86/modes/xf86gtf.c. What | have doneisto translate it by
using integer calculation. | also refer to the function of fb_get_modein the file of drivers/video/fbmon.c

Standard GTF parameters
M =600C=40K =128 J=20
Returns

The modeline based on the GTF agorithm stored in adrm_display_mode object. The display mode object
isalocated with dr m_node_cr eat e. Returns NULL when no mode could be allocated.

110

DRM Internals

Name

drm_display_mode from_videomode — fill in dnmode using vim

Synopsis

void drmdisplay_node fromvi deonode (const struct videonode * vm
struct drmdisplay_node * dnode);

Arguments
vm videomode structure to use as source

dnode drm_display_mode structure to use as destination

Description

Fillsout dnode using the display mode specified invm

111

DRM Internals

Name

drm_display_mode to_videomode — fill in vmusing dnode,

Synopsis

*

void drmdisplay node to_videonode (const struct drmdisplay_node
dnode, struct videonode * vm;

Arguments
dnode drm_display_mode structure to use as source
vm videomode structure to use as destination

Description

Fills out vmusing the display mode specified in dnode.

112

DRM Internals

Name
of_get drm_display_mode — get adrm_display_mode from devicetree

Synopsis

int of get _drmdisplay node (struct device node * np, struct drmdis-
pl ay_node * dnobde, int index);

Arguments
np device_node with the timing specification
dnode will be set to the return value
i ndex index into thelist of display timingsin devicetree
Description

Thisfunction isexpensive and should only be used, if only onemodeisto beread from DT. To get multiple
modes start with of_get_display_timings and work with that instead.

Returns

0 on success, a negative errno code when no of videomode node was found.

113

DRM Internals

Name

drm_mode_set name — set the name on a mode
Synopsis
void drm node_set nane (struct drmdi splay node * node);

Arguments

node namewill be setin this mode

Description

Set the name of nbde to a standard format which is <hdisplay>x<vdisplay> with an optional 'i' suffix
for interlaced modes.

114

DRM Internals

Name
drm_mode vrefresh — get the vrefresh of amode

Synopsis

int drmnode _vrefresh (const struct drmdisplay _node * node);
Arguments
node mode

Returns
nodes'svrefresh rate in Hz, rounded to the nearest integer. Calculates the value first if it is not yet set.

115

DRM Internals

Name
drm_mode_set_crtcinfo — set CRTC modesetting timing parameters
Synopsis
void drmnode set crtcinfo (struct drmdisplay node * p, int
just _flags);
Arguments
p mode

adj ust_flags acombination of adjustment flags
Description

Setup the CRTC modesetting timing parameters for p, adjusting if necessary.

ad-

- The CRTC_INTERLACE_HALVE V flag can be used to halve vertical timings of interlaced modes. -
The CRTC_STEREO_DOUBLE flag can be used to compute the timings for buffers containing two eyes
(only adjust the timings when needed, eg. for “frame packing” or “side by sidefull”). - The CRTC_NO_D-
BLSCAN and CRTC_NO_VSCAN flags request that adjustment *not* be performed for doublescan and

vscan > 1 modes respectively.

116

DRM Internals

Name

drm_mode_copy — copy the mode

Synopsis

void drmnode_copy (struct drmdisplay _node * dst, const struct dr-
m di spl ay_node * src);

Arguments
dst modeto overwrite

src modeto copy

Description

Copy an existing mode into another mode, preserving the object id and list head of the destination mode.

117

DRM Internals

Name

drm_mode_duplicate — allocate and duplicate an existing mode
Synopsis

struct drmdisplay_node * drm node duplicate (struct drmdevice * dev,
const struct drmdisplay node * node);

Arguments
dev drm_device to alocate the duplicated mode for
node mode to duplicate

Description

Just alocate a new mode, copy the existing mode into it, and return a pointer to it. Used to create new
instances of established modes.

Returns

Pointer to duplicated mode on success, NULL on error.

118

DRM Internals

Name
drm_mode_equal — test modes for equality

Synopsis

bool drm nbde_equal (const struct drmdi spl ay_node * nbdel, const struct
drm di spl ay_node * node2);

Arguments

nodel first mode

node2 second mode
Description

Check to seeif nbdel and node?2 are equivalent.
Returns

True if the modes are equal, false otherwise.

119

DRM Internals

Name
drm_mode _equal_no_clocks — test modes for equality

Synopsis

bool drm node_equal no_cl ocks (const struct drmdisplay node * nodel,
const struct drmdisplay node * node2);

Arguments

nodel first mode

node2 second mode
Description

Check to seeif nbdel and node2 are equivalent, but don't check the pixel clocks.
Returns

True if the modes are equal, false otherwise.

120

DRM Internals

Name

drm_mode _equal_no_clocks no_stereo — test modes for equality
Synopsis

bool drm node_equal no_cl ocks _no_stereo (const struct drmdi splay_node
* nodel, const struct drmdisplay_node * node2);

Arguments

nodel first mode

node2 second mode
Description

Check to seeif nbdel and node2 are equivalent, but don't check the pixel clocks nor the stereo layout.
Returns

True if the modes are equal, false otherwise.

121

DRM Internals

Name

drm_mode validate basic — make sure the mode is somewhat sane
Synopsis

enum drm node_status drmnode _validate basic (const struct drmdis-
pl ay_node * node);

Arguments
node mode to check

Description

Check that the mode timings are at least somewhat reasonable. Any hardware specific limits are left up
for each driver to check.

Returns

The mode status

122

DRM Internals

Name

drm_mode validate size — make sure modes adhere to size constraints
Synopsis

enum drm node_status drmnode validate size (const struct drmdis-
pl ay_node * node, int maxX, int maxy);

Arguments
node mode to check
maxX maximum width
maxY maximum height

Description
This function is a helper which can be used to validate modes against size limitations of the DRM de-
vice/connector. If a mode is too big its status member is updated with the appropriate validation failure
code. Thelist itself is not changed.

Returns

The mode status

123

DRM Internals

Name

drm_mode_prune_invalid — remove invalid modes from mode list

Synopsis

void drm node_prune_invalid (struct drmdevice * dev, struct |ist_head
* node_|ist, bool verbose);

Arguments
dev DRM device
node_|ist list of modesto check
ver bose be verbose about it

Description

This helper function can be used to prune a display mode list after validation has been completed. All
modes who's status is not MODE_OK will be removed from the list, and if ver bose the status code and

mode name is also printed to dmesg.

124

DRM Internals

Name

drm_mode_sort — sort mode list
Synopsis
void drm node_sort (struct |list_head * node l|ist);

Arguments

nmode | i st list of drm_display_mode structures to sort

Description

Sort rode_l i st by favorability, moving good modes to the head of the list.

125

DRM Internals

Name

drm_mode_connector_list_update — update the mode list for the connector

Synopsis

voi d drm node_connector _|ist _update (struct drmconnector * connector,
bool nerge_ type bits);

Arguments
connect or the connector to update

nerge_type_bits whether to merge or overwrite type bits

Description

This moves the modes from the connect or probed_modes list to the actual mode list. It compares the
probed mode against the current list and only adds different/new modes.

Thisisjust ahelper functions doesn't validate any modes itself and also doesn't prune any invalid modes.
Callers need to do that themselves.

126

DRM Internals

Name

drm_mode _parse_command_line_for_connector — parse command line modeline for connector
Synopsis

bool drm node_parse_command_|ine for_connector (const char * node_op-
tion, struct drmconnector * connector, struct drmcndline_node * node);

Arguments

node_opti on optiona per connector mode option

connect or connector to parse modeline for
node preallocated drm_cmdline_mode structure to fill out
Description

Thisparsesnode_opt i on command line modeline for modes and options to configure the connector. If
node_opti onisNULL the default command line modeline in fb_mode_option will be parsed instead.

This uses the same parameters as the fb modedb.c, except for an extra force-enable, force-enable-digital
and force-disable bit at the end:

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]

The intermediate drm_cmdline_mode structure is required to store additional options from the command
line modline like the force-enable/disable flag.

Returns

Trueif avalid modeline has been parsed, false otherwise.

127

DRM Internals

Name

drm_mode _create from_cmdline_mode — convert acommand line modeline into a DRM display mode

Synopsis

struct drmdisplay_node * drm node _create fromcndl i ne_node (struct dr-
m device * dev, struct drmecndline_node * crd);

Arguments
dev DRM device to create the new mode for
cnd input command line modeline
Returns

Pointer to converted mode on success, NULL on error.

Atomic Mode Setting Function Reference

128

DRM Internals

Name
drm_atomic_state default release — release memory initialized by drm_atomic_state init

Synopsis
void drmatonic state default release (struct drmatomc_state *
state);

Arguments

state atomic state

Description

Free all the memory allocated by drm_atomic_state init. Thisisuseful for driversthat subclassthe atomic
state.

129

DRM Internals

Name

drm_atomic_state init — init new atomic state

Synopsis

int drmatomc _state init (struct drmdevice * dev, struct drmatom
ic_state * state);

Arguments
dev DRM device
state atomic state

Description

Default implementation for filling in anew atomic state. Thisisuseful for driversthat subclass the atomic
state.

130

DRM Internals

Name
drm_atomic_state alloc — allocate atomic state

Synopsis
struct drmatonic_state * drmatonic_state alloc (struct drmdevice *
dev);

Arguments

dev DRM device

Description

This allocates an empty atomic state to track updates.

131

DRM Internals

Name

drm_atomic_state default_clear — clear base atomic state
Synopsis

void drmatomc_state default _clear (struct drmatomc_state * state);
Arguments

state atomic state

Description

Default implementation for clearing atomic state. Thisis useful for driversthat subclass the atomic state.

132

DRM Internals

Name

drm_atomic_state clear — clear state object
Synopsis
void drmatomc_state clear (struct drmatomc _state * state);
Arguments
state atomic state
Description
When thew/w mutex a gorithm detects a deadl ock we need to back off and drop all locks. So someone else
could sneak in and change the current modeset configuration. Which meansthat all the state assembled in
st at e isno longer an atomic update to the current state, but to some arbitrary earlier state. Which could

break assumptions the driver's ->atomic_check likely relies on.

Hence we must clear all cached state and completely start over, using this function.

133

DRM Internals

Name

drm_atomic_state free— free all memory for an atomic state
Synopsis
void drmatonmic_state free (struct drmatonmc_state * state);

Arguments

state atomic state to deallocate

Description

This frees all memory associated with an atomic state, including all the per-object state for planes, crtcs
and connectors.

134

DRM Internals

Name
drm_atomic_get_crtc_state — get crtc state

Synopsis

struct drmecrtc_state * drmatomc_get crtc_state (struct drmatomc_s-
tate * state, struct drmecrtc * crtc);

Arguments
state globa atomic state object
crtc crtcto get state object for
Description

This function returns the crtc state for the given crtc, allocating it if needed. It will aso grab the relevant
crtc lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

135

DRM Internals

Name
drm_atomic_set mode for_crtc — set mode for CRTC

Synopsis

int drmatomc_set _node for _crtc (struct drmcrtc_state * state, struct
drm di spl ay_node * node);

Arguments

state the CRTC whoseincoming state to update

node kernel-internal mode to use for the CRTC, or NULL to disable
Description

Set a mode (originating from the kernel) on the desired CRTC state. Does not change any other state
properties, including enable, active, or mode_changed.

RETURNS

Zero on success, error code on failure. Cannot return -EDEADLK.

136

DRM Internals

Name
drm_atomic_set_mode_prop_for_crtc — set mode for CRTC

Synopsis

int drmatomc_set _node prop for_crtc (struct drmcrtc_state * state,
struct drm property blob * bl ob);

Arguments
state the CRTC whoseincoming state to update
bl ob pointer to blob property to use for mode
Description

Set amode (originating from a blob property) on the desired CRTC state. This function will take a refer-
ence on the blob property for the CRTC state, and release the reference held on the state's existing mode
property, if any was set.

RETURNS

Zero on success, error code on failure. Cannot return -EDEADLK.

137

DRM Internals

Name
drm_atomic_crtc_set_property — set property on CRTC

Synopsis

int drmatomc crtc_set property (struct drmcrtc * crtc, struct dr-
mcrtc_state * state, struct drmproperty * property, uint64_t val);

Arguments
crtc the drm CRTC to set a property on
state the state object to update with the new property value

property theproperty to set
val the new property value
Description

Use thisinstead of calling crtc->atomic_set_property directly. This function handles generic/core prop-
erties and calls out to driver's ->at oni c_set _property for driver properties. To ensure consistent
behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

138

DRM Internals

Name
drm_atomic_get plane state — get plane state

Synopsis

struct drmplane_state * drmatom c_get plane state (struct drmatom
ic_state * state, struct drmplane * plane);

Arguments
state globa atomic state object
pl ane planeto get state object for
Description

Thisfunction returnsthe plane statefor the given plane, allocating it if needed. It will also grab therelevant
plane lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

139

DRM Internals

Name
drm_atomic_plane set_property — set property on plane

Synopsis

int drmatom c_plane_set property (struct drmplane * plane, struct
drm pl ane_state * state, struct drmproperty * property, uint64_t val);

Arguments
pl ane the drm plane to set a property on
state the state object to update with the new property value

property theproperty to set
val the new property value
Description

Use thisinstead of calling plane->atomic_set_property directly. This function handles generic/core prop-
erties and calls out to driver's ->at oni c_set _property for driver properties. To ensure consistent
behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

140

DRM Internals

Name

drm_atomic_get_connector_state — get connector state
Synopsis

struct drmconnector_state * drm atom c_get connector_state (struct dr-
m atonic_state * state, struct drm.connector * connector);

Arguments
state global atomic state object
connect or connector to get state object for
Description

This function returns the connector state for the given connector, allocating it if needed. It will aso grab
the relevant connector lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

141

DRM Internals

Name

drm_atomic_connector_set_property — set property on connector.
Synopsis

int drmatom c_connector_set property (struct drm.connector * connec-
tor, struct drmconnector_state * state, struct drmproperty * proper-
ty, uinté4_t val);

Arguments
connect or thedrm connector to set a property on
state the state object to update with the new property value
property theproperty to set
val the new property value
Description

Use this instead of calling connector->atomic_set_property directly. This function handles generic/core
properties and calls out to driver's->at om c_set _pr operty for driver properties. To ensure consis-
tent behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

142

DRM Internals

Name

drm_atomic_set_crtc_for_plane — set crtc for plane
Synopsis

int drmatomc_set crtc for_plane (struct drmplane_state * plane_s-
tate, struct drmecrtc * crtc);

Arguments
pl ane_st at e the plane whose incoming state to update
crtc crtc to use for the plane

Description

Changing the assigned crtc for a plane requires us to grab the lock and state for the new crtc, as needed.
This function takes care of all these details besides updating the pointer in the state object itself.

Returns

Oonsuccessor canfail with-EDEADLK or -ENOMEM. WhentheerrorisSEDEADLK then thew/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal .

143

DRM Internals

Name
drm_atomic_set_fb_for_plane — set framebuffer for plane

Synopsis

void drmatomc_set _fb for_plane (struct drm plane_state * plane_state,
struct drmfranebuffer * fb);

Arguments

pl ane_st ate atomic state object for the plane

fb fb to use for the plane

Description

Changing the assigned framebuffer for a plane requires us to grab a reference to the new fb and drop the
reference to the old fb, if there is one. This function takes care of all these details besides updating the

pointer in the state object itself.

144

DRM Internals

Name

drm_atomic_set_crtc_for_connector — set crtc for connector
Synopsis

int drmatomc_set crtc_for _connector (struct drmconnector_state *
conn_state, struct drmecrtc * crtc);

Arguments
conn_state atomic state object for the connector

crtc crtc to use for the connector

Description

Changing the assigned crtc for aconnector requires usto grab thelock and state for the new crtc, as needed.
This function takes care of all these details besides updating the pointer in the state object itself.

Returns

Oonsuccessor canfail with-EDEADLK or -ENOMEM. WhentheerrorisSEDEADLK then thew/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal .

145

DRM Internals

Name

drm_atomic_add_affected connectors — add connectors for crtc
Synopsis

int drmatonic_add affected connectors (struct drmatomc_state *
state, struct drmecrtc * crtc);

Arguments
state atomic state
crtc DRMcrtc
Description

This function walks the current configuration and adds all connectors currently using cr t ¢ to the atomic
configuration st at e. Note that this function must acquire the connection mutex. This can potentially
cause unneeded seralization if the update is just for the planes on one crtc. Hence drivers and helpers
should only call thiswhen really needed (e.g. when afull modeset needs to happen due to some change).

Returns

Oonsuccessor canfail with-EDEADLK or -ENOMEM. WhentheerrorisSEDEADLK then thew/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal .

146

DRM Internals

Name
drm_atomic_add affected_planes — add planesfor crtc

Synopsis

int drmatom c_add affected planes (struct drmatomc_state * state,
struct drmecrtc * crtc);

Arguments
state atomic state

crtc DRM crtc

Description

This function walks the current configuration and adds all planes currently used by crt ¢ to the atomic
configuration st at e. This is useful when an atomic commit also needs to check al currently enabled
planeoncrt ¢, e.g. when changing the mode. It's al'so useful when re-enabling a CRTC to avoid specia
code to force-enable al planes.

Since acquiring a plane state will always also acquire the w/w mutex of the current CRTC for that plane
(if thereis any) adding all the plane states for a CRTC will not reduce parallism of atomic updates.

Returns

Oonsuccessor canfail with-EDEADLK or -ENOMEM. WhentheerrorisEDEADLK then thew/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.

147

DRM Internals

Name

drm_atomic_connectors for_crtc — count number of connected outputs

Synopsis

int drmatom c_connectors for_crtc (struct drmatomc_state * state,
struct drmecrtc * crtc);

Arguments
state atomic state
crtc DRM crtc

Description

This function counts all connectors which will be connected to crt ¢ according to st at e. Useful to
recompute the enable statefor cr t c.

148

DRM Internals

Name
drm_atomic_legacy backoff — locking backoff for legacy ioctls

Synopsis

void drm atom c_| egacy backoff (struct drmatomc_state * state);
Arguments

state atomic state

Description

This function should be used by legacy entry points which don't understand -EDEADLK semantics. For
simplicity this one will grab al modeset locks after the slowpath completed.

149

DRM Internals

Name

drm_atomic_check_only — check whether a given config would work
Synopsis

int drmatonmic_check only (struct drmatonmc_state * state);
Arguments

st at e atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
adeadlock. The caler must then do the usual w/w backoff dance and restart. All other errors are fatal.

Returns

0 on success, negative error code on failure.

150

DRM Internals

Name

drm_atomic_commit — commit configuration atomically
Synopsis

int drmatomc comit (struct drmatomc _state * state);
Arguments

st at e atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
adeadlock. The caler must then do the usual w/w backoff dance and restart. All other errors are fatal.

Also note that on successful execution ownership of st at e istransferred from the caller of thisfunction
to the function itself. The caller must not free or in any other way access st at e. If the function failsthen
the caller must clean up st at e itself.

Returns

0 on success, negative error code on failure.

151

DRM Internals

Name

drm_atomic_async_commit — atomicasync configuration commit
Synopsis

int drmatomc_async_conmt (struct drmatomc_state * state);
Arguments

st at e atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
adeadlock. The caler must then do the usual w/w backoff dance and restart. All other errors are fatal.

Also note that on successful execution ownership of st at e istransferred from the caller of thisfunction
to the function itself. The caller must not free or in any other way access st at e. If the function failsthen
the caller must clean up st at e itself.

Returns

0 on success, negative error code on failure.

152

DRM Internals

drm_atomic_clean_old fb— - Unset old_fb pointers and set plane->fb pointers.

Synopsis

void drmatonmic_clean old fb (struct drmdevice * dev, unsigned
pl ane_mask, int ret);

Arguments

dev drm device to check.
pl ane_mask plane mask for planes that were updated.

ret return value, can be -EDEADLK for aretry.

Description

Before doing an update plane->old_fb is set to plane->fb, but before dropping the locks old_fb needs to
be set to NULL and plane->fb updated. This is a common operation for each atomic update, so this call
is split off asahelper.

Frame Buffer Creation

struct drmfranebuffer *(*fb_create)(struct drmdevice *dev,
struct drmfile *file_priv,
struct drmnode fb _cnd2 *node_crd);

Frame buffers are abstract memory objects that provide a source of pixelsto scanout to aCRTC. Applica
tionsexplicitly request the creation of frame buffersthroughthe DRM_IOCTL_MODE_ADDFB(2) ioctls
and receive an opaque handl e that can be passed to the KMS CRTC control, plane configuration and page
flip functions.

Frame buffers rely on the underneath memory manager for low-level memory operations. When creating
aframe buffer applications pass a memory handle (or alist of memory handles for multi-planar formats)
through thedr m node_f b_cnd2 argument. For drivers using GEM as their userspace buffer manage-
ment interface this would be a GEM handle. Drivers are however free to use their own backing storage
object handles, e.g. vmwgfx directly exposes special TTM handles to userspace and so expects TTM han-
dlesin the create ioctl and not GEM handles.

Driversmust first validate the requested frame buffer parameters passed through the mode_cmd argument.
In particular thisis where invalid sizes, pixel formats or pitches can be caught.

If the parameters are deemed valid, drivers then create, initialize and return an instance of struct dr-
m_framebuffer. If desired the instance can be embedded in a larger driver-specific structure. Drivers
must fill itswi dt h, hei ght, pi t ches, of fsets, depth, bits_per pixel andpi xel for-
mat fields from the values passed through the dr m node_f b_cnd2 argument. They should cal the
drm hel per _node fill _fb_struct helperfunctionto do so.

Theinitialization of the new framebuffer instanceisfinalized withacal todr m franebuffer _init
which takes a pointer to DRM frame buffer operations (struct drm_framebuffer_funcs). Note that this
function publishes the framebuffer and so from this point on it can be accessed concurrently from other
threads. Hence it must be the last step in the driver's framebuffer initialization sequence. Frame buffer
operations are

153

DRM Internals

e int (*create_handle)(struct drmfranmebuffer *fb,
struct drmfile *file_priv, unsigned int *handle);

Create a handle to the frame buffer underlying memory object. If the frame buffer uses a multi-plane
format, the handle will reference the memory object associated with the first plane.

Driverscall dr m_gem handl e_cr eat e to create the handle.
e void (*destroy)(struct drmfranebuffer *franebuffer);

Destroy the frame buffer object and frees all associated resources. Drivers must call dr m f r ane-
buf f er _cl eanup to freeresources allocated by the DRM core for the frame buffer object, and must
make sure to unreference all memory objects associated with the frame buffer. Handles created by the
creat e_handl e operation are released by the DRM core.

eint (*dirty)(struct drmfranebuffer *framebuffer,
struct drmfile *file _priv, unsigned flags, unsigned col or,
struct drmclip_rect *clips, unsigned numclips);

This optional operation notifies the driver that a region of the frame buffer has changed in response to
aDRM_|OCTL_MODE DIRTYFB ioctl call.

The lifetime of a drm framebuffer is controlled with a reference count, drivers can grab additional ref-
erenceswithdr m f r amebuf f er _r ef er enceand drop them again withdr m_f r amebuf f er _un-
r ef er ence. For driver-private framebuffers for which the last reference is never dropped (e.g. for the
fbdev framebuffer when the struct drm_framebuffer is embedded into the fbdev helper struct) drivers
can manually clean up a framebuffer at module unload time with dr m f r amebuf f er _unregi s-
ter _private.

Dumb Buffer Objects

The KMS API doesn't standardize backing storage object creation and leaves it to driver-specific ioctls.
Furthermore actually creating abuffer object even for GEM-based driversisdonethrough adriver-specific
ioctl - GEM only has acommon userspace interface for sharing and destroying objects. While not an issue
for full-fledged graphics stacks that include device-specific userspace components (in libdrm for instance),
this limit makes DRM-based early boot graphics unnecessarily complex.

Dumb objects partly alleviate the problem by providing astandard API to create dumb buffers suitable for
scanout, which can then be used to create KM'S frame buffers.

To support dumb objects drivers must implement the dunb_cr eat e, dunb_dest roy and dum
b_nmap_of f set operations.

e int (*dunb_create)(struct drmfile *file _priv, struct drmdevice *dev,
struct drm node_create_dunb *args);

Thedunb_cr eat e operation createsadriver object (GEM or TTM handle) suitable for scanout based
onthewidth, height and depth from the struct drm_mode_create_dumb argument. It fillsthe argument's
handl e, pi t ch and si ze fields with a handle for the newly created object and its line pitch and
sizein bytes.

e int (*dunb_destroy)(struct drmfile *file priv, struct drmdevice *dev,
uint32_t handl e);

Thedunb_dest r oy operation destroys adumb object created by dunb_cr eat e.

154

DRM Internals

e int (*dunb_map_offset)(struct drmfile *file_priv, struct drm.device *dev,

uint32_t handle, uint64_t *offset);

Thedunb_nmap_of f set operation associates an mmap fake offset with the object given by the handle
andreturnsit. Driversmust usethedr m_gem cr eat e_nmmap_of f set function to associatethefake
offset as described in the section called “ GEM Objects Mapping”.

Note that dumb objects may not be used for gpu accel eration, as has been attempted on some ARM embed-
ded platforms. Such drivers really must have a hardware-specific ioctl to allocate suitable buffer objects.

Output Polling

void (*output_poll _changed) (struct drmdevice *dev);

This operation notifies the driver that the status of one or more connectors has changed. Drivers that use
the fb helper can just call thedr m f b_hel per _hot pl ug_event function to handle this operation.

Locking

Beside some lookup structures with their own locking (which is hidden behind the interface functions)
most of the modeset state is protected by thedev- <node_confi g. | ock mutex and additionally per-
crtc locksto allow cursor updates, pageflips and similar operationsto occur concurrently with background
tasks like output detection. Operations which cross domains like a full modeset always grab all locks.
Driversthere need to protect resources shared between crtcs with additional locking. They also need to be
careful to alwaysgrab therelevant crtc locksif amodset functionstouches crtc state, e.g. for load detection
(which does only grab thenpde_conf i g. | ock to allow concurrent screen updates on live crtcs).

KMS Initialization and Cleanup

A KMSdeviceisabstracted and exposed asa set of planes, CRTCs, encodersand connectors. KM Sdrivers
must thus create and initialize al those objects at |oad time after initializing mode setting.

CRTCs (struct drm_crtc)

A CRTC isan abstraction representing a part of the chip that contains a pointer to a scanout buffer. There-
fore, the number of CRTCs available determines how many independent scanout buffers can be active
at any given time. The CRTC structure contains several fields to support this: a pointer to some video
memory (abstracted as a frame buffer object), a display mode, and an (x, y) offset into the video memory
to support panning or configurations where one piece of video memory spans multiple CRTCs.

CRTC Initialization
A KMS device must create and register at least one struct drm_crtc instance. The instance is allocated and

zeroed by the driver, possibly as part of alarger structure, and registered withacall todrm crtc_ini t
with a pointer to CRTC functions.

CRTC Operations

Set Configuration

int (*set_config)(struct drm node_set *set);

155

DRM Internals

Apply anew CRTC configuration to the device. The configuration specifies a CRTC, a frame buffer to
scan out from, a (x,y) position in the frame buffer, a display mode and an array of connectors to drive
with the CRTC if possible.

If the frame buffer specified in the configuration is NULL, the driver must detach all encoders connected
to the CRTC and all connectors attached to those encoders and disable them.

This operation is called with the mode config lock held.

Note

Note that the drm core has no notion of restoring the mode setting state after resume, since all
resume handlingisinthefull responsibility of thedriver. The common mode setting hel per library
though provides a hel per which can be used for this: dr m_hel per _resumne_f or ce_nvode.

Page Flipping

int (*page flip)(struct drmecrtc *crtc, struct drmfranebuffer *fb,
struct drm pendi ng_vbl ank_event *event);

Schedule a page flip to the given frame buffer for the CRTC. This operation is called with the mode config
mutex held.

Page flipping is a synchronization mechanism that replaces the frame buffer being scanned out by the
CRTC with anew frame buffer during vertical blanking, avoiding tearing. When an application requests a
pageflip the DRM core verifies that the new frame buffer islarge enough to be scanned out by the CRTC
in the currently configured mode and then calls the CRTC page_f | i p operation with a pointer to the
new frame buffer.

The page_f | i p operation schedules a page flip. Once any pending rendering targeting the new frame
buffer has completed, the CRTC will be reprogrammed to display that frame buffer after the next vertical
refresh. The operation must return immediately without waiting for rendering or page flip to complete and
must block any new rendering to the frame buffer until the page flip completes.

If a page flip can be successfully scheduled the driver must set the dr m crt c- >f b field to the new
framebuffer pointed to by f b. Thisisimportant so that the reference counting on framebuffers stays bal-
anced.

If apageflip isaready pending, thepage_f | i p operation must return -EBUSY .

To synchronize page flip to vertical blanking the driver will likely need to enable vertical blanking inter-
rupts. It should call dr m vbl ank_get for that purpose, and call dr m vbl ank_put after the page
flip compl etes.

If the application has regquested to be notified when page flip completes the page_f | i p operation will
be called with anon-NULL event argument pointing to a drm_pending_vblank_event instance. Upon
page flip completion the driver must call dr m send_vbl ank_event to fill in the event and send to
wake up any waiting processes. This can be performed with

spi n_l ock_irgsave(&dev->event _| ock, flags);

drm send_vbl ank_event (dev, pipe, event);
spi n_unl ock_i rqrestore(&dev->event | ock, flags);

156

DRM Internals

Note

FIXME: Could driversthat don't need to wait for rendering to completejust add theeventtodev -
>vbl ank_event | i st and let the DRM core handle everything, as for "normal" vertical
blanking events?

While waiting for the page flip to complete, the event - >base. | i nk list head can be used freely by
the driver to store the pending event in a driver-specific list.

If thefile handleis closed before the event is signaled, drivers must take care to destroy the event in their
pr ecl ose operation (and, if needed, call dr m vbl ank_put).

Miscellaneous

e void (*set_property)(struct drmecrtc *crtec,
struct drm property *property, uint64 t value);

Set the value of the given CRTC property to val ue. Seethe section called “KMS Properties’ for more
information about properties.

e void (*gammua_set)(struct drmcrtc *crtc, ul6 *r, ul6é *g, ul6 *b,
uint32_t start, uint32_t size);

Apply agammatable to the device. The operation is optional .
* void (*destroy)(struct drmcrtc *crtc);

Destroy the CRTC when not needed anymore. See the section called “KM S Initialization and Cleanup”.

Planes (struct drm_plane)

A plane represents an image source that can be blended with or overlayed on top of a CRTC during the
scanout process. Planes are associated with aframe buffer to crop a portion of the image memory (source)
and optionally scaleit to adestination size. Theresult isthen blended with or overlayed on top of aCRTC.

The DRM core recognizes three types of planes:

* DRM_PLANE_TYPE_PRIMARY representsa"main” planefor aCRTC. Primary planesarethe planes
operated upon by CRTC modesetting and flipping operations described in the section called “CRTC
Operations’.

* DRM_PLANE_TYPE_CURSOR representsa"cursor” plane for aCRTC. Cursor planes are the planes
operated upon by the DRM_IOCTL_MODE_CURSOR and DRM_IOCTL_MODE_CURSOR2 ioctls.

e DRM_PLANE TYPE OVERLAY represents all non-primary, non-cursor planes. Some drivers refer
to these types of planes as "sprites' internally.

For compatibility with legacy userspace, only overlay planes are made available to userspace by default.
Userspace clients may set the DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to in-
dicate that they wish to receive a universal plane list containing al plane types.

Plane Initialization

To create a plane, a KMS drivers allocates and zeroes an instances of struct drm_plane (possibly as part
of alarger structure) and registersit withacall todr m uni ver sal _pl ane_i ni t . Thefunction takes

157

DRM Internals

a bitmask of the CRTCs that can be associated with the plane, a pointer to the plane functions, a list of
format supported formats, and the type of plane (primary, cursor, or overlay) being initialized.

Cursor and overlay planesare optional. All drivers should provide one primary plane per CRTC (although
this requirement may changein thefuture); driversthat do not wish to provide special handling for primary
planes may make use of the helper functions described in the section called “Plane Helper Reference” to
create and register a primary plane with standard capabilities.

Plane Operations

e int (*update_plane)(struct drmplane *plane, struct drmcrtc *crtc,
struct drmfranebuffer *fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h);

Enable and configure the plane to use the given CRTC and frame buffer.

The source rectangle in frame buffer memory coordinatesis given by thesr c_x, src_y, src_wand
sr c_h parameters (as 16.16 fixed point values). Devices that don't support subpixel plane coordinates
can ignore the fractional part.

The destination rectangle in CRTC coordinates is given by the crtc_x, crtc_y, crtc_w and
crt c_h parameters (asinteger values). Devices scal e the source rectangle to the destination rectangle.
If scaling is not supported, and the source rectangle size doesn't match the destination rectangle size,
the driver must return a-EINVAL error.

e int (*disable_plane)(struct drmpl ane *pl ane);

Disabletheplane. The DRM core callsthismethod in responsetoaDRM_IOCTL_MODE_SETPLANE
ioctl cal with the frame buffer 1D set to 0. Disabled planes must not be processed by the CRTC.

e void (*destroy)(struct drmpl ane *pl ane);

Destroy the plane when not needed anymore. See the section called “KMS Initialization and Cleanup”.

Encoders (struct drm_encoder)

An encoder takes pixel datafrom a CRTC and convertsit to aformat suitable for any attached connectors.
On some devices, it may be possibleto have a CRTC send datato more than one encoder. In that case, both
encoders would receive data from the same scanout buffer, resulting in a"cloned" display configuration
across the connectors attached to each encoder.

Encoder Initialization

Asfor CRTCs, aKMSdriver must create, initialize and register at least one struct drm_encoder instance.
Theinstance is alocated and zeroed by the driver, possibly as part of alarger structure.

Drivers must initialize the struct drm_encoder possi bl e_crt cs and possi bl e_cl ones fields be-
fore registering the encoder. Both fields are bitmasks of respectively the CRTCs that the encoder can be
connected to, and sibling encoders candidate for cloning.

After being initialized, the encoder must be registered with acall todr m_encoder _i ni t . Thefunction
takes a pointer to the encoder functions and an encoder type. Supported types are

- DRM_MODE_ENCODER_DAC for VGA and analog on DVI-1/DVI-A

158

DRM Internals

« DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort

« DRM_MODE_ENCODER_LVDSfor display panels

« DRM_MODE_ENCODER _TVDAC for TV output (Composite, S-Video, Component, SCART)
« DRM_MODE_ENCODER _VIRTUAL for virtual machine displays

Encoders must be attached to a CRTC to be used. DRM drivers|leave encoders unattached at initialization
time. Applications (or the fbdev compatibility layer when implemented) are responsible for attaching the
encoders they want to useto aCRTC.

Encoder Operations

e void (*destroy)(struct drm encoder *encoder);

Called to destroy the encoder when not needed anymore. See the section called “KMS Initialization
and Cleanup”.

e void (*set_property)(struct drm plane *pl ane,
struct drmproperty *property, uint64_t value);

Set the value of the given plane property to val ue. Seethe section called “KMS Properties’ for more
information about properties.

Connectors (struct drm_connector)

A connector isthe final destination for pixel data on adevice, and usually connects directly to an external
display device like a monitor or laptop panel. A connector can only be attached to one encoder at atime.
The connector is also the structure where information about the attached display is kept, so it contains
fields for display data, EDID data, DPMS & connection status, and information about modes supported
on the attached displays.

Connector Initialization

Finally aKMSdriver must create, initialize, register and attach at least one struct drm_connector instance.
Theinstance is created as other KM S objects and initialized by setting the following fields.

interlace_all owed Whether the connector can handle interlaced modes.
doubl escan_al | owed Whether the connector can handle doublescan.
di splay_info Display information is filled from EDID information when

a display is detected. For non hot-pluggable displays such
as flat panels in embedded systems, the driver should ini-
tialize the di splay_infow dth_mm and di spl ay_i n-
f o.hei ght _nmmfields with the physical size of the display.

pol | ed Connector polling mode, a combination of

DRM_CONNECTOR_POLL_HPD The connector generates
hotplug events and doesn't
need to be periodicaly
polled. The CONNECT and
DISCONNECT flags must

159

DRM Internals

not be set together with the

HPD flag.
DRM_CONNECTOR_POL- Periodically poll the con-
L_CONNECT nector for connection.
DRM_CONNECTOR_POLL_DIS- Periodicaly poll the con-
CONNECT nector for disconnection.
Set to O for connectors that don't support connection status discov-
ery.

The connector is then registered with acall todr m connect or _i ni t with a pointer to the connector
functions and a connector type, and exposed through sysfswith acall todr m connect or _r egi st er.

Supported connector types are

- DRM_MODE_CONNECTOR VGA

- DRM_MODE_CONNECTOR DVII

« DRM_MODE_CONNECTOR DVID

- DRM_MODE_CONNECTOR DVIA

- DRM_MODE_CONNECTOR_Composite
« DRM_MODE_CONNECTOR_SVIDEO

- DRM_MODE_CONNECTOR LVDS

- DRM_MODE_CONNECTOR_Component
« DRM_MODE_CONNECTOR_9PinDIN

- DRM_MODE_CONNECTOR DisplayPort
- DRM_MODE_CONNECTOR HDMIA

« DRM_MODE_CONNECTOR_HDMIB

- DRM_MODE_CONNECTOR TV

- DRM_MODE_CONNECTOR_eDP

- DRM_MODE_CONNECTOR_VIRTUAL

Connectors must be attached to an encoder to be used. For devices that map connectors to encoders
1:1, the connector should be attached at initialization time with acall todr m node_connect or _at -

t ach_encoder . The driver must also set the drm_connector encoder field to point to the attached
encoder.

Finally, drivers must initialize the connectors state change detection with a cal to drm km
s_hel per_pol | _i ni t.If at least one connector is pollable but can't generate hotplug interrupts (in-
dicated by the DRM_CONNECTOR_POLL_CONNECT and DRM_CONNECTOR_POLL_DISCON-
NECT connector flags), adelayed work will automatically be queued to periodically poll for changes. Con-
nectors that can generate hotplug interrupts must be marked with the DRM_CONNECTOR_POLL_HPD
flag instead, and their interrupt handler must call dr m_hel per _hpd_i r g_event . The function will
gueue a delayed work to check the state of all connectors, but no periodic polling will be done.

160

DRM Internals

Connector Operations

DPMS

Modes

Note

Unless otherwise state, all operations are mandatory.

void (*dpns) (struct drm connector *connector, int node);
The DPMS operation sets the power state of a connector. The mode argument is one of
« DRM_MODE_DPMS ON

« DRM_MODE_DPMS STANDBY

« DRM_MODE_DPMS_SUSPEND

« DRM_MODE_DPMS OFF

Inall but DPMS_ON mode the encoder to which the connector is attached should put the display in low-
power mode by driving its signals appropriately. If more than one connector is attached to the encoder care
should be taken not to change the power state of other displays as a side effect. Low-power mode should
be propagated to the encoders and CRTCs when all related connectors are put in low-power mode.

int (*fill_nodes)(struct drmconnector *connector, uint32_t nax_w dth,
uint32_t max_height);

Fill the mode list with all supported modes for the connector. If the max_wi dt h and max_hei ght
arguments are non-zero, the implementation must ignore all modes wider than max_wi dt h or higher
than max_hei ght .

The connector must aso fill in this operation itsdi spl ay_i nf o wi dt h_nmand hei ght _nmfields
with the connected display physical size in millimeters. The fields should be set to O if the value isn't
known or is not applicable (for instance for projector devices).

Connection Status

The connection status is updated through polling or hotplug events when supported (see pol | ed). The
status value is reported to userspace through ioctls and must not be used inside the driver, asit only gets
initialized by acall todr m node_get connect or from userspace.

enum drm connect or _status (*detect)(struct drm connector *connector,
bool force);

Check to seeif anything is attached to the connector. Thef or ce parameter is set to false whilst polling
or to true when checking the connector due to user request. f or ce can be used by the driver to avoid
expensive, destructive operations during automated probing.

Return connector_status_connected if something is connected to the connector, connector_status _discon-
nected if nothing is connected and connector_status_unknown if the connection state isn't known.

Drivers should only return connector_status _connected if the connection status has really been probed as
connected. Connectors that can't detect the connection status, or failed connection status probes, should
return connector_status_unknown.

161

DRM Internals

Miscellaneous

e void (*set_property)(struct drm connector *connector,
struct drm property *property, uint64 t value);

Set the value of the given connector property to val ue. See the section called “KMS Properties’ for
more information about properties.

e void (*destroy)(struct drm connector *connector);

Destroy the connector when not needed anymore. See the section called “KMS Initialization and
Cleanup”.

Cleanup

The DRM core manages its objects' lifetime. When an object is not needed anymore the core calls
its destroy function, which must clean up and free every resource allocated for the object. Every dr -
m * _init cal must be matched with a corresponding dr m * _cl eanup call to cleanup CRTCs (dr -
m crtc_cl eanup), planes (dr m pl ane_cl eanup), encoders (dr m encoder _cl eanup) and
connectors (dr m connect or _cl eanup). Furthermore, connectors that have been added to sys
fs must be removed by a cal to dr m connect or _unr egi st er before calling dr m connec-
t or _cl eanup.

Connectors state change detection must be cleanup up with acall todr m kns_hel per _pol | _fi ni .

Output discovery and initialization example

void intel _crt_init(struct drmdevice *dev)
{

struct drm connector *connector;

struct intel output *intel output;

i ntel _output = kzall oc(sizeof (struct intel output), G-P_KERNEL);
if (lintel _output)
return;

connector = & ntel output->base;
drm connector _init(dev, & ntel output->base,
& ntel _crt_connector_funcs, DRM MODE CONNECTOR VGA);

drm encoder _init(dev, & ntel output->enc, & ntel _crt_enc_funcs,
DRM_MODE_ENCODER_DAC) ;

dr m node_connect or _attach_encoder (& nt el _out put - >base,
& nt el _out put ->enc);

/* Set up the DDC bus. */
i ntel _output->ddc_bus = intel i2c_create(dev, GPI QA "CRTDDC A");
if (!intel output->ddc_bus) {
dev_print k(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
return;

}

162

DRM Internals

i ntel output->type = | NTEL_COUTPUT_ANALCG,
connector->interl ace_all onwed = O;
connect or - >doubl escan_al | owed = 0;

drm encoder _hel per _add(& ntel _out put->enc, & ntel _crt_hel per_funcs);
drm connect or _hel per _add(connector, & ntel _crt_connector_hel per_funcs);

drm connect or _regi ster(connector);

}

In the example above (taken from thei915 driver), aCRTC, connector and encoder combination is created.
A device-specifici2c busis also created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to make its properties available to
applications.

KMS API Functions

163

DRM Internals

Name
drm_get_connector_status name — return a string for connector status

Synopsis
const char * drm.get_connector_status_nane (enum drm connector_status
st at us);

Arguments

stat us connector status to compute name of

Description

In contrast to the other drm_get_* name functionsthisone here returnsaconst pointer and henceisthread-
safe.

164

DRM Internals

Name

drm_get_subpixel_order_name — return a string for a given subpixel enum
Synopsis

const char * drm get subpi xel _order_nane (enum subpi xel _order order);
Arguments

order enum of subpixel_order

Description

Note you could abuse this and return something out of bounds, but that would be a caler error. No un-
scrubbed user data should make it here.

165

DRM Internals

Name

drm_get format_name — return a string for drm fourcc format
Synopsis
const char * drmget format_nane (uint32_t fornat);
Arguments
format format to compute name of
Description
Note that the buffer used by this function is globally shared and owned by the function itself.
FIXME

Thisisn't really multithreading safe.

166

DRM Internals

Name

drm_mode_object_find — look up a drm object with static lifetime

Synopsis

struct drm node_object * drm node_object find (struct drm device * dev,
uint32 t id, uint32_t type);

Arguments
dev drmdevice
id id of the mode object
type type of the mode object

Description

Note that framebuffers cannot be looked up with this functions - since those are reference counted, they
need special treatment. Even with DRM_MODE_OBJECT_ANY (athough that will simply return NULL

rather than WARN_ON).

167

DRM Internals

Name

drm_framebuffer_init — initialize a framebuffer
Synopsis

int drmframebuffer _init (struct drmdevice * dev, struct drmfrane-
buffer * fb, const struct drmfranebuffer funcs * funcs);

Arguments
dev DRM device
fb framebuffer to be initialized

funcs ... with these functions

Description

Allocates an ID for the framebuffer's parent mode object, sets its mode functions & device file and adds
it to the master fd list.

IMPORTANT

This functions publishes the fb and makes it available for concurrent access by other users. Which means
by this point the fb _must_ be fully set up - since al the fb attributes are invariant over its lifetime, no
further locking but only correct reference counting is required.

Returns

Zero on success, error code on failure.

168

DRM Internals

Name

drm_framebuffer_|lookup — look up a drm framebuffer and grab a reference

Synopsis

struct drmframebuffer * drmframebuffer | ookup (struct drmdevice *
dev, uint32 t id);

Arguments
dev drmdevice
id idof thefb object

Description

If successful, this grabs an additional referenceto the framebuffer - callers need to make sureto eventually
unreference the returned framebuffer again, usingdr m f r amebuf f er _unr ef er ence.

169

DRM Internals

Name

drm_framebuffer_unreference — unref aframebuffer

Synopsis

void drm franebuffer_unreference (struct drm franmebuffer * fb);

Arguments

f b framebuffer to unref

Description

This functions decrements the fb's refcount and freesit if it dropsto zero.

170

DRM Internals

Name

drm_framebuffer_reference — incr the fb refent

Synopsis

void drm franebuffer_reference (struct drmfranebuffer * fb);

Arguments

fb framebuffer

Description

This functions increments the fb's refcount.

171

DRM Internals

Name
drm_framebuffer_unregister_private — unregister a private fb from the lookup idr

Synopsis

void drm franebuffer_unregister _private (struct drmfranebuffer * fb);
Arguments
fb fbto unregister

Description

Driversneed to call thiswhen cleaning up driver-private framebuffers, e.g. those used for fbdev. Note that
the caller must hold a reference of it's own, i.e. the object may not be destroyed through this call (since

it'll lead to alocking inversion).

172

DRM Internals

Name

drm_framebuffer_cleanup — remove a framebuffer object
Synopsis
void drm franebuffer_cl eanup (struct drmfranebuffer * fh);

Arguments

f b framebuffer to remove

Description

Cleanup framebuffer. This function isintended to be used from the drivers ->destroy callback. It can also
be used to clean up driver private framebuffers embedded into alarger structure.

Note that this function does not remove the fb from active usuage - if it is still used anywhere, hilarity
can ensue since userspace could call getfb on the id and get back -EINVAL. Obviously no concern at
driver unload time.

Also, the framebuffer will not be removed from the lookup idr - for user-created framebuffers this will
happen in in the rmfb ioctl. For driver-private objects (e.g. for fbdev) drivers need to explicitly call dr-
m_framebuffer_unregister private.

173

DRM Internals

Name

drm_framebuffer_remove — remove and unreference a framebuffer object

Synopsis
void drm franebuffer_renove (struct drmfranebuffer * fb);

Arguments

f b framebuffer to remove

Description

Scansall the CRTCsand planesin dev'smode_config. If they'reusing f b, removesit, setting it to NULL.
Then drops the reference to the passed-in framebuffer. Might take the modeset locks.

Note that this function optimizes the cleanup away if the caller holds the last reference to the framebuffer.
It is also guaranteed to not take the modeset locks in this case.

174

DRM Internals

Name
drm_crtc_init_with_planes — Initialise anew CRTC object with specified primary and cursor planes.
Synopsis

int drmcrtc_init_with _planes (struct drmdevice * dev, struct drmcrtc
* crtc, struct drmplane * primary, struct drmplane * cursor, const
struct drmecrtc_funcs * funcs);

Arguments
dev DRM device
crtc CRTC object to init

primary Primary planefor CRTC

cursor Cursor planefor CRTC

funcs callbacks for the new CRTC
Description

Inits anew object created as base part of adriver crtc object.
Returns

Zero on success, error code on failure.

175

DRM Internals

Name

drm_crtc_cleanup — Clean up the core crtc usage
Synopsis

void drmcrtc_cleanup (struct drmecrtc * crtc);
Arguments

crtc CRTCtocleanup

Description

This function cleans up cr t ¢ and removes it from the DRM mode setting core. Note that the function
does *not* free the crtc structure itself, thisisthe responsibility of the caller.

176

DRM Internals

Name
drm_crtc_index — find the index of aregistered CRTC

Synopsis
unsigned int drmecrtc_index (struct drmecrtc * crtc);

Arguments

crtc CRTCtofindindex for

Description
Given aregistered CRTC, return the index of that CRTC within a DRM device'slist of CRTCs.

177

DRM Internals

Name
drm_display_info_set_bus formats — set the supported bus formats

Synopsis

int drmdisplay info _set bus formats (struct drmdisplay_info * info,
const u32 * formats, unsigned int numformats);

Arguments
info display info to store bus formatsin
formats array containing the supported bus formats

num formats thenumber of entriesin the fmts array

Description

Store the supported bus formats in display info structure. See MEDIA_BUS FMT _* definitions in in-
clude/uapi/linux/media-bus-format.h for afull list of available formats.

178

DRM Internals

Name

drm_connector_init — Init a preallocated connector
Synopsis

int drmconnector _init (struct drmdevice * dev, struct drmconnec-
tor * connector, const struct drmconnector_funcs * funcs, int connec-

tor_type);
Arguments
dev DRM device
connect or the connector to init
funcs callbacks for this connector

connector _type uservisibletype of the connector
Description

Initialises a preallocated connector. Connectors should be subclassed as part of driver connector objects.

Returns

Zero on success, error code on failure.

179

DRM Internals

Name

drm_connector_cleanup — cleans up an initialised connector

Synopsis

voi d drm connector_cl eanup (struct drm connector * connector);

Arguments

connect or connector to cleanup

Description

Cleans up the connector but doesn't free the object.

180

DRM Internals

Name

drm_connector_register — register a connector
Synopsis
int drmconnector_register (struct drmconnector * connector);
Arguments
connect or the connector to register
Description
Register userspace interfaces for a connector
Returns

Zero on success, error code on failure.

181

DRM Internals

Name

drm_connector_unregister — unregister a connector

Synopsis

voi d drm connector_unregi ster (struct drm.connector * connector);

Arguments

connect or the connector to unregister

Description

Unregister userspace interfaces for a connector

182

DRM Internals

Name

drm_connector_unplug_all — unregister connector userspace interfaces
Synopsis

void drm connector_unplug all (struct drmdevice * dev);
Arguments

dev drmdevice

Description

This function unregisters al connector userspace interfaces in sysfs. Should be call when the device is
disconnected, e.g. from an usb driver's ->disconnect callback.

183

DRM Internals

Name

drm_encoder_init — Init a preallocated encoder
Synopsis

int drmencoder _init (struct drmdevice * dev, struct drmencoder *
encoder, const struct drmencoder funcs * funcs, int encoder_type);

Arguments
dev drm device
encoder the encoder to init
funcs callbacks for this encoder

encoder _type user visibletype of the encoder
Description

Initialises a preallocated encoder. Encoder should be subclassed as part of driver encoder objects.
Returns

Zero on success, error code on failure.

184

DRM Internals

Name

drm_encoder_index — find the index of aregistered encoder

Synopsis

unsi gned int drmencoder index (struct drmencoder * encoder);

Arguments

encoder encoder to find index for

Description

Given aregistered encoder, return the index of that encoder within aDRM device's list of encoders.

185

DRM Internals

Name

drm_encoder_cleanup — cleans up an initialised encoder
Synopsis
voi d drm encoder _cl eanup (struct drm encoder * encoder);

Arguments

encoder encoder to cleanup

Description

Cleans up the encoder but doesn't free the object.

186

DRM Internals

Name

drm_universal_plane init — Initialize a new universal plane object
Synopsis

int drmuniversal _plane_init (struct drmdevice * dev, struct drm pl ane
* plane, unsigned |long possible crtcs, const struct drmplane_funcs
* funcs, const uint32_t * formats, unsigned int format_count, enum
drm pl ane_type type);

Arguments
dev DRM device
pl ane plane object to init

possi bl e_crtcs bitmask of possible CRTCs

funcs callbacks for the new plane

formats array of supported formats (DRM_FORMAT_*)

f ormat _count number of elementsinf or mat s

type type of plane (overlay, primary, cursor)
Description

Initializes a plane object of typet ype.

Returns

Zero on success, error code on failure.

187

DRM Internals

Name
drm_plane_init — Initialize alegacy plane
Synopsis

int drmplane_init (struct drmdevice * dev, struct drmplane * plane,
unsi gned | ong possible crtcs, const struct drmplane funcs * funcs,
const uint32_t * fornmats, unsigned int format_count, bool is prinmary);

Arguments
dev DRM device
pl ane plane object to init

possi bl e_crtcs bitmask of possible CRTCs

funcs callbacks for the new plane

formats array of supported formats (DRM_FORMAT _*)

f ormat _count number of elementsinf or mat s

is_primry plane type (primary vs overlay)
Description

Legacy API toinitidlize aDRM plane.
New drivers should call dr m_uni ver sal _pl ane_i ni t instead.
Returns

Zero on success, error code on failure.

188

DRM Internals

Name

drm_plane_cleanup — Clean up the core plane usage
Synopsis

void drm pl ane_cl eanup (struct drmplane * plane);
Arguments

pl ane planeto cleanup

Description

This function cleans up pl ane and removes it from the DRM mode setting core. Note that the function
does *not* free the plane structure itself, thisisthe responsibility of the caller.

189

DRM Internals

Name

drm_plane_index — find the index of aregistered plane
Synopsis
unsi gned int drmplane_index (struct drmplane * plane);

Arguments

pl ane planeto find index for

Description
Given aregistered plane, return the index of that CRTC within a DRM device's list of planes.

190

DRM Internals

Name
drm_plane_from_index — find the registered plane at an index

Synopsis
struct drmplane * drmplane from.index (struct drmdevice * dev, int
i dx);

Arguments

dev DRM device

i dx index of registered planeto find for

Description

Given aplane index, return the registered plane from DRM device'slist of planes with matching index.

191

DRM Internals

Name
drm_plane force disable — Forcibly disable a plane

Synopsis
void drm pl ane_force_disable (struct drmplane * plane);

Arguments

pl ane planeto disable

Description
Forces the plane to be disabled.

Used when the plane's current framebuffer is destroyed, and when restoring fbdev mode.

192

DRM Internals

Name

drm_mode create dvi_i_properties— create DVI-I specific connector properties
Synopsis

int drmnode create _dvi i _properties (struct drmdevice * dev);
Arguments

dev DRM device

Description

Called by adriver the first time a DVI-I connector is made.

193

DRM Internals

Name
drm_mode _create tv_properties — create TV specific connector properties
Synopsis

int drmnode create tv_properties (struct drmdevice *
i nt num nodes, const char *const nodes[]);

dev, unsigned

Arguments
dev DRM device
num nmodes number of different TV formats (modes) supported

nodes|] array of pointers to strings containing name of each format

Description

Called by adriver's TV initiaization routine, thisfunction createsthe TV specific connector propertiesfor
agiven device. Caller isresponsible for allocating alist of format names and passing them to this routine.

194

DRM Internals

Name

drm_mode _create scaling_mode_property — create scaling mode property

Synopsis

int drmnode create_scaling node property (struct drmdevice * dev);

Arguments

dev DRM device

Description
Called by adriver the first time it's needed, must be attached to desired connectors.

195

DRM Internals

Name
drm_mode _create aspect_ratio_property — create aspect ratio property

Synopsis
int drmnode create_aspect _ratio _property (struct drmdevice * dev);
Arguments
dev DRM device
Description
Called by adriver the first time it's needed, must be attached to desired connectors.
Returns

Zero on success, hegative errno on failure.

196

DRM Internals

Name
drm_mode _create dirty info_property — create dirty property

Synopsis
int drmnode create dirty info _property (struct drmdevice * dev);

Arguments

dev DRM device

Description
Called by adriver the first time it's needed, must be attached to desired connectors.

197

DRM Internals

Name
drm_mode _create suggested offset_properties — create suggests offset properties

Synopsis
int drmnode _create suggested offset properties (struct drmdevice *
dev);

Arguments

dev DRM device

Description

Create the the suggested x/y offset property for connectors.

198

DRM Internals

Name
drm_mode_set_config_internal — helper to call ->set_config

Synopsis

int drmnode_set _config_internal (struct drm node_set * set);
Arguments

set modeset config to set

Description

Thisis alittle helper to wrap internal calls to the ->set_config driver interface. The only thing it adds is
correct refcounting dance.

Returns

Zero on success, hegative errno on failure.

199

DRM Internals

Name
drm_crtc_get_hv_timing — Fetches hdisplay/vdisplay for given mode
Synopsis
void drmcrtc_get _hv_timng (const struct drmdisplay_node * node, int
* hdisplay, int * vdisplay);
Arguments
node mode to query
hdi spl ay hdisplay valuetofill in
vdi spl ay vdisplay valuetofill in
Description

The vdisplay value will be doubled if the specified mode is a stereo mode of the appropriate layout.

200

DRM Internals

Name

drm_crtc_check_viewport — Checks that a framebuffer is big enough for the CRTC viewport
Synopsis

int drmcrtc_check viewport (const struct drmecrtc * crtc, int x, int
y, const struct drmdisplay_node * node, const struct drmfranebuffer
* fb);

Arguments
crtc CRTC that framebuffer will be displayed on
X X panning
y y panning
node mode that framebuffer will be displayed under

fb framebuffer to check size of

201

DRM Internals

Name

drm_mode legacy fb _format — compute drm fourcc code from legacy description

Synopsis

uint32 t drmnode | egacy fb fornmat (uint32_t bpp, uint32_t depth);
Arguments

bpp bits per pixels

dept h bit depth per pixel

Description

Computes a drm fourcc pixel format code for the given bpp/dept h values. Useful in fbdev emulation
code, since that deals in those values.

202

DRM Internals

Name
drm_property _create — create a new property type

Synopsis

struct drmproperty * drmproperty create (struct drmdevice * dev, int
flags, const char * nanme, int numval ues);

Arguments
dev drm device
flags flags specifying the property type
nane name of the property

num val ues number of pre-defined values
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property destroy.

Notethat the DRM core keeps aper-devicelist of propertiesand that, if dr m_node_confi g_cl eanup
iscaled, it will destroy all properties created by the driver.

Returns

A pointer to the newly created property on success, NULL on failure.

203

DRM Internals

Name

drm_property _create_enum — create a new enumeration property type
Synopsis
struct drm property * drm property create_enum(struct drm devi ce * dev,

int flags, const char * nane, const struct drmprop_enumlist * props,
i nt num val ues);

Arguments
dev drm device
flags flags specifying the property type
nane name of the property
props enumeration lists with property values

num val ues number of pre-defined values
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property_destroy.

Userspace is only allowed to set one of the predefined values for enumeration properties.
Returns

A pointer to the newly created property on success, NULL on failure.

204

DRM Internals

Name
drm_property_create bitmask — create a new bitmask property type

Synopsis
struct drmproperty * drmproperty create_bitmask (struct drmdevice *

dev, int flags, const char * nane, const struct drmprop_enumlist *
props, int numprops, uint64 t supported bits);

Arguments
dev drm device
flags flags specifying the property type
nane name of the property
props enumeration lists with property bitflags
num pr ops size of the pr ops array

supported_bits bitmask of al supported enumeration values
Description

This creates a new bitmask drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property destroy.

Compared to plain enumeration properties userspace is allowed to set any or'ed together combination of
the predefined property bitflag values

Returns

A pointer to the newly created property on success, NULL on failure.

205

DRM Internals

Name
drm_property_create range — create a new unsigned ranged property type

Synopsis

struct drmproperty * drmproperty create range (struct drmdevice *
dev, int flags, const char * name, uint64_t mn, uint64 _t max);

Arguments
dev drm device
flags flags specifying the property type

nane name of the property

mn minimum value of the property
nax maximum value of the property
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property_destroy.

Userspace is allowed to set any unsigned integer value in the (min, max) rangeinclusive.
Returns

A pointer to the newly created property on success, NULL on failure.

206

DRM Internals

Name
drm_property_create signed_range — create a new signed ranged property type

Synopsis

struct drmproperty * drmproperty create_signed range (struct drmde-
vice * dev, int flags, const char * nane, int64 t nmn, int64_t nax);

Arguments
dev drm device
flags flags specifying the property type

nane name of the property

mn minimum value of the property
nax maximum value of the property
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property_destroy.

Userspace is allowed to set any signed integer value in the (min, max) range inclusive.

Returns

A pointer to the newly created property on success, NULL on failure.

207

DRM Internals

Name
drm_property_create object — create a new object property type

Synopsis

struct drmproperty * drmproperty create object (struct drmdevice *
dev, int flags, const char * name, uint32_t type);

Arguments

dev drm device

flags flags specifying the property type

nane name of the property

type object typefrom DRM_MODE _OBJECT_* defines
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach_property. The returned property object must be freed with drm_property destroy.

Userspace is only allowed to set this to any property value of the given t ype. Only useful for atomic
properties, which is enforced.

Returns

A pointer to the newly created property on success, NULL on failure.

208

DRM Internals

Name

drm_property_create_bool — create a new boolean property type
Synopsis

struct drm property * drm property create_bool (struct drm device * dev,
int flags, const char * nane);

Arguments
dev drm device
flags flags specifying the property type
nane name of the property
Description

This creates a new generic drm property which can then be attached to a drm object with drm_object_at-
tach _property. The returned property object must be freed with drm_property _destroy.

Thisisimplemented as aranged property with only {0, 1} asvalid values.
Returns

A pointer to the newly created property on success, NULL on failure.

209

DRM Internals

Name

drm_property_add enum — add a possible value to an enumeration property
Synopsis

int drmproperty add _enum (struct drmproperty * property, int index,
uint64_t value, const char * nane);

Arguments

property enumeration property to change

i ndex index of the new enumeration

val ue value of the new enumeration

nane symbolic name of the new enumeration
Description

This functions adds enumerations to a property.

It's use is deprecated, drivers should use one of the more specific helpers to directly create the property
with al enumerations aready attached.

Returns

Zero on success, error code on failure.

210

DRM Internals

Name
drm_property_destroy — destroy a drm property

Synopsis

void drm property _destroy (struct drmdevice * dev, struct drm property
* property);

Arguments
dev drm device
property property to destry

Description

This function frees a property including any attached resources like enumeration values.

211

DRM Internals

Name
drm_object_attach property — attach a property to a modeset object

Synopsis

void drmobject_attach property (struct drmnode object * obj, struct
drm property * property, uint64_t init_val);

Arguments
obj drm modeset object
property property to attach
i nit_val initia value of the property

Description

This attaches the given property to the modeset object with the given initial value. Currently this function
cannot fail since the properties are stored in a statically sized array.

212

DRM Internals

Name
drm_object_property _set value — set the value of a property

Synopsis

int drmobject property set val ue (struct drm node_object * obj, struct
drm property * property, uint64_t val);

Arguments
obj drm mode object to set property value for
property property to set
val value the property should be set to
Description

Thisfunctions sets agiven property on a given object. Thisfunction only changes the software state of the
property, it does not call into the driver's ->set_property callback.

Returns

Z€ero on success, error code on failure.

213

DRM Internals

Name
drm_object_property _get value — retrieve the value of a property

Synopsis

int drm object property get val ue (struct drm node_object * obj, struct
drm property * property, uint64_t * val);

Arguments
obj drm mode object to get property value from
property property to retrieve
val storage for the property value
Description

Thisfunction retrievesthe softare state of the given property for the given property. Sincethereisno driver
callback to retrieve the current property value this might be out of sync with the hardware, depending upon
the driver and property.

Returns

Z€ero on success, error code on failure.

214

DRM Internals

Name
drm_property_create blob — Create new blob property

Synopsis

struct drmproperty blob * drmproperty create_blob (struct drmdevice
* dev, size t length, const void * data);

Arguments
dev DRM device to create property for
| engt h Lengthto alocate for blob data

dat a If specified, copies datainto blob

Description

Creates anew blob property for a specified DRM device, optionally copying data.

Returns

New blob property with a single reference on success, or an ERR_PTR value on failure.

215

DRM Internals

Name

drm_property_unreference_blob — Unreference a blob property

Synopsis

void drm property _unreference_blob (struct drm property blob * bl ob);

Arguments

bl ob Pointer to blob property

Description

Drop areference on a blob property. May free the object.

216

DRM Internals

Name

drm_property_reference blob — Take areference on an existing property

Synopsis

struct drmproperty blob * drmproperty reference blob (struct dr-
m property bl ob * bl ob);

Arguments

bl ob Pointer to blob property

Description

Take anew reference on an existing blob property.

217

DRM Internals

Name
drm_property_lookup_blob — look up a blob property and take a reference

Synopsis

struct drmproperty blob * drmproperty | ookup blob (struct drmdevice
* dev, uint32_t id);

Arguments
dev drmdevice
id idof the blob property

Description

If successful, thistakes an additional referenceto the blob property. callers need to make sureto eventually
unreference the returned property again, usingdr m property_unr ef er ence_bl ob.

218

DRM Internals

Name
drm_mode_connector_set_path property — set tile property on connector

Synopsis

int drm node_connector_set path property (struct drmconnector * con-
nector, const char * path);

Arguments

connect or connector to set property on.

pat h path to use for property; must not be NULL.
Description

Thiscreates aproperty to expose to userspace to specify aconnector path. Thisismainly used for Display-
Port MST where connectors have a topology and we want to allow userspace to give them more mean-
ingful names.

Returns

Zero on success, hegative errno on failure.

219

DRM Internals

Name
drm_mode_connector_set_tile property — set tile property on connector

Synopsis
int drmnode_connector_set tile property (struct drmconnector * con-
nector);

Arguments

connect or connector to set property on.

Description

Thislooks up thetile information for a connector, and creates a property for userspace to parseif it exists.
The property is of the form of 8 integersusing "' as a separator.

Returns

Zero on success, errno on failure.

220

DRM Internals

Name
drm_mode_connector_update_edid_property — update the edid property of a connector

Synopsis

int drmnode_connector _update _edid property (struct drmconnector *
connector, const struct edid * edid);

Arguments

connect or drm connector

edid new value of the edid property
Description

This function creates a new blob modeset object and assignsitsid to the connector's edid property.
Returns

Zero on success, hegative errno on failure.

221

DRM Internals

Name
drm_mode _plane_set_obj_prop — set the value of a property

Synopsis

int drm node pl ane_set _obj prop (struct drmplane * plane, struct dr-
m property * property, uint64_t value);

Arguments
pl ane drm plane object to set property value for
property property to set
val ue value the property should be set to
Description

Thisfunctions sets a given property on agiven plane object. Thisfunction callsthe driver's->set_property
callback and changes the software state of the property if the callback succeeds.

Returns

Z€ero on success, error code on failure.

222

DRM Internals

Name

drm_mode_connector_attach encoder — attach a connector to an encoder

Synopsis

int drm node_connector_attach_encoder (struct drmconnector * connec-
tor, struct drmencoder * encoder);

Arguments
connect or connector to attach
encoder encoder to attach connect or to

Description

This function links up a connector to an encoder. Note that the routing restrictions between encoders and
crtcs are exposed to userspace through the possible_clones and possible_crtcs bitmasks.

Returns

Zero on success, hegative errno on failure.

223

DRM Internals

Name

drm_mode _crtc_set_gamma_size — set the gammatable size
Synopsis

int drmnode crtc_set _gamma_size (struct drmecrtc * crtc, int gam
nma_si ze);

Arguments
crtc CRTC to set the gammartable size for
ganme_si ze sizeof thegammatable
Description

Drivers which support gamma tables should set this to the supported gamma table size when initializing
the CRTC. Currently the drm core only supports a fixed gammatable size.

Returns

Zero on success, hegative errno on failure.

224

DRM Internals

Name
drm_mode_config_reset — call ->reset callbacks

Synopsis

void drm node_config reset (struct drmdevice * dev);
Arguments

dev drmdevice

Description

This functions calls al the crtc's, encoder's and connector's ->reset callback. Drivers can use thisin e.g.
their driver load or resume code to reset hardware and software state.

225

DRM Internals

Name
drm_fb_get_bpp_depth — get the bpp/depth values for format
Synopsis
void drmfb_get bpp_depth (uint32_t format, unsigned int * depth, int
* bpp);
Arguments
format pixel format (DRM_FORMAT_*)
depth storage for the depth value
bpp storage for the bpp value
Description

This only supports RGB formats here for compat with code that doesn't use pixel formats directly yet.

226

DRM Internals

Name

drm_format_num_planes — get the number of planes for format
Synopsis
int drmformat_num planes (uint32_t fornat);

Arguments
format pixel format (DRM_FORMAT_*)

Returns

The number of planes used by the specified pixel format.

227

DRM Internals

Name

drm_format_plane _cpp — determine the bytes per pixel value
Synopsis

int drmformat_plane cpp (uint32 t format, int plane);
Arguments

format pixel format (DRM_FORMAT_*)

pl ane planeindex

Returns

The bytes per pixel value for the specified plane.

228

DRM Internals

Name

drm_format_horz_chroma_subsampling — get the horizontal chroma subsampling factor

Synopsis
int drmformat _horz_chroma_subsanpling (uint32_t fornmat);

Arguments
format pixel format (DRM_FORMAT_*)

Returns

The horizontal chroma subsampling factor for the specified pixel format.

229

DRM Internals

Name

drm_format_vert_chroma_subsampling — get the vertical chroma subsampling factor

Synopsis
int drmformat_vert chroma_subsanpling (uint32_t fornmat);

Arguments
format pixel format (DRM_FORMAT_*)

Returns

The vertical chroma subsampling factor for the specified pixel format.

230

DRM Internals

Name
drm_rotation_simplify — Try to simplify the rotation

Synopsis

unsigned int drmrotation_sinplify (unsigned int rotation, unsigned int
supported_rotations);

Arguments
rotation Rotation to be simplified
supported_rotati ons Supported rotations
Description

Attempt to simplify therotation to aform that is supported. Eg. if the hardware supports everything except
DRM_REFLECT_X

one could call this function like this

drm_rotation_simplify(rotation, BIT(DRM_ROTATE_0) | BIT(DRM_ROTATE_90) | BIT(DRM_RO-
TATE_180) | BIT(DRM_ROTATE_270) | BIT(DRM_REFLECT_Y));

to eliminate the DRM_ROTATE_X flag. Depending on what kind of transforms the hardware supports,
this function may not be able to produce a supported transform, so the caller should check the result
afterwards.

231

DRM Internals

Name

drm_mode_config_init — initialize DRM mode_configuration structure

Synopsis
void drm node _config init (struct drmdevice * dev);

Arguments

dev DRM device

Description

Initialize dev's mode_config structure, used for tracking the graphics configuration of dev.

Since this initializes the modeset locks, no locking is possible. Which is no problem, since this should
happen single threaded at init time. It isthe driver's problem to ensure this guarantee.

232

DRM Internals

Name

drm_mode_config_cleanup — free up DRM mode_config info
Synopsis

void drm node_config cl eanup (struct drmdevice * dev);
Arguments

dev DRM device

Description

Free up &l the connectors and CRTCs associated with this DRM device, then free up the framebuffers
and associated buffer objects.

Note that since this/should/ happen single-threaded at driver/device teardown time, no locking isrequired.
It'sthe driver's job to ensure that this guarantee actually holds true.

FIXME

cleanup any dangling user buffer objects too

233

DRM Internals

Name

drm_mode _get tile_group — get areference to an existing tile group
Synopsis

struct drmtile _group * drmnode_get tile group (struct drmdevice *
dev, char topol ogy[8]);

Arguments

dev DRM device

t opol ogy[8] 8-bytes unique per monitor.
Description

Use the unique bytes to get areference to an existing tile group.
RETURNS

tile group or NULL if not found.

234

DRM Internals

Name

drm_mode_create tile_group — create atile group from adisplayid description
Synopsis

struct drmtile group * drmnode create tile _group (struct drmdevice
* dev, char topol ogy[8]);

Arguments

dev DRM device

t opol ogy[8] 8-bytes unique per monitor.
Description

Create atile group for the unique monitor, and get a unique identifier for the tile group.
RETURNS

new tile group or error.

KMS Data Structures

235

DRM Internals

Name
struct drm_crtc_state — mutable CRTC state

Synopsis

struct drmcrtc_state {
struct drmcrtc * crtc;
bool enabl e;
bool active;
bool pl anes_changed: 1;
bool nopde_changed: 1;
bool active_changed: 1;
bool connectors_changed: 1;
u32 pl ane_nask;
u32 connect or _mask;
u32 encoder _nask;
u32 | ast_vbl ank_count;
struct drm.di spl ay_nopde adj usted_node;
struct drm.di spl ay_node node;
struct drm pendi ng_vbl ank_event * event;
struct drmatonic_state * state;

b
Members
crtc backpointer to the CRTC
enable whether the CRTC should be enabled, gates all other state
active whether the CRTC is actively displaying (used for DPMYS)
planes_changed planes on this crtc are updated
mode_changed crtc_state->mode or crtc_state->enable has been changed
active_changed crtc_state->active has been toggled.
connectors_changed connectors to this crtc have been updated
plane_mask bitmask of (1 << drm_plane_index(plane)) of attached planes
connector_mask bitmask of (1 << drm_connector_index(connector)) of attached connectors
encoder_mask bitmask of (1 << drm_encoder_index(encoder)) of attached encoders
last_vblank_count for helpers and drivers to capture the vblank of the update to ensure frame-
buffer cleanup isn't done too early
adjusted_mode for use by helpers and drivers to compute adjusted mode timings
mode current mode timings
event optional pointer toaDRM event to signal upon compl etion of the state update
state backpointer to global drm_atomic_state

236

DRM Internals

Description

Notethat thedistinction betweenenabl e andact i ve israther subtile: Flippingact i ve whileenabl e
is set without changing anything else may never return in a failure from the ->atomic_check callback.
Userspace assumes that a DPMS On will always succeed. In other words: enabl e controls resource
assignment, act i ve controls the actual hardware state.

237

DRM Internals

Name
struct drm_crtc_funcs — control CRTCs for a given device
Synopsis
struct drmcrtc_funcs {
void (* save) (struct drmcrtc *crtc);
void (* restore) (struct drmcrtc *crtc);
void (* reset) (struct drmcrtc *crtc);
int (* cursor_set) (struct drmcrtc *crtc, struct drmfile *file_priv,uint32_t
int (* cursor_set2) (struct drmecrtc *crtc, struct drmfile *file_priv,uint32_t
int (* cursor_nove) (struct drmecrtc *crtc, int x, int y);
void (* gamma_set) (struct drmcrtc *crtc, ul6é *r, ul6é *g, ul6 *b,uint32_t start
void (* destroy) (struct drmcrtc *crtc);
int (* set_config) (struct drm node_set *set);
int (* page_flip) (struct drmcrtc *crtc,struct drm framebuffer *fb,struct drmp
int (* set_property) (struct drmcrtc *crtc,struct drmproperty *property,
struct drmcrtc_state *(* atom c_duplicate state) (struct drmcrtc *crtc);
void (* atonmic_destroy _state) (struct drmcrtc *crtc,struct drmcrtc_state *stat
int (* atomi c_set property) (struct drmecrtc *crtc,struct drmcrtc_state *state,
int (* atom c_get _property) (struct drmecrtc *crtc,const struct drmcrtc_state *
b
Members
save save CRTC state
restore restore CRTC state
reset reset CRTC after state has been invalidated (e.g. resume)
cursor_set setup the cursor
cursor_set2 setup the cursor with hotspot, superseeds cur sor _set if set
Cursor_move move the cursor
gamma_set specify color ramp for CRTC
destroy deinit and free object
set_config apply anew CRTC configuration
page flip initiate a page flip
set_property called when a property is changed

atomic_duplicate state
atomic_destroy_state

atomic_set_property

atomic_get_property

duplicate the atomic state for this CRTC
destroy an atomic state for this CRTC

set a property on an atomic state for this CRTC (do not call directly,
usedrm atom c_crtc_set property)

get a property on an atomic state for this CRTC (do not call directly,
usedrm atom c_crtc_get property)

238

DRM Internals

Description

Thedrm_crtc_funcsstructureisthe central CRTC management structureinthe DRM. Each CRTC controls
one or more connectors (note that the name CRTC issimply historical, aCRTC may control LVDS, VGA,
DVI, TV out, etc. connectors, not just CRTS).

Each driver isresponsible for filling out this structure at startup time, in addition to providing other mod-
esetting features, likei2c and DDC bus accessors.

239

DRM Internals

Name

struct drm_crtc — central CRTC control structure

Synopsis

struct drmecrtc {
struct drmdevice * dev;
struct device_node * port;
struct list_head head;
struct drm nodeset | ock mnutex;
struct drm node_obj ect base;
struct drmplane * prinary;
struct drmplane * cursor;
i nt cursor_Xx;
int cursor_y;
bool enabl ed;
struct drm.di spl ay_node node;
struct drm.di spl ay_node hwrode;
int x;
int vy;
const struct drmecrtc_funcs * funcs;
ui nt 32_t gamma_si ze;
uint16_t * ganma_store;
const void * hel per_private;
struct drm object_properties properties;
struct drmcrtc_state * state;
struct drm nopdeset _acquire_ctx * acquire_ctx;

b
Members
dev parent DRM device
port OF nodeused by dr m of _fi nd_possible crtcs
head list management
mutex per-CRTC locking
base base KM S object for ID tracking etc.
primary primary plane for this CRTC
cursor cursor plane for this CRTC
cursor_x current x position of the cursor, used for universal cursor planes
cursor_y current y position of the cursor, used for universal cursor planes
enabled isthis CRTC enabled?
mode current mode timings
hwmode mode timings as programmed to hw regs

240

DRM Internals

X X position on screen

y Yy position on screen

funcs CRTC control functions

gamma_size size of gammaramp

gamma_store gamma ramp values

helper_private mid-layer private data

properties property tracking for this CRTC

state current atomic state for this CRTC

acquire_ctx per-CRTC implicit acquire context used by atomic driversfor legacy ioctls
Description

Each CRTC may have one or more connectors associated with it. This structure allows the CRTC to be
controlled.

241

DRM Internals

Name

struct drm_connector_state — mutable connector state

Synopsis

struct drm connector_state {
struct drm.connector * connector;
struct drmcrtc * crtc;
struct drm encoder * best_encoder;
struct drmatonic_state * state;

b

Members
connector backpointer to the connector
crtc CRTC to connect connector to, NULL if disabled
best_encoder can be used by helpers and drivers to select the encoder
state backpointer to global drm_atomic_state

242

DRM Internals

Name

struct drm_connector_funcs — control connectors on a given device

Synopsis

struct drm connector_funcs {
int (* dpms) (struct drmconnector *connector, int node);
void (* save) (struct drmconnector *connector);
void (* restore) (struct drmconnector *connector);
void (* reset) (struct drm.connector *connector);
enum drm connector _status (* detect) (struct drmconnector *connector, bool force
int (* fill _nodes) (struct drmconnector *connector, uint32_t nax_w dth, uint32_
int (* set_property) (struct drmconnector *connector, struct drm property *prop
void (* destroy) (struct drmconnector *connector);
void (* force) (struct drmconnector *connector);
struct drmconnector_state *(* atom c_duplicate state) (struct drmconnector *co
void (* atomi c_destroy _state) (struct drm.connector *connector,struct drmconnec
int (* atomi c_set property) (struct drmconnector *connector,struct drm connecto
int (* atomic_get property) (struct drmconnector *connector,const struct drmco

Descript

atomic_duplicate state
atomic_destroy_state

atomic_set_property

atomic_get_property

ion

1
Members
dpms Set power state
save save connector state
restore restore connector state
reset reset connector after state has been invalidated (e.g. resume)
detect isthis connector active?
fill_modes fill mode list for this connector
set_property property for this connector may need an update
destroy make object go away
force notify the driver that the connector isforced on

duplicate the atomic state for this connector
destroy an atomic state for this connector

set aproperty on an atomic statefor this connector (do not call directly,
usedrm at om ¢c_connector_set _property)

get aproperty on an atomic state for thisconnector (do not call directly,
usedrm at om ¢c_connector_get property)

Each CRTC may have one or more connectors attached to it. The functions below allow the core DRM
code to control connectors, enumerate available modes, etc.

243

DRM Internals

Name

struct drm_encoder_funcs — encoder controls

Synopsis

struct drm encoder funcs {
void (* reset) (struct drmencoder *encoder);
void (* destroy) (struct drmencoder *encoder);

b
Members

reset reset state (e.g. at init or resume time)

destroy cleanup and free associated data
Description

Encoders sit between CRTCs and connectors.

244

DRM Internals

Name

struct drm_encoder — central DRM encoder structure

Synopsis

struct drm encoder {
struct drm.device * dev;
struct |ist_head head;
struct drm node_obj ect base;
char * nane;
i nt encoder _type;
uint32 t possible crtcs;
uint32_t possi bl e_cl ones;
struct drmcrtc * crtc;
struct drmbridge * bridge;
const struct drmencoder funcs * funcs;
const void * hel per_private;

b
Members
dev parent DRM device
head list management
base base KMS object
name encoder name
encoder_type one of the DRM_MODE_ENCODER_<foo> typesin drm_mode.h
possible_crtcs bitmask of potential CRTC bindings
possible _clones bitmask of potential sibling encoders for cloning
crtc currently bound CRTC
bridge bridge associated to the encoder
funcs control functions
helper_private mid-layer private data
Description

CRTCsdrive pixels to encoders, which convert them into signals appropriate for a given connector or set
of connectors.

245

DRM Internals

Name

struct drm_connector — central DRM connector control structure

Synopsis

struct drm connector {
struct drmdevice * dev;
struct device * kdev;
struct device_ attribute * attr;
struct list_head head;
struct drm node_obj ect base;
char * nane;
i nt connector_type;
i nt connector_type_id,;
bool interlace_all owed;
bool doubl escan_al | owed,;
bool stereo_all owed,;
struct |ist_head nodes;
enum dr m_connect or _st at us st at us;
struct |ist_head probed_nodes;
struct drmdisplay_info display_info;
const struct drmconnector_funcs * funcs;
struct drm property_blob * edid_blob_ptr;
struct drm object_properties properties;
struct drm property_blob * path_blob_ptr;
uint8_t poll ed;
i nt dprms;
const void * hel per_private;
struct drmcndl i ne_node cndl i ne_node;
enum drm connect or_force force;
bool override_edid;
ui nt 32_t encoder _i ds[DRM_CONNECTOR_NMAX_ ENCODER] ;
struct drm encoder * encoder
uint8_t el d[MAX_ELD BYTES];
bool dvi _dual
i nt max_t nds_cl ock;
bool | atency_present[2];
i nt video_l atency[2];
i nt audi o_I| atency[2];
int null_edid _counter
unsi gned bad_edi d_count er
bool edid_corrupt;
struct dentry * debugfs_entry;
struct drm.connector_state * state;
bool has tile;
struct drmtile_group * tile_group
bool tile_is_single_nonitor
uint8 .t numh _tile;
uint8 t numyv_tile;
uint8t tile_h_|oc;
uint8t tile_ v_loc;
uintle_ t tile_h_size;

246

DRM Internals

uintle t tile_v_size;

b

Members

dev
kdev
attr
head
base
name

connector_type

connector_type id
interlace_allowed
doublescan_allowed
stereo_allowed
modes

status

probed_modes
display_info
funcs
edid_blob_ptr
properties
path_blob_ptr
polled

dpms
helper_private
cmdline_mode
force
override_edid

encoder_id§§DRM_CONNEC-
TOR_MAX_ENCODER]

parent DRM device

kernel device for sysfs attributes
sysfs attributes

list management

base KMS object

connector name

one of the DRM MODE_CONNECTOR <foo> types from dr-
m_mode.h

index into connector type enum

can this connector handle interlaced modes?

can this connector handle doublescan?

can this connector handle stereo modes?

modes available on this connector (fromfi | | _nodes + user)

one of the drm_connector_status enums (connected, not, or un-
known)

list of modes derived directly from the display

information about attached display (e.g. from EDID)
connector control functions

DRM property containing EDID if present

property tracking for this connector

DRM blob property data for the DP MST path property
aDRM CONNECTOR_POLL_ <foo> value for core driven polling
current dpms state

mid-layer private data

mode line parsed from the kernel cmdline for this connector
aDRM _FORCE_<foo> state for forced mode sets

has the EDID been overwritten through debugfs for testing?

valid encoders for this connector

247

DRM Internals

encoder

dd[MAX_ELD BYTES]

dvi_dual

max_tmds_clock

encoder driving this connector, if any
EDID-like data, if present
dual link DVI, if found

max clock rate, if found

latency_present[2] AV delay info from ELD, if found
video_latency[2] video latency info from ELD, if found
audio_latency[2] audio latency info from ELD, if found

null_edid_counter
bad_edid_counter
edid_corrupt
debugfs entry

track sinksthat give us al zeros for the EDID
track sinks that give us an EDID with invalid checksum
indicates whether the last read EDID was corrupt

debugfs directory for this connector

State current atomic state for this connector
has tile isthis connector connected to atiled monitor
tile_group tile group for the connected monitor

tile_is_single_monitor

whether the tile is one monitor housing

num_h tile number of horizontal tilesin the tile group
num_v_tile number of vertical tilesin thetile group
tile_h loc horizontal location of thistile
tile v_loc vertical location of thistile
tile h_size horizontal size of thistile.
tile v_size vertical size of thistile.

Description

Each connector may be connected to one or more CRTCs, or may be clonable by another connector if
they can share a CRTC. Each connector also has a specific position in the broader display (referred to as
a'screen' though it could span multiple monitors).

248

DRM Internals

Name
struct drm_plane_state — mutable plane state

Synopsis

struct drmplane_state {
struct drm plane * pl ane;
struct drmcrtc * crtc;
struct drmfranebuffer * fb;
struct fence * fence;
int32_t crtc_x;
int32_t crtc_y;
uint32 t crtc_w
uint32 t crtc_h;
uint32 t src_x;
uint32 t src_y;
uint32 t src_h;
uint32 t src_w
struct drmatonic_state * state;

b
Members
plane backpointer to the plane
crtc currently bound CRTC, NULL if disabled
fb currently bound framebuffer
fence optional fence to wait for before scanning out f b
crtc_x |eft position of visible portion of plane on crtc

crtc y upper position of visible portion of plane on crtc

cric w width of visible portion of plane on crtc

crtc_h height of visible portion of plane on crtc

SIc_X left position of visible portion of plane within plane (in 16.16)
scy upper position of visible portion of plane within plane (in 16.16)
src_h height of visible portion of plane (in 16.16)

S'C_ W width of visible portion of plane (in 16.16)

state backpointer to global drm_atomic_state

249

DRM Internals

Name

struct drm_plane_funcs — driver plane control functions

Synopsis

struct drm plane_funcs {

int (* update_plane) (struct drmplane *plane,struct drmcrtc *crtc, struct drm_
int (* disable _plane) (struct drmplane *plane);

void (* destroy) (struct drmplane *plane);

void (* reset) (struct drmplane *plane);

int (* set_property) (struct drmplane *pl ane, struct drm property *property, uin
struct drmplane_state *(* atomi c_duplicate state) (struct drm plane *pl ane);
void (* atonmic_destroy state) (struct drmplane *plane, struct drmplane_state *s
int (* atomic_set property) (struct drmplane *plane,struct drmplane state *sta
int (* atomi c_get property) (struct drm plane *plane, const struct drm pl ane_stat

b
Members
update plane update the plane configuration
disable plane shut down the plane
destroy clean up plane resources
reset reset plane after state has been invalidated (e.g. resume)
set_property called when a property is changed
atomic_duplicate state duplicate the atomic state for this plane
atomic_destroy_state destroy an atomic state for this plane
atomic_set_property set aproperty on an atomic state for this plane (do not call directly, use
drm atom c_pl ane_set _property)
atomic_get_property get a property on an atomic state for this plane (do not call directly,

usedr m at oni c_pl ane_get _property)

250

DRM Internals

Name

struct drm_plane — central DRM plane control structure

Synopsis

struct drmpl ane {
struct drm.device * dev;
struct |ist_head head;
struct drm node_obj ect base;
uint32 t possible crtcs;
uint32 t * fornmat _types;
unsi gned int format count;
bool format default;
struct drmcrtc * crtc;
struct drmfranebuffer * fb;
struct drmfranebuffer * old fb;
const struct drmplane funcs * funcs;
struct drm object properties properties;
enum drm pl ane_t ype type;
struct drmplane _state * state;

b
Members
dev DRM device this plane belongs to
head for list management
base base mode object
possible crtcs pipes this plane can be bound to
format_types array of formats supported by this plane
format_count number of formats supported
format_default driver hasn't supplied supported formats for the plane
crtc currently bound CRTC
fb currently bound fb
old fb Temporary tracking of the old fb while amodeset isongoing. Used by dr m_nod-
e_set _config_i nternal toimplement correct refcounting
funcs helper functions
properties property tracking for this plane
type type of plane (overlay, primary, cursor)
state current atomic state for this plane

251

DRM Internals

Name

struct drm_bridge_funcs — drm_bridge control functions

Synopsis

struct drmbridge funcs {
int (* attach) (struct drmbridge *bridge);

bool (*
void (*
void (*
void (*
void (*
void (*
s
Members
attach
mode_fixup
disable
post_disable
mode_set

pre_enable

enable

node fixup) (struct drmbridge *bridge, const struct drmdi splay_node *no
di sabl e) (struct drmbridge *bridge);

post _di sable) (struct drmbridge *bridge);

node_set) (struct drmbridge *bridge, struct drmdisplay_node *nobde, struc
pre_enabl e) (struct drmbridge *bridge);

enabl e) (struct drmbridge *bridge);

Cadlled during drm_bridge_attach

Try to fixup (or reject entirely) proposed mode for this bridge
Called right before encoder prepare, disables the bridge
Cadlled right after encoder prepare, for lockstepped disable
Set this mode to the bridge

Called right before encoder commit, for lockstepped commit

Cdlled right after encoder commit, enables the bridge

252

DRM Internals

Name
struct drm_bridge — central DRM bridge control structure

Synopsis

struct drmbridge {
struct drm.device * dev;
struct drm encoder * encoder
struct drmbridge * next;
#i f def CONFI G_OF
struct device_node * of node;
#endi f
struct list_head |ist;
const struct drmbridge funcs * funcs;
void * driver_private

b
Members
dev DRM device this bridge belongsto
encoder encoder to which this bridge is connected
next the next bridge in the encoder chain
of node device node pointer to the bridge
list to keep track of al added bridges
funcs control functions
driver_private pointer to the bridge driver'sinternal context

253

DRM Internals

Name

struct drm_atomic_state — the global state object for atomic updates

Synopsis

struct drmatonic_state {
struct drm.device * dev;
bool all ow nodeset: 1;
bool | egacy_cursor_update: 1;
struct drmplane ** pl anes;
struct drmplane_state ** plane_states;
struct drmecrtc ** crtcs;
struct drmcrtc_state ** crtc_states;

i nt num connect or;

struct drm.connector ** connectors;
struct drm.connector_state ** connector_states;
struct drm nopdeset _acquire_ctx * acquire_ctx;

s

Members
dev
allow_modeset
legacy cursor_update
planes
plane_states
crtcs
cric_states
num_connector
connectors
connector_states

acquire_ctx

parent DRM device

alow full modeset

hint to enforce legacy cursor ioctl semantics

pointer to array of plane pointers

pointer to array of plane states pointers

pointer to array of CRTC pointers

pointer to array of CRTC states pointers

size of theconnect or s and connect or _st at es arrays
pointer to array of connector pointers

pointer to array of connector states pointers

acquire context for this atomic modeset state update

254

DRM Internals

Name

struct drm_mode_set — new values for a CRTC config change

Synopsis

struct drm node_set ({
struct drmfranebuffer * fb;
struct drmecrtc * crtec;
struct drmdi spl ay_node * node;
uint32_t x;
uint32_ t vy;
struct drm.connector ** connectors;
size_t num.connectors;

b
Members
fb framebuffer to use for new config
crtc CRTC whose configuration we're about to change
mode mode timingsto use
X position of this CRTC relativetof b
y position of this CRTC relativetof b
connectors array of connectors to drive with this CRTC if possible
num_connectors sizeof connect or s array
Description

Represents a single crtc the connectors that it drives with what mode and from which framebuffer it scans
out from.

Thisis used to set modes.

255

DRM Internals

Name

struct drm_mode_config_funcs — basic driver provided mode setting functions

Synopsis

struct drmnode_config funcs {
struct drmfranebuffer *(* fb_create) (struct drmdevice *dev,struct drmfile *f
void (* output_poll _changed) (struct drmdevice *dev);
int (* atom c_check) (struct drmdevice *dev,struct drmatonic_state *a);
int (* atomic_commt) (struct drmdevice *dev,struct drmatonic_state *a, bool as
struct drmatonic_state *(* atomic_state_alloc) (struct drmdevice *dev);
void (* atonmic_state clear) (struct drmatomc_state *state);
void (* atonmic_state free) (struct drmatonic_state *state);

s
Members
fb_create create a new framebuffer object
output_poll_changed function to handle output configuration changes
atomic_check check whether a given atomic state update is possible
atomic_commit commit an atomic state update previously verified with at oni ¢_check
atomic_state alloc alocate anew atomic state
atomic_state clear clear the atomic state
atomic_state free free the atomic state
Description

Some global (i.e. not per-CRTC, connector, etc) mode setting functions that involve drivers.

256

DRM Internals

Name

struct drm_mode_config — Mode configuration control structure

Synopsis

struct drm mode_config {

struct mutex nutex;

struct drm nodeset | ock connection_nut ex;
struct drm nopdeset _acquire_ctx * acquire_ctx;
struct mutex idr_rmutex;

struct idr crtc_idr;

struct mutex fb_ | ock;

i nt num fb;

struct list _head fb |ist;

i nt num_connector;

struct list _head connector |ist;

i nt num encoder;

struct list _head encoder |ist;

i nt num overl ay_pl ane;

int numtotal _plane;

struct |ist_head plane_list;

int numcrtc;

struct list _head crtc_|ist;

struct list_head property_list;

int mn_wdth;

i nt m n_height;

i nt max_wi dth;

i nt max_hei ght;

const struct drm.node_config_funcs * funcs;
resource_size t fb_base;

bool pol | _enabl ed;

bool pol | _running;

struct del ayed_wor k out put _pol | _work;
struct mutex bl ob | ock;

struct |ist_head property_blob_list;
uint32_t preferred_depth;

uint 32_t prefer_shadow,

bool async_page flip;

uint32_t cursor_width;

ui nt 32_t cursor_hei ght;

i
Members
mutex mutex protecting KM S related lists and structures
connection_mutex WwW mutex protecting connector state and routing
acquire_ctx global implicit acquire context used by atomic drivers for legacy ioctls
idr_mutex mutex for KMS ID allocation and management
crtc_idr main KMS ID tracking object

257

DRM Internals

fb_lock

num_fb

fb_list
num_connector
connector_|ist
num_encoder
encoder_list
num_overlay plane
num_total_plane
plane list
num_crtc
cric_list

property list
min_width
min_height
max_width
max_height
funcs

fb_base
poll_enabled
poll_running
output_poll_work
blob_lock
property _blob list
preferred_depth
prefer_shadow
async_page flip
cursor_width

cursor_height

mutex to protect fb state and lists
number of fbs available

list of framebuffers available
number of connectors on this device
list of connector objects

number of encoders on this device
list of encoder objects

number of overlay planes on this device

number of universal (i.e. with primary/curso) planes on this device

list of plane objects

number of CRTCs on this device

list of CRTC objects

list of property objects

minimum pixel width on this device

minimum pixel height on this device

maximum pixel width on this device

maximum pixel height on this device

core driver provided mode setting functions

base address of the framebuffer

track polling support for this device

track polling status for this device

delayed work for polling in process context

mutex for blob property allocation and management
list of al the blob property objects

preferred RBG pixel depth, used by fb helpers

hint to userspace to prefer shadow-fb rendering
does this device support async flips on the primary plane?
hint to userspace for max cursor width

hint to userspace for max cursor height

258

DRM Internals

_property

core property tracking
Description

Core mode resource tracking structure. All CRTC, encoders, and connectors enumerated by the driver are
added here, as are global properties. Some global restrictions are also here, e.g. dimension restrictions.

259

DRM Internals

Name
drm_for_each_plane mask — iterate over planes specified by bitmask

Synopsis

drm for_each_plane_mask (pl ane, dev, plane_mask);

Arguments
pl ane the loop cursor
dev the DRM device

pl ane_mask bitmask of planeindices

Description

Iterate over all planes specified by bitmask.

260

DRM Internals

Name

drm_for_each_encoder_mask — iterate over encoders specified by bitmask

Synopsis

drm for_each_encoder _nmask (encoder, dev, encoder mask);

Arguments
encoder the loop cursor
dev the DRM device

encoder _mask bitmask of encoder indices

Description

Iterate over all encoders specified by bitmask.

261

DRM Internals

Name
drm_crtc_mask — find the mask of aregistered CRTC

Synopsis
uint32 t drmecrtc_nask (struct drmecrtc * crtc);

Arguments

crtc CRTCtofind mask for

Description
Given aregistered CRTC, return the mask bit of that CRTC for an encoder's possible _crtcsfield.

262

DRM Internals

Name
drm_encoder_crtc_ok — can agiven crtc drive a given encoder?

Synopsis
bool drm encoder _crtc_ok (struct drmencoder * encoder, struct drmcrtc
* crtc);

Arguments

encoder encoder to test

crtc crtc to test
Description

Return falseif encoder can't bedriven by crt ¢, true otherwise.

KMS Locking

As KMS moves toward more fine grained locking, and atomic ioctl where userspace can indirectly con-
trol locking order, it becomes necessary to use ww_mutex and acquire-contexts to avoid deadlocks. But
because the locking is more distributed around the driver code, we want a bit of extra utility/tracking out
of our acquire-ctx. Thisis provided by drm_modeset_lock / drm_modeset_acquire_ctx.

For basic principles of ww_mutex, see: Documentation/locking/ww-mutex-design.txt
The basic usage pattern is to:

drm_modeset_acquire_init(ctx) retry: foreach (lock in random_ordered_set_of_locks) { ret = drm_mode-
set_lock(lock, ctx) if (ret == -EDEADLK) { drm_modeset_backoff(ctx); goto retry; } }

... do stuff ...

drm_modeset_drop_locks(ctx); drm_modeset_acquire fini(ctx);

263

DRM Internals

Name

struct drm_modeset_acquire_ctx — locking context (see ww_acquire_ctx)

Synopsis

struct drm nopdeset _acquire_ctx {
struct ww_acquire_ctx ww_ctx;
struct drm nodeset | ock * contended,;
struct |ist_head | ocked;
bool trylock only;

b
Members

WW_Ctx base acquire ctx

contended used internally for -EDEADLK handling

locked list of held locks

trylock_only trylock mode used in atomic contexts/panic notifiers
Description

Each thread competing for aset of locks must use one acquire ctx. And if any lock fxn returns-EDEADLK,
it must backoff and retry.

264

DRM Internals

Name

struct drm_modeset_lock — used for locking modeset resources.

Synopsis

struct drm nodeset | ock {
struct ww_mut ex mnutex;
struct |ist_head head;

1
Members

mutex resource locking

head used to hold it's place on state->locked list when part of an atomic update
Description

Used for locking CRTCs and other modeset resources.

265

DRM Internals

Name

drm_modeset_lock_init — initialize lock
Synopsis

void drm nodeset | ock init (struct drmnodeset |ock * |ock);
Arguments

| ock lock toinit

266

DRM Internals

Name

drm_modeset_lock_fini — cleanup lock
Synopsis

voi d drm nodeset | ock fini (struct drmnodeset |ock * |ock);
Arguments

| ock lock to cleanup

267

DRM Internals

Name

drm_modeset_is locked — equivalenttomut ex_i s_| ocked
Synopsis

bool drm nodeset is | ocked (struct drm nodeset | ock * |ock);
Arguments

| ock lock to check

268

DRM Internals

Name
drm_modeset_lock_all — take all modeset locks

Synopsis

void drm nodeset | ock _all (struct drmdevice * dev);
Arguments

dev DRM device
Description

This function takes all modeset locks, suitable where a more fine-grained schemeisn't (yet) implemented.
Locks must be dropped by calling thedr m nodeset _unl ock_al | function.

This function is deprecated. It allocates a lock acquisition context and stores it in the DRM device's -
>mode_config. This facilitate conversion of existing code because it removes the need to manually deal
with the acquisition context, but it isalso brittle because the context is global and care must be taken not to
nest calls. New code should usethedr m nodeset _| ock_al | _ct x function and pass in the context
explicitly.

269

DRM Internals

Name
drm_modeset_unlock _all — drop al modeset locks

Synopsis
voi d drm nodeset _unlock all (struct drmdevice * dev);
Arguments

dev DRM device

Description

This function drops all modeset locks taken by a previous call to thedr m nodeset | ock_al | func-
tion.

Thisfunction is deprecated. It uses the lock acquisition context stored in the DRM device's ->mode_con-
fig. Thisfacilitates conversion of existing code because it removes the need to manually deal with the ac-
quisition context, but it is also brittle because the context is global and care must be taken not to nest calls.
New code should pass the acquisition context directly to thedr m_nodeset _dr op_| ocks function.

270

DRM Internals

Name
drm_modeset_lock_crtc — lock crtc with hidden acquire ctx for a plane update

Synopsis
void drm nodeset lock crtc (struct drmecrtc * crtc, struct drmplane
* pl ane) ;

Arguments

crtc DRM CRTC

pl ane DRM planeto beupdatedoncrtc

Description

This function locks the given crtc and plane (which should be either the primary or cursor plane) using
a hidden acquire context. This is necessary so that drivers internally using the atomic interfaces can grab
further locks with the lock acquire context.

Notethat pl ane can be NULL, e.g. when the cursor support hasn't yet been converted to universal planes
yet.

271

DRM Internals

Name
drm_modeset_legacy acquire_ctx — find acquire ctx for legacy ioctls

Synopsis

struct drm nodeset _acquire_ctx * drm nodeset | egacy_acquire_ctx (struct
drmcrtc * crtc);

Arguments

crtc drmecrtc

Description

Legacy ioctl operations like cursor updates or page flips only have per-crtc locking, and store the acquire
ctx in the corresponding crtc. All other legacy operations take all locks and use a global acquire context.

This function grabs the right one.

272

DRM Internals

Name

drm_modeset_unlock_crtc — drop crtc lock
Synopsis

voi d drm nodeset _unlock crtc (struct drmecrtc * crtc);
Arguments

crtc drmecrtc

Description

Thisdrops the crtc lock acquirewith dr m_nodeset | ock_crt ¢ and al other locks acquired through
the hidden context.

273

DRM Internals

Name
drm_warn_on_modeset_not_all_locked — check that all modeset locks are locked
Synopsis
void drmwarn_on_nodeset _not_all | ocked (struct drmdevice * dev);
Arguments
dev device
Description

Useful as a debug assert.

274

DRM Internals

Name

drm_modeset_acquire_init — initialize acquire context
Synopsis

void drmnodeset _acquire_init (struct drmnodeset _acquire ctx * ctx,
uint32_t flags);

Arguments
ctx the acquire context

flags forfuture

275

DRM Internals

Name

drm_modeset_acquire_fini — cleanup acquire context
Synopsis

voi d drm nodeset _acquire_fini (struct drmnpdeset _acquire ctx * ctx);
Arguments

ct x theacquire context

276

DRM Internals

Name
drm_modeset_drop_locks— drop all locks

Synopsis
voi d drm nodeset drop_|l ocks (struct drm nodeset _acquire ctx * ctx);
Arguments

ct x theacquire context

Description

Drop al locks currently held against this acquire context.

277

DRM Internals

Name
drm_modeset_backoff — deadlock avoidance backoff

Synopsis

voi d drm nodeset backoff (struct drm nodeset _acquire ctx * ctx);
Arguments

ct x theacquire context

Description

If deadlock is detected (ie. dr m_nodeset _| ock returns -EDEADLK), you must call this function to
drop al currently held locks and block until the contended lock becomes available.

278

DRM Internals

Name
drm_modeset_backoff_interruptible — deadlock avoidance backoff

Synopsis
i nt drm nodeset _backoff interruptible (struct drmnodeset _acquire_ctx
* ctX);

Arguments

ct x theacquire context

Description

Interruptible version of dr m_nodeset _backof f

279

DRM Internals

Name
drm_modeset_lock — take modeset lock

Synopsis
int drm nodeset | ock (struct drm nodeset |ock * |ock, struct drm node-
set _acquire_ctx * ctx);

Arguments

| ock lock to take

ctx acquire ctx

Description

If ctx isnot NULL, then itsww acquire context is used and the lock will be tracked by the context and can
bereleased by callingdr m nodeset _drop_| ocks. If -EDEADLK isreturned, this means a deadl ock
scenario has been detected and it is an error to attempt to take any more locks without first calling dr -

m _nodeset _backof f.

280

DRM Internals

Name
drm_modeset_lock_interruptible — take modeset 1ock

Synopsis

int drmnodeset lock interruptible (struct drmnodeset |ock * |ock,
struct drm nopdeset _acquire ctx * ctx);

Arguments
| ock lock totake
ctx acquire ctx

Description

Interruptible version of dr m nodeset _| ock

281

DRM Internals

Name
drm_modeset_unlock — drop modeset lock

Synopsis
voi d drm nodeset unl ock (struct drm nodeset |ock * |ock);
Arguments

| ock lock torelease

282

DRM Internals

Name
drm_modeset_lock_all_ctx — take all modeset locks

Synopsis

int drmnodeset | ock all _ctx (struct drmdevice * dev, struct drm nod-
eset _acquire_ctx * ctx);

Arguments
dev DRM device

ctx lock acquisition context

Description
This function takes all modeset locks, suitable where amore fine-grained schemeisn't (yet) implemented.

Unlike dr m nodeset _| ock_al I, it doesn't take the dev->mode_config.mutex since that lock isn't
required for modeset state changes. Callers which need to grab that lock too need to do so outside of the
acquire context ct X.

L ocks acquired with thisfunction should be released by callingthedr m_nodeset _dr op_| ocks func-
tiononct x.

Returns

0 on success or a negative error-code on failure.

Mode Setting Helper Functions

The plane, CRTC, encoder and connector functions provided by the drivers implement the DRM API.
They'recalled by the DRM coreand ioctl handlersto handle device state changes and configuration request.
As implementing those functions often requires logic not specific to drivers, mid-layer helper functions
are available to avoid duplicating boilerplate code.

The DRM core contains one mid-layer implementation. The mid-layer provides implementations of sev-
eral plane, CRTC, encoder and connector functions (called from the top of the mid-layer) that pre-process
requests and call lower-level functions provided by the driver (at the bottom of the mid-layer). For in-
stance, thedrm crt c_hel per _set confi g function can be used to fill the struct drm_crtc_funcs
set _confi g field. When called, it will splittheset _conf i g operationin smaller, simpler operations
and call the driver to handle them.

To usethe mid-layer, driverscall dr m crt c_hel per _add,dr m encoder _hel per _add anddr -
m_connect or _hel per _add functions to install their mid-layer bottom operations handlers, and fill
the drm_crtc_funcs, drm_encoder_funcs and drm_connector_funcs structures with pointers to the mid-
layer top API functions. Installing the mid-layer bottom operation handlers is best done right after regis-
tering the corresponding KM S object.

The mid-layer is not split between CRTC, encoder and connector operations. To use it, a driver must
provide bottom functions for all of the three KM S entities.

Helper Functions

e int drmcrtc_hel per_set_config(struct drm node_set *set);

283

DRM Internals

Thedrm crtc_hel per _set confi g helper functionisaCRTCset _conf i g implementation.
It first tries to locate the best encoder for each connector by calling the connector best _encoder
helper operation.

After locating the appropriate encoders, the helper function will call the mode_f i xup encoder and
CRTC helper operationsto adjust the requested mode, or reject it completely in which case an error will
be returned to the application. If the new configuration after mode adjustment is identical to the current
configuration the helper function will return without performing any other operation.

If the adjusted modeisidentical to the current mode but changes to the frame buffer need to be applied,
thedrm crt c_hel per _set _confi g function will call the CRTC node_set _base helper op-
eration. If the adjusted mode differs from the current mode, or if the node_set _base helper opera
tion is not provided, the helper function performs a full mode set sequence by calling the pr epar e,
node_set andcomm t CRTC and encoder helper operations, in that order.

* void drm hel per_connect or _dpns(struct drm connector *connector, int node);

The dr m_hel per _connect or _dpns helper function is a connector dpns implementation that
tracks power state of connectors. To use the function, drivers must provide dpns helper operations for
CRTCs and encoders to apply the DPM S state to the device.

The mid-layer doesn't track the power state of CRTCs and encoders. The dpns helper operations can
thus be called with amode identical to the currently active mode.

e int drm hel per_probe_singl e_connector_nodes(struct drm connector *connector,
uint32_t maxX, uint32_t maxyY);

The dr m_hel per _probe_si ngl e_connect or _nodes helper function is a connector fi | -
| _nmodes implementation that updates the connection status for the connector and then retrieves alist
of modes by calling the connector get _nodes helper operation.

If the hel per operation returns no mode, and if the connector statusis connector_status _connected, stan-
dard VESA DMT modes up to 1024x768 are automatically added to the modes list by a call to dr -
m add_rnodes_noedi d.

The function then filters out modes larger than max_wi dt h and max_hei ght if specified. It finally
calls the optional connector rode_val i d helper operation for each mode in the probed list to check
whether the modeis valid for the connector.

CRTC Helper Operations

* bool (*node fixup)(struct drmcrtc *crtc,
const struct drm.di splay_node *node,
struct drm.displ ay_node *adj usted_node);

Let CRTCs adjust the requested mode or reject it completely. This operation returnstrue if the modeis
accepted (possibly after being adjusted) or falseif it is rejected.

The node_f i xup operation should reject the mode if it can't reasonably use it. The definition of
"reasonable” is currently fuzzy in this context. One possible behaviour would be to set the adjusted
mode to the panel timings when a fixed-mode panel is used with hardware capable of scaling. Another
behaviour would beto accept any input mode and adjust it to the closest mode supported by the hardware
(FIXME: This needsto be clarified).

e int (*nobde_set base)(struct drmecrtc *crtc, int x, int vy,

284

DRM Internals

struct drmfranebuffer *ol d_fb)

Move the CRTC on the current frame buffer (storedincr t ¢- >f b) to position (x,y). Any of the frame
buffer, x position or y position may have been modified.

This helper operation is optional. If not provided, thedr m crt c_hel per _set confi g function
will fall back to thenode_set helper operation.

Note

FIXME: Why are x and y passed as arguments, as they can be accessed through cr t c- >x
andcrtc->y?

e void (*prepare)(struct drmcrtc *crtc);

Preparethe CRTC for mode setting. Thisoperation is called after validating the requested mode. Drivers
use it to perform device-specific operations required before setting the new mode.

e int (*nmode_set)(struct drmecrtc *crtc, struct drmdi splay_node *node,
struct drm.display_node *adjusted node, int x, int vy,
struct drmfranebuffer *old_fb);

Set a new mode, position and frame buffer. Depending on the device requirements, the mode can be
stored internally by the driver and applied in the conmi t operation, or programmed to the hardware
immediately.

Thenode_set operation returns 0 on success or a negative error code if an error occurs.
e void (*commit)(struct drmcrtc *crtc);

Commit amode. This operation is called after setting the new mode. Upon return the device must use
the new mode and be fully operational.

Encoder Helper Operations

* bool (*nmode_fixup)(struct drm encoder *encoder,
const struct drm.di splay_node *node,
struct drm.displ ay_node *adj usted_node);

Let encoders adjust the requested mode or reject it completely. This operation returnstrue if the mode
is accepted (possibly after being adjusted) or false if it is rejected. See the mode_fixup CRTC helper
operation for an explanation of the allowed adjustments.

e void (*prepare)(struct drm encoder *encoder);

Prepare the encoder for mode setting. This operation is called after validating the requested mode. Dri-
vers use it to perform device-specific operations required before setting the new mode.

e void (*npde_set)(struct drm encoder *encoder,
struct drmdispl ay_node *node,
struct drmdispl ay_node *adj usted_node);

Set anew mode. Depending on the device requirements, the mode can be stored internally by the driver
and applied intheconmi t operation, or programmed to the hardware immediately.

e void (*commit)(struct drm encoder *encoder);

285

DRM Internals

Commit amode. This operation is called after setting the new mode. Upon return the device must use
the new mode and be fully operational.

Connector Helper Operations

e struct drm encoder *(*best_encoder)(struct drm connector *connector);

Return a pointer to the best encoder for the connecter. Device that map connectors to encoders 1:1
simply return the pointer to the associated encoder. This operation is mandatory.

e int (*get_nodes)(struct drm connector *connector);
Fill the connector's pr obed_nodes list by parsing EDID data with dr m add_edi d_nodes,
adding standard VESA DMT modes with dr m add_nodes_noedi d, or caling dr m nod-
e_probed_add directly for every supported mode and return the number of modes it has detected.
This operation is mandatory.
Note that the caller function will automatically add standard VESA DMT modes up to 1024x768 if the
get _nodes helper operation returns no mode and if the connector statusis connector_status_connect-
ed. Thereisno need to call dr m add_edi d_nodes manually in that case.

When adding modes manually the driver creates each mode with a call to dr m node_cr eat e and
must fill the following fields.

e Uu32 type;
Mode type bitmask, a combination of
DRM_MODE _TYPE BUILTIN not used?
DRM_MODE TYPE CLOCK_C not used?
DRM_MODE TYPE_CRTC C not used?
DRM_MODE TYPE_PRE- not used?
FERRED - The preferred mode for
the connector
DRM_MODE TYPE DEFAULT not used?
DRM_MODE TYPE USERDEF not used?
DRM_MODE_TYPE DRIVER The mode has been created by the driver (as opposed to to
user-created modes).
Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they create, and set the DR-
M_MODE_TYPE_PREFERRED bhit for the preferred mode.
e _u32 clock;

Pixel clock frequency in kHz unit

e ul6 hdisplay, hsync_start, hsync_end, htotal;
__ul6 vdisplay, vsync_start, vsync_end, vtotal;

Horizontal and vertical timing information
286

DRM Internals

Active
Regi on

THEEEEEErrrt it
(i rrrrrrt |
NN NN NN NN DS N

<----- [hv] di spl ay

S LT [hv]sync_start ------------ >

__ul6 hskew,
__ul6 vscan;

Unknown

__u32 flags;

Mode flags, a combination of
DRM_MODE_FLAG_PHSYNC
DRM_MODE_FLAG_NHSYNC
DRM_MODE_FLAG_PVSYNC
DRM_MODE_FLAG_NVSYNC

DRM_MODE_FLAG_INTER-
LACE

DRM_MODE_FLAG _DBLS
CAN

DRM_MODE_FLAG_CSYNC
DRM_MODE_FLAG_PCSYNC
DRM_MODE_FLAG_NCSYNC
DRM_MODE_FLAG_HSKEW
DRM_MODE_FLAG_BCAST
DRM_MODE_FLAG_PIXMUX
DRM_MODE_FLAG_DBLCLK

DRM_MODE_FLAG_CLKDIV2

-- [hv]lsync_end -------------------
————————————— [hv]total

Horizontal syncisactive high
Horizontal sync is active low
Vertical syncisactive high
Vertical syncisactive low

Modeisinterlaced

Mode uses doublescan

Mode uses composite sync
Composite sync is active high
Composite sync is active low
hskew provided (not used?)
not used?

not used?

not used?

?

287

DRM Internals

Note that modes marked with the INTERLACE or DBLSCAN flags will be filtered out by dr -
m _hel per _probe_si ngl e_connect or _nodes if the connector'si nt erl ace_al | owed
or doubl escan_al | owed fieldisset to 0.

e char nane[DRM DI SPLAY_MODE_LEN];

Mode name. The driver must call dr m_node_set _nane to fill the mode name from hdi spl ay,
vdi spl ay and interlace flag after filling the corresponding fields.

Thevr ef r esh valueis computed by dr m_hel per _pr obe_si ngl e_connect or _nodes.

When parsing EDID data, dr m_add_edi d_nodes fillstheconnector di spl ay_i nfow dt h_mm
and hei ght _nmfields. When creating modes manually the get _nodes helper operation must set
thedi spl ay_i nf owi dt h_mmand hei ght _mmfieldsif they haven't been set already (for instance
at initialization time when a fixed-size panel is attached to the connector). The mode wi dt h_nmand
hei ght _mmfields are only used internally during EDID parsing and should not be set when creating
modes manually.

e int (*mode_valid)(struct drm.connector *connector,
struct drm.displ ay_node *node);

Verify whether amode is valid for the connector. Return MODE_OK for supported modes and one of
the enum drm_maode_status values (MODE_*) for unsupported modes. This operation is optional .

As the mode rejection reason is currently not used beside for immediately removing the unsupported
mode, an implementation can return MODE_BAD regardless of the exact reason why the mode is not
valid.

Note

Note that the rode_val i d helper operation is only called for modes detected by the device,
and not for modes set by the user through the CRTC set _conf i g operation.

Atomic Modeset Helper Functions Reference

Overview

Thishelper library providesimplementations of check and commit functions on top of the CRTC modeset
helper callbacks and the plane helper callbacks. It also provides convenience implementations for the
atomic state handling callbacks for drivers which don't need to subclass the drm core structures to add
their own additional internal state.

This library aso provides default implementations for the check calback in drm at om

i c_hel per _check and for the commit callback with dr m_at onmi c¢_hel per _conmi t . But thein-
dividual stages and callbacks are exposed to allow driversto mix and match and e.g. use the plane helpers
only together with adriver private modeset implementation.

This library also provides implementations for all the legacy driver interfaces on top of the atomic
interface. See dr m_at omi ¢_hel per _set _confi g, drm at oni c_hel per _di sabl e_pl ane,
drm at oni ¢c_hel per _di sabl e_pl ane and the various functions to implement set_property call-
backs. New drivers must not implement these functions themselves but must use the provided helpers.

Implementing Asynchronous Atomic Commit

288

DRM Internals

For now the atomic helpers don't support async commit directly. If there is real need it could be added
though, using the dma-buf fence infrastructure for generic synchronization with outstanding rendering.

For now drivers have to implement async commit themselves, with the following sequence being the
recommended one:

1.Rundr m_at omi c_hel per _pr epar e_pl anes first. Thisisthe only function which commit needs
to call which can fail, so we want to run it first and synchronously.

2. Synchronize with any outstanding asynchronous commit worker threads which might be affected the
new state update. This can bedoneby either cancelling or flushing thework items, depending upon whether
the driver can deal with cancelled updates. Note that it isimportant to ensure that the framebuffer cleanup
is still done when cancelling.

For sufficient parallelism it is recommended to have awork item per crtc (for updates which don't touch
global state) and a global one. Then we only need to synchronize with the crtc work items for changed
crtcs and the global work item, which allows nice concurrent updates on digjoint sets of crtcs.

3. The software state is updated synchronously withdr m_at omi c¢_hel per _swap_st at e. Doing this
under the protection of all modeset |ocks means concurrent callers never see inconsistent state. And doing
this while it's guaranteed that no relevant async worker runs means that async workers do not need grab
any locks. Actually they must not grab locks, for otherwise the work flushing will deadlock.

4. Schedule awork item to do all subsequent steps, using the split-out commit hel pers: a) pre-plane commit
b) plane commit c) post-plane commit and then cleaning up the framebuffers after the old framebuffer is
no longer being displayed.

Atomic State Reset and Initialization

Both the drm core and the atomic hel pers assume that there is always the full and correct atomic software
state for all connectors, CRTCs and planes available. Which is a bit a problem on driver load and also
after system suspend. One way to solve this is to have a hardware state read-out infrastructure which
reconstructs the full software state (e.g. the i915 driver).

The simpler solution isto just reset the software state to everything off, which is easiest to do by calling
dr m node_confi g_reset . Tofacilitatethisthe atomic helpers provide default reset implementations
for al hooks.

289

DRM Internals

Name

drm_atomic_crtc_for_each plane — iterate over planes currently attached to CRTC

Synopsis

drmatonic_crtc _for_each plane (plane, crtc);
Arguments

pl ane theloop cursor

crtc thecrtc whose planes are iterated

Description

This iterates over the current state, useful (for example) when applying atomic state after it has been
checked and swapped. To iterate over the planes which *will* be attached (for ->at omi ¢_check) see

drmcrtc_for_each_pendi ng_pl ane

290

DRM Internals

Name

drm_atomic_crtc_state for_each plane — iterate over attached planesin new state

Synopsis

drmatonic _crtc_state for_each_plane (plane, crtc_state);
Arguments

pl ane the loop cursor

crtc_state theincoming crtc-state

Description

Similar todrm crt c_f or _each_pl ane, but iterates the planes that will be attached if the specified
stateisapplied. Useful during (for example) ->at om ¢_check operations, to validate the incoming state

291

DRM Internals

Name
drm_atomic_helper_check_modeset — validate state object for modeset changes

Synopsis

int drm.atomn c_hel per _check nbdeset (struct drmdevice * dev, struct
drmatonic_state * state);

Arguments
dev DRM device

state thedriver state object

Description

Check the state object to seeif the requested stateis physically possible. Thisdoesall the crtc and connector
related computations for an atomic update and adds any additional connectors needed for full modesets
and calls down into ->mode_fixup functions of the driver backend.

crtc_state->mode_changed is set when the input mode is changed. crtc_state->connectors changed is
set when a connector is added or removed from the crtc. crtc_state->active changed is set when crtc_s-
tate->active changes, which is used for dpms.

IMPORTANT

Driverswhich update ->mode_changed (e.g. intheir ->atomic_check hooksif a plane update can't be done
without a full modeset) _must_ call this function afterwards after that change. It is permitted to call this
function multiple times for the same update, e.g. when the ->atomic_check functions depend upon the
adjusted dotclock for fifo space allocation and watermark computation.

RETURNS Zero for success or -errno

292

DRM Internals

Name
drm_atomic_helper_check_planes — validate state object for planes changes

Synopsis

int drmatom c_hel per _check planes (struct drmdevice * dev, struct
drmatonic_state * state);

Arguments
dev DRM device
state thedriver state object

Description

Check the state object to see if the requested state is physically possible. This does al the plane update
related checks using by calling into the ->atomic_check hooks provided by the driver.

It also sets crtc_state->planes_changed to indicate that a crtc has updated planes.

RETURNS Zero for success or -errno

293

DRM Internals

Name
drm_atomic_helper_check — validate state object

Synopsis

int drmatom c_hel per_check (struct drmdevice * dev, struct drm atom
ic_state * state);

Arguments

dev DRM device

state thedriver state object
Description

Check the state object to seeif the requested stateis physically possible. Only crtcs and planes have check
callbacks, so for any additional (global) checking that a driver needs it can simply wrap that around this
function. Drivers without such needs can directly use thisastheir ->at om ¢_check callback.

This just wraps the two parts of the state checking for planes and modeset

state in the default order

First it cals drmatom c_hel per_check_npdeset and then drmatom
i c_hel per_check_pl anes. The assumption is that the ->atomic_check functions depend upon an
updated adjusted_mode.clock to e.g. properly compute watermarks.

RETURNS Zero for success or -errno

294

DRM Internals

Name
drm_atomic_helper_update legacy modeset_state — update legacy modeset state

Synopsis

void drm atom c_hel per _update | egacy nodeset state (struct drmdevice
* dev, struct drmatomc_state * old state);

Arguments

dev DRM device

ol d_state atomic state object with old state structures
Description

Thisfunction updatesall the various|egacy modeset state pointersin connectors, encodersand crtcs. It also
updates the timestamping constants used for precise vblank timestamps by calling dr m cal ¢_t i ne-
st anpi ng_constants.

Drivers can use this for building their own atomic commit if they don't have a pure hel per-based modeset
implementation.

295

DRM Internals

Name
drm_atomic_helper_commit_modeset_disables — modeset commit to disable outputs

Synopsis

void drmatom c_hel per_commit nodeset disables (struct drmdevice *
dev, struct drmatomc_state * old state);

Arguments
dev DRM device

ol d_state atomic state object with old state structures

Description

This function shuts down all the outputs that need to be shut down and prepares them (if required) with
the new mode.

For compatibility with legacy crtc helpers this should be called before dr m at oni ¢_hel per _com
nm t _pl anes, whichiswhat thedefault commit function does. But driverswith different needs can group
the modeset commitstogether and do the plane commits at the end. Thisisuseful for drivers doing runtime
PM since planes updates then only happen when the CRTC is actually enabled.

296

DRM Internals

Name

drm_atomic_helper_commit_modeset_enables — modeset commit to enable outputs

Synopsis

void drm atom c_hel per_commit_nodeset enabl es (struct drm device * dev,
struct drmatonic_state * old_state);

Arguments
dev DRM device

ol d_state atomic state object with old state structures

Description

Thisfunction enables all the outputs with the new configuration which had to be turned off for the update.

For compatibility with legacy crtc helpers this should be called after dr m at oni ¢_hel per _com
nm t _pl anes, whichiswhat thedefault commit function does. But driverswith different needs can group
the modeset commitstogether and do the plane commits at the end. Thisisuseful for drivers doing runtime
PM since planes updates then only happen when the CRTC is actually enabled.

297

DRM Internals

Name

drm_atomic_helper_wait_for_vblanks — wait for vblank on crtcs

Synopsis

void drm atoni c_hel per_wait_for_vbl anks (struct drm device * dev, struct
drmatonic_state * old_state);

Arguments
dev DRM device

ol d_state atomic state object with old state structures

Description

Helper to, after atomic commit, wait for vblanks on all effected crtcs (ie. before cleaning up old frame-
buffersusingdr m at om c¢_hel per _cl eanup_pl anes). It will only wait on crtcs where the frame-
buffers have actually changed to optimize for the legacy cursor and plane update use-case.

298

DRM Internals

Name

drm_atomic_helper_commit — commit validated state object
Synopsis

int drmatonic_hel per_commit (struct drmdevice * dev, struct drm atom
ic_state * state, bool async);

Arguments
dev DRM device
state thedriver state object
async asynchronous commit
Description

This function commitsawith dr m_at onmi ¢_hel per _check pre-validated state object. This can still
fail when e.g. the framebuffer reservation fails. For now this doesn't implement asynchronous commits.

Notethat right now thisfunction does not support async commits, and hence driver writersmust implement
their own version for now. Also note that the default ordering of how the various stages are called is to
match the legacy modeset helper library closest. One peculiarity of that is that it doesn't mesh well with
runtime PM at all.

For drivers supporting runtime PM the recommended sequenceis
drm_atomic_helper_commit_modeset_disables(dev, state);
drm_atomic_helper_commit_modeset_enables(dev, state);
drm_atomic_helper_commit_planes(dev, state, true);

See the kerneldoc entries for these three functions for more details.

RETURNS Zero for success or -errno.

299

DRM Internals

Name

drm_atomic_helper_prepare _planes — prepare plane resources before commit
Synopsis

int drmatonic_hel per _prepare_planes (struct drmdevice * dev, struct
drmatonic_state * state);

Arguments

dev DRM device

st ate atomic state object with new state structures
Description

This function prepares plane state, specifically framebuffers, for the new configuration. If any failureis
encountered this function will call ->cleanup_fb on any already successfully prepared framebuffer.

Returns

0 on success, negative error code on failure.

300

DRM Internals

Name

drm_atomic_helper_commit_planes — commit plane state
Synopsis

void drm atonic_hel per _commit_planes (struct drmdevice * dev,
drmatonic_state * old _state, bool active_ only);

Arguments
dev DRM device
old state atomic state object with old state structures

active_only Only commiton active CRTC if set

Description

struct

Thisfunction commitsthe new plane state using the plane and atomic hel per functionsfor planesand crtcs.
It assumes that the atomic state has already been pushed into the relevant object state pointers, since this
step can no longer fail.

It still requires the global state object ol d_st at e to know which planes and crtcs need to be updated
though.

Note that this function does al plane updates across all CRTCs in one step. If the hardware can't support
thisapproach look at dr m at onmi ¢_hel per _commit_pl anes_on_crt c instead.

Plane parameters can be updated by applications while the associated CRTC is disabled. The DRM/KMS
core will store the parameters in the plane state, which will be available to the driver when the CRTC is
turned on. As aresult most drivers don't need to be immediately notified of plane updates for a disabled
CRTC.

Unless otherwise needed, drivers are advised to set theact i ve_onl y parametersto true in order not to
receive plane update notifications related to a disabled CRTC. This avoids the need to manually ignore
plane updates in driver code when the driver and/or hardware can't or just don't need to deal with updates
on disabled CRTCs, for example when supporting runtime PM.

Thedr m_at om c_hel per _conmi t defaultimplementationonly setsact i ve_onl y tofasetomost
closely match the behaviour of the legacy helpers. This should not be copied blindly by drivers.

301

DRM Internals

Name

drm_atomic_helper_commit_planes_on_crtc — commit plane state for a crtc
Synopsis

void drmatonic_hel per_conmit_planes _on crtc (struct drmecrtc_state *
old crtc_state);

Arguments

old_crtc_state atomic state object with the old crtc state

Description

This function commits the new plane state using the plane and atomic helper functions for planes on the
specific crtc. It assumesthat the atomic state has already been pushed into the relevant object state pointers,
since this step can no longer fail.

This function is useful when plane updates should be done crtc-by-crtc instead of one global step like
drm at om c_hel per _conmi t _pl anes does.

This function can only be savely used when planes are not allowed to move between different CRTCs
because this function doesn't handle inter-CRTC depencies. Callers need to ensure that either no such
depencies exist, resolve them through ordering of commit calls or through some other means.

302

DRM Internals

Name

drm_atomic_helper_cleanup_planes — cleanup plane resources after commit

Synopsis

voi d drm atom c_hel per _cl eanup_pl anes (struct drmdevice * dev, struct
drmatonic_state * old_state);

Arguments
dev DRM device

ol d_state atomic state object with old state structures

Description

This function cleans up plane state, specifically framebuffers, from the old configuration. Hence the old
configuration must be perserved in ol d_st at e to be ableto call thisfunction.

This function must also be called on the new state when the atomic update fails at any point after calling
drm at oni c_hel per _prepare_pl anes.

303

DRM Internals

Name

drm_atomic_helper_swap_state — store atomic state into current sw state
Synopsis

void drm atom c_hel per _swap_state (struct drmdevice * dev, struct dr-
matonic_state * state);

Arguments
dev DRM device
state atomic state
Description

Thisfunction stores the atomic state into the current state pointersin all driver objects. It should be called
after al failing steps have been done and succeeded, but before the actual hardware state is committed.

For cleanup and error recovery the current state for all changed objects will be swaped into st at e.
With that sequence it fits perfectly into the plane prepare/cleanup sequence:

1. Cadl drm at om c_hel per _prepar e_pl anes with the staged atomic state.

2. Do any other steps that might fail.

3. Put the staged state into the current state pointers with this function.

4. Actualy commit the hardware state.

5.Call dr m at oni c¢_hel per _cl eanup_pl anes with st at e, which since step 3 contains the old
state. Also do any other cleanup required with that state.

304

DRM Internals

Name

drm_atomic_helper_update plane — Helper for primary plane update using atomic

Synopsis

int drm atonic_hel per _update_plane (struct

drmcrtc * crtc, struct drmfranebuffer * fb,

unsigned int crtc_w, unsigned int
uint32 t src_w, uint32_t src_h);

src_y,

Arguments
pl ane
crtc
fb
crtc_x
crtc_y
crtc_w
crtc_h
src_x
src_y
src_w
src_h

Description

plane object to update

owning CRTC of owning plane
framebuffer to flip onto plane

x offset of primary plane on crtc

y offset of primary plane on crtc

width of primary plane rectangle on crtc
height of primary plane rectangle on crtc
x offset of f b for panning

y offset of f b for panning

width of sourcerectangleinf b

height of source rectangleinf b

crtc_h,

drm pl ane * plane,

int crtc_x, int

ui nt 32_t

Provides a default plane update handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

src_x,

struct
crtc_y,
ui nt 32_t

305

DRM Internals

Name
drm_atomic_helper_disable plane — Helper for primary plane disable using * atomic

Synopsis
int drmatom c_hel per_disabl e _plane (struct drmplane * plane);
Arguments
pl ane planeto disable
Description
Provides a default plane disable handler using the atomic driver interface.
RETURNS

Zero on success, error code on failure

306

DRM Internals

Name

drm_atomic_helper_set_config — set a new config from userspace
Synopsis
int drmatonmi c_hel per_set _config (struct drm node_set * set);

Arguments

set mode set configuration

Description

Provides adefault crtc set_config handler using the atomic driver interface.

Returns

Returns 0 on success, negative errno numbers on failure.

307

DRM Internals

Name
drm_atomic_helper_disable all — disable all currently active outputs

Synopsis

int drmatom c_hel per_disable all (struct drmdevice * dev, struct dr-
m nodeset _acquire_ctx * ctx);

Arguments
dev DRM device
ct x lock acquisition context

Description

Loops through all connectors, finding those that aren't turned off and then turns them off by setting their
DPM S mode to OFF and deactivating the CRTC that they are connected to.

Thisis used for example in suspend/resume to disable all currently active functions when suspending.

Note that if callers haven't already acquired all modeset locks this might return -EDEADLK, which must
be handled by calling dr m_nmodeset _backof f .

Returns

0 on success or a negative error code on failure.

See also

drm at om c_hel per _suspend,drm at om c_hel per_resune

308

DRM Internals

Name
drm_atomic_helper_suspend — subsystem-level suspend helper

Synopsis
struct drmatonic_state * drm atom c_hel per _suspend (struct drmdevice
* dev);

Arguments

dev DRM device

Description

Duplicates the current atomic state, disables al active outputs and then returns a pointer to the origina
atomic state to the caller. Drivers can pass this pointer to the dr m_at oni ¢_hel per _r esune helper
upon resume to restore the output configuration that was active at the time the system entered suspend.

Note that it is potentially unsafe to use this. The atomic state object returned by this function is assumed
to be persistent. Drivers must ensure that this holds true. Before calling this function, drivers must make
sure to suspend fbdev emulation so that nothing can be using the device.

Returns

A pointer to acopy of the state before suspend on success or an ERR_PTR- encoded error code on failure.
Drivers should store the returned atomic state object and passittothedr m_at oni ¢_hel per _resune
helper upon resume.

See also

drm atonic_hel per_duplicate state, drmatom c_hel per _disable all, dr-
m at oni ¢_hel per _resune

309

DRM Internals

Name

drm_atomic_helper_resume — subsystem-level resume helper
Synopsis

int drmatonic_hel per_resune (struct drmdevice * dev, struct drm atom
ic_state * state);

Arguments
dev DRM device
state atomic state to resumeto
Description
Cdls dr m node_confi g_reset to synchronize hardware and software states, grabs all modeset
locks and commits the atomic state object. This can be used in conjunction with the dr m at om

i c_hel per_suspend helper to implement suspend/resume for drivers that support atomic mode-set-
ting.

Returns
0 on success or a negative error code on failure.
See also

drm at oni ¢c_hel per _suspend

310

DRM Internals

Name
drm_atomic_helper_crtc_set_property — helper for crtc properties

Synopsis

int drmatom c_hel per _crtc_set property (struct drmecrtc * crtc, struct
drm property * property, uint64_t val);

Arguments

crtc DRM crtc

property DRM property

val value of property
Description

Provides a default crtc set_property handler using the atomic driver interface.
RETURNS

Zero on success, error code on failure

311

DRM Internals

Name
drm_atomic_helper_plane set_property — helper for plane properties

Synopsis

int drmatom c_hel per_plane_set property (struct drmplane * plane,
struct drmproperty * property, uint64_t val);

Arguments

pl ane DRM plane

property DRM property

val value of property
Description

Provides a default plane set_property handler using the atomic driver interface.
RETURNS

Zero on success, error code on failure

312

DRM Internals

Name

drm_atomic_helper_connector_set_property — helper for connector properties
Synopsis

int drmatom c_hel per_connector _set property (struct drmconnector *
connector, struct drmproperty * property, uint64_t val);

Arguments

connect or DRM connector

property DRM property

val value of property
Description

Provides a default connector set_property handler using the atomic driver interface.
RETURNS

Zero on success, error code on failure

313

DRM Internals

Name
drm_atomic_helper_page flip — execute alegacy pageflip

Synopsis

int drmatonic_hel per_page flip (struct drmcrtc * crtc, struct dr-
m franebuffer * fb, struct drm pendi ng vblank event * event, uint32_t
flags);

Arguments
crtc DRMcrtc
fb DRM framebuffer
event optional DRM event to signal upon completion
flags flipflagsfor non-vblank sync'ed updates
Description
Provides a default page flip implementation using the atomic driver interface.

Note that for now so called async page flips (i.e. updates which are not synchronized to vblank) are not
supported, since the atomic interfaces have no provisions for this yet.

Returns

Returns 0 on success, negative errno numbers on failure.

314

DRM Internals

Name
drm_atomic_helper_connector_dpms — connector dpms hel per implementation

Synopsis
int drm atonic_hel per_connector_dpns (struct drm connector * connector,
i nt node);

Arguments

connect or affected connector

node DPMS mode

Description

This is the main helper function provided by the atomic helper framework for implementing the legacy
DPMS connector interface. It computes the new desired ->active state for the corresponding CRTC (if the
connector is enabled) and updates it.

Returns

Returns 0 on success, negative errno numbers on failure.

315

DRM Internals

Name
drm_atomic_helper_crtc_reset — default ->reset hook for CRTCs

Synopsis

void drm atomi c_hel per _crtc_reset (struct drmecrtc * crtc);
Arguments

crtc drmCRTC

Description

Resets the atomic state for cr t ¢ by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.

316

DRM Internals

Name
__drm_atomic_helper_crtc_duplicate_state — copy atomic CRTC state

Synopsis

void _drmatomc_helper _crtc _duplicate state (struct drmecrtc * crtc,
struct drmcrtc_state * state);

Arguments
crtc CRTC object
state atomic CRTC state

Description

Copies atomic state from a CRTC's current state and resets inferred values. Thisis useful for drivers that
subclass the CRTC state.

317

DRM Internals

Name
drm_atomic_helper_crtc_duplicate state — default state duplicate hook

Synopsis

struct drmcrtc_state * drmatomic_hel per_crtc_duplicate_state (struct
drmcrtc * crtc);

Arguments

crtc dmCRTC

Description
Default CRTC state duplicate hook for driverswhich don't have their own subclassed CRTC state structure.

318

DRM Internals

Name
__drm_atomic_helper_crtc_destroy_state — release CRTC state

Synopsis

void __drmatom c_hel per_crtc_destroy state (struct drmcrtc * crtc,
struct drmcrtc_state * state);

Arguments
crtc CRTC object
state CRTC state object to release

Description

Releases all resources stored in the CRTC state without actually freeing the memory of the CRTC state.
Thisisuseful for driversthat subclass the CRTC state.

319

DRM Internals

Name
drm_atomic_helper_crtc_destroy_state — default state destroy hook

Synopsis

void drmatomc_hel per _crtc _destroy state (struct drmcrtc * crtec,
struct drmcrtc_state * state);

Arguments
crtc dmCRTC
state CRTC state object to release

Description
Default CRTC state destroy hook for drivers which don't have their own subclassed CRTC state structure.

320

DRM Internals

Name
drm_atomic_helper_plane _reset — default ->reset hook for planes

Synopsis

void drm atomi c_hel per _plane_reset (struct drmplane * plane);
Arguments

pl ane drm plane

Description

Resets the atomic state for pl ane by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.

321

DRM Internals

Name
__drm_atomic_helper_plane duplicate state — copy atomic plane state

Synopsis

void _ drmatom c_hel per_plane _duplicate state (struct drmplane *
pl ane, struct drmplane_state * state);

Arguments
pl ane plane object
state atomic plane state

Description

Copies atomic state from a plane's current state. Thisis useful for drivers that subclass the plane state.

322

DRM Internals

Name
drm_atomic_helper_plane duplicate state — default state duplicate hook

Synopsis

st ruct drm pl ane_state * drm at oni c_hel per_pl ane_duplicate_state
(struct drmplane * plane);

Arguments

pl ane drm plane

Description

Default plane state duplicate hook for drivers which don't have their own subclassed plane state structure.

323

DRM Internals

Name
__drm_atomic_helper_plane destroy_state — release plane state

Synopsis

void _drmatonic_hel per_plane_destroy_state (struct drm plane * pl ane,
struct drmplane _state * state);

Arguments
pl ane plane object
state plane state object to release

Description

Releases al resources stored in the plane state without actually freeing the memory of the plane state. This
isuseful for drivers that subclass the plane state.

324

DRM Internals

Name
drm_atomic_helper_plane destroy state — default state destroy hook

Synopsis

void drm atom c_hel per_plane_destroy state (struct drmplane * plane,
struct drmplane _state * state);

Arguments
pl ane drm plane
state plane state object to release

Description

Default plane state destroy hook for drivers which don't have their own subclassed plane state structure.

325

DRM Internals

Name

__drm_atomic_helper_connector_reset — reset state on connector

Synopsis

void __drm atom c_hel per_connector_reset (struct drmconnector * con-
nector, struct drm.connector_state * conn_state);

Arguments
connect or drm connector
conn_state connector stateto assign

Description

Initializes the newly alocated conn_st at e and assigns it to #connector ->state, usually required when
initializing the drivers or when called from the ->reset hook.

Thisisuseful for drivers that subclass the connector state.

326

DRM Internals

Name
drm_atomic_helper_connector_reset — default ->reset hook for connectors

Synopsis
voi d drm atom c_hel per _connector_reset (struct drmconnector * connec-
tor);

Arguments

connect or drm connector

Description

Resetsthe atomic state for connect or by freeing the state pointer (which might be NULL, e.g. at driver
load time) and allocating a new empty state object.

327

DRM Internals

Name

__drm_atomic_helper_connector_duplicate state — copy atomic connector state

Synopsis

void __drmatom c_hel per_connector_duplicate state (struct drm connec-
tor * connector, struct drmconnector_state * state);

Arguments
connect or connector object
state atomic connector state

Description

Copies atomic state from a connector's current state. Thisis useful for drivers that subclass the connector
state.

328

DRM Internals

Name
drm_atomic_helper_connector_duplicate state — default state duplicate hook

Synopsis

struct drm.connector_state * drmatom c_hel per_connector _duplicate_s-
tate (struct drmconnector * connector);

Arguments
connect or drm connector

Description

Default connector state duplicate hook for drivers which don't have their own subclassed connector state
structure.

329

DRM Internals

Name
drm_atomic_helper_duplicate_state — duplicate an atomic state object

Synopsis

struct drmatom c_state * drm atoni c_hel per _duplicate state (struct dr-
m devi ce * dev, struct drm nodeset _acquire_ctx * ctx);

Arguments
dev DRM device

ct x lock acquisition context

Description

Makes a copy of the current atomic state by looping over al objects and duplicating their respective states.
Thisis used for example by suspend/ resume support code to save the state prior to suspend such that it
can be restored upon resume.

Note that this treats atomic state as persistent between save and restore. Drivers must make sure that this
is possible and won't result in confusion or erroneous behaviour.

Note that if callers haven't already acquired all modeset locks this might return -EDEADLK, which must
be handled by calling dr m_nmodeset _backof f .

Returns

A pointer to the copy of the atomic state object on success or an ERR_PTR-encoded error code on failure.

See also

drm at om c_hel per _suspend,drm at om c_hel per_resune

330

DRM Internals

Name

__drm_atomic_helper_connector_destroy_state — release connector state

Synopsis

void __drmatom c_hel per _connector_destroy_state (struct drm connector
* connector, struct drm.connector_state * state);

Arguments
connect or connector object

state connector state object to release

Description

Releases all resources stored in the connector state without actually freeing the memory of the connector
state. Thisisuseful for drivers that subclass the connector state.

331

DRM Internals

Name
drm_atomic_helper_connector_destroy_state — default state destroy hook

Synopsis

voi d drm atomi c_hel per _connector _destroy_state (struct drmconnector *
connector, struct drm.connector_state * state);

Arguments
connect or drm connector
state connector state object to release

Description

Default connector state destroy hook for drivers which don't have their own subclassed connector state
structure.

Modeset Helper Functions Reference

332

DRM Internals

Name

struct drm_crtc_helper_funcs — helper operations for CRTCs

Synopsis

struct drmcrtc_hel per _funcs {

void (* dpms) (struct drmcrtc *crtc, int node);

void (* prepare) (struct drmcrtc *crtc);

void (* commit) (struct drmcrtc *crtc);

bool (* nmode_fixup) (struct drmecrtc *crtc,const struct drmdi splay_node *node, s
int (* node_set) (struct drmecrtc *crtc, struct drmdi splay_node *node, struct dr
void (* node_set_nofb) (struct drmcrtc *crtc);

int (* node_set _base) (struct drmecrtc *crtc, int x, int y,struct drmfranmebuffe
int (* node_set_base_atomic) (struct drmecrtc *crtc,struct drmfranmebuffer *fb,
void (* load_lut) (struct drmecrtc *crtc);

void (* disable) (struct drmcrtc *crtc);

void (* enable) (struct drmcrtc *crtc);

int (* atomic_check) (struct drmecrtc *crtc,struct drmcrtc_state *state);

void (* atomic_begin) (struct drmecrtc *crtc,struct drmcrtc_state *old_crtc_sta
void (* atomic_flush) (struct drmcrtc *crtc,struct drmcrtc_state *old_crtc_sta

b

Members
dpms set power state
prepare prepare the CRTC, called before node_set
commit commit changesto CRTC, called after node_set
mode_fixup try to fixup proposed mode for this CRTC
mode_set set this mode
mode_set_nofb set mode only (no scanout buffer attached)
mode_set base update the scanout buffer
mode_set_base atomic non-blocking mode set (used for kgdb support)
load_lut load color palette
disable disable CRTC when no longer in use
enable enable CRTC
atomic_check check for validity of an atomic state
atomic_begin begin atomic update
atomic_flush flush atomic update

Description

The helper operations are called by the mid-layer CRTC helper.

333

DRM Internals

Note that with atomic helpers dpns, pr epar e and comm t hooks are deprecated. Used enabl e and
di sabl e instead exclusively.

With legacy crtc helpers there's a big semantic difference between di sabl e

and the other hooks

di sabl e also needsto release any resources acquired in node_set (like shared PLLS).

334

DRM Internals

Name

struct drm_encoder_helper_funcs — helper operations for encoders

Synopsis

struct drm encoder _hel per_funcs {

b

Members

void (*
void (*
void (*
bool (*
void (*
void (*
void (*

dpns) (struct drm encoder *encoder, int
save) (struct drm encoder *encoder);
restore) (struct drmencoder *encoder);
node_fi xup) (struct drm encoder *encoder, const struct drmdi splay_node *
prepare) (struct drm encoder *encoder);

commit) (struct drm.encoder *encoder);

node_set) (struct drm encoder *encoder, struct drmdi splay_node *node, str

node) ;

struct drmecrtc *(* get_crtc) (struct drmencoder *encoder);
enum drm connector _status (* detect) (struct drmencoder *encoder,struct drmcon

void (*
void (*
i nt

dpms

save

restore

mode_fixup

prepare

commit

mode_set

get_crtc

detect

disable

enable

atomic_check

Description

di sabl e) (struct drmencoder *encoder);
enabl e) (struct drm.encoder *encoder);

(* atom c_check) (struct drmencoder *encoder,struct drmcrtc_state *crtc_st

set power state

save connector state

restore connector state

try to fixup proposed mode for this connector

part of the disable sequence, called before the CRTC modeset
called after the CRTC modeset

set this mode, optional for atomic helpers

return CRTC that the encoder is currently attached to
connection status detection

disable encoder when not in use (overrides DPMSS off)
enable encoder

check for validity of an atomic update

The helper operations are called by the mid-layer CRTC helper.

Note that with atomic helpers dpns, pr epar e and comm t hooks are deprecated. Used enabl e and
di sabl e instead exclusively.

With legacy crtc helpers there's a big semantic difference between di sabl e

335

DRM Internals

and the other hooks

di sabl e aso needsto release any resources acquired in node_set (like shared PLLS).

336

DRM Internals

Name

struct drm_connector_helper_funcs — helper operations for connectors

Synopsis

struct drm connector_hel per_funcs {
int (* get_nodes) (struct drmconnector *connector);
enum drm node_status (* node_valid) (struct drmconnector *connector,struct drm_
struct drmencoder *(* best _encoder) (struct drmconnector *connector);
struct drmencoder *(* atom c_best encoder) (struct drmconnector *connector,str

b

Members
get_modes get mode list for this connector
mode valid isthis mode valid on the given connector? (optional)
best_encoder return the preferred encoder for this connector
atomic_best_encoder atomic version of best _encoder

Description

The helper operations are called by the mid-layer CRTC helper.

337

DRM Internals

Name
drm_helper_move panel_connectors to_head — move panelsto the front in the connector list
Synopsis
void drm hel per_nove_panel connectors to head (struct drmdevice *
dev);
Arguments

dev drm deviceto operate on

Description

Some userspace presumes that the first connected connector is the main display, where it's supposed to
display e.g. the login screen. For laptops, this should be the main panel. Use this function to sort all (eDP/
LVDS) panels to the front of the connector list, instead of painstakingly trying to initialize them in the
right order.

338

DRM Internals

Name

drm_helper_encoder_in_use — check if a given encoder isin use
Synopsis

bool drm hel per_encoder _in_use (struct drm encoder * encoder);
Arguments

encoder encoder to check

Description

Checks whether encoder iswith the current mode setting output configuration in use by any connector.
This doesn't mean that it is actually enabled since the DPM S state is tracked separately.

Returns

Trueif encoder isused, false otherwise.

339

DRM Internals

Name

drm_helper_crtc_in_use— check if agiven CRTC isin amode_config
Synopsis

bool drm hel per_crtc_in_use (struct drmcrtc * crtc);
Arguments

crtc CRTCto check

Description

Checkswhether cr t ¢ iswith the current mode setting output configuration in use by any connector. This
doesn't mean that it is actually enabled since the DPMS state is tracked separately.

Returns

Trueif crt c isused, false otherwise.

DRM Internals

Name
drm_helper_disable_unused_functions — disable unused objects

Synopsis

voi d drm hel per_di sabl e_unused _functions (struct drmdevice * dev);

Arguments

dev DRM device

Description

This function walks through the entire mode setting configuration of dev. It will remove any crtc links of
unused encoders and encoder links of disconnected connectors. Then it will disable all unused encoders
and crtcs either by calling their disable callback if available or by calling their dpms callback with DR-

M_MODE_DPMS_OFF.

341

DRM Internals

Name
drm_crtc_helper_set_mode — internal helper to set a mode

Synopsis

bool drmecrtc_hel per_set _nmode (struct drmecrtc * crtc, struct drmdis-
play_node * node, int x, int y, struct drmfranmebuffer * old fb);

Arguments

crtc CRTC to program

node mode to use
X horizontal offset into the surface
y vertical offset into the surface

ol d_fb oldframebuffer, for cleanup

Description

Trytoset node oncrt c. Givecrt ¢ and its associated connectors a chance to fixup or reject the mode
prior to trying to set it. Thisisan internal helper that drivers could e.g. use to update properties that require
the entire output pipe to be disabled and re-enabled in a new configuration. For example for changing
whether audio is enabled on ahdmi link or for changing panel fitter or dither attributes. It isalso called by
thedrm crtc_hel per _set _confi g helper function to drive the mode setting sequence.

Returns

True if the mode was set successfully, false otherwise.

342

DRM Internals

Name

drm_crtc_helper_set_config — set a new config from userspace
Synopsis
int drmcrtc_hel per_set _config (struct drm node_set * set);
Arguments
set mode set configuration
Description
Setup a new configuration, provided by the upper layers (either anioctl call from userspace or internally
e.g. from the fbdev support code) in set , and enableit. Thisis the main helper functions for drivers that

implement kernel mode setting with the crtc helper functions and the assorted ->pr epar e, ->npdeset
and ->conmmi t helper callbacks.

Returns

Returns 0 on success, negative errno numbers on failure.

DRM Internals

Name
drm_helper_connector_dpms — connector dpms hel per implementation

Synopsis
int drm hel per_connector_dpnms (struct drmconnector * connector, int
node) ;

Arguments

connect or affected connector
node DPMS mode
Description

Thisisthe main helper function provided by the crtc helper framework for implementing the DPMS con-
nector attribute. 1t computes the new desired DPM S state for al encoders and crtcsin the output mesh and
callsthe ->dpns callback provided by the driver appropriately.

Returns

Always returns 0.

DRM Internals

Name
drm_helper_mode fill_fb_struct — fill out framebuffer metadata
Synopsis
voi d drm hel per_node fill _fb struct (struct drm franebuffer * fb, struct

drm node fb _cnd2 * node_cnd);
Arguments
fb drm_framebuffer object to fill out
node_cnd metadata from the userspace fb creation request

Description
This helper can be used in adriversfb_create callback to pre-fill the fb's metadata fields.

DRM Internals

Name

drm_helper_resume_force_mode — force-restore mode setting configuration

Synopsis

voi d drm hel per _resunme_force_nbde (struct drmdevice * dev);

Arguments

Descript

See also

dev drm_device which should be restored
ion

Drivers which use the mode setting helpers can use this function to force-restore the mode setting config-
uration e.g. on resume or when something else might have trampled over the hw state (like some overzesal -
ous old BIOSen tended to do).

This helper doesn't provide a error return value since restoring the old config should never fail due to
resource allocation issues since the driver has successfully set the restored configuration already. Hence
this should boil down to the equivalent of afew dpms on calls, which also don't provide an error code.

Drivers where simply restoring an old configuration again might fail (e.g. due to dight differences in
allocating shared resources when the configuration is restored in a different order than when userspace set
it up) need to use their own restore logic.

This function is deprecated. New drivers should implement atomic mode- setting and use the atomic sus-
pend/resume helpers.

drm at oni c_hel per _suspend,drm at om c_hel per _resune

346

DRM Internals

Name
drm_helper_crtc_mode_set — mode_set implementation for atomic plane helpers
Synopsis

int drm hel per _crtc_node_set (struct drmecrtc * crtc, struct drmdis-
pl ay_node * node, struct drmdisplay node * adjusted node, int Xx, int
y, struct drmfranmebuffer * old fhb);

Arguments
crtc DRM CRTC
node DRM display mode which userspace requested

adj ust ed_node DRM display mode adjusted by ->mode_fixup callbacks

X x offset of the CRTC scanout area on the underlying framebuffer
y y offset of the CRTC scanout area on the underlying framebuffer
old fb previous framebuffer

Description

This function implements a callback useable as the ->mode_set callback required by the crtc helpers.
Besides the atomic plane helper functions for the primary plane the driver must also provide the ->mod-
e set_nofb callback to set up the crtc.

Thisisatransitional helper useful for converting driversto the atomic interfaces.

347

DRM Internals

Name

drm_helper_crtc_mode_set _base — mode_set_base implementation for atomic plane helpers
Synopsis

int drm hel per _crtc_node_set base (struct drmecrtc * crtc, int x, int
y, struct drmfranmebuffer * old fhb);

Arguments
crtc DRM CRTC
X x offset of the CRTC scanout area on the underlying framebuffer
y y offset of the CRTC scanout area on the underlying framebuffer

ol d_fb previousframebuffer
Description

This function implements a callback useable as the ->mode_set_base used required by the crtc helpers.
The driver must provide the atomic plane helper functions for the primary plane.

Thisisatransitional helper useful for converting drivers to the atomic interfaces.

The CRTC modeset helper library provides a default set config implementation in dr-
m crtc_hel per _set_confi g. Plus a few other convenience functions using the same callbacks
which drivers can use to e.g. restore the modeset configuration on resume with dr m_hel per _re-
sume_f or ce_node.

The driver callbacks are mostly compatible with the atomic modeset helpers, except for the handling of
the primary plane: Atomic helpersrequire that the primary planeisimplemented asareal standalone plane
and not directly tied to the CRTC state. For easier transition this library provides functions to implement
the old semantics required by the CRTC helpers using the new plane and atomic helper callbacks.

Driversare strongly urged to convert to the atomic helpers (by way of first converting to the plane hel pers).
New drivers must not use these functions but need to implement the atomic interface instead, potentially
using the atomic helpers for that.

Output Probing Helper Functions Reference

This library provides some helper code for output probing. It provides an implementation of the core
connector->fill_modes interface with drm_helper_probe_single_connector_modes.

It al so provides support for polling connectors with awork item and for generic hotplug interrupt handling
where the driver doesn't or cannot keep track of a per-connector hpd interrupt.

This helper library can be used independently of the modeset helper library. Drivers can also overwrite
different parts e.g. use their own hotplug handling code to avoid probing unrelated outputs.

DRM Internals

Name
drm_kms_helper_poll_enable locked — re-enable output polling.

Synopsis
voi d drm knms_hel per _pol | _enabl e | ocked (struct drmdevice * dev);
Arguments

dev drm_device

Description

This function re-enables the output polling work without locking the mode_config mutex.

Thisislike dr m kns_hel per _pol | _enabl e however it is to be caled from a context where the
mode_config mutex is locked already.

349

DRM Internals

Name

drm_helper_probe_single_connector_modes — get complete set of display modes
Synopsis

int drmhel per_probe_single connector_nodes (struct drmconnector *
connector, uint32_t nmaxX, uint32_t nmaxy);

Arguments

connect or connector to probe

max X max width for modes
maxyY max height for modes
Description

Based on the helper callbacks implemented by connect or try to detect al valid modes. Modes will
first be added to the connector's probed_modes list, then culled (based on validity and the maxX, naxY
parameters) and put into the normal modes list.

Intended to be use as a generic implementation of the ->f i | | _nbdes connect or vfunc for drivers
that use the crtc helpers for output mode filtering and detection.

Returns

The number of modes found on connect or .

350

DRM Internals

Name

drm_helper_probe_single_connector_modes nomerge — get complete set of display modes

Synopsis

i nt drm hel per _probe_si ngl e _connect or _nodes_nonerge (struct drm connec-
tor * connector, uint32 t maxX, uint32_t maxy);

Arguments

connect or connector to probe

max X max width for modes
maxyY max height for modes
Description

This operates like drm_hehlper_probe _single_connector_modes except it replaces the mode bits instead
of merging them for preferred modes.

351

DRM Internals

Name
drm_kms_helper_hotplug_event — fire off KM S hotplug events

Synopsis
voi d drm knms_hel per _hot pl ug_event (struct drmdevice * dev);
Arguments

dev drm_device whose connector state changed

Description

This function fires off the uevent for userspace and also calls the output_poll_changed function, which
is most commonly used to inform the fbdev emulation code and allow it to update the fbcon output con-
figuration.

Driversshould call thisfrom their hotplug handling code when achangeis detected. Note that thisfunction
does not do any output detection of itsown, likedr m_hel per _hpd_i rg_event does- thisisassumed
to be done by the driver already.

This function must be called from process context with no mode setting locks held.

352

DRM Internals

Name
drm_kms_helper_poll_disable — disable output polling

Synopsis
void drm knms_hel per _pol | _disable (struct drmdevice * dev);
Arguments

dev drm_device

Description
This function disables the output polling work.

Drivers can call this helper from their device suspend implementation. It is not an error to call this even
when output polling isn't enabled or arlready disabled.

353

DRM Internals

Name
drm_kms_helper_poll_enable — re-enable output polling.

Synopsis
void drm kns_hel per _pol | _enable (struct drm device * dev);
Arguments

dev drm_device

Description
This function re-enables the output polling work.

Drivers can cal this helper from their device resume implementation. It is an error to call this when the
output polling support has not yet been set up.

354

DRM Internals

Name

drm_kms_helper_poll_init — initialize and enable output polling
Synopsis

void drmknms_hel per_poll _init (struct drmdevice * dev);
Arguments

dev drm_device

Description

This function intializes and then also enables output polling support for dev. Drivers which do not have
reliable hotplug support in hardware can use this helper infrastructure to regularly poll such connectors
for changes in their connection state.

Drivers can control which connectors are polled by setting the DRM_CONNECTOR_POLL_CONNECT
and DRM_CONNECTOR_POLL_DISCONNECT flags. On connectors where probing live outputs can
result in visual distortion drivers should not set the DRM_CONNECTOR_POLL_DISCONNECT flag to
avoid this. Connectors which have no flag or only DRM_CONNECTOR_POLL_HPD set are completely
ignored by the polling logic.

Note that aconnector can be both polled and probed from the hotplug handler, in case the hotplug interrupt
is known to be unreliable.

355

DRM Internals

Name
drm_kms_helper_poll_fini — disable output polling and clean it up

Synopsis
void drmknms_hel per_poll _fini (struct drmdevice * dev);
Arguments

dev drm_device

356

DRM Internals

Name
drm_helper_hpd_irg_event — hotplug processing

Synopsis
bool drm hel per_hpd_irqg_event (struct drm.device * dev);

Arguments

dev drm_device

Description

Drivers can use this helper function to run a detect cycle on all connectors which have the DRM_CON-
NECTOR_POLL_HPD flag set in their polled member. All other connectors are ignored, which is useful
to avoid reprobing fixed panels.

This helper function is useful for drivers which can't or don't track hotplug interrupts for each connector.

Drivers which support hotplug interrupts for each connector individually and which have a more fine-
grained detect logic should bypass this code and directly call dr m kns_hel per _hot pl ug_event
in case the connector state changed.

This function must be called from process context with no mode setting locks held.

Note that aconnector can be both polled and probed from the hotplug handler, in case the hotplug interrupt
is known to be unreliable.

fbdev Helper Functions Reference

The fb helper functions are useful to provide an fbdev on top of a drm kernel mode setting driver. They
can be used mostly independently from the crtc helper functions used by many drivers to implement the
kernel mode setting interfaces.

Initialization is done as a four-step process with drm fb_hel per_prepare, dr-
m fb_hel per_init, drmfb_hel per_single_add_all_connectors and drmf-
b_hel per _i ni tial _confi g.Driverswithfancier requirementsthan the default behaviour can over-
ride the third step with their own code. Teardown isdonewithdr m f b_hel per _fini .

At runtime drivers should restore the fbdev console by calling dr m f b_hel per _restore_f bde-
v_node_unl ocked from their ->lastclose callback. They should aso notify the fb helper code from
updatesto the output configuration by callingdr m f b_hel per _hot pl ug_event . For easier integra-
tion with the output polling codein drm_crtc_hel per.c the modeset code providesa->output_poll_changed
callback.

All other functions exported by the fb helper library can be used to implement the fbdev driver interface
by the driver.

It is possible, though perhaps somewhat tricky, to implement race-free hotplug detection using the fbdev
helpers. Thedr m f b_hel per _pr epar e helper must be called first to initialize the minimum required
to make hotplug detection work. Drivers also need to make sure to properly set up the dev->mode_con-
fig.funcs member. After callingdr m kns_hel per _pol | _i ni t itissafeto enableinterruptsand start
processing hotplug events. At the same time, drivers should initialize all modeset objects such as CRTCs,
encoders and connectors. To finish up the fbdev helper initialization, thedr m f b_hel per _i ni t func-

357

DRM Internals

tion is called. To probe for all attached displays and set up an initial configuration using the detected
hardware, driversshould call dr m f b_hel per _si ngl e_add_al | _connect or s followed by dr -
m fb_hel per _initial _config.

358

DRM Internals

Name
drm_fb_helper_single add_all_connectors — add all connectors to fbdev emulation hel per
Synopsis
int drmfb_hel per_single add all _connectors (struct drmfb_hel per *
fb_hel per);
Arguments

fb_hel per fbdev initialized with drm_fb_helper_init
Description

This functions adds al the available connectors for use with the given fb_helper. This is a separate step
to allow driversto freely assign connectors to the fbdev, e.g. if some are reserved for specia purposes or
not adeguate to be used for the fbcon.

Thisfunction is protected against concurrent connector hotadds/removalsusingdr m f b_hel per _ad-
d_one_connector anddrm fb_hel per _renove_one_connect or.

359

DRM Internals

Name
drm_fb_helper_debug_enter — implementation for ->fb_debug_enter

Synopsis
int drmfb_hel per_debug_enter (struct fb_ info * info);
Arguments

i nfo fbdev registered by the helper

360

DRM Internals

Name
drm_fb_helper_debug_leave — implementation for ->fb_debug_leave

Synopsis
int drmfb_hel per_debug_| eave (struct fb_ info * info);
Arguments

i nfo fbdev registered by the helper

361

DRM Internals

Name
drm_fb_helper_restore fbdev_mode unlocked — restore fbdev configuration

Synopsis
int drmfb_hel per _restore_fbdev_node unl ocked (struct drmfb_hel per *
fb_hel per);

Arguments

fb_hel per fbcon torestore

Description

This should be called from driver's drm ->lastclose callback when implementing an fbcon on top of kms
using this helper. This ensures that the user isn't greeted with a black screen when e.g. X dies.

RETURNS

Zero if everything went ok, negative error code otherwise.

362

DRM Internals

Name
drm_fb_helper_blank — implementation for ->fb_blank

Synopsis

int drmfb_hel per_blank (int blank, struct fb info * info);
Arguments

bl ank desired blanking state

i nfo fbdev registered by the helper

363

DRM Internals

Name
drm_fb_helper_prepare — setup adrm_fb_helper structure

Synopsis

void drmfb_hel per _prepare (struct drmdevice * dev, struct drmf-
b _hel per * hel per, const struct drmfb_hel per funcs * funcs);

Arguments
dev DRM device
hel per driver-alocated fbdev helper structure to set up

funcs pointer to structure of functions associate with this helper

Description

Sets up the bare minimum to make the framebuffer helper usable. This is useful to implement race-free
initialization of the polling helpers.

364

DRM Internals

Name
drm_fb_helper_init — initialize adrm_fb_helper structure
Synopsis
int drmfb _helper_init (struct drmdevice * dev, struct drmfb_hel per
* fb_hel per, int crtc_count, int nmax_conn_count);
Arguments
dev drm device
fb_hel per driver-allocated fbhdev helper structure to initialize

crtc_count

max_conn_count

maximum number of crtcs to support in this fbdev emulation

max connector count

Description

This allocates the structures for the fbdev helper with the given limits. Note that this won't yet touch
the hardware (through the driver interfaces) nor register the fbdev. This is only done in drm f -
b_hel per _initial _confi g toalow driver writes more control over the exact init sequence.

Driversmust call dr m f b_hel per _pr epar e before calling this function.

RETURNS

Zero if everything went ok, nonzero otherwise.

365

DRM Internals

Name
drm_fb_helper_alloc_fbi — allocate fb_info and some of its members

Synopsis
struct fb info * drmfb _helper_alloc fbi (struct drmfb_hel per *
fb_hel per);

Arguments

fb_hel per driver-allocated fbdev helper

Description

A helper to dloc fb_info and the members cmap and apertures. Called by the driver within the fb_probe
fb_helper callback function.

RETURNS

fb_info pointer if things went okay, pointer containing error code otherwise

366

DRM Internals

Name
drm_fb_helper_unregister fbi — unregister fb_info framebuffer device

Synopsis

void drmfb_hel per _unregister _fbi (struct drmfb_hel per * fb_hel per);

Arguments

fb_hel per driver-allocated fbdev helper

Description

A wrapper around unregister_framebuffer, to release the fb_info framebuffer device

367

DRM Internals

Name

drm_fb_helper_release fbi — dealloc fb_info and its members

Synopsis

void drmfb_hel per _release fbi (struct drmfb_hel per * fb_hel per);

Arguments

fb_hel per driver-allocated fbdev helper

Description

A helper to free memory taken by fb_info and the members cmap and apertures

368

DRM Internals

Name

drm_fb_helper_unlink_fbi — wrapper around unlink_framebuffer

Synopsis
void drmfb_hel per_unlink fbi (struct drmfb_hel per * fb_hel per);

Arguments

fb_hel per driver-allocated fbdev helper

Description

A wrapper around unlink_framebuffer implemented by fbdev core

369

DRM Internals

Name
drm_fb_helper_sys read — wrapper around fb_sys read

Synopsis

ssize t drmfb _hel per_sys read (struct fb_info * info, char _ _user *
buf, size t count, loff_t * ppos);

Arguments
i nfo fb_info struct pointer
buf userspace buffer to read from framebuffer memory
count number of bytesto read from framebuffer memory

ppos read offset within framebuffer memory

Description

A wrapper around fb_sys read implemented by fbdev core

370

DRM Internals

Name
drm_fb_helper_sys write— wrapper around fb_sys write

Synopsis

ssize t drmfb_helper _sys wite (struct fb info * info, const char
__user * buf, size_ t count, loff_t * ppos);

Arguments
i nfo fb_info struct pointer
buf userspace buffer to write to framebuffer memory
count number of bytesto write to framebuffer memory
ppos write offset within framebuffer memory
Description

A wrapper around fb_sys write implemented by fbdev core

371

DRM Internals

Name
drm_fb_helper_sys fillrect — wrapper around sys fillrect

Synopsis

void drmfb_hel per_sys fillrect (struct fb_ info * info,
fb fillrect * rect);

Arguments
i nfo fbdev registered by the helper
rect infoabout rectangleto fill

Description

A wrapper around sys fillrect implemented by fbdev core

const

struct

372

DRM Internals

Name

drm_fb_helper_sys copyarea— wrapper around sys copyarea

Synopsis

void drmfb_hel per_sys copyarea (struct fb info * info,
fb_copyarea * area);

Arguments
i nfo fbdev registered by the helper
area infoabout areato copy

Description

A wrapper around sys_copyareaimplemented by fbdev core

const

struct

373

DRM Internals

Name
drm_fb_helper_sys imageblit — wrapper around sys_imageblit

Synopsis

void drmfb_hel per_sys inmageblit (struct fb_info * info,
fb_i mage * imge);

Arguments
i nfo fbdev registered by the helper
i mage info about image to blit

Description

A wrapper around sys_imageblit implemented by fbdev core

const struct

374

DRM Internals

Name
drm_fb_helper_cfb_fillrect — wrapper around cfb_fillrect

Synopsis

void drmfb_helper _cfb fillrect (struct fb_ info * info,
fb fillrect * rect);

Arguments
i nfo fbdev registered by the helper
rect infoabout rectangleto fill

Description

A wrapper around cfb_imageblit implemented by fbdev core

const

struct

375

DRM Internals

Name

drm_fb_helper_cfb_copyarea— wrapper around cfb_copyarea

Synopsis

void drmfb_hel per_cfb _copyarea (struct fb info * info,
fb_copyarea * area);

Arguments
i nfo fbdev registered by the helper
area infoabout areato copy

Description

A wrapper around cfb_copyareaimplemented by fbdev core

const

struct

376

DRM Internals

Name
drm_fb_helper_cfb_imageblit — wrapper around cfb_imageblit

Synopsis

void drmfb_hel per _cfb _inmageblit (struct fb_info * info,
fb_i mage * imge);

Arguments
i nfo fbdev registered by the helper
i mage info about image to blit

Description

A wrapper around cfb_imageblit implemented by fbdev core

const struct

377

DRM Internals

Name
drm_fb_helper_set suspend — wrapper around fb_set_suspend

Synopsis
void drmfb_hel per_set suspend (struct drmfb_hel per * fb_hel per,
state);

Arguments

fb_hel per driver-allocated fbdev helper

state desired state, zero to resume, non-zero to suspend

Description

A wrapper around fb_set_suspend implemented by fbdev core

i nt

378

DRM Internals

Name
drm_fb_helper_setcmap — implementation for ->fb_setcmap

Synopsis

int drmfb_hel per_setcmap (struct fb cmap * cmap, struct fb_info * info);
Arguments

cmap cmapto set

i nfo fbdev registered by the helper

379

DRM Internals

Name

drm_fb_helper_check var — implementation for ->fb_check var
Synopsis

int drmfb_hel per_check var (struct fb_var_screeninfo * var, struct
fb info * info);

Arguments
var screeninfo to check

i nfo fbdev registered by the helper

380

DRM Internals

Name
drm_fb_helper_set par — implementation for ->fb_set par

Synopsis
int drmfb_hel per_set _par (struct fb_info * info);

Arguments

i nfo fbdev registered by the helper

Description

Thiswill let fbcon do the mode init and is called at initialization time by the fbdev core when registering
the driver, and later on through the hotplug callback.

381

DRM Internals

Name
drm_fb_helper_pan_display — implementation for ->fb_pan_display

Synopsis

int drmfb_hel per_pan_display (struct fb_var _screeninfo * var, struct
fb info * info);

Arguments
var updated screen information

i nfo fbdev registered by the helper

382

DRM Internals

Name
drm_fb_helper_fill_fix — initializes fixed fbdev information
Synopsis
void drmfb_helper fill fix (struct fb_info * info,

uint32_t depth);

Arguments
i nfo fbdev registered by the helper
pitch desired pitch
dept h desired depth

Description

uint32 t pitch,

Helper to fill in the fixed fbdev information useful for a non-accelerated fbdev emulations. Drivers which
support acceleration methods which impose additional constraints need to set up their own limits.

Drivers should call this (or their equivalent setup code) from their ->fb_probe callback.

383

DRM Internals

Name
drm_fb_helper_fill_var — initalizes variable fbdev information
Synopsis
void drmfb_helper fill _var (struct fb_info * info, struct drmfb_hel per

* fb_helper, uint32_t fb width, uint32_t fb_height);
Arguments

info fbdev instance to set up

fb_hel per fbhelper instanceto use as template

fb_wi dth desredfbwidth

f b_hei ght desired fb height
Description

Sets up the variable fbdev metainformation from the given fb helper instance and the drm framebuffer
allocated in fb_helper->fb.

Drivers should call this (or their equivalent setup code) from their ->fb_probe callback after having alo-
cated the fbdev backing storage framebuffer.

384

DRM Internals

Name
drm_fb_helper_initia_config — setup a sane initial connector configuration

Synopsis
int drmfb_helper_initial _config (struct drmfb_hel per * fb_hel per, int
bpp_sel);

Arguments

fb_hel per fb_helper device struct

bpp_sel bpp value to use for the framebuffer configuration

Description

Scans the CRTCs and connectors and tries to put together an initial setup. At the moment, thisis acloned
configuration across al heads with a new framebuffer object as the backing store.

Note that this also registers the fbdev and so allows userspace to call into the driver through the fbdev
interfaces.

This function will call down into the ->fb_probe callback to let the driver allocate and initialize the fbdev

info structure and the drm framebuffer used to back thefbdev. drm fb_hel per _fill _var anddr -
m fb_hel per _fill _fix areprovided as helpers to setup simple default values for the fbdev info
structure.

RETURNS

Zero if everything went ok, nonzero otherwise.

385

DRM Internals

Name

drm_fb_helper_hotplug_event — respond to a hotplug notification by probing all the outputs attached to
thefb

Synopsis
int drmfb_hel per _hotplug _event (struct drmfb_hel per * fb_hel per);

Arguments

fb_hel per thedrm fb_helper

Description

Scan the connectors attached to the fb_hel per and try to put together a setup after * notification of achange
in output configuration.

Called at runtime, takes the mode config locks to be able to check/change the modeset configuration. Must
be run from process context (which usually means either the output polling work or awork item launched
from the driver's hotplug interrupt).

Note that drivers may call this even before calling drm_fb_helper_initial_config but only aftert drm_f-
b_helper_init. This allows for a race-free fbcon setup and will make sure that the fbdev emulation will
not miss any hotplug events.

RETURNS

0 on success and a non-zero error code otherwise.

386

DRM Internals

Name

struct drm_fb_helper_surface size — describes fbdev size and scanout surface size

Synopsis

struct drmfb_hel per_surface_size {

u32 fb_wdth;
u32 fb_height;

u32 surface_wi dth;
u32 surface_height;
u32 surface_bpp;
u32 surface_dept h;

1
Members

fb_width

fb_height

surface width

surface_height

surface bpp

surface _depth

Description

Note that the scanout surface width/height may be larger than the fbdev width/height. In case of multiple
displays, the scanout surface is sized according to the largest width/height (so it is large enough for all
CRTCsto scanout). But the fbdev width/height is sized to the minimum width/ height of al the displays.

fbdev width

fbdev height

scanout buffer width
scanout buffer height
scanout buffer bpp

scanout buffer depth

This ensures that fbcon fits on the smallest of the attached displays.

Sowhat ispassedtodrm f b_hel per _fill _var should be fb_width/fb_height, rather than the sur-

face size.

387

DRM Internals

Name

struct drm_fb_helper_funcs — driver callbacks for the fbdev emulation library

Synopsis

struct drmfb_hel per _funcs {

void (* gamma_set) (struct drmecrtc *crtc, ul6 red, ul6 green,ul6 blue, int regn
void (* gamma_get) (struct drmecrtc *crtc, ul6é *red, ul6é *green,ul6 *blue, int r
int (* fb_probe) (struct drmfb_hel per *hel per,struct drmfb_hel per_surface_size
bool (* initial _config) (struct drmfb_hel per *fb_hel per,struct drmfb_hel per_cr

1
Members
gamma_set Set the given gammal lut register on the given crtc.
gamma_get Read the given gamma lut register on the given crtc, used to save the current lut
when force-restoring the fbdev for e.g. kdbg.
fb_probe Driver callback to allocate and initialize the fbdev info structure. Furthermore it
also needs to allocate the drm framebuffer used to back the fbdev.
initial_config Setup aninitial fbdev display configuration
Description

Driver callbacks used by the fbdev emulation helper library.

388

DRM Internals

Name
struct drm_fb_helper — helper to emulate fbdev on top of kms

Synopsis

struct drmfb_hel per {
struct drmfranebuffer * fb;
struct drmdevice * dev;
int crtc_count;
struct drmfb_helper_crtc * crtc_info;
i nt connector_count;
int connector_info_alloc_count;
const struct drmfb_hel per _funcs * funcs;
struct fb_info * fbdev;
u32 pseudo_pal ette[17];
struct list _head kernel fb list;
bool del ayed_hot pl ug;
bool atonic;

b

Members
fb Scanout framebuffer object
dev DRM device
crtc_count number of possible CRTCs
crtc_info per-CRTC helper state (mode, x/y offset, etc)
connector_count number of connected connectors
connector_info_alloc_count size of connector_info
funcs driver callbacks for fb helper
fbdev emulated fbdev device info struct
pseudo_palette[17] fake palette of 16 colors
kernel_fb_list list_head in kernel_fb_helper_list
delayed hotplug was there a hotplug while kms master active?
atomic

Use atomic updates for r est or e_f bdev_node, etc. This de-
faultsto trueif driver has DRIVER_ATOMIC feature flag, but dri-
vers can override it to true after dr m f b_hel per _i ni t if they
support atomic modeset but do not yet advertise DRIVER_ATOM-
IC (note that fb-helper does not require ASY NC commits).

Display Port Helper Functions Reference

389

DRM Internals

These functions contain some common logic and hel pers at various abstraction levels to deal with Display
Port sink devices and related things like DP aux channdl transfers, EDID reading over DP aux channels,
decoding certain DPCD blocks, ...

The DisplayPort AUX channel is an abstraction to allow generic, driver- independent access to AUX
functionality. Drivers can take advantage of this by filling in the fields of the drm_dp_aux structure.

Transactions are described using a hardware-independent drm_dp_aux_msg structure, which is passed
into adriver's.t r ansf er implementation. Both native and 12C-over-AUX transactions are supported.

390

DRM Internals

Name

struct drm_dp_aux_msg — DisplayPort AUX channel transaction

Synopsis

struct drmdp_aux_msg {
unsi gned i nt address;

u8 request;
u8 reply;
void * buffer;
size t size;
1
Members
address address of the (first) register to access
request contains the type of transaction (see DP_AUX_* macros)
reply upon completion, contains the reply type of the transaction
buffer pointer to atransmission or reception buffer
size sizeof buf f er

391

DRM Internals

Name
struct drm_dp_aux — DisplayPort AUX channel

Synopsis

struct drmdp_aux {
const char * nane;
struct i2c_adapter ddc;
struct device * dev;
struct nutex hw _nutex;
ssize t (* transfer) (struct drmdp_aux *aux, struct drmdp_aux_nmsg *msg);

b
Members
name user-visible name of this AUX channel and the 12C-over-AUX adapter
ddc 12C adapter that can be used for 12C-over-AUX communication
dev pointer to struct device that is the parent for this AUX channel

hw_mutex internal mutex used for locking transfers

transfer transfers a message representing asingle AUX transaction
Description

The .dev field should be set to a pointer to the device that implements the AUX channel.

The .name field may be used to specify the name of the |2C adapter. If set to NULL, dev_nane of .dev
will be used.

Drivers provide a hardware-specific implementation of how transactions are executed viathe .t r ansf er
function. A pointer to adrm_dp_aux_msg structure describing the transaction is passed into this function.
Upon success, the implementation should return the number of payload bytes that were transferred, or a
negative error-code on failure. Helpers propagate errorsfromthe .t r ansf er function, with the exception
of the -EBUSY error, which causes a transaction to be retried. On a short, helpers will return -EPROTO
to make it simpler to check for failure.

An AUX channel can also be used to transport 12C messages to asink. A typical application of that isto
access an EDID that's present in the sink device. The .t r ansf er function can also be used to execute
such transactions. The dr m_dp_aux_r egi st er function registers an 12C adapter that can be passed
todr m_pr obe_ddc. Upon removal, drivers should call dr m dp_aux_unr egi st er to remove the
12C adapter. The 12C adapter uses long transfers by default; if a partial response is received, the adapter
will drop down to the size given by the partial response for this transaction only.

Note that the aux helper code assumes that the .t r ansf er function only modifies the reply field of the
drm_dp_aux_msg structure. The retry logic and i2¢ helpers assume thisis the case.

392

DRM Internals

Name
drm_dp_dpcd_readb — read a single byte from the DPCD

Synopsis
ssize_ t drmdp_dpcd readb (struct drmdp_aux * aux, unsigned int offset,
u8 * val uep);

Arguments
aux DisplayPort AUX channel
of f set address of the register to read

val uep location where the value of the register will be stored

Description
Returns the number of bytes transferred (1) on success, or a negative error code on failure.

393

DRM Internals

Name
drm_dp_dpcd_writeb — write a single byte to the DPCD
Synopsis

ssize t drmdp_dpcd witeb (struct drmdp_aux * aux,
set, u8 val ue);

unsi gned int off-

Arguments
aux DisplayPort AUX channel

of f set address of the register to write
val ue valueto writeto the register

Description

Returns the number of bytes transferred (1) on success, or a negative error code on failure.

394

DRM Internals

Name
drm_dp_dpcd_read — read a series of bytes from the DPCD

Synopsis

ssize t drmdp_dpcd read (struct drmdp_aux * aux, unsigned int offset,
void * buffer, size t size);

Arguments
aux DisplayPort AUX channel
of f set address of the (first) register to read
buf f er buffer to store the register values

si ze number of bytesin buf f er

Description

Returns the number of bytes transferred on success, or anegative error code on failure. -EIO isreturned if
therequest was NAKed by the sink or if theretry count was exceeded. If not all byteswere transferred, this
function returns-EPROTO. Errorsfrom the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.

395

DRM Internals

Name
drm_dp_dpcd write — write a series of bytesto the DPCD

Synopsis

ssize t drmdp_dpcd wite (struct drmdp_aux * aux, unsigned int offset,
void * buffer, size t size);

Arguments
aux DisplayPort AUX channel
of f set address of the (first) register to write
buf f er buffer containing the values to write
si ze number of bytesin buf f er

Description

Returns the number of bytes transferred on success, or anegative error code on failure. -EIO isreturned if
therequest was NAKed by the sink or if theretry count was exceeded. If not all byteswere transferred, this
function returns-EPROTO. Errorsfrom the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.

396

DRM Internals

Name
drm_dp_dpcd_read_link_status — read DPCD link status (bytes 0x202-0x207)
Synopsis

int drmdp_dpcd read |ink status (struct drmdp_aux * aux, u8 status[D
P_LI NK_STATUS_SI ZF]) ;

Arguments
aux DisplayPort AUX channel
status[DP_LINK S buffer to store the link status in (must be at least 6 bytes)
TATUS_SI ZE]

Description

Returns the number of bytes transferred on success or a negative error code on failure.

397

DRM Internals

Name
drm_dp_link_probe — probe a DisplayPort link for capabilities

Synopsis
int drmdp_|ink probe (struct drmdp_aux * aux, struct drmdp link *
link);

Arguments

aux DisplayPort AUX channel
I i nk pointer to structure in which to return link capabilities

Description

The structure filled in by this function can usually be passed directly into dr m dp_| i nk_power _up
anddrm dp_l i nk_confi gur e to power up and configure the link based on the link's capabilities.

Returns 0 on success or a negative error code on failure.

398

DRM Internals

Name
drm_dp_link_power_up — power up a DisplayPort link

Synopsis
int drmdp_|ink _power _up (struct drmdp _aux * aux, struct drmdp_link
* 1ink);

Arguments

aux DisplayPort AUX channel

I i nk pointer to astructure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

399

DRM Internals

Name
drm_dp_link_power_down — power down a DisplayPort link

Synopsis
int drmdp_link _power _down (struct drmdp_aux * aux, struct drmdp_I|ink
* 1ink);

Arguments

aux DisplayPort AUX channel

I i nk pointer to astructure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

400

DRM Internals

Name
drm_dp_link_configure — configure a DisplayPort link

Synopsis
int drmdp_link configure (struct drmdp_aux * aux, struct drmdp_link
* 1ink);

Arguments

aux DisplayPort AUX channel

I i nk pointer to astructure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

401

DRM Internals

Name

drm_dp_aux_register — initialise and register aux channel
Synopsis
int drmdp_aux_register (struct drmdp_aux * aux);

Arguments

aux DisplayPort AUX channel

Description

Returns 0 on success or a negative error code on failure.

402

DRM Internals

Name
drm_dp_aux_unregister — unregister an AUX adapter

Synopsis
void drmdp_aux_unregister (struct drmdp_aux * aux);

Arguments

aux DisplayPort AUX channel

Display Port Dual Mode Adaptor Helper Functions Refer-
ence

Helper functionsto deal with DP dual mode (aka. DP++) adaptors.
Type 1: Adaptor registers (if any) and the sink DDC bus may be accessed via|2C.

Type 2: Adaptor registers and sink DDC bus can be accessed either via 12C or 12C-over-AUX. Source
devices may choose to implement either of these access methods.

403

DRM Internals

Name
enum drm_dp_dual_mode_type — Type of the DP dual mode adaptor

Synopsis

enum dr m dp_dual _node_type {
DRM_DP_DUAL_MODE_NONE,
DRM_DP_DUAL_ MODE_UNKNOWW,
DRM _DP_DUAL_MODE_TYPE1_DVI,
DRM_DP_DUAL_MODE_TYPE1_HDM ,
DRM _DP_DUAL_MODE_TYPE2_DVI ,
DRM _DP_DUAL_MODE_TYPE2_HDM

s

Constants

DRM_DP DUAL_MODE_NONE No DP dua mode adaptor

DRM_DP DUAL_MODE_UN- Could be either none or type 1 DVI adaptor
KNOWN

DRM_DP DUAL_MOD- Type 1 DVI adaptor

E TYPEL1 DVI

DRM_DP _DUAL_MOD- Type 1 HDMI adaptor

E TYPE1 HDMI

DRM_DP _DUAL_MOD- Type 2 DVI adaptor

E TYPE2_DVI

DRM_DP DUAL_MOD- Type 2 HDMI adaptor

E TYPE2 HDMI

404

DRM Internals

Name
drm_dp_dual_mode _read — Read from the DP dual mode adaptor register(s)

Synopsis

ssize t drmdp_dual node read (struct i2c_adapter * adapter, u8 offset,
void * buffer, size t size);

Arguments

adapt er 12C adapter for the DDC bus

of f set register offset

buf f er buffer for return data

si ze sizo of the buffer
Description

Reads si ze bytes from the DP dual mode adaptor registers starting at of f set .
Returns

0 on success, hegative error code on failure

405

DRM Internals

Name
drm_dp_dual_mode write — Write to the DP dual mode adaptor register(s)

Synopsis

ssize t drmdp_dual _node wite (struct i 2c_adapter * adapter, u8 offset,
const void * buffer, size t size);

Arguments

adapt er 12C adapter for the DDC bus

of f set register offset

buf f er buffer for write data

si ze sizo of the buffer
Description

Writessi ze bytesto the DP dual mode adaptor registers starting at of f set .
Returns

0 on success, hegative error code on failure

406

DRM Internals

Name
drm_dp_dual_mode_detect — Identify the DP dual mode adaptor

Synopsis
enum drm dp_dual _node_type drm dp_dual node_detect (struct i2c_adapter
* adapter);

Arguments

adapt er 12C adapter for the DDC bus

Description
Attempt to identify the type of the DP dual mode adaptor used.
Note that when the answer is DRM_DP_DUAL _MODE _UNKNOWN it's not certain whether we're dealing
with a native HDMI port or a type 1 DVI dua mode adaptor. The driver will have to use some other
hardware/driver specific mechanism to make that distinction.

Returns

The type of the DP dual mode adaptor used

407

DRM Internals

Name
drm_dp_dual_mode _max_tmds_clock — Max TMDS clock for DP dual mode adaptor

Synopsis

int drmdp_dual _node_nmax_tnmds_cl ock (enum drm dp_dual node_type type,
struct i2c_adapter * adapter);

Arguments
type DP dua mode adaptor type

adapt er 12C adapter for the DDC bus

Description

Determine the max TMDS clock the adaptor supports based on the type of the dual mode adaptor and the
DP_DUAL_MODE_MAX_TMDS CLOCK register (on type2 adaptors). As some type 1 adaptors have
problems with registers (see commentsin dr m dp_dual _node_det ect) we don't read the register
on those, instead we simply assume a 165 MHz limit based on the specification.

Returns

Maximum supported TMDS clock rate for the DP dual mode adaptor in kHz.

408

DRM Internals

Name

drm_dp_dual_mode get tmds output — Get the state of the TMDS output buffersin the DP dual mode
adaptor

Synopsis

int drmdp_dual node get tnds_output (enum drm dp_dual node type type,
struct i2c_adapter * adapter, bool * enabled);

Arguments
type DP dua mode adaptor type
adapt er 12C adapter for the DDC bus
enabl ed current state of the TMDS output buffers

Description
Get the state of the TMDS output buffersin the adaptor. For type2 adaptorsthisis queried fromthe DP_D-
UAL_MODE_TMDS OEN register. Assometype 1 adaptors have problemswith registers (see comments
indrm dp_dual node_det ect) we don't read the register on those, instead we simply assume that
the buffers are always enabled.

Returns

0 on success, negative error code on failure

409

DRM Internals

Name

drm_dp_dual_mode_set tmds_output — Enable/disable TMDS output buffersin the DP dual mode adap-
tor

Synopsis

int drmdp_dual node_set tnds_output (enum drm dp_dual node type type,
struct i2c_adapter * adapter, bool enable);

Arguments

type DP dua mode adaptor type

adapt er 12C adapter for the DDC bus

enabl e enable (as opposed to disable) the TMDS output buffers
Description

Set the state of the TMDS output buffers in the adaptor. For type2 thisis set viathe DP_DUAL_MOD-
E TMDS OEN register. As some type 1 adaptors have problems with registers (see comments in dr -
m dp_dual _node_det ect) we avoid touching the register, making this function a no-op on type 1
adaptors.

Returns

0 on success, negative error code on failure

410

DRM Internals

Name
drm_dp_get dual_mode_type name — Get the name of the DP dual mode adaptor type as a string
Synopsis
const char * drmdp_get dual node_type name (enumdrm dp_dual node_type
type);
Arguments

type DPdua mode adaptor type

Returns

String representation of the DP dual mode adaptor type

Display Port MST Helper Functions Reference

These functions contain parts of the DisplayPort 1.2a Multi Stream Transport protocol. The helperscontain
atopology manager and bandwidth manager. The hel pers encapsul ate the sending and received of sideband
msgs.

411

DRM Internals

Name

struct drm_dp_vcpi — Virtual Channel Payload Identifier

Synopsis

struct drmdp_vcpi {

i nt
i nt
i nt
i nt
s
Members
vepi

pbn

vepi ;

pbn;

al i gned_pbn;
num sl ot s;

Virtual channel ID.

Payload Bandwidth Number for this channel

aligned_pbn PBN aligned with slot size

num_slots number of sotsfor this PBN

412

DRM Internals

Name

struct drm_dp_mst_port — MST port

Synopsis

struct drmdp_nst_port {

struct kref kref;

u8 port_num

bool input;
bool nts;
bool ddps;
u8 pdt;

bool | dps;
u8 dpcd_rev;

u8 num sdp_streans;

u8 num sdp_stream si nks;

uint16_t avail abl e_pbn;

struct |ist_head next;

struct drmdp_nst_branch * nstb;
struct drm.dp_aux aux;

struct drmdp_nst_branch * parent;

struct drm.dp_vcpi

vepi ;

struct drm.connector * connector;
struct drmdp_nst_topol ogy ngr * ngr;

1
Members
kref
port_num
input
mcs
ddps
pdt
Idps
dpcd_rev
num_sdp_streams
num_sdp_stream_sinks
available pbn
next
mstb

aux

reference count for this port.

port number

if this port isan input port.

message capability status - DP 1.2 spec.
DisplayPort Device Plug Status- DP 1.2
Peer Device Type

Legacy Device Plug Status

DPCD revision of device on this port
Number of simultaneous streams
Number of stream sinks

Available bandwidth for this port.

link to next port on this branch device
branch device attach below this port

i2c aux transport to talk to device connected to this port.

413

DRM Internals

parent branch device parent of this port

vepi Virtual Channel Payload info for this port.

connector DRM connector this port is connected to.

mgr topology manager this port lives under.
Description

This structure represents an MST port endpoint on a device somewhere in the MST topology.

414

DRM Internals

Name
struct drm_dp_mst_branch — M ST branch device.

Synopsis

struct drmdp_nst_branch {
struct kref kref;
u8 rad[8];
u8 lct;
i nt num ports;
int meg_slots;
struct |ist_head ports;
struct drmdp_nst_port * port_parent;
struct drmdp_nst_topol ogy ngr * ngr;
struct drm.dp_sideband nsg tx * tx_slots[2];
int |ast_seqgno;

bool |ink _address_sent;
u8 guid[16];
b
Members
kref reference count for this port.
rad[8] Relative Address to talk to this branch device.
Ict Link count total to talk to this branch device.
num_ports number of ports on the branch.
msg_slots one bit per transmitted msg slot.
ports linked list of ports on this branch.
port_parent pointer to the port parent, NULL if toplevel.
mgr topology manager for this branch device.
tx_slots[2] transmission slots for this device.
last_segno last sequence number used to talk to this.
link_address_sent if alink address message has been sent to this device yet.
guid[16] guid for DP 1.2 branch device. port under this branch can be identified by
port #.
Description

This structure represents an MST branch device, thereis one primary branch device at the root, along with
any other branches connected to downstream port of parent branches.

415

DRM Internals

Name
struct drm_dp_mst_topology_mgr — DisplayPort MST manager

Synopsis

struct drm.dp_nst_topol ogy ngr {
struct device * dev;
struct drmdp_nst _topol ogy chs * cbs;
struct drmdp_aux * aux;
i nt max_payl oads;
int conn_base_id,;
struct drm.dp_si deband _nsg rx down_rep_recyv;
struct drm.dp_si deband nsg rx up_req_recv;
struct mutex | ock;
bool nst_state;
struct drmdp_nst_branch * nst_primary;
u8 dpcd[DP_RECEI VER CAP_SI ZE] ;

i nt pbn_div;
b
Members

dev device pointer for adding i2c devices etc.

cbs callbacks for connector addition and destruction. max_d-
pcd _transacti on_bytes - maximum number of bytes to
read/write in one go.

aux aux channel for the DP connector.

max_payloads maximum number of payloads the GPU can generate.

conn_base id DRM connector ID this mgr is connected to.

down_rep_recv msg receiver state for down replies.

up_req_recv msg receiver state for up requests.

lock protects mst state, primary, dpcd.

mst_state if this manager is enabled for an MST capable port.

mst_primary pointer to the primary branch device.

dpcd[DP_RECEIVER_CAP_SIZE] cache of DPCD for primary port.
pbn_div PBN to slots divisor.
Description

This struct represents the toplevel displayport MST topology manager. There should be one instance of
thisfor every MST capable DP connector on the GPU.

416

DRM Internals

Name
drm_dp_update payload partl — Execute payload update part 1

Synopsis
int drmdp_update_payl oad partl (struct drmdp_nst _topol ogy ngr * nyr);
Arguments

mgr manager to use.

Description

This iterates over all proposed virtual channels, and tries to allocate space in the link for them. For O-
>gdlots transitions, this step just writes the VCPI to the MST device. For dots->0 transitions, this writes
the updated VV CPI's and removes the remote V C payloads.

after calling this the driver should generate ACT and payload packets.

417

DRM Internals

Name
drm_dp_update payload part2 — Execute payload update part 2

Synopsis

i nt drmdp_update_payl oad part2 (struct drmdp_nst_topol ogy _ngr * ngr);
Arguments

mgr manager to use.

Description

This iterates over al proposed virtual channels, and tries to allocate space in the link for them. For O-
>gdlots transitions, this step writes the remote VC payload commands. For slots->0 this just resets some
internal state.

418

DRM Internals

Name
drm_dp_mst_topology _mgr_set mst — Set the MST state for atopology manager

Synopsis

int drmdp _nst_topology ngr_set nst (struct drmdp_nst _topol ogy ngr *
ngr, bool nst_state);

Arguments
ngr manager to set state for

nst _state truetoenable MST on this connector - false to disable.

Description

Thisis called by the driver when it detects an MST capable device plugged into a DP M ST capable port,
or when aDP MST capable device is unplugged.

419

DRM Internals

Name
drm_dp_mst_topology_mgr_suspend — suspend the MST manager

Synopsis
void drmdp_nst_topol ogy _ngr_suspend (struct drmdp _nst_topol ogy ngr *
nor);

Arguments

ngr manager to suspend

Description

This function tells the MST device that we can't handle UP messages anymore. This should stop it from
sending any since we are suspended.

420

DRM Internals

Name
drm_dp_mst_topology_mgr_resume — resume the MST manager

Synopsis
int drmdp_nst_topology ngr_resunme (struct drmdp _nst_topology ngr *
ngr);

Arguments

mgr manager to resume

Description

This will fetch DPCD and see if the device is still there, if it is, it will rewrite the MSTM control bits,
and return.

if the devicefailsthisreturns-1, and the driver should do afull MST reprobe, in case we were undocked.

421

DRM Internals

Name
drm_dp_mst_hpd_irg— MST hotplug IRQ notify
Synopsis

int drmdp_nst_hpd_ irqg (struct drmdp_nst_topol ogy nmgr * ngr, u8 * esi,
bool * handl ed);

Arguments
ngr manager to notify irq for.
esi 4 bytes from SINK_COUNT_ES|

handl ed whether the hpd interrupt was consumed or not

Description

This should be called from the driver when it detects a short IRQ, aong with the value of the DE-
VICE_SERVICE IRQ VECTOR_ESIO. The topology manager will process the sideband messages re-
ceived as aresult of this.

422

DRM Internals

Name
drm_dp_mst_detect_port — get connection status for an MST port

Synopsis

enum drm connector_status drmdp_nst_detect port (struct drmconnec-
tor * connector, struct drmdp _nst_topology ngr * ngr, struct drmd-
p_nst_port * port);

Arguments

connector --undescribed --

ngr manager for this port
port unverified pointer to a port
Description

This returns the current connection state for a port. It validates the port pointer still exists so the caller
doesn't require areference

423

DRM Internals

Name
drm_dp_mst_get edid — get EDID for an MST port

Synopsis

struct edid * drmdp_nst_get _edid (struct drmconnector * connector,
struct drmdp_nst_topology ngr * ngr, struct drmdp_nst_port * port);

Arguments

connect or toplevel connector to get EDID for

ngr manager for this port
port unverified pointer to a port.
Description

Thisreturns an EDID for the port connected to a connector, It validates the pointer still exists so the caller
doesn't require areference.

424

DRM Internals

Name
drm_dp_find_vcpi_slots— find slots for this PBN value

Synopsis
int drmdp_find vcpi _slots (struct drmdp_nst_topology ngr * ngr, int
pbn) ;

Arguments

mgr manager to use

pbn payload bandwidth to convert into slots.

425

DRM Internals

Name
drm_dp_mst_allocate vcpi — Allocate avirtual channel

Synopsis

bool drmdp_nst_allocate vcpi (struct drmdp _nst_topology ngr * ngr,
struct drmdp_nst_port * port, int pbn, int * slots);

Arguments
ngr manager for this port
port port to allocate a virtual channel for.
pbn payload bandwidth number to request

sl ot s returned number of slotsfor this PBN.

426

DRM Internals

Name
drm_dp_mst_reset vcpi_slots — Reset number of slotsto O for VCPI

Synopsis

void drm dp_nst _reset _vcpi _slots (struct drmdp_nst_topol ogy _ngr * ngr,
struct drmdp_nst_port * port);

Arguments
ngr manager for this port

port unverified pointer to a port.

Description

Thisjust resets the number of slots for the ports VCPI for later programming.

427

DRM Internals

Name
drm_dp_mst_deallocate vecpi — deallocate aVCPI

Synopsis

void drmdp_nst_deal | ocate_vcpi (struct drmdp_nst_topol ogy ngr * ngr,
struct drmdp_nst_port * port);

Arguments
ngr manager for this port

port unverified port to deallocate vepi for

428

DRM Internals

Name
drm_dp_check_act_status— Check ACT handled status.

Synopsis
int drmdp_check act _status (struct drmdp_nst_topol ogy nmgr * nyr);

Arguments
ngr manager to use

Description
Check the payload status bits in the DPCD for ACT handled compl etion.

429

DRM Internals

Name
drm_dp_calc_pbn_mode — Calculate the PBN for a mode.

Synopsis

int drmdp_cal c_pbn_node (int clock, int bpp);
Arguments

cl ock dot clock for the mode

bpp bpp for the mode.

Description

This uses the formulain the spec to calculate the PBN value for a mode.

430

DRM Internals

Name
drm_dp_mst_dump_topology —
Synopsis
void drmdp nst_dunp_topology (struct seq file * m struct drmd-
p_mst_t opol ogy_ngr * ngr);
Arguments
m seq_file to dump output to
ngr manager to dump current topology for.
Description

helper to dump M ST topology to a seq file for debugfs.

431

DRM Internals

Name

drm_dp_mst_topology_mgr_init — initialise a topology manager
Synopsis
int drmdp _nst_topology ngr _init (struct drmdp_nst_topol ogy ngr * ngr,

struct device * dev, struct drmdp_aux * aux, int nax_dpcd_transac-
tion_bytes, int max_payl oads, int conn_base_id);

Arguments
ngr manager struct to initialise
dev device providing this structure - for i2c addition.
aux DP helper aux channel to talk to this device
max_dpcd_t ransac- hw specific DPCD transaction limit

tion_bytes

max_payl oads maximum number of payloads this GPU can source
conn_base id the connector object ID the MST device is connected to.
Description

Return O for success, or negative error code on failure

432

DRM Internals

Name
drm_dp_mst_topology_mgr_destroy — destroy topology manager.

Synopsis
void drmdp_nst_topol ogy _ngr_destroy (struct drmdp _nst_topol ogy ngr *
nor);

Arguments

ngr manager to destroy

MIPI DSI Helper Functions Reference

These functions contain some common logic and helpersto deal with MIPI DSI peripherals.

Helpers are provided for a number of standard MIPI DSI command as well as a subset of the MIPI DCS
command set.

433

DRM Internals

Name
struct mipi_dsi_msg — read/write DS| buffer

Synopsis

struct mpi_dsi_msg {
u8 channel ;
u8 type;
ulé fl ags;
size t tx_len;
const void * tx_buf;
size t rx_len;
void * rx_buf;

b
Members

channel virtual channel id

type payload data type
flags flags controlling this message transmission
tx_len length of t x_buf

tx_buf datato be written
rx_len length of r x_buf

rx_buf datato beread, or NULL

DRM Internals

Name
struct mipi_dsi_packet — representsaMIPI DSI packet in protocol format

Synopsis

struct mpi_dsi_packet {
size t size;
u8 header|[4];
size_t payl oad_ | ength;
const u8 * payl oad;

b
Members
size size (in bytes) of the packet
header[4] the four bytes that make up the header (Data ID, Word Count or Packet Data, and
ECC)
payload_length number of bytesin the payload
payload apointer to abuffer containing the payload, if any

435

DRM Internals

Name
struct mipi_dsi_host_ops— DSI bus operations

Synopsis

struct mpi_dsi_host _ops {
int (* attach) (struct mpi_dsi_host *host,struct mnipi_dsi_device *dsi);
int (* detach) (struct mpi_dsi_host *host,struct mnipi_dsi_device *dsi);
ssize t (* transfer) (struct mpi_dsi_host *host,const struct mipi_dsi_nsg *nsg)

b
Members
attach attach DSI deviceto DSI host
detach detach DSI device from DSI host
transfer transmit aDSI packet
Description

DSl packetstransmitted by .t r ansf er arepassed inasmipi_dsi_msg structures. This structure contains
information about the type of packet being transmitted aswell asthetransmit and receive buffers. When an
error isencountered during transmission, thisfunction will return anegative error code. On successit shall
return the number of bytes transmitted for write packets or the number of bytes received for read packets.

Note that typically DSI packet transmission is atomic, so the .t r ansf er function will seldomly return
anything other than the number of bytes contained in the transmit buffer on success.

436

DRM Internals

Name
struct mipi_dsi_host — DSl host device

Synopsis
struct mpi_dsi_host {
struct device * dev;

const struct mpi_dsi_host _ops * ops;

} y
Members
dev driver model device node for this DSI host

ops DSl host operations

437

DRM Internals

Name

struct mipi_dsi_device— DS peripheral device

Synopsis

struct mpi_dsi_device {

struct

m pi _dsi _host * host;

struct device dev;

unsi gned int channel

unsi gned int | anes;

enum m pi _dsi_pixel _format fornat;
unsi gned | ong node_fl ags;

1
Members

host

dev

channel

lanes

format

mode_flags

DSl host for this peripheral

driver model device node for this peripheral
virtual channel assigned to the peripheral
number of active data lanes

pixel format for video mode

DSl operation mode related flags

438

DRM Internals

Name

enum mipi_dsi_dcs tear_ mode — Tearing Effect Output Line mode

Synopsis

enum m pi _dsi _dcs_tear_node {
M Pl _DSI _DCS_TEAR _MODE_VBLANK,

} i)
Constants

MIPI_DSI_DCS TEAR_MOD-
E_VBLANK

MIPI_DSI_DCS TEAR_MOD-
E_VHBLANK

M Pl _DSI _DCS_TEAR MODE_VHBLANK

the TE output line consists of V-Blanking information only

the TE output line consists of both V-Blanking and H-Blanking in-
formation

439

DRM Internals

Name

struct mipi_dsi_driver — DSl driver

Synopsis

struct mpi_dsi_driver {
struct device driver driver;
int(* probe) (struct mpi_dsi_device *dsi);
int(* renove) (struct mpi_dsi_device *dsi);
void (* shutdown) (struct m pi_dsi_device *dsi);

b

Members
driver device driver model driver
probe callback for device binding
remove callback for device unbinding

shutdown called at shutdown time to quiesce the device

DRM Internals

Name

of_find_mipi_dsi_device by node — find the MIPI DSI device matching a device tree node

Synopsis
struct mpi_dsi_device * of find mpi_dsi_device by node (struct de-
vi ce_node * np);

Arguments

np devicetree node

Return

A pointer to the MIPI DSI device corresponding to np or NULL if no such device exists (or has not been
registered yet).

441

DRM Internals

Name
mipi_dsi_attach — attach aDSI deviceto its DSI host

Synopsis
int mpi_dsi_attach (struct mpi_dsi_device * dsi);
Arguments

dsi DSl peripheral

442

DRM Internals

Name
mipi_dsi_detach — detach a DSI device from its DSI host

Synopsis
int mpi_dsi_detach (struct mpi_dsi_device * dsi);
Arguments

dsi DSl peripheral

DRM Internals

Name
mipi_dsi_packet format_is short — check if a packet is of the short format

Synopsis
bool nipi_dsi_packet format _is _short (u8 type);
Arguments

type MIPI DSl datatype of the packet

Return

true if the packet for the given data type is a short packet, false otherwise.

DRM Internals

Name

mipi_dsi_packet format_is long — check if a packet is of the long format

Synopsis
bool nipi_dsi_packet format _is |ong (u8 type);
Arguments

type MIPI DSl datatype of the packet

Return

trueif the packet for the given datatype is along packet, fal se otherwise.

DRM Internals

Name
mipi_dsi_create packet — create a packet from a message according to the DSI protocol

Synopsis

int mpi_dsi_create packet (struct mipi_dsi_packet * packet, const
struct mpi_dsi_nmsg * nsQ);

Arguments
packet pointer to aDSl packet structure
nsg message to translate into a packet

Return

0 on success or a negative error code on failure.

446

DRM Internals

Name

mipi_dsi_generic_write — transmit data using a generic write packet
Synopsis

ssize t mpi_dsi_generic_wite (struct nmpi_dsi_device * dsi, const void
* payl oad, size_ t size);

Arguments

dsi DSl periphera device

payl oad buffer containing the payload

si ze size of payload buffer
Description

This function will automatically choose the right data type depending on the payload length.
Return

The number of bytes transmitted on success or a negative error code on failure.

447

DRM Internals

Name

mipi_dsi_generic_read — receive data using a generic read packet
Synopsis

ssize t mpi_dsi_generic_read (struct mipi_dsi_device * dsi, const void
* parans, size t numparans, void * data, size_ t size);

Arguments
dsi DSl periphera device
par ams buffer containing the request parameters

num par ans number of request parameters

dat a buffer in which to return the received data
size size of receive buffer
Description

Thisfunction will automatically choose the right data type depending on the number of parameters passed
in.

Return

The number of bytes successfully read or a negative error code on failure.

DRM Internals

Name

mipi_dsi_dcs write_buffer — transmit a DCS command with payload
Synopsis

ssize t mpi_dsi_dcs wite buffer (struct mpi_dsi_device * dsi, const
void * data, size t len);

Arguments

dsi DSl periphera device

dat a buffer containing datato be transmitted

[en sizeof transmission buffer
Description

This function will automatically choose the right data type depending on the command payload length.
Return

The number of bytes successfully transmitted or a negative error code on failure.

449

DRM Internals

Name

mipi_dsi_dcs write — send DCS write command
Synopsis

ssize t mpi_dsi_dcs wite (struct mpi_dsi_device * dsi, u8 cnd, const
void * data, size t len);

Arguments

dsi DSl periphera device

cmd DCScommand

dat a buffer containing the command payload

I en command payload length
Description

This function will automatically choose the right data type depending on the command payload length.
Return

The number of bytes successfully transmitted or a negative error code on failure.

450

DRM Internals

Name
mipi_dsi_dcs read — send DCS read request command

Synopsis

ssize t mpi_dsi_dcs read (struct nipi_dsi_device * dsi, u8 cnd, void
* data, size_ t len);

Arguments
dsi DSl periphera device
cmd DCScommand
dat a buffer in which to receive data
l en sizeof receive buffer

Return

The number of bytes read or a negative error code on failure.

451

DRM Internals

Name
mipi_dsi_dcs_nop — send DCS nop packet

Synopsis

int mpi_dsi_dcs _nop (struct mpi_dsi_device * dsi);

Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure.

452

DRM Internals

Name

mipi_dsi_dcs_soft_reset — perform a software reset of the display module

Synopsis

int mpi_dsi_dcs_soft _reset (struct mpi_dsi_device * dsi);

Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure.

453

DRM Internals

Name
mipi_dsi_dcs get_power_mode — query the display modul€'s current power mode

Synopsis
int mpi_dsi_dcs_get power node (struct mpi_dsi_device * dsi, u8 *
node) ;

Arguments

dsi DSl periphera device
node return location for the current power mode

Return

0 on success or a negative error code on failure.

DRM Internals

Name
mipi_dsi_dcs get pixel_format — gets the pixel format for the RGB image data used by the interface
Synopsis
int mpi_dsi_dcs_get pixel format (struct mipi_dsi_device * dsi, u8 *
format);
Arguments
dsi DSl periphera device

format returnlocation for the pixel format

Return

0 on success or a negative error code on failure.

455

DRM Internals

Name

mipi_dsi_dcs enter sleep mode — disable all unnecessary blocks inside the display module except in-
terface communication

Synopsis

int mpi_dsi_dcs_enter_sleep_node (struct nipi_dsi_device * dsi);
Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure.

456

DRM Internals

Name

mipi_dsi_dcs exit_sleep_mode — enable all blocks inside the display module
Synopsis

int mpi_dsi_dcs_exit_sleep node (struct mpi_dsi_device * dsi);
Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure.

457

DRM Internals

Name
mipi_dsi_dcs_set_display_off — stop displaying the image data on the display device

Synopsis
int mpi_dsi_dcs_set display off (struct mpi_dsi_device * dsi);

Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure.

458

DRM Internals

Name
mipi_dsi_dcs _set_display_on — start displaying the image data on the display device

Synopsis
int mpi_dsi_dcs_set _display on (struct mpi_dsi_device * dsi);

Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure

459

DRM Internals

Name
mipi_dsi_dcs_set_column_address — define the column extent of the frame memory accessed by the host
processor

Synopsis

int mpi_dsi_dcs_set _colum_address (struct mpi_dsi_device * dsi, ul6
start, ul6 end);

Arguments
dsi DSl periphera device
start first column of frame memory
end last column of frame memory
Return

0 on success or a negative error code on failure.

460

DRM Internals

Name
mipi_dsi_dcs_set_page address — define the page extent of the frame memory accessed by the host

jprocessor

Synopsis

int mpi_dsi_dcs_set page address (struct mpi_dsi_device * dsi, ul6
start, ul6 end);

Arguments
dsi DSl periphera device
start first page of frame memory
end last page of frame memory

Return

0 on success or a negative error code on failure.

461

DRM Internals

Name
mipi_dsi_dcs set_tear off — turn off the display modul€'s Tearing Effect output signal on the TE signal
line
Synopsis
int mpi_dsi_dcs_set tear off (struct mpi_dsi_device * dsi);
Arguments

dsi DSl peripheral device

Return

0 on success or a negative error code on failure

462

DRM Internals

Name
mipi_dsi_dcs_set_tear_on — turn on the display modul€e's Tearing Effect output signal on the TE signal

line.

Synopsis

int mpi_dsi_dcs_set tear_on (struct mpi_dsi_device * dsi, enum m p-
i _dsi_dcs_tear _npde node);

Arguments
dsi DSl periphera device
node the Tearing Effect Output Line mode

Return

0 on success or a negative error code on failure

463

DRM Internals

Name
mipi_dsi_dcs _set_pixel_format — setsthe pixel format for the RGB image data used by the interface
Synopsis
int mpi_dsi_dcs_set pixel format (struct mipi_dsi_device * dsi, u8
format);
Arguments
dsi DSl periphera device

format pixel format

Return

0 on success or a negative error code on failure.

464

DRM Internals

Name

mipi_dsi_driver_register_full — register adriver for DSI devices

Synopsis

int mpi_dsi_driver register_full (struct mpi_dsi_driver * drv, struct
nodul e * owner);

Arguments
drv DSl driver structure
owner owner module

Return

0 on success or a negative error code on failure.

465

DRM Internals

Name

mipi_dsi_driver_unregister — unregister adriver for DSI devices
Synopsis

void m pi_dsi_driver_unregister (struct mpi_dsi _driver * drv);
Arguments

drv DSl driver structure

Return

0 on success or a negative error code on failure.

EDID Helper Functions Reference

466

DRM Internals

Name
drm_edid_header_is valid — sanity check the header of the base EDID block

Synopsis

int drmedid header is valid (const u8 * raw edid);
Arguments

raw_edi d pointer to raw base EDID block
Description

Sanity check the header of the base EDID block.

Return

8 if the header is perfect, down to O if it's totally wrong.

467

DRM Internals

Name
drm_edid_block_valid — Sanity check the EDID block (base or extension)

Synopsis

bool drmedid block valid (u8 * raw edid, int block, bool print_bad e-
did, bool * edid corrupt);

Arguments
raw _edi d pointer to raw EDID block
bl ock type of block to validate (O for base, extension otherwise)

print_bad_edi d if true, dump bad EDID blocks to the console

edi d_corrupt if true, the header or checksum isinvalid
Description

Validate a base or extension EDID block and optionally dump bad blocks to the console.
Return

Trueif the block is valid, false otherwise.

468

DRM Internals

Name
drm_edid_is valid — sanity check EDID data

Synopsis

bool drmedid is valid (struct edid * edid);
Arguments

edid EDID data
Description

Sanity-check an entire EDID record (including extensions)
Return

Trueif the EDID datais valid, false otherwise.

469

DRM Internals

Name
drm_do_get edid — get EDID data using a custom EDID block read function

Synopsis
struct edid * drmdo_get edid (struct drmconnector * connector, int
(*get _edid_bl ock) (void *data, u8 *buf, unsigned int block, size_ t |en),
void * data);

Arguments
connect or connector we're probing
get _edi d_bl ock EDID block read function
dat a private data passed to the block read function

Description

When the 12C adapter connected to the DD C busis hidden behind adevicethat exposesadifferent interface
to read EDID blocks this function can be used to get EDID data using a custom block read function.

As in the general case the DDC bus is accessible by the kernel at the 12C level, drivers must make all
reasonable effortsto exposeit asan 12C adapter and usedr m_get _edi d instead of abusing thisfunction.

Return

Pointer to valid EDID or NULL if we couldn't find any.

470

DRM Internals

Name
drm_probe_ddc — probe DDC presence

Synopsis
bool drm probe_ddc (struct i2c_adapter * adapter);

Arguments

adapt er 12C adapter to probe

Return

True on success, false on failure.

471

DRM Internals

Name
drm_get edid — get EDID data, if available

Synopsis

struct edid * drmget _edid (struct drmconnector * connector, struct
i 2c_adapter * adapter);

Arguments
connect or connector were probing
adapt er 12C adapter to use for DDC
Description

Poke the given 12C channel to grab EDID dataif possible. If found, attach it to the connector.

Return

Pointer to valid EDID or NULL if we couldn't find any.

472

DRM Internals

Name
drm_edid_duplicate — duplicate an EDID and the extensions

Synopsis

struct edid * drmedid duplicate (const struct edid * edid);

Arguments

edi d EDID to duplicate

Return

Pointer to duplicated EDID or NULL on allocation failure.

473

DRM Internals

Name

drm_match_cea _mode — look for a CEA mode matching given mode

Synopsis

u8 drm match_cea_node (const struct drmdi splay _node * to_match);
Arguments
to_mat ch display mode

Return

The CEA Video ID (VIC) of the mode or O if it isn't a CEA-861 mode.

474

DRM Internals

Name
drm_get_cea aspect_ratio — get the picture aspect ratio corresponding to the input VIC from the CEA
mode list

Synopsis
enum hdm _pi cture_aspect drm get cea aspect _ratio (const u8

vi deo_code) ;
Arguments

vi deo_code 1D givento each of the CEA modes

Description

Returns picture aspect ratio

475

DRM Internals

Name
drm_edid to_eld — build ELD from EDID

Synopsis
void drmedid to eld (struct drmconnector * connector, struct edid *
edi d);

Arguments

connect or connector corresponding to the HDMI/DP sink
edid EDID to parse

Description

Fill theELD (EDID-Like Data) buffer for passing to theaudio driver. The Conn_Type, HDCP and Port_ID
ELD fields are left for the graphics driver to fill in.

476

DRM Internals

Name
drm_edid_to_sad — extracts SADs from EDID

Synopsis
int drmedid to sad (struct edid * edid, struct cea_sad ** sads);
Arguments
edi d EDID to parse
sads pointer that will be set to the extracted SADs
Description
Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) fromit.
Note
The returned pointer needsto be freed using kf r ee.

Return

The number of found SADs or negative number on error.

477

DRM Internals

Name
drm_edid_to_speaker allocation — extracts Speaker Allocation Data Blocks from EDID

Synopsis
int drmedid to_speaker_allocation (struct edid * edid, u8 ** sadb);
Arguments
edi d EDID to parse
sadb pointer to the speaker block
Description
Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
Note
The returned pointer needsto be freed using kf r ee.

Return

The number of found Speaker Allocation Blocks or negative number on error.

478

DRM Internals

Name
drm_av_sync_delay — compute the HDMI/DP sink audio-video sync delay

Synopsis

int drmav_sync_delay (struct drmconnector * connector, const struct
drm di spl ay_node * node);

Arguments
connect or connector associated with the HDMI/DP sink

node the display mode

Return

TheHDMI/DP sink'saudio-video sync delay in millisecondsor Oif the sink doesn't support audio or video.

479

DRM Internals

Name
drm_select_eld — select one ELD from multiple HDMI/DP sinks

Synopsis
struct drmconnector * drmselect _eld (struct drmencoder * encoder);

Arguments

encoder theencoder just changed display mode

Description

It's possible for one encoder to be associated with multiple HDMI/DP sinks. The policy isnow hard coded
to simply use the first HDMI/DP sink's ELD.

Return

The connector associated with the first HDMI/DP sink that has ELD attached to it.

480

DRM Internals

Name

drm_detect_hdmi_monitor — detect whether monitor is HDMI
Synopsis

bool drmdetect_hdm nonitor (struct edid * edid);
Arguments

edi d monitor EDID information
Description

Parse the CEA extension according to CEA-861-B.

Return

True if the monitor is HDMI, false if not or unknown.

481

DRM Internals

Name

drm_detect_monitor_audio — check monitor audio capability
Synopsis

bool drmdetect nonitor_audio (struct edid * edid);
Arguments

edi d EDID block to scan

Description

Monitor should have CEA extension block. If monitor has 'basic audio', but no CEA audio blocks, it's
'basic audio’ only. If there is any audio extension block and supported audio format, assume at least 'basic
audio' support, even if 'basic audio' is not defined in EDID.

Return

True if the monitor supports audio, false otherwise.

482

DRM Internals

Name
drm_rgb_quant_range_selectable — is RGB quantization range sel ectable?

Synopsis

bool drmrgb _quant _range_sel ectable (struct edid * edid);
Arguments

edi d EDID block to scan

Description

Check whether the monitor reportsthe RGB quanti zation range selection as supported. The AV infoframe
can then be used to inform the monitor which quantization range (full or limited) is used.

Return

Trueif the RGB quantization range is selectable, fal se otherwise.

483

DRM Internals

Name
drm_add_edid modes — add modes from EDID data, if available

Synopsis
int drmadd _edi d nodes (struct drmconnector * connector, struct edid
* edid);

Arguments

connect or connector were probing

edi d EDID data
Description

Add the specified modes to the connector's mode list.
Return

The number of modes added or O if we couldn't find any.

DRM Internals

Name
drm_add_modes noedid — add modes for the connectors without EDID

Synopsis

int drm add nodes _noedid (struct drm.connector * connector, int hdis-
play, int vdisplay);

Arguments
connect or connector were probing
hdi spl ay thehorizontal display limit
vdi splay thevertical display limit
Description

Add the specified modes to the connector's mode list. Only when the hdisplay/vdisplay is not beyond the
given limit, it will be added.

Return

The number of modes added or 0 if we couldn't find any.

485

DRM Internals

Name
drm_set_preferred_mode — Sets the preferred mode of a connector

Synopsis

void drmset preferred nbpde (struct drmconnector * connector,
hpref, int vpref);

Arguments

connect or connector whose mode list should be processed

hpr ef horizontal resolution of preferred mode
vpr ef vertical resolution of preferred mode
Description

Marks amode as preferred if it matches the resolution specified by hpr ef andvpr ef .

i nt

486

DRM Internals

Name
drm_hdmi_avi_infoframe_from_display_mode — fill an HDMI AVI infoframe with data from a DRM

display mode

Synopsis

int drmhdm _avi _infoframe_fromdi splay_node (struct hdm _avi _i nfofrane
* frame, const struct drmdisplay _node * node);

Arguments
frame HDMI AVI infoframe
node DRM display mode

Return

0 on success or a negative error code on failure.

487

DRM Internals

Name

drm_hdmi_vendor_infoframe_from_display_mode — fill an HDMI infoframe with data from a DRM
display mode

Synopsis

int drm hdm _vendor infoframe_fromdi spl ay_node (struct hdm _vendor i n-
foframe * frame, const struct drmdisplay_node * node);

Arguments
frame HDMI vendor infoframe
node DRM display mode
Description
Note that there's is a heed to send HDMI vendor infoframes only when using a 4k or stereoscopic 3D
mode. So when giving any other mode as input this function will return -EINVAL, error that can be safely

ignored.

Return

0 on success or a negative error code on failure.

Rectangle Utilities Reference

Utility functions to help manage rectangular areas for clipping, scaling, etc. calculations.

488

DRM Internals

Name

struct drm_rect — two dimensional rectangle

Synopsis

struct drmrect {

s
Members
x1
vyl
X2

y2

int x1;
int yl;
int x2;
int y2;

horizontal starting coordinate (inclusive)
vertical starting coordinate (inclusive)
horizontal ending coordinate (exclusive)

vertical ending coordinate (exclusive)

489

DRM Internals

Name

drm_rect_adjust_size — adjust the size of the rectangle
Synopsis

void drmrect_adjust_size (struct drmrect * r, int dw, int dh);
Arguments

r rectangle to be adjusted

dw horizontal adjustment

dh vertical adjustment

Description

Change the size of rectangler by dwin the horizontal direction, and by dh inthe vertical direction, while
keeping the center of r stationary.

Positive dw and dh increase the size, negative values decrease it.

490

DRM Internals

Name

drm_rect_trandate — trandlate the rectangle
Synopsis

void drmrect _translate (struct drmrect * r, int dx, int dy);
Arguments

r rectangle to be tranlated

dx horizontal tranglation

dy vertica transation

Description

Move rectangler by dx inthe horizontal direction, and by dy in the vertical direction.

4901

DRM Internals

Name

drm_rect_downscale — downscale a rectangle

Synopsis

void drmrect_downscale (struct drmrect * r, int horz, int vert);

Arguments

r rectangle to be downscaled
horz horizontal downscale factor
vert vertical downscale factor

Description

Divide the coordinates of rectangler by hor z andvert .

492

DRM Internals

Name

drm_rect_width — determine the rectangle width
Synopsis
int drmrect_width (const struct drmrect * r);

Arguments

r rectangle whose width is returned

RETURNS

The width of the rectangle.

493

DRM Internals

Name

drm_rect_height — determine the rectangle height
Synopsis
int drmrect_height (const struct drmrect * r);

Arguments

r rectangle whose height is returned

RETURNS

The height of the rectangle.

494

DRM Internals

Name

drm_rect_visible — determine if the the rectangleis visible
Synopsis
bool drmrect visible (const struct drmrect * r);

Arguments

r rectangle whose visihility is returned

RETURNS

t r ue if therectangleisvisible, f al se otherwise.

495

DRM Internals

Name
drm_rect_equals — determine if two rectangles are equal

Synopsis
bool drmrect _equals (const struct drmrect * rl, const struct drmrect
*r2);

Arguments

r1 firstrectangle
r 2 second rectangle

RETURNS

t r ue if therectangles are equal, f al se otherwise.

496

DRM Internals

Name
drm_rect_intersect — intersect two rectangles

Synopsis
bool drmrect _intersect (struct drmrect * rl, const struct drmrect
*r2);

Arguments

r1 firstrectangle

r 2 second rectangle
Description

Calculate the intersection of rectanglesr 1 and r 2. r 1 will be overwritten with the intersection.
RETURNS

t rue if rectangler 1 is still visible after the operation, f al se otherwise.

497

DRM Internals

Name
drm_rect_clip_scaled — perform a scaled clip operation

Synopsis

bool drmrect clip _scaled (struct drmrect * src, struct drmrect * dst,
const struct drmrect * clip, int hscale, int vscale);

Arguments
src source window rectangle
dst destination window rectangle

clip clip rectangle

hscal e horizontal scaling factor

vscal e vertica scaling factor
Description

Cliprectangle dst by rectanglecl i p. Clip rectangle sr ¢ by the same amounts multiplied by hscal e
andvscal e.

RETURNS

t rue if rectangle dst isstill visible after being clipped, f al se otherwise

498

DRM Internals

Name
drm_rect_calc_hscale — calculate the horizontal scaling factor

Synopsis

int drmrect _calc_hscale (const struct drmrect * src, const struct
drmrect * dst, int nin_hscale, int max_hscal e);

Arguments
src source window rectangle
dst destination window rectangle

nm n_hscal e minimum alowed horizontal scaling factor

max_hscal e maximum allowed horizontal scaling factor
Description

Calculate the horizontal scaling factor as (sr ¢ width) / (dst width).
RETURNS

The horizontal scaling factor, or errno of out of limits.

499

DRM Internals

Name
drm_rect_calc_vscale — calculate the vertical scaling factor

Synopsis

int drmrect _calc _vscale (const struct drmrect * src, const struct
drmrect * dst, int nin_vscale, int max_vscal e);

Arguments
src source window rectangle
dst destination window rectangle

m n_vscal e minimum allowed vertical scaling factor

max_vscal e maximum alowed vertical scaling factor
Description

Calculate the vertical scaling factor as(sr ¢ height) / (dst height).

RETURNS

The vertical scaling factor, or errno of out of limits.

500

DRM Internals

Name
drm_rect_calc_hscale relaxed — calculate the horizontal scaling factor

Synopsis

int drmrect_calc_hscal e _relaxed (struct drmrect * src, struct drmrect
* dst, int mn_hscale, int nax_hscal e);

Arguments
src source window rectangle
dst destination window rectangle

nm n_hscal e minimum alowed horizontal scaling factor

max_hscal e maximum allowed horizontal scaling factor
Description

Calculate the horizontal scaling factor as (sr ¢ width) / (dst width).

If the calculated scaling factor ishelow m n_vscal e, decrease the height of rectangle dst to compen-
sate.

If the calculated scaling factor is above max_vscal e, decrease the height of rectangle sr ¢ to compen-
sate.

RETURNS

The horizontal scaling factor.

501

DRM Internals

Name

drm_rect_calc_vscale relaxed — calculate the vertical scaling factor
Synopsis

int drmrect_calc_vscal e relaxed (struct drmrect * src, struct drmrect
* dst, int mn_vscale, int nax_vscale);

Arguments
src source window rectangle
dst destination window rectangle

m n_vscal e minimum allowed vertical scaling factor

max_vscal e maximum alowed vertical scaling factor
Description

Calculate the vertical scaling factor as(sr ¢ height) / (dst height).

If the calculated scaling factor ishelow m n_vscal e, decrease the height of rectangle dst to compen-
sate.

If the calculated scaling factor is above max_vscal e, decrease the height of rectangle sr ¢ to compen-
sate.

RETURNS

The vertical scaling factor.

502

DRM Internals

Name
drm_rect_debug_print — print the rectangle information

Synopsis

void drmrect _debug print (const struct drmrect * r, bool fixed _point);
Arguments

r rectangle to print

fixed_poi nt rectangleisin 16.16 fixed point format

503

DRM Internals

Name

drm_rect_rotate — Rotate the rectangle
Synopsis

void drmrect rotate (struct drmrect * r, int width, int height, un-
signed int rotation);

Arguments
r rectangle to be rotated
Wi dt h Width of the coordinate space

hei ght Height of the coordinate space

rotati on Transformation to be applied

Description
Apply r ot at i on to the coordinates of rectangler .
wi dt h and hei ght combined withr ot at i on define the location of the new origin.

Wi dt h correcsponds to the horizontal and hei ght to the vertical axis of the untransformed coordinate
space.

504

DRM Internals

Name

drm_rect_rotate inv — Inverse rotate the rectangle
Synopsis

void drmrect rotate inv (struct drmrect * r, int width, int height,
unsi gned int rotation);

Arguments
r rectangle to be rotated
Wi dt h Width of the coordinate space

hei ght Height of the coordinate space

rotati on Transformationwhoseinverseisto be applied

Description
Apply theinverse of r ot at i on to the coordinates of rectangler .
wi dt h and hei ght combined withr ot at i on define the location of the new origin.

Wi dt h correcsponds to the horizontal and hei ght to the vertical axis of the original untransformed
coordinate space, so that you never have to flip them when doing a rotatation and its inverse. That is, if
you do:

drm_rotate(r, width, height, rotation); drm_rotate_inv(r, width, height, rotation);

you will always get back the original rectangle.

Flip-work Helper Reference

Util to queue up work to run from work-queue context after flip/vblank. Typicaly this can be used to
defer unref of framebuffer's, cursor bo's, etc until after vblank. The APIs are al thread-safe. Moreover,
drm_flip_work_queue task and drm_flip_work_queue can be called in atomic context.

505

DRM Internals

Name
struct drm_flip_task — flip work task

Synopsis

struct drmflip_task {
struct |ist_head node;
voi d * data;

} y
Members
node list entry element

data datato passto work->func

506

DRM Internals

Name

struct drm_flip_work — flip work queue

Synopsis

struct drmflip work {
const char * nane;
drmflip func_t func;
struct work_struct worker;
struct |ist_head queued;
struct |list_head conmted,;
spi nl ock_t | ock;

b
Members
name debug name
func callback fxn called for each committed item
worker worker which callsf unc
queued queued tasks

commited commited tasks

lock lock to access queued and commited lists

507

DRM Internals

Name
drm_flip_work_allocate task — allocate a flip-work task

Synopsis
struct drmflip task * drmflip work allocate task (void * data, gfp_t
flags);

Arguments

data dataassociated to the task
flags alocator flags

Description

Allocate adrm_flip_task object and attach private datato it.

508

DRM Internals

Name
drm_flip_work_queue task — queue a specific task

Synopsis

void drmflip_work queue task (struct drmflip work * work, struct dr-
mflip task * task);

Arguments
wor k the flip-work
task thetask to handle

Description

Queues task, that will later be run (passed back to drm_flip_func_t func) on a work queue after dr -
mflip_work _comit iscaled.

509

DRM Internals

Name

drm_flip_work_queue — queue work
Synopsis

void drmflip_work queue (struct drmflip work * work, void * val);
Arguments

wor k the flip-work

val the value to queue

Description

Queues work, that will later be run (passed back to drm_flip_func_t func) on a work queue after dr -
mflip_work _comit iscaled.

510

DRM Internals

Name

drm_flip_work_commit — commit queued work

Synopsis

void drmflip work commit (struct drmflip wrk * work,
wor kqueue_struct * wq);

Arguments
wor k the flip-work

wg the work-queue to run the queued work on

Description

struct

Trigger work previously queued by dr m f 1 i p_wor k_queue to run on aworkqueue. Thetypical usage
would beto queuework (viadrm f 1 i p_wor k_queue) at any point (from vblank irq and/or prior), and

then from vblank irg commit the queued work.

511

DRM Internals

Name

drm_flip_work_init — initiaize flip-work

Synopsis

voiddrmflip work init (struct drmflip _work * work, const char * nane,
drmflip func_t func);

Arguments
wor k theflip-work toinitialize
nane debug name
func the calback work function

Description

Initializes/allocates resources for the flip-work

512

DRM Internals

Name

drm_flip_work_cleanup — cleans up flip-work
Synopsis

void drmflip work cleanup (struct drmflip work * work);
Arguments

wor k the flip-work to cleanup

Description

Destroy resources allocated for the flip-work

HDMI Infoframes Helper Reference

Strictly speaking this is not a DRM helper library but generally useable by any driver interfacing with
HDMI outputslikev4l or alsadrivers. But it nicely fitsinto the overall topic of mode setting hel per libraries
and henceis also included here.

513

DRM Internals

Name

union hdmi_infoframe — overall union of all abstract infoframe representations

Synopsis

uni on hdm _i nfofrane {
struct hdm _any_infofrane any;
struct hdm _avi _infofrane avi;
struct hdm _spd_ i nfofrane spd;
uni on hdm _vendor _any_i nfofranme vendor;
struct hdmi _audi o_i nfof rane audi o;

b

Members
any generic infoframe
avi avi infoframe
spd spd infoframe

vendor union of all vendor infoframes
audio audio infoframe
Description

This is used by the generic pack function. This works since al infoframes have the same header which
a so indicates which type of infoframe should be packed.

514

DRM Internals

Name

hdmi_avi_infoframe_init — initialize an HDMI AV infoframe

Synopsis

int hdm _avi_infoframe_init (struct hdm _avi_infofrane * frane);

Arguments

frame HDMI AVI infoframe

Description

Returns 0 on success or a negative error code on failure.

515

DRM Internals

Name

hdmi_avi_infoframe_pack — write HDMI AV infoframe to binary buffer

Synopsis

ssize_t hdm _avi _infofranme_pack (struct hdm _avi _infoframe * frane, void
* puffer, size t size);

Arguments
frame HDMI AVI infoframe
buf fer destination buffer
si ze size of buffer

Description

Packs the information contained in the f r ane structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of

the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

516

DRM Internals

Name
hdmi_spd_infoframe_init — initialize an HDMI SPD infoframe

Synopsis

int hdm _spd_ infofrane_init (struct hdm _spd_infoframe * frane,
char * vendor, const char * product);

Arguments
frame HDMI SPD infoframe
vendor vendor string
product product string

Description

Returns 0 on success or a negative error code on failure.

const

517

DRM Internals

Name
hdmi_spd_infoframe_pack — write HDMI SPD infoframe to binary buffer

Synopsis

ssize_t hdm _spd_infofranme_pack (struct hdm _spd_infoframe * frane, void
* puffer, size t size);

Arguments
frame HDMI SPD infoframe
buf f er destination buffer

si ze size of buffer

Description

Packs the information contained in the f r ane structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of

the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

518

DRM Internals

Name

hdmi_audio_infoframe_init — initialize an HDMI audio infoframe

Synopsis

int hdmi _audio_infoframe_init (struct hdm _audio_infoframe * frane);

Arguments

frame HDMI audio infoframe

Description

Returns 0 on success or a negative error code on failure.

519

DRM Internals

Name

hdmi_audio_infoframe_pack — write HDMI audio infoframe to binary buffer

Synopsis

ssize_t hdm _audi o_i nfofranme_pack (struct hdm _audio_infofrane * frane,
void * buffer, size t size);

Arguments
frame HDMI audio infoframe
buf fer destination buffer
si ze size of buffer

Description

Packs the information contained in the f r ane structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of

the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

520

DRM Internals

Name

hdmi_vendor_infoframe_init — initialize an HDMI vendor infoframe

Synopsis

int hdm _vendor_infofrane_init (struct hdm _vendor _infoframe * frane);

Arguments

frame HDMI vendor infoframe

Description

Returns 0 on success or a negative error code on failure.

521

DRM Internals

Name

hdmi_vendor_infoframe_pack — write aHDMI vendor infoframe to binary buffer

Synopsis

ssize_ t hdm _vendor _infofranme_pack (struct hdm _vendor infofrane *
frame, void * buffer, size t size);

Arguments
frame HDMI infoframe
buf f er destination buffer

si ze size of buffer

Description

Packs the information contained in the f r ane structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

522

DRM Internals

Name

hdmi_infoframe_pack — write aHDM I infoframe to binary buffer

Synopsis

ssize t hdm _infofrane_pack (union hdni _infoframe * frane, void *
buffer, size t size);

Arguments
frame HDMI infoframe
buf fer destination buffer
si ze size of buffer

Description

Packs the information contained in the f r ane structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of

the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

523

DRM Internals

Name

hdmi_infoframe_log — log info of HDMI infoframe
Synopsis

void hdm _infofrane_| og (const char * |evel, struct device * dev, union
hdm _infoframe * frane);

Arguments
| evel logging level
dev device

frame HDMI infoframe

524

DRM Internals

Name

hdmi_infoframe_unpack — unpack binary buffer to aHDMI infoframe
Synopsis

i nt hdm _i nfoframe_unpack (union hdm _infofrane * frane, void * buffer);
Arguments

frame HDMI infoframe

buf fer sourcebuffer

Description

Unpacks the information contained in binary buffer buf f er into a structured f r ame of a HDMI in-
foframe. Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4 specification.

Returns 0 on success or a negative error code on failure.

Plane Helper Reference

525

DRM Internals

Name
drm_plane_helper_check_update — Check plane update for validity

Synopsis

int drmplane_hel per_check update (struct drmplane * plane, struct
drmecrtc * crtc, struct drmfranebuffer * fb, struct drmrect * src,
struct drmrect * dest, const struct drmrect * clip, int mn_scale, int
max_scal e, bool can_position, bool can_update_di sabl ed, bool * visible);

Arguments
pl ane plane object to update
crtc owning CRTC of owning plane
fb framebuffer to flip onto plane
src source coordinatesin 16.16 fixed point
dest integer destination coordinates
clip integer clipping coordinates
m n_scal e minimum sr c:dest scaling factor in 16.16 fixed point
max_scal e maximum sr c:dest scaling factor in 16.16 fixed point
can_position isit legal to position the plane such that it doesn't cover the entire crtc? This

will generally only be false for primary planes.
can_updat e_di sabl ed canthe plane be updated while the crtc is disabled?

vi si bl e output parameter indicating whether plane is still visible after clipping

Description

Checks that a desired plane update is valid. Drivers that provide their own plane handling rather than
hel per-provided implementations may still wish to call thisfunction to avoid duplication of error checking
code.

RETURNS

Zero if update appears valid, error code on failure

526

DRM Internals

Name
drm_primary_helper_update — Helper for primary plane update

Synopsis

int drmprimary_hel per_update (struct drm plane * plane, struct drmcrtc
* crtc, struct drmfranebuffer * fb, int crtc_x, int crtc_y, unsigned int
crtc_w, unsigned int crtc_h, uint32_t src_x, uint32 t src_y, uint32_t
src_w, uint32_t src_h);

Arguments
pl ane plane object to update
crtc owning CRTC of owning plane
fb framebuffer to flip onto plane
crtc_x xoffsetof primary plane on crtc
crtc_y vy offset of primary plane on crtc
crtc_w width of primary plane rectangle on crtc
crtc_h heght of primary plane rectangle on crtc
src_x xoffsetof f b for panning
src_y yoffsetof f b for panning
src_w width of sourcerectangleinf b

src_h height of sourcerectangleinf b

Description

Provides a default plane update handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the plane with a non-NULL framebuffer. We call the driver's modeset
handler to update the framebuffer.

Set Pl ane on aprimary plane of adisabled CRTC is not supported, and will return an error.

Note that we make some assumptions about hardware limitations that may not be true for all hardware --
1) Primary plane cannot be repositioned. 2) Primary plane cannot be scaled. 3) Primary plane must cover
the entire CRTC. 4) Subpixel positioning is not supported. Drivers for hardware that don't have these
restrictions can provide their own implementation rather than using this helper.

RETURNS

Zero on success, error code on failure

527

DRM Internals

Name
drm_primary_helper_disable — Helper for primary plane disable

Synopsis
int drmprimary_hel per_disable (struct drmplane * plane);

Arguments

pl ane planeto disable

Description

Provides a default plane disable handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the planewith aNULL framebuffer parameter. It unconditionally failsthe
disable call with -EINVAL the only way to disable the primary plane without driver support is to disable
the entier CRTC. Which does not match the plane ->disable hook.

Note that some hardware may be able to disable the primary plane without disabling the whole CRTC.
Drivers for such hardware should provide their own disable handler that disables just the primary plane
(and they'll likely need to providetheir own update handler aswell to properly re-enable adisabled primary
plane).

RETURNS

Unconditionally returns -EINVAL.

528

DRM Internals

Name
drm_primary_helper_destroy — Helper for primary plane destruction

Synopsis

void drmprinmary_hel per_destroy (struct drmplane * plane);
Arguments

pl ane planeto destroy

Description

Provides a default plane destroy handler for primary planes. This handler is called during CRTC destruc-
tion. We disable the primary plane, remove it from the DRM planelist, and deall ocate the plane structure.

529

DRM Internals

Name
drm_crtc_init — Legacy CRTC initialization function

Synopsis

int drmecrtc_init (struct drmdevice * dev, struct drmcrtc * crtc,
const struct drmcrtc_funcs * funcs);

Arguments

dev DRM device

crtc CRTCobject toinit

funcs callbacksfor the new CRTC
Description

Initialize a CRTC object with a default hel per-provided primary plane and no cursor plane.
Returns

Z€ero on success, error code on failure.

530

DRM Internals

Name
drm_plane_helper_update — Transitional helper for plane update

Synopsis

i nt drm pl ane_hel per _update (struct drm plane * plane, struct drmecrtc *
crtc, struct drmfranebuffer * fb, int crtc_x, int crtc_y, unsigned int
crtc_w, unsigned int crtc_h, uint32_t src_x, uint32 t src_y, uint32_t
src_w, uint32_t src_h);

Arguments
pl ane plane object to update
crtc owning CRTC of owning plane
fb framebuffer to flip onto plane
crtc_x xoffsetof primary plane on crtc
crtc_y vy offset of primary plane on crtc
crtc_w width of primary plane rectangle on crtc
crtc_h heght of primary plane rectangle on crtc
src_x xoffsetof f b for panning
src_y yoffsetof f b for panning
src_w width of sourcerectangleinf b
src_h height of sourcerectangleinf b
Description

Provides adefault plane update handler using the atomic plane update functions. Itisfully left to the driver
to check plane constraints and handle corner-cases like afully occluded or otherwise invisible plane.

Thisisuseful for piecewise transitioning of adriver to the atomic helpers.
RETURNS

Zero on success, error code on failure

531

DRM Internals

Name

drm_plane_helper_disable — Transitional helper for plane disable
Synopsis

i nt drm pl ane_hel per_di sable (struct drmplane * plane);
Arguments

pl ane planeto disable

Description

Providesadefault plane disable handler using the atomic plane update functions. It isfully left to thedriver
to check plane constraints and handle corner-cases like afully occluded or otherwise invisible plane.

Thisisuseful for piecewise transitioning of adriver to the atomic helpers.

RETURNS

Zero on success, error code on failure

This helper library has two parts. The first part has support to implement primary plane support on top of
the normal CRTC configuration interface. Since the legacy ->set_config interface ties the primary plane
together with the CRTC state this does not allow userspace to disable the primary plane itself. To avoid
too much duplicated code use dr m pl ane_hel per _check_updat e which can be used to enforce
the same restrictions as primary planes had thus. The default primary plane only expose XRBG8888 and
ARGB8888 as valid pixel formats for the attached framebuffer.

Drivers are highly recommended to implement proper support for primary planes, and newly merged
drivers must not rely upon these transitional helpers.

The second part a so implementstransitional helperswhich allow driversto gradually switch to the atomic
helper infrastructure for plane updates. Oncethat switch iscomplete drivers shouldn't use these any longer,
instead using the proper legacy implementationsfor update and disabl e plane hooks provided by the atomic
helpers.

Again drivers are strongly urged to switch to the new interfaces.

Tile group

Tile groups are used to represent tiled monitors with a unique integer identifier. Tiled monitors using
DisplaylD v1.3 have a unique 8-byte handle, we store thisin atile group, so we have acommon identifier
for al tilesin amonitor group.

Bridges

Overview

drm_bridge represents a device that hangs on to an encoder. These are handy when aregular drm_encoder
entity isn't enough to represent the entire encoder chain.

532

DRM Internals

A bridgeisalways associated to asingle drm_encoder at atime, but can be either connected to it directly,
or through an intermediate bridge:

encoder ---> bridge B ---> bridge A
Here, the output of the encoder feeds to bridge B, and that furthers feedsto bridge A.

Thedriver using the bridge is responsi bl e to make the associations between the encoder and bridges. Once
these links are made, the bridges will participate along with encoder functions to perform mode_set/en-
able/disable through the ops provided in drm_bridge funcs.

drm_bridge, like drm_panel, aren't drm_mode_object entities like planes, crtcs, encoders or connectors.
They just provide additional hooks to get the desired output at the end of the encoder chain.

Default bridge callback sequence

The drm_bridge funcs ops are populated by the bridge driver. The drm internal s(atomic and crtc helpers)
use the helpers defined in drm_bridge.c These helpers call a specific drm_bridge _funcs op for al the
bridges during encoder configuration.

When creating abridge driver, one can implement drm_bridge funcs op with the help of these rough rules:

pre_enable: this contains things needed to be done for the bridge before its clock and timings are enabled
by its source. For abridge, its source is generally the encoder or bridge just before it in the encoder chain.

enable: this contains things needed to be done for the bridge once its source is enabled. In other words,
enableis called once the source is ready with clock and timing needed by the bridge.

disable: this contains things needed to be done for the bridge assuming that its source is still enabled, i.e.
clock and timings are still on.

post_disable: this contains things needed to be done for the bridge once its source is disabled, i.e. once
clocks and timings are off.

mode_fixup: this should fixup the given mode for the bridge. It is called after the encoder's mode fixup.
mode_fixup can also reject amode completely if it's unsuitable for the hardware.

mode_set: this sets up the mode for the bridge. It assumes that its source (an encoder or a bridge) has set
the mode too.

533

DRM Internals

Name
drm_bridge_add — add the given bridge to the global bridge list

Synopsis
int drmbridge_add (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

RETURNS

Unconditionally returns Zero.

534

DRM Internals

Name

drm_bridge_remove — remove the given bridge from the global bridge list
Synopsis

void drm bridge renove (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

535

DRM Internals

Name

drm_bridge_attach — associate given bridge to our DRM device
Synopsis

int drmbridge attach (struct drmdevice * dev, struct drmbridge *
bri dge);

Arguments
dev DRM device
bri dge bridge control structure
Description
called by akmsdriver to link one of our encoder/bridge to the given bridge.

Note that setting up links between the bridge and our encoder/bridge objects needs to be handled by the
kms driver itself

RETURNS

Zero on success, error code on failure

536

DRM Internals

Name

drm_bridge_mode_fixup — fixup proposed mode for all bridgesin the encoder chain
Synopsis

bool drmbridge node fixup (struct drmbridge * bridge, const struct
drm di spl ay_node * node, struct drmdi splay_node * adjusted_node);

Arguments
bri dge bridge control structure
node desired mode to be set for the bridge

adj ust ed_node updated mode that works for this bridge

Description

Calls 'mode fixup' drm_bridge funcs op for all the bridges in the encoder chain, starting from the first
bridge to the last.

Note
the bridge passed should be the one closest to the encoder
RETURNS

true on success, false on failure

537

DRM Internals

Name
drm_bridge disable — calls 'disable’ drm_bridge _funcs op for all bridges in the encoder chain.

Synopsis

void drm bridge disable (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

Description

Calls 'disable’ drm_bridge funcs op for al the bridges in the encoder chain, starting from the last bridge
to the first. These are called before calling the encoder's prepare op.

Note

the bridge passed should be the one closest to the encoder

538

DRM Internals

Name
drm_bridge post_disable— calls'post_disable’ drm_bridge funcsop for al bridgesin the encoder chain.

Synopsis

void drm bridge post _disable (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

Description

Calls 'post_disable’ drm_bridge funcs op for all the bridges in the encoder chain, starting from the first
bridge to the last. These are called after completing the encoder's prepare op.

Note

the bridge passed should be the one closest to the encoder

539

DRM Internals

Name
drm_bridge_mode_set — set proposed mode for al bridgesin the encoder chain

Synopsis

void drmbridge node_set (struct drmbridge * bridge, struct drmdis-
pl ay_node * node, struct drmdi splay_node * adjusted _node);

Arguments
bri dge bridge control structure
node desired mode to be set for the bridge

adj ust ed_node updated mode that works for this bridge

Description

Calls'mode_set' drm_bridge funcsop for all the bridgesin the encoder chain, starting from thefirst bridge
to the last.

Note

the bridge passed should be the one closest to the encoder

DRM Internals

Name

drm_bridge pre_enable — calls 'pre_enable' drm_bridge funcs op for all bridges in the encoder chain.
Synopsis

void drm bridge pre_enable (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

Description

Calls'pre_enable' drm_bridge funcsopfor all the bridgesin the encoder chain, starting from thelast bridge
to thefirst. These are called before calling the encoder's commit op.

Note

the bridge passed should be the one closest to the encoder

541

DRM Internals

Name

drm_bridge _enable — calls'enable’ drm_bridge funcs op for al bridgesin the encoder chain.

Synopsis

void drm bridge _enable (struct drmbridge * bridge);
Arguments

bri dge bridge control structure

Description

Calls'enable’ drm_bridge funcs op for all the bridges in the encoder chain, starting from the first bridge
to the last. These are called after completing the encoder's commit op.

Note that the bridge passed should be the one closest to the encoder

542

DRM Internals

Name
of_drm_find_bridge — find the bridge corresponding to the device node in the global bridge list

Synopsis
struct drmbridge * of _drmfind bridge (struct device_node * np);
Arguments

np device node

RETURNS

drm_bridge control struct on success, NULL on failure

KMS Properties

Drivers may need to expose additional parameters to applications than those described in the previous
sections. KM S supports attaching properties to CRTCs, connectors and planes and offers a userspace API
to list, get and set the property values.

Properties are identified by a name that uniquely defines the property purpose, and store an associated
value. For all property types except blob properties the value is a 64-bit unsigned integer.

KMS differentiates between properties and property instances. Drivers first create properties and then
create and associate individual instances of those properties to objects. A property can be instantiated
multiple times and associated with different objects. Values are stored in property instances, and all other
property information are stored in the property and shared between al instances of the property.

Every property is created with atype that influences how the KM S core handles the property. Supported

property types are
DRM_MOD- Range properties report their minimum and maximum admissible val-
E PROP_RANGE ues. The KMS core verifies that values set by application fit in that

range.

DRM_MODE_PROP_ENUM Enumerated properties take a numerical value that ranges from 0 to the
number of enumerated values defined by the property minus one, and
associate a free-formed string name to each value. Applications can re-
trieve the list of defined value-name pairs and use the numerical value
to get and set property instance values.

DRM_MODE_PROP _BIT- Bitmask properties are enumeration properties that additionally restrict
MASK all enumerated valuesto the 0..63 range. Bitmask property instance val-
ues combine one or more of the enumerated bits defined by the property.

DRM_MODE_PROP BLOB Blob properties store a binary blob without any format restriction. The
binary blobs are created as KM S standal one objects, and blob property
instance values store the ID of their associated blob object.

Blob propertiesare only used for the connector EDID property and can-
not be created by drivers.

Tocreateaproperty driverscall one of thefollowing functions depending on the property type. All property
creation functions take property flags and name, as well as type-specific arguments.

e struct drmproperty *drm property create_range(struct drmdevice *dev, int flags,

DRM Internals

const char *nane,
uint64_t mn, uint64_t max);

Create arange property with the given minimum and maximum values.

e struct drmproperty *drm property_create_enun(struct drmdevice *dev, int flags,
const char *nane,
const struct drmprop_enumlist *pi
i nt num val ues);

Create an enumerated property. The pr ops argument pointsto an array of num val ues value-name
pairs.

e struct drmproperty *drm property_create_bitmsk(struct drm device *dev,
int flags, const char *nane,
const struct drmprop_enumlist
i nt num.val ues);

Create abitmask property. The pr ops argument pointsto an array of num val ues value-namepairs.

Properties can additionally be created asimmutable, in which case they will be read-only for applications
but can be modified by the driver. To create an immutable property drivers must set the DRM_MOD-
E_PROP_IMMUTABLE flag at property creation time.

When no array of value-name pairsis readily available at property creation time for enumerated or range
properties, drivers can create the property using the dr m property_cr eat e function and manually
add enumeration value-name pairs by calling thedr m pr operty_add_enumfunction. Care must be
taken to properly specify the property type through the f | ags argument.

After creating properties drivers can attach property instances to CRTC, connector and plane objects by
calingthedr m obj ect _attach_property. Thefunctiontakesapointer tothetarget object, apoint-
er to the previously created property and an initial instance value.

Existing KMS Properties

The following table gives description of drm properties exposed by various modules/drivers.

Table2.1.
Owner Mod-|Group Property Type Property Val-|Object at-|Descrip-
ule/Drivers Name ues tached tion/Restric-
tions
DRM Generic “rotation” BITMASK |{ 0, "ro-|CRTC, Plane |rotate-(de-
tate-0" }, { 1, grees) rotates
"rotate-90" }, the image
{ 2, "ro- by the spec-
tate-180" }, ified amount
{ 3, "ro- in degrees
tate-270" 1}, in counter
{ 4, 're clockwise di-
flect-x"},{ 5, rection. re-
"reflect-y" } flect-x and
reflect-y re-
flects the im-
age along the
specified axis

DRM Internals

prior to rota-
tion

Connector “EDID” BLOB | IM-|0 Connector Containsid of
MUTABLE edid blob ptr
object.
“DPMS’ ENUM { “On”,|Connector | Contains DP-
“Standby”, MS operation
“Suspend”, mode value.
“Off” }
“PATH” BLOB | IM-|0 Connector Contains
MUTABLE topology path
to a connec-
tor.
“TILE" BLOB | IM-|0 Connector | Contains
MUTABLE tiling infor-
mation for a
connector.
“CRTC_ID"” |OBJECT DRM_MOD- |Connector |CRTC that
E OBJEC- connector is
T CRTC attached to
(atomic)
Plane “type” ENUM | IM-|{ "Over-|Plane Plane type
MUTABLE |lay", "Pri-
mary", "Cur-
sor' }
“SRC X" RANGE Min=0, Plane Scanout
Max=UIN- source X CO-
T MAX ordinate in
16.16 fixed
point (atom-
ic)
“SRC_Y” RANGE Min=0, Plane Scanout
Max=UIN- source y Co-
T MAX ordinate in
16.16 fixed
point (atom-
ic)
“SRC_W” |RANGE Min=0, Plane Scanout
Max=UIN- source width
T_MAX in 16.16 fixed
point (atom-
ic)
“SRC_H" RANGE Min=0, Plane Scanout
Max=UIN- source height
T MAX in 16.16 fixed
point (atom-
iC)
“CRTC_X" |SIGNED_RANGBE=IN- Plane Scanout
T_MIN, CRTC (desti-

DRM Internas
Max=IN- nation) x co-
T MAX ordinate
(atomic)
“CRTC_Y" |SIGNED_RANWBE=IN- Plane Scanout
T_MIN, CRTC (desti-
Max=IN- nation) y co-
T MAX ordinate
(atomic)
“CRTC_W” |RANGE Min=0, Plane Scanout
Max=UIN- CRTC (desti-
T_MAX nation) width
(atomic)
“CRTC_H" |RANGE Min=0, Plane Scanout
Max=UIN- CRTC (desti-
T _MAX nation) height
(atomic)
“FB_ID" OBJECT DRM_MOD- |Plane Scanout
E OBJEC- framebuffer
T FB (atomic)
“CRTC_ID"” |OBJECT DRM_MOD- |Plane CRTC that
E OBJEC- plane is at-
T CRTC tached to
(atomic)
DVI-| “subconnec- |ENUM { “Un-|Connector | TBD
tor” known”,
“DVI-D”,
“DVI-A" }
“select sub-|ENUM { “Automat-|Connector |TBD
connector” ic’, “DVI-
D", “DVI-
A"}
TV “subconnec- |ENUM { "Un-|Connector | TBD
tor” known",
"Composite”,
"SVIDEO",
"Compo-
nent",
"SCART" }
“select sub-|ENUM { "Automat-|Connector |TBD
connector” ic', "Com-
posite",
"SVIDEO",
"Compo-
nent",
"SCART" }
“mode’ ENUM {"NTSC_M",|Connector |TBD
"NTSC_J',
"NTSC_443",
"PAL B" }
etc.

546

DRM Internas
“left margin” | RANGE Min=0, Connector | TBD
Max=100
“right mar-|RANGE Min=0, Connector | TBD
gin” Max=100
“top margin” |RANGE Min=0, Connector | TBD
Max=100
“bottom mar-| RANGE Min=0, Connector | TBD
gin” Max=100
“brightness” |RANGE Min=0, Connector TBD
Max=100
“contrast” RANGE Min=0, Connector TBD
Max=100
“flicker re-|RANGE Min=0, Connector | TBD
duction” Max=100
“overscan” |RANGE Min=0, Connector TBD
Max=100
“saturation” |RANGE Min=0, Connector TBD
Max=100
“hue” RANGE Min=0, Connector TBD
Max=100
Virtual GPU |“suggested |RANGE Min=0, Connector property to
X" M ax=0xffffffff suggest an X
offset for a
connector
“suggested |RANGE Min=0, Connector property to
Y” Max=0xffffffff suggest an Y
offset for a
connector
Optional “scaling ENUM { "None", | Connector TBD
mode’ "Full", "Cen-
ter", "Full as-
pect” }
"aspect ratio" |ENUM { "None", | Connector DRM prop-
"4:3", ety to set
"16:9" } aspect re-
tio from user
Space app.
This enum is
made generic
to alow ad-
dition of cus-
tom aspect ra-
tios.
“dirty” ENUM | IM-[{ "Off",|Connector | TBD
MUTABLE |"On", "Anno-
tate" }
i915 Generic "Broadcast |ENUM { "Automat-|Connector |TBD
RGB" ic', "Full",

547

DRM Internals

"Limited
16:235" }
“audio” ENUM { "force-dvi",|Connector | TBD
"off", "auto",
"on"}
SDVO-TV |“mode’ ENUM {"NTSC_M",|Connector |TBD
"NTSC_J',
"NTSC_443",
IIPAL_BII }
etc.
"left_margin" | RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
"right_ mar- |RANGE Min=0, Max=|Connector | TBD
gin" SDVO de
pendent
"top_margin" | RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
"bot- RANGE Min=0, Max=|Connector | TBD
tom_margin" SDVO de
pendent
“hpos’ RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
“vpos’ RANGE Min=0, Max=| Connector ~ TBD
SDVO de
pendent
“contrast” RANGE Min=0, Max=| Connector | TBD
SDVO de
pendent
“saturation” |RANGE Min=0, Max=| Connector TBD
SDVO de
pendent
“hue’ RANGE Min=0, Max=| Connector TBD
SDVO de
pendent
“sharpness’ |RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
“flicker_fil- |RANGE Min=0, Max=| Connector ~ TBD
ter” SDVO de
pendent
“flicker_fil- |RANGE Min=0, Max=|Connector | TBD
ter_adaptive” SDVO de
pendent

DRM Internals

“flicker_fil- |RANGE Min=0, Max=| Connector TBD
ter_2d" SDVO de
pendent
“tv_chro- RANGE Min=0, Max=| Connector TBD
ma_filter” SDVO de
pendent
“tv_luma fil- | RANGE Min=0, Max=|Connector | TBD
ter” SDVO de
pendent
“dot_crawl” |RANGE Min=0, Connector | TBD
Max=1
SDVO-TV/ |“brightness” |RANGE Min=0, Max=| Connector TBD
LVDS SDVO de
pendent
Cbv Generic "Broadcast |ENUM { “Full”,|Connector | TBD
gma-500 RGB" “Limited
16:235" }
"Broadcast |ENUM { “off”, “au-|Connector |TBD
RGB" to”, “on” }
Poulsbo Generic “backlight” |RANGE Min=0, Connector | TBD
Max=100
SDVO-TV |“mode’ ENUM {"NTSC_M",|Connector |TBD
"NTSC_J',
"NTSC_443",
"PAL_ B" }
etc.
"left_margin" | RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
"right_mar- |RANGE Min=0, Max=| Connector ~ (TBD
gin" SDVO de
pendent
"top_margin" |RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
"bot- RANGE Min=0, Max=| Connector | TBD
tom_margin" SDVO de
pendent
“hpos’ RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
“vpos’ RANGE Min=0, Max=| Connector ~ |TBD
SDVO de
pendent
“contrast” RANGE Min=0, Max=| Connector TBD
SDVO de
pendent

549

DRM Internals

“saturation” |RANGE Min=0, Max=| Connector TBD
SDVO de
pendent
“hue” RANGE Min=0, Max=| Connector TBD
SDVO de
pendent
“sharpness’ |RANGE Min=0, Max=|Connector | TBD
SDVO de
pendent
“flicker_fil- |RANGE Min=0, Max=| Connector TBD
ter” SDVO de
pendent
“flicker_fil- |RANGE Min=0, Max=| Connector TBD
ter_adaptive” SDVO de
pendent
“flicker_fil- |RANGE Min=0, Max=| Connector TBD
ter_2d” SDVO de
pendent
“tv_chro- RANGE Min=0, Max=|Connector | TBD
ma filter” SDVO de
pendent
“tv_luma fil- | RANGE Min=0, Max=| Connector TBD
ter” SDVO de
pendent
“dot_crawl” |RANGE Min=0, Connector TBD
Max=1
SDVO-TV/ |“brightness” |RANGE Min=0, Max=|Connector | TBD
LVDS SDVO de
pendent
armada CRTC "CSC_YUV" |ENUM { "Auto" ,|CRTC TBD
"CCIR601",
"CCIR709" }
"CSC_RGB" |[ENUM { "Auto",|CRTC TBD
"Computer
system",
"Studio" }
Overlay "colorkey" RANGE Min=0, Plane TBD
M ax=0xffffff
"col- RANGE Min=0, Plane TBD
orkey min" M ax=0xffffff
"col- RANGE Min=0, Plane TBD
orkey max" M ax=0xffffff
"col- RANGE Min=0, Plane TBD
orkey val" M ax=0xffffff
"colorkey_al- | RANGE Min=0, Plane TBD
pha" M ax=0xffffff

550

DRM Internals

"col-

orkey_mode"

ENUM

{ "disabled",
"Y compo-
nent", "U
component”
"V compo-
nent",

"RGB", “R
component”,
"G compo-
nent", "B
component” }

Plane

TBD

"brightness’

RANGE

Min=0,
Max=256 +
255

Plane

TBD

"contrast"

RANGE

Min=0,
M ax=0x7fff

Plane

TBD

"saturation”

RANGE

Min=0,
Max=0xT7fff

Plane

TBD

exynos

CRTC

“mode”

ENUM

{ "norma",
"blank" }

CRTC

TBD

Overlay

1 Zposn

RANGE

Min=0,
Max=MAX_R

Plane
LANE-1

TBD

i2c/
ch7006_drv

Generic

“scae’

RANGE

Min=0,
Max=2

Connector

TBD

TV

“ moden

ENUM

{ "PAL",
"PAL-
M""PAL-
N"}, "PAL-
Nc" ,
"PAL-60",
"NTSC-M",
"NTSC-J'}

Connector

TBD

nouveau

NV10 Over-
lay

"colorkey"

RANGE

Min=0,
Max=0x01ffff

Plane
ff

TBD

“contrast”

RANGE

Min=0,
Max=8192-1

Plane

TBD

“brightness’

RANGE

Min=0,
Max=1024

Plane

TBD

“huée

RANGE

Min=0,
Max=359

Plane

TBD

“saturation”

RANGE

Min=0,
Max=8192-1

Plane

TBD

“iturbt_709”

RANGE

Min=0,
Max=1

Plane

TBD

Nv04 Over-
lay

“colorkey”

RANGE

Min=0,
M ax=0x01ffff

Plane

TBD

“brightness’

RANGE

Min=0,

Plane

Max=1024

TBD

551

DRM Internas
Display “dithering ENUM { "auto",|Connector | TBD
mode” "off", "on" }
“dithering ENUM { "auto",|Connector | TBD
depth” "off*, "on",
"static 2x2",
"dynamic
2x2", “tem-
poral" }
“underscan” |ENUM { "auto",|Connector | TBD
"6 bpc', "8
bpc" }
“underscan |RANGE Min=0, Connector | TBD
hborder” Max=128
“underscan |RANGE Min=0, Connector | TBD
vborder” Max=128
“vibrant hue” | RANGE Min=0, Connector TBD
Max=180
“color vi-|RANGE Min=0, Connector | TBD
brance” Max=200
omap Generic “zorder” RANGE Min=0, CRTC, Plane | TBD
Max=3
ax| Generic “hot- RANGE Min=0, Connector | TBD
plug_mod- Max=1
e update”
radeon DVI-I “coherent” |RANGE Min=0, Connector | TBD
Max=1
DAC enable|“load detec-|RANGE Min=0, Connector | TBD
load detect |tion” Max=1
TV Standard |"tv standard" |ENUM { "ntsc”,|Connector | TBD
"pal”, "pal-
m", "pal-60",
"ntsc-j" ,
"scart-pal”,
"pal-cn”, "se-
cam" }
legacy "tmds_pll* |ENUM { “driver",|- TBD
TMDS PLL "bios" }
detect
Underscan |"underscan” |ENUM { "off", "on",|Connector | TBD
"auto" }
"underscan |RANGE Min=0, Connector | TBD
hborder" Max=128
"underscan |RANGE Min=0, Connector | TBD
vborder" Max=128
Audio “audio” ENUM { "off", "on",|Connector | TBD
"auto" }

552

DRM Internals

FMT Dither-|“dither” ENUM { "off","on"} |Connector | TBD
ing
rcar-du Generic "alpha" RANGE Min=0, Plane TBD
Max=255
"colorkey" |RANGE Min=0, Plane TBD
Max=0xO01ffffff
"zpos" RANGE Min=1, Plane TBD
Max=7

Vertical Blanking

Vertical blanking plays a major role in graphics rendering. To achieve tear-free display, users must syn-
chronize pageflips and/or rendering to vertical blanking. The DRM API offersioctlsto perform page flips
synchronized to vertical blanking and wait for vertical blanking.

The DRM core handles most of the vertical blanking management logic, which involves filtering out
spurious interrupts, keeping race-free blanking counters, coping with counter wrap-around and resets and
keeping use counts. It relies on the driver to generate vertical blanking interrupts and optionally provide a
hardware vertical blanking counter. Drivers must implement the following operations.

e int (*enable_vblank) (struct drmdevice *dev, int crtc);
void (*di sabl e_vblank) (struct drmdevice *dev, int crtc);

Enable or disable vertical blanking interrupts for the given CRTC.
* u32 (*get_vblank_counter) (struct drmdevice *dev, int crtc);

Retrievethevalue of thevertical blanking counter for the given CRTC. If the hardware maintainsaverti-
cal blanking counter itsvalue should be returned. Otherwise driverscan usethedr m vbl ank_count
hel per function to handle this operation.

Drivers must initialize the vertical blanking handling core with a call to dr m_vbl ank_i ni t in their
| oad operation. The function will set the struct drm_device vbl ank_di sabl e_al | owed field to O.
Thiswill keep vertical blanking interrupts enabled permanently until the first mode set operation, where
vbl ank_di sabl e_al | owed isset to 1. The reason behind thisis not clear. Drivers can set the field
to 1 after cal | i ng drm vbl ank_i ni t to make vertical blanking interrupts dynamically managed
from the beginning.

Vertical blanking interrupts can be enabled by the DRM core or by drivers themselves (for instance to
handle page flipping operations). The DRM core maintains a vertical blanking use count to ensure that
the interrupts are not disabled while a user still needs them. To increment the use count, drivers call dr -
m vbl ank_get . Upon return vertical blanking interrupts are guaranteed to be enabled.

To decrement the use count driverscall dr m vbl ank_put . Only when the use count dropsto zero will
the DRM core disable the vertical blanking interrupts after a delay by scheduling a timer. The delay is
accessible through the vblankoffdelay module parameter or thedr m vbl ank_of f del ay global vari-
able and expressed in milliseconds. Its default value is 5000 ms. Zero means never disable, and a neg-
ative value means disable immediately. Drivers may override the behaviour by setting the drm_device
vbl ank_di sabl e_i nmedi at e flag, which when set causes vblank interrupts to be disabled immedi-
ately regardless of the drm_vblank_offdelay value. The flag should only be set if there's a properly work-
ing hardware vblank counter present.

When avertical blanking interrupt occurs drivers only need to call thedr m_handl e_vbl ank function
to account for the interrupt.

553

DRM Internals

Resources allocated by dr m vbl ank_i ni t must be freed with acall to dr m vbl ank_cl eanup in
the driver unl oad operation handler.

Vertical Blanking and Interrupt Handling Functions Ref-
erence

554

DRM Internals

Name

drm_vblank_cleanup — cleanup vblank support
Synopsis
voi d drmvbl ank_cl eanup (struct drmdevice * dev);

Arguments

dev DRM device

Description

This function cleans up any resources allocated in drm_vblank_init.

555

DRM Internals

Name

drm_vblank_init — initialize vblank support
Synopsis
int drmvblank init (struct drmdevice * dev, unsigned int numcrtcs);
Arguments
dev DRM device
num crtcs number of CRTCs supported by dev
Description
Thisfunction initializes vblank support for num crt cs display pipelines.
Returns

Zero on success or a negative error code on failure.

556

DRM Internals

Name
drm_irq_install — install IRQ handler

Synopsis

int drmirqg_install (struct drmdevice * dev, int irq);
Arguments

dev DRM device

i rq IRQ number to install the handler for

Description

Initializes the IRQ related data. Instals the handler, calling the driver i rg_preinstall and
i rg_postinstall functionsbefore and after the installation.

Thisis the simplified helper interface provided for drivers with no special needs. Drivers which need to
install interrupt handlers for multiple interrupts must instead set drm_device->irq_enabled to signal the
DRM core that vblank interrupts are available.

Returns

Zero on success or a negative error code on failure.

557

DRM Internals

Name
drm_irq_uninstall — uninstall the IRQ handler

Synopsis
int drmirg_ uninstall (struct drmdevice * dev);
Arguments
dev DRM device
Description
Callsthedriver'si r g_uni nst al | function and unregistersthe IRQ handler. This should only be called
by drivers which used dr m_i r g_i nstal | to set up their interrupt handler. Other drivers must only

reset drm_device->irq_enabled to false.

Notethat for kernel modesetting driversitisabug if thisfunction fails. The sanity checksare only to catch
buggy user modesetting drivers which call the same function through anioctl.

Returns

Zero on success or a negative error code on failure.

558

DRM Internals

Name

drm_calc_timestamping_constants — calculate vblank timestamp constants

Synopsis

void drmcal c_tinmestanping constants (struct drmecrtc * crtc, const
struct drmdi spl ay_node * node);

Arguments

crtc drm_crtc whose timestamp constants should be updated.

node display mode containing the scanout timings

Description

Calculate and store various constants which are later needed by vblank and swap-completion timestamp-
ing, eg, by drm cal c_vbl ti mest anp_from scanout pos. They are derived from CRTC's true
scanout timing, so they take things like panel scaling or other adjustments into account.

559

DRM Internals

Name

drm_calc_vbltimestamp_from_scanoutpos — precise vblank timestamp hel per
Synopsis
int drmcal c_vbltinestanp_from scanout pos (struct drmdevice * dev, un-

signed int pipe, int * max_error, struct tinmeval * vblank_tine, unsigned
flags, const struct drm.display_node * node);

Arguments
dev DRM device
pi pe index of CRTC whose vblank timestamp to retrieve
max_error Desired maximum allowable error in timestamps (nanosecs) On return contains true

maximum error of timestamp

vbl ank_ti me Pointer to struct timeval which should receive the timestamp

flags Flags to pass to driver: 0 = Default, DRM_CALLED_FROM_VBLIRQ = If function
iscalled from vbl IRQ handler
node mode which defines the scanout timings
Description

Implements calculation of exact vblank timestamps from given drm_display_mode timings and current
video scanout position of a CRTC. This can be called from within get _vbl ank_t i nest anp imple-
mentation of akms driver to implement the actual timestamping.

Should return timestamps conforming to the OML_sync_control OpenML extension specification. The
timestamp corresponds to the end of the vblank interval, aka start of scanout of topmost-leftmost display
pixel in the following video frame.

Requires support for optional dev->driver->get _scanout _posi ti oninkmsdriver, plusabit of setup
codeto provide adrm_display_mode that corresponds to the true scanout timing.

The current implementation only handles standard video modes. It returns as no operation if adoublescan
or interlaced video mode is active. Higher level code is expected to handle this.

Returns
Negative value on error, failure or if not supported in current
video mode
-EINVAL - Invalid CRTC. -EAGAIN - Temporary unavailable, e.g., caled before initial modeset. -

ENOTSUPP - Function not supported in current display mode. -EIO - Failed, e.g., due to failed scanout
position query.

Returns or'ed positive status flags on success:

DRM_VBLANKTIME_SCANOUTPOS METHOD - Signal this method used for timestamping. DR-
M_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval.

560

DRM Internals

Name

drm_vblank_count — retrieve “ cooked” vblank counter value
Synopsis

u32 drmvbl ank_count (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe index of CRTC for which to retrieve the counter

Description

Fetchesthe“ cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity.

Thisisthelegacy versionof drm crt c_vbl ank_count.

Returns

The software vblank counter.

561

DRM Internals

Name

drm_crtc_vblank_count — retrieve “cooked” vblank counter value
Synopsis

u32 drmcrtc_vblank _count (struct drmecrtc * crtc);
Arguments

crtc which counter to retrieve

Description

Fetchesthe " cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity.

Thisisthe native KMSversion of dr m vbl ank_count .

Returns

The software vblank counter.

562

DRM Internals

Name

drm_vblank_count_and_time — retrieve “ cooked” vblank counter value and the system timestamp corre-
sponding to that vblank counter value.
Synopsis

u32 drmyvblank _count_and tinme (struct drmdevice * dev, unsigned int
pi pe, struct tineval * vblanktine);

Arguments
dev DRM device
pi pe index of CRTC whose counter to retrieve

vbl ankti me Pointer to struct timeval to receive the vblank timestamp.

Description

Fetchesthe“ cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity. Returns corresponding system timestamp of the
time of the vblank interval that corresponds to the current vblank counter value.

Thisisthe legacy version of drm crt c_vbl ank_count _and_ti ne.

563

DRM Internals

Name

drm_crtc_vblank_count_and_time — retrieve “cooked” vblank counter value and the system timestamp
corresponding to that vblank counter value

Synopsis

u32 drmecrtc_vblank count _and tinme (struct drmcrtc * crtc, struct
timeval * vbl anktinme);

Arguments
crtc which counter to retrieve

vbl ankti ne Pointer to struct timeval to receive the vblank timestamp.

Description

Fetchesthe“ cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity. Returns corresponding system timestamp of the
time of the vblank interval that corresponds to the current vblank counter value.

Thisisthe native KMS version of dr m vbl ank_count _and_ti ne.

564

DRM Internals

Name

drm_arm_vblank_event — arm vblank event after pageflip
Synopsis

void drm armvbl ank_event (struct drmdevice * dev, unsigned int pipe,
struct drm pendi ng_vbl ank_event * e);

Arguments

dev DRM device

pi pe CRTC index

e the event to prepare to send
Description

A lot of drivers need to generate vblank events for the very next vblank interrupt. For example when the
page flip interrupt happens when the page flip gets armed, but not when it actually executes within the
next vblank period. This helper function implements exactly the required vblank arming behaviour.

Caller must hold event lock. Caller must al so hold avblank referencefor the event e, which will bedropped
when the next vblank arrives.

Thisisthelegacy versionof drm crt c_arm vbl ank_event .

565

DRM Internals

Name

drm_crtc_arm_vblank_event — arm vblank event after pageflip
Synopsis

void drmcrtc_armvbl ank_event (struct drmcrtc * crtc, struct drm pend-
i ng_vbl ank_event * e);

Arguments
crtc thesource CRTC of the vblank event

e the event to send

Description

A lot of drivers need to generate vblank events for the very next vblank interrupt. For example when the
page flip interrupt happens when the page flip gets armed, but not when it actually executes within the
next vblank period. This helper function implements exactly the required vblank arming behaviour.

Caller must hold event lock. Caller must also hold avblank referencefor theevent e, which will bedropped
when the next vblank arrives.

Thisisthe native KMS version of dr m_ar m vbl ank_event .

566

DRM Internals

Name

drm_send_vblank_event — helper to send vblank event after pageflip

Synopsis

voi d drm send_vbl ank_event (struct drmdevice * dev, unsigned int pipe,
struct drm pendi ng_vbl ank_event * e);

Arguments
dev DRM device
pi pe CRTCindex
e the event to send
Description
Updates sequence # and timestamp on event, and sends it to userspace. Caller must hold event lock.

Thisisthelegacy versionof drm crt c_send_vbl ank_event .

567

DRM Internals

Name

drm_crtc_send_vblank_event — helper to send vblank event after pageflip

Synopsis

void drmcrtc_send vblank _event (struct drmcrtc * crtc, struct dr-
m pendi ng_vbl ank_event * e);

Arguments
crtc thesource CRTC of the vblank event
e the event to send
Description
Updates sequence # and timestamp on event, and sends it to userspace. Caller must hold event lock.

Thisisthe native KMS version of dr m send_vbl ank_event .

568

DRM Internals

Name

drm_vblank_get — get areference count on vblank events
Synopsis
int drmvblank _get (struct drm.device * dev, unsigned int pipe);
Arguments
dev DRM device
pi pe index of CRTC toown
Description
Acquire areference count on vblank events to avoid having them disabled while in use.
Thisisthelegacy versionof drm crt c_vbl ank_get.
Returns

Zero on success or a negative error code on failure.

569

DRM Internals

Name

drm_crtc_vblank_get — get a reference count on vblank events
Synopsis

int drmcrtc_vblank get (struct drmcrtc * crtc);
Arguments

crtc whichCRTCtoown

Description
Acquire areference count on vblank events to avoid having them disabled while in use.
Thisisthe native kmsversion of dr m vbl ank_get .

Returns

Zero on success or a negative error code on failure.

570

DRM Internals

Name

drm_vblank_put — release ownership of vblank events
Synopsis

void drmvbl ank_put (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe index of CRTC to release

Description

Release ownership of a given vblank counter, turning off interrupts if possible. Disable interrupts after
drm_vblank_offdelay milliseconds.

Thisisthelegacy versionof dr m crt c_vbl ank_put.

571

DRM Internals

Name

drm_crtc_vblank_put — give up ownership of vblank events
Synopsis

void drmecrtc_vblank _put (struct drmcrtc * crtc);
Arguments

crtc which counter to give up

Description

Release ownership of a given vblank counter, turning off interrupts if possible. Disable interrupts after
drm_vblank_offdelay milliseconds.

Thisisthe native kmsversion of dr m vbl ank_put .

572

DRM Internals

Name

drm_wait_one vblank — wait for one vblank
Synopsis

void drmwait_one_vblank (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe CRTCindex

Description

Thiswaits for one vblank to pass on pi pe, using theirq driver interfaces. It isafailure to call thiswhen
the vblank irq for pi pe isdisabled, e.g. dueto lack of driver support or because the crtc is off.

573

DRM Internals

Name

drm_crtc_wait_one vblank — wait for one vblank
Synopsis

void drmcrtc_wait_one_vblank (struct drmcrtc * crtc);
Arguments

crtc DRM crtc

Description

Thiswaits for one vblank to passon cr t ¢, using theirqg driver interfaces. It isafailure to call this when
thevblank irg for crt ¢ isdisabled, e.g. dueto lack of driver support or because the crtc is off.

574

DRM Internals

Name
drm_vblank_off — disable vblank eventson aCRTC

Synopsis

void drmvbl ank_off (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe CRTCindex

Description

Drivers can use this function to shut down the vblank interrupt handling when disabling acrtc. This func-
tion ensures that the latest vblank frame count is stored so that dr m vbl ank_on can restore it again.

Drivers must use this function when the hardware vblank counter can get reset, e.g. when suspending.

Thisisthelegacy versionof dr m crt c_vbl ank_of f.

575

DRM Internals

Name

drm_crtc_vblank_off — disable vblank eventson a CRTC
Synopsis

void drmcrtc_vblank _off (struct drmecrtc * crtc);
Arguments

crtc CRTCinquestion

Description

Drivers can use this function to shut down the vblank interrupt handling when disabling a crtc. This func-
tion ensures that the latest vblank frame count is stored so that drm_vblank_on can restore it again.

Drivers must use this function when the hardware vblank counter can get reset, e.g. when suspending.

Thisisthe native kmsversion of dr m vbl ank_of f .

576

DRM Internals

Name
drm_crtc_vblank_reset — reset vblank state to off on aCRTC

Synopsis

void drmcrtc_vblank reset (struct drmcrtc * crtc);

Arguments

crtc CRTCinquestion

Description

Drivers can use this function to reset the vblank state to off at load time. Drivers should use this together
withthedr m crt c_vbl ank_of f anddr m crt c_vbl ank_on functions. The difference compared
todrm crtc_vbl ank_of f isthat thisfunction doesn't save the vblank counter and hence doesn't need

to call any driver hooks.

577

DRM Internals

Name

drm_vblank_on — enable vblank eventson a CRTC
Synopsis

void drmvbl ank_on (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe CRTCindex

Description

Thisfunctions restores the vblank interrupt state captured withdr m vbl ank_of f again. Notethat calls
todrm vbl ank_on and dr m vbl ank_of f can be unbalanced and so can also be unconditionally
called in driver load code to reflect the current hardware state of the crtc.

Thisisthelegacy versionof dr m crt c_vbl ank_on.

578

DRM Internals

Name

drm_crtc_vblank_on — enable vblank eventson a CRTC
Synopsis

void drmcrtc_vblank on (struct drmecrtc * crtc);
Arguments

crtc CRTCinquestion

Description

Thisfunctions restores the vblank interrupt state captured with dr m_vbl ank_of f again. Notethat calls
to dr m vbl ank_on and dr m vbl ank_of f can be unbalanced and so can also be unconditionally
called in driver load code to reflect the current hardware state of the crtc.

Thisisthe native kms version of dr m vbl ank_on.

579

DRM Internals

Name
drm_vblank_pre _modeset — account for vblanks across mode sets

Synopsis
void drmyvblank pre_nodeset (struct drmadevice * dev, unsigned int
pi pe) ;

Arguments

dev DRM device
pi pe CRTC index
Description
Account for vblank events across mode setting events, which will likely reset the hardware frame counter.

This is done by grabbing a temporary vblank reference to ensure that the vblank interrupt keeps running
across the modeset sequence. With this the software-side vblank frame counting will ensure that there are
no jumps or discontinuities.

Unfortunately this approach is racy and also doesn't work when the vblank interrupt stops running,
e.g. across system suspend resume. It is therefore highly recommended that drivers use the newer dr -
m vbl ank_of f anddr m vbl ank_on instead. dr m vbl ank_pr e_nodeset only workscorrectly
when using “cooked” software vblank frame counters and not relying on any hardware counters.

Driversmust call dr m vbl ank_post _nobdeset when re-enabling the same crtc again.

580

DRM Internals

Name
drm_vblank_post_modeset — undo drm_vblank_pre_modeset changes

Synopsis
void drmvbl ank _post npdeset (struct drmdevice * dev, unsigned int
pi pe) ;

Arguments

dev DRM device

pi pe CRTCindex

Description

This function again drops the temporary vblank reference acquired in drm_vblank_pre_modeset.

581

DRM Internals

Name

drm_handle_vblank — handle a vblank event
Synopsis

bool drm handl e_vbl ank (struct drmdevice * dev, unsigned int pipe);
Arguments

dev DRM device

pi pe index of CRTC where this event occurred

Description

Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.

Thisisthe legacy version of dr m crt ¢_handl e_vbl ank.

582

DRM Internals

Name

drm_crtc_handle vblank — handle avblank event
Synopsis

bool drmecrtc_handl e _vblank (struct drmecrtc * crtc);
Arguments

crtc wherethisevent occurred

Description

Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.

Thisisthe native KMSversion of dr m_handl e_vbl ank.

Returns

Trueif the event was successfully handled, false on failure.

583

DRM Internals

Name
drm_vblank_no_hw_counter — "No hw counter" implementation of .get _vbl ank_count er
Synopsis
u32 drmyvblank _no_hw counter (struct drmdevice * dev, unsigned int
pi pe) ;
Arguments

dev DRM device
pi pe CRTC for which to read the counter

Description

Drivers can plug thisinto the .get _vbl ank_count er function if there is no useable hardware frame
counter available.

Returns

584

DRM Internals

Name

drm_crtc_vblank_waitqueue — get vblank waitqueue for the CRTC
Synopsis

wai t _queue_head_t * drmcrtc_vbl ank_wai tqueue (struct drmcrtc * crtc);
Arguments

crtc which CRTC'svblank waitqueueto retrieve
Description

This function returns a pointer to the vblank waitqueue for the CRTC. Drivers can use this to implement
vblank waitsusingwai t _event & co.

Open/Close, File Operations and IOCTLs

Open and Close

int (*firstopen) (struct drmdevice *);

void (*lastclose) (struct drmdevice *);

int (*open) (struct drmdevice *, struct drmfile *);

void (*preclose) (struct drmdevice *, struct drmfile *);
void (*postclose) (struct drmdevice *, struct drmfile *);

Open and close handlers. None of those methods are mandatory.

Thefir st open method is caled by the DRM core for legacy UMS (User Mode Setting) drivers only
when an application opens a device that has no other opened file handle. UMS drivers can implement it
to acquire device resources. KMS drivers can't use the method and must acquire resources in the | oad
method instead.

Similarly thel ast ¢l ose method is called when the last application holding afile handle opened on the
device closesit, for both UMS and KM S drivers. Additionally, the method is also called at module unload
time or, for hot-pluggable devices, when the device is unplugged. The fi r st open and | ast cl ose
calls can thus be unbalanced.

The open method is called every time the device is opened by an application. Drivers can allocate per-
file private datain this method and store them in the struct drm_filedri ver _pri v field. Note that the
open method is called beforef i r st open.

The close operationissplitinto pr ecl ose and post ¢l ose methods. Drivers must stop and cleanup all
per-file operationsin the pr ecl ose method. For instance pending vertical blanking and page flip events
must be cancelled. No per-file operation is allowed on the file handle after returning from the pr ecl ose
method.

Finally the post cl ose method is called as the last step of the close operation, right before calling the
| ast cl ose method if no other open file handle exists for the device. Driversthat have allocated per-file
private datain the open method should free it here.

Thel ast cl ose method should restore CRTC and plane propertiesto default value, so that a subsequent
open of the device will not inherit state from the previous user. It can also be used to execute delayed
power switching state changes, e.g. in conjunction with the vga switcheroo infrastructure (see Part |11,

585

DRM Internals

“vga_switcheroo”). Beyond that KM Sdrivers should not do any further cleanup. Only legacy UMSdrivers
might need to clean up device state so that the vga console or an independent fbdev driver could take over.

File Operations

const struct file_operations *fops
File operations for the DRM device node.

Drivers must define the file operations structure that forms the DRM userspace API entry point, even
though most of those operations are implemented in the DRM core. The open, r el ease andi oct |
operations are handled by

.owner = TH S_MODULE,
.open = drm open,
.release = drmrel ease,

.unl ocked _ioctl = drm.octl,
#i f def CONFI G_COVPAT

.conpat _ioctl = drmconpat _ioctl,
#endi f

Drivers that implement private ioctls that requires 32/64bit compatibility support must provide their own
conpat _i oct | handler that processes private ioctlsand callsdr m conpat _i oct | for coreioctls.

Ther ead and pol | operations provide support for reading DRM events and polling them. They are
implemented by

.poll = drmpoll,
.read = drmread,
.Ilseek = no_|I seek,

The memory mapping implementation varies depending on how the driver manages memory. Pre-GEM
driverswill usedr m_mmap, while GEM-aware driverswill usedr m_ gem nmmap. See the section called
“The Graphics Execution Manager (GEM)”.

.mmap = drm gem nmap,

No other file operation is supported by the DRM API.

|IOCTLs

struct drm.ioctl_desc *ioctls;
int num.octls;

Driver-specific ioctls descriptors table.

Driver-specific ioctls numbers start at DRM_COMMAND_BASE. Theioctls descriptorstable isindexed
by the ioctl number offset from the base value. Drivers can use the DRM_IOCTL_DEF DRV() macro
to initialize the table entries.

586

DRM Internals

DRM | OCTL_DEF _DRV(ioctl, func, flags)

i oct| istheioctl name. Drivers must define the DRM_##ioctl and DRM_IOCTL_##ioctl macrosto the
ioctl number offset from DRM_COMMAND_BASE and the ioctl number respectively. The first macro
is private to the device while the second must be exposed to userspace in a public header.

f unc isapointer to the ioctl handler function compatible with the drm_ioctl_t type.

typedef int drmioctl_t(struct drmdevice *dev, void *data,

struct drmfile *file_priv);

f | ags isabitmask combination of the following values. It restricts how theioctl is allowed to be called.

DRM_AUTH - Only authenticated callers allowed

DRM_MASTER - Theioctl can only be called on the master file handle
DRM_ROOT_ONLY - Only callers with the SY SADMIN capability alowed
DRM_CONTROL_ALLOW - Theioctl can only be called on a control device

DRM_UNLOCKED - Theioctl handler will be called without locking the DRM global mutex. Thisis
the enforced default for kms drivers (i.e. using the DRIVER_MODESET flag) and hence shouldn't be
used any more for new drivers.

587

DRM Internals

Name
drm_noop — DRM no-op ioctl implemntation
Synopsis

int drmnoop (struct drmdevice * dev, void * data, struct drmfile
* file_priv);

Arguments
dev DRM device for theioctl
dat a data pointer for the ioctl

file_priv DRM filefortheioctl cal

Description

This no-op implementation for drm ioctls is useful for deprecated functionality where we can't return a
failure code because existing userspace checks the result of theioctl, but doesn't care about the action.

Always returns successfully with O.

588

DRM Internals

Name
drm_invalid_op — DRM invalid ioctl implemntation

Synopsis

int drminvalid op (struct drmdevice * dev, void * data, struct drmfile
* file_priv);

Arguments
dev DRM device for theioctl
dat a data pointer for the ioctl

file_priv DRM filefortheioctl cal

Description

This no-op implementation for drm ioctls is useful for deprecated functionality where we really don't
want to allow userspace to call the ioctl any more. Thisisthe case for old ums interfaces for drivers that
transitioned to kms gradually and so kept the old legacy tables around. This only applies to radeon and
1915 kms drivers, other drivers shouldn't need to use this function.

Always failswith areturn value of -EINVAL.

589

DRM Internals

Name

drm_ioctl — ioctl callback implementation for DRM drivers
Synopsis

long drmioctl (struct file* filp, unsigned int cnd, unsigned | ong arg);
Arguments

filp filethisioctl iscaledon

cmd ioctl emd number

arg user argument
Looks up theioctl function in the

sioctls table, checking for root previlegesif so required, and dispatches to the respective function.
Returns

Zero on success, negative error code on failure.

590

DRM Internals

Name

drm_ioctl_flags— Check for coreioctl and return ioctl permission flags
Synopsis

bool drmioctl _flags (unsigned int nr, unsigned int * flags);
Arguments

nr ioctl number

flags wheretoreturntheioctl permission flags
Description

Thisioctl isonly used by the vmwgfx driver to augment the access checks done by the drm core and insofar
a pretty decent layering violation. This shouldn't be used by any drivers.

Returns

Trueif thenr correspondsto a DRM coreioctl numer, false otherwise.

Legacy Support Code

The section very briefly covers some of the old legacy support code whichisonly used by old DRM drivers
which have done a so-called shadow-attach to the underlying device instead of registering asareal driver.
This also includes some of the old generic buffer management and command submission code. Do not use
any of thisin new and modern drivers.

Legacy Suspend/Resume

The DRM core provides some suspend/resume code, but drivers wanting full suspend/resume support
should provide save() and restore() functions. These are called at suspend, hibernate, or resume time, and
should perform any state save or restore required by your device across suspend or hibernate states.

int (*suspend) (struct drmdevice *, pmnessage_ t state);
int (*resune) (struct drmdevice *);

Those are legacy suspend and resume methods which only work with the legacy shadow-attach driver
registration functions. New driver should use the power management interface provided by their bus type
(usually through the struct device driver dev_pm_ops) and set these methods to NULL.

Legacy DMA Services

This should cover how DMA mapping etc. is supported by the core. These functions are deprecated and
should not be used.

591

Chapter 3. Userland interfaces

The DRM core exports several interfaces to applications, generally intended to be used through corre-
sponding libdrm wrapper functions. In addition, drivers export device-specific interfaces for use by user-
space drivers & device-aware applications through ioctls and sysfsfiles.

External interfacesinclude: memory mapping, context management, DMA operations, AGP management,
vblank control, fence management, memory management, and output management.

Cover generic ioctls and sysfs layout here. We only need high-level info, since man pages should cover
therest.

Render nodes

DRM core provides multiple character-devices for user-space to use. Depending on which device is
opened, user-space can perform a different set of operations (mainly ioctls). The primary node is always
created and called card<num>. Additionally, a currently unused control node, called controlD<num> is
also created. The primary node provides all legacy operations and historically was the only interface used
by userspace. With KMS, the control node was introduced. However, the planned KM S control interface
has never been written and so the control node stays unused to date.

With the increased use of offscreen renderers and GPGPU applications, clients no longer require running
compositors or graphics servers to make use of a GPU. But the DRM API required unprivileged clientsto
authenticate to a DRM-Master prior to getting GPU access. To avoid this step and to grant clients GPU
access without authenticating, render nodes wereintroduced. Render nodes solely serverender clients, that
is, no modesetting or privileged ioctls can beissued on render nodes. Only non-global rendering commands
areallowed. If adriver supportsrender nodes, it must advertiseit viathe DRIVER_RENDER DRM driver
capability. If not supported, the primary node must be used for render clients together with the legacy
drmAuth authentication procedure.

If a driver advertises render node support, DRM core will create a separate render node called ren-
derD<num>. There will be one render node per device. No ioctls except PRIME-related ioctls will be
allowed on this node. Especially GEM_OPEN will be explicitly prohibited. Render nodes are designed
to avoid the buffer-leaks, which occur if clients guess the flink names or mmap offsets on the legacy in-
terface. Additionally to this basic interface, drivers must mark their driver-dependent render-only ioctls
asDRM_RENDER_ALLOW so render clients can use them. Driver authors must be careful not to allow
any privileged ioctls on render nodes.

With render nodes, user-space can now control access to the render node via basic file-system ac-
cess-modes. A running graphics server which authenticates clients on the privileged primary/legacy node
isno longer required. Instead, a client can open the render node and is immediately granted GPU access.
Communication between clients (or servers) isdone viaPRIME. FLINK from render node to legacy node
is not supported. New clients must not use the insecure FLINK interface.

Besides dropping al modeset/global ioctls, render nodes also drop the DRM-Master concept. There is
Nno reason to associate render clients with a DRM-Master as they are independent of any graphics server.
Besides, they must work without any running master, anyway. Driversmust be able to run without amaster
object if they support render nodes. If, on the other hand, a driver requires shared state between clients
which is visible to user-space and accessible beyond open-file boundaries, they cannot support render
nodes.

VBlank event handling

The DRM core exposes two vertical blank related ioctls:

592

Userland interfaces

DR-
M_IOCTL_WAIT_VBLANK

DRM_IOCTL_MOD-
ESET_CTL

Thistakes a struct drm_wait_vblank structure asits argument, and it is
used to block or request asignal when a specified vblank event occurs.

This was only used for user-mode-settind drivers around modesetting
changes to alow the kernel to update the vblank interrupt after mode
setting, since on many devices the vertical blank counter is reset to O
at some point during modeset. Modern drivers should not cal this any
more since with kernel mode setting it is a no-op.

593

Part II. DRM Drivers

This second part of the GPU Driver Developer's Guide documents driver code, implementation details and also all
the driver-specific userspace interfaces. Especially since al hardware-acceleration interfaces to userspace are driver
specific for efficiency and other reasons these interfaces can be rather substantial. Hence every driver has its own
chapter.

Table of Contents

4. drm/i915 INLEl GFX DIIVEL ...ttt ettt e e e e 596
Core Driver INFIASITUCTUIEiiiii ettt e e e eeeas 596
Runtime POWer Managementcoouuuieiiiiiieeiii e e e e e e 596
INterrupt HandliNgooeeriei e 612

Intel GVT-g Guest SUPPOIT(VGPU)coouviiiiiiiieeeei e 615
Display Hardware Handlingocoouuiiiiiiiieec e 618
Mode Setting INfIraStFUCIUIEoiiiiiiee e 618
Frontbuffer TraCkingc..u.ieieii et 618
Display FIFO Underrun REPOMINGuueieeiiiieeieiiiee i e e e 626
Plane ConfigUIBLION it e r e e e e e e e eenes 631
ALOMIC Plane HEIPEISveeiii et e 631
OULPUL PrODING ...t e e e e e 636
HOEPIUG -ttt e e e e 636

High DEfiNition AUIOooieiiiiii e 641
Panel Self Refresh PSR (PSRISRD)uiiiiiiiiciiii e 648
Frame Buffer Compression (FBC)oooiiiiiiiiiiiiie e 654
Display Refresh Rate Switching (DRRS)iioiiiiiiiiiiiiieie e 658
D] O LTS 664

CSR firmware support FOr DIMCoiiiiiiiiiii e 665
Memory Management and Command SUDMISSIONcovvvinieiiriiieiiii e 670
BatChDUTTEr ParSingcoouuuiiiiiiiei e 670
BatChDUTTEr POOISiiiiiii e 676
Logical Rings, Logical Ring Contexts and EXeCliStSvvveiiiiiiiiiiiiieiciiieeeeen, 679
GlODAl GTT VIBWS ..ttt ettt e e e e e 691

GTT Fences and SWIZZIINGuieieeiiieiiiie ettt 697
OBJECt TiliNG TOCTLS ... ittt e s 706
Buffer ODJECT EVICIONcouviiiiiii e 708
Buffer Object Memory Shrinkingooeviiiiiieii e 710
GuC-based Command SUDIMISSIONcveutieiiiiie ettt eeeeens 713
LCTE (O TP UOPPPPPTTTTR 713

LCTE (O O 1= o | SO PUUUPPPPPTTTN 717

LI @ 1o [SO TU PP PPPPPPPRPPPIN 724
1915 ppgtt_create and 1915 PPGL_TElEASEveiiiiie e 724

1915 context_create and 1915_context_freeo.ovviiiiiii i 724
SWITCI MM e 724

595

Chapter 4. drm/i915 Intel GFX Driver

The drm/i915 driver supports all (with the exception of some very early models) integrated GFX chipsets
with both Intel display and rendering blocks. This excludes a set of SoC platforms with an SGX rendering
unit, those have basic support through the gma500 drm driver.

Core Driver Infrastructure

This section covers core driver infrastructure used by both the display and the GEM parts of the driver.

Runtime Power Management

The 1915 driver supports dynamic enabling and disabling of entire hardware blocks at runtime. Thisis
especially important on the display side where software is supposed to control many power gates manually
on recent hardware, since on the GT side a lot of the power management is done by the hardware. But
even there some manual control at the device level is required.

Since 1915 supports a diverse set of platforms with a unified codebase and hardware engineers just love
to shuffle functionality around between power domains there's a sizeable amount of indirection required.
Thisfile provides generic functions to the driver for grabbing and releasing references for abstract power
domains. It then maps those to the actual power wells present for a given platform.

596

drm/i915 Intel GFX Driver

Name
__intel_display_power_is_enabled — unlocked check for a power domain

Synopsis

bool _ intel display_power is enabled (struct drm.i915 private * de-
v_priv, enumintel display_power_ domain donain);

Arguments
dev_priv 915 deviceinstance
donai n power domain to check
Description

Thisistheunlocked versionof i nt el _di spl ay_power _i s_enabl ed and should only be used from
error capture and recovery code where deadlocks are possible.

Returns

True when the power domain is enabled, false otherwise.

597

drm/i915 Intel GFX Driver

Name
intel_display_power_is enabled — check for a power domain
Synopsis
bool intel _display power is enabled (struct drmi915 private * de-

v_priv, enumintel display_power_ domain donain);
Arguments

dev_priv 915 deviceinstance

donai n power domain to check
Description

Thisfunction can be used to check the hw power domain state. It is mostly used in hardware state readout
functions. Everywhere el se code should rely upon explicit power domain reference counting to ensure that
the hardware block is powered up before accessing it.

Callers must hold the relevant modesetting locks to ensure that concurrent threads can't disable the power
well whilethe caller triesto read afew registers.

Returns

True when the power domain is enabled, false otherwise.

598

drm/i915 Intel GFX Driver

Name
intel_display_set_init_power — set theinitial power domain state

Synopsis
void intel _display _set init_power (struct drm.i915 private * dev_priv,
bool enable);

Arguments

dev_priv 915 deviceinstance

enabl e whether to enable or disable the initial power domain state

Description

For simplicity our driver load/unload and system suspend/resume code assumes that all power domains
are always enabled. This functions controls the state of this little hack. While the initial power domain

state is enabled runtime pm is effectively disabled.

599

drm/i915 Intel GFX Driver

Name
intel_display_power_get — grab a power domain reference

Synopsis

void intel _display power _get (struct drmi915 private * dev_priv, enum
i ntel display_ power _domai n domain);

Arguments
dev_priv 915 deviceinstance

donai n power domain to reference

Description

This function grabs a power domain reference for domai n and ensures that the power domain and all
its parents are powered up. Therefore users should only grab a reference to the innermost power domain

they need.

Any power domain reference obtained by this function must have a symmetric call toi ntel _di s-
pl ay_power put to release the reference again.

600

drm/i915 Intel GFX Driver

Name

intel_display_power_put — release a power domain reference

Synopsis

void intel _display _power put (struct drmi915 private * dev_priv, enum
i ntel display_ power _domai n domain);

Arguments
dev_priv 915 deviceinstance
donai n power domain to reference

Description

Thisfunction dropsthe power domain referenceobtained by i nt el _di spl ay_power _get and might
power down the corresponding hardware block right away if thisisthe last reference.

601

drm/i915 Intel GFX Driver

Name

intel_power_domains_init — initializes the power domain structures

Synopsis

int intel _power _donains_init (struct drm.i 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance

Description

Initializes the power domain structures for dev_pr i v depending upon the supported platform.

602

drm/i915 Intel GFX Driver

Name

intel_power_domains_fini — finalizes the power domain structures

Synopsis

void intel _power _domains fini (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

Finalizes the power domain structuresfor dev_pr i v depending upon the supported platform. Thisfunc-
tion also disables runtime pm and ensures that the device stays powered up so that the driver can be re-

loaded.

603

drm/i915 Intel GFX Driver

Name

intel_power_domains init_hw — initialize hardware power domain state

Synopsis
void intel _power_domains init_hw (struct drm.i 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance

Description

This function initializes the hardware power domain state and enables all power domains using i n-
tel _display_set_init_power.

604

drm/i915 Intel GFX Driver

Name

intel_runtime_pm_get — grab a runtime pm reference
Synopsis
void intel _runtine_pmaget (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT
or GT ison) and ensures that it is powered up.

Any runtime pm reference obtai ned by thisfunction must haveasymmetriccall toi nt el _runti ne_p-
m_put to release the reference again.

605

drm/i915 Intel GFX Driver

Name
intel_runtime_pm_get_noresume — grab a runtime pm reference

Synopsis
void intel _runtinme_pmget noresume (struct drm.i915 private * de-
V_priv);

Arguments

dev_priv 915 deviceinstance
Description

This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT
or GT ison).

It will _not_ power up the device but instead only check that it's powered on. Thereforeit isonly valid to
call thisfunctions from contexts where the device is known to be powered up and where trying to power it
up would result in hilarity and deadlocks. That pretty much means only the system suspend/resume code
where thisis used to grab runtime pm references for delayed setup down in work items.

Any runtime pm reference obtai ned by thisfunction must haveasymmetriccall toi nt el _runti ne_p-
m put to release the reference again.

606

drm/i915 Intel GFX Driver

Name

intel_runtime_pm_put — release a runtime pm reference
Synopsis
void intel _runtine_pmput (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function drops the device-level runtime pm reference obtained by i nt el _runti me_pm get and
might power down the corresponding hardware block right away if thisisthe last reference.

607

drm/i915 Intel GFX Driver

Name

intel_runtime_pm_enable — enable runtime pm

Synopsis

void intel _runtine_pmenable (struct drmi915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description
This function enables runtime pm at the end of the driver |oad sequence.

Note that this function does currently not enable runtime pm for the subordinate display power domains.
That isonly done on the first modeset usingi nt el _di spl ay_set _init_power.

608

drm/i915 Intel GFX Driver

Name

intel_uncore forcewake get — grab forcewake domain references
Synopsis

void intel _uncore forcewake get (struct drm.i915 private * dev_priv,
enum f or cewake_donai ns fw _donai ns);

Arguments
dev_priv 1915 device instance

fw domai ns forcewake domainsto get reference on

Description

This function can be used get GT's forcewake domain references. Normal register access will handle the
forcewake domains automatically. However if some sequence requiresthe GT to not power down apartic-
ular forcewake domains this function should be called at the beginning of the sequence. And subsequently
the reference should be dropped by symmetric call toi nt el _unf or ce_f or cewake_put . Usualy
caller wants all the domainsto be kept awake so thef w_domai ns would be then FORCEWAKE_ALL.

609

drm/i915 Intel GFX Driver

Name

intel_uncore forcewake get locked — grab forcewake domain references

Synopsis

void intel _uncore forcewake get |ocked (struct drm.i 915 private * de-
v_priv, enum forcewake domai ns fw donai ns);

Arguments
dev_priv 1915 device instance
fw domai ns forcewake domainsto get reference on

Description

Seei nt el _uncore_f orcewake_get . Thisvariant placesthe onus on the caller to explicitly handle
the dev_priv->uncore.lock spinlock.

610

drm/i915 Intel GFX Driver

Name

intel_uncore forcewake put — release aforcewake domain reference

Synopsis

void intel _uncore forcewake put (struct drm.i915 private * dev_priv,
enum f or cewake_donai ns fw _donai ns);

Arguments
dev_priv 1915 device instance
fw domai ns forcewake domainsto put references

Description

This function drops the device-level forcewakes for specified domains obtained by i ntel _un-
core_forcewake_get.

611

drm/i915 Intel GFX Driver

Name

intel_uncore forcewake put__locked — grab forcewake domain references
Synopsis

void intel _uncore_ forcewake put | ocked (struct drm.i 915 private * de-
v_priv, enum forcewake domai ns fw donai ns);

Arguments
dev_priv 1915 device instance
fw domai ns forcewake domainsto get reference on

Description

Seei nt el _uncore_forcewake_put . Thisvariant placesthe onus on the caller to explicitly handle
the dev_priv->uncore.lock spinlock.

Interrupt Handling

Thesefunctions provide the basic support for enabling and disabling theinterrupt handling support. There's
alot more functionality ini915_irg.c and related files, but that will be described in separate chapters.

612

drm/i915 Intel GFX Driver

Name
intel_irg_init — initializes irq support

Synopsis

void intel irqg_init (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function initializes all the irq support including work items, timers and all the vtables. It does not
setup the interrupt itself though.

613

drm/i915 Intel GFX Driver

Name
intel_runtime_pm_disable_interrupts — runtime interrupt disabling

Synopsis
voidintel _runtinme_pmdisable interrupts (struct drm.i 915 private * de-
V_priv);

Arguments

dev_priv 915 deviceinstance

Description

Thisfunctionisused to disableinterruptsat runtime, bothinthe runtime pm and the system suspend/resume
code.

614

drm/i915 Intel GFX Driver

Name

intel_runtime_pm_enable_interrupts — runtime interrupt enabling

Synopsis

void intel _runtine_pmenable interrupts (struct drm.i 915 private * de-
V_priv);

Arguments

dev_priv 915 deviceinstance

Description

Thisfunctionisused to enableinterruptsat runtime, both in the runtime pm and the system suspend/resume
code.

Intel GVT-g Guest Support(vGPU)

Intel GV T-gisagraphicsvirtualization technology which sharesthe GPU among multiplevirtual machines
on atime-sharing basis. Each virtual machine is presented a virtual GPU (vGPU), which has equivalent
features as the underlying physical GPU (pGPU), so 1915 driver can run seamlessly in avirtual machine.
Thisfile provides vGPU specific optimizations when running in avirtual machine, to reduce the complex-
ity of vGPU emulation and to improve the overall performance.

A primary function introduced here is so-called “address space ballooning” technique. Intel GV T-g par-
titions global graphics memory among multiple VMs, so each VM can directly access a portion of the
memory without hypervisor's intervention, e.g. filling textures or queuing commands. However with the
partitioning an unmodified i915 driver would assume a smaller graphics memory starting from address
ZERO, then requires vGPU emulation module to translate the graphics address between 'guest view' and
'host view', for all registersand command opcodeswhich contain agraphics memory address. Toreducethe
complexity, Intel GV T-g introduces “ address space ballooning”, by telling the exact partitioning knowl-
edge to each guest 1915 driver, which then reserves and prevents non-allocated portions from allocation.
Thus vGPU emulation module only needs to scan and validate graphics addresses without complexity of
address tranglation.

615

drm/i915 Intel GFX Driver

Name
i915 check_vgpu — detect virtual GPU

Synopsis
void i 915 check vgpu (struct drmdevice * dev);
Arguments

dev drmdevice*

Description

Thisfunction is called at the initialization stage, to detect whether running on avGPU.

616

drm/i915 Intel GFX Driver

Name
intel_vgt_deballoon — deballoon reserved graphics address trunks

Synopsis
void intel _vgt _deballoon (void);

Arguments

voi d noarguments

Description

Thisfunction is called to deallocate the ballooned-out graphic memory, when driver is unloaded or when
ballooning fails.

617

drm/i915 Intel GFX Driver

Name

intel_vgt_balloon — balloon out reserved graphics address trunks
Synopsis

int intel _vgt_balloon (struct drm.device * dev);
Arguments

dev drmdevice

Description

This function is called at the initialization stage, to balloon out the graphic address space allocated to
other vGPUs, by marking these spaces as reserved. The ballooning related knowledge(starting address
and size of the mappable/unmappable graphic memory) is described in the vgt_if structure in a reserved
mmio range.

To give an example, the drawing below depicts one typical scenario after ballooning. Here the vGPU1
has 2 pieces of graphic address spaces ballooned out each for the mappable and the non-mappable part.
From the vGPU1 point of view, the total size is the same as the physical one, with the start address of its
graphic space being zero. Y et there are some portions ballooned out(the shadow part, which are marked
as reserved by drm allocator). From the host point of view, the graphic address space is partitioned by
multiple vGPUs in different VMs.

VGPU1 view Host view 0 >+ ++ RS =S AN —— +
| Vi | vGru2 | | + ++ + mappable GM | available | ==> | VGPU1 | | +----------- +
S S + | WHIHHHN | | v [N | Host | + + ++ + NI |
VGPU3 | | VI +-==nnnnnmn- + [V | vGPU2 | | + ++ + unmappable GM | available
| ==>|vGPU1||+ ++ + | I | | | VI | Host | v [T | | total GM size ------
>+ ++ +

Returns

Zero on success, hon-zero if configuration invalid or ballooning failed

Display Hardware Handling

This section covers everything related to the display hardware including the mode setting infrastructure,
plane, sprite and cursor handling and display, output probing and related topics.

Mode Setting Infrastructure
The 1915 driver is thus far the only DRM driver which doesn't use the common DRM helper code to

implement mode setting sequences. Thusit hasits own tailor-made infrastructure for executing a display
configuration change.

Frontbuffer Tracking

Many features require usto track changesto the currently active frontbuffer, especially rendering targeted
at the frontbuffer.

618

drm/i915 Intel GFX Driver

To be able to do so GEM tracks frontbuffers using a bitmask for all possible frontbuffer slots through
i 915 gem track_fb. The function in this file are then called when the contents of the frontbuffer
are invalidated, when frontbuffer rendering has stopped again to flush out al the changes and when the
frontbuffer is exchanged with aflip. Subsystemsinterested in frontbuffer changes (e.g. PSR, FBC, DRRS)
should directly put their callbacks into the relevant places and filter for the frontbuffer slots that they are
interested int.

On ahigh level there are two types of powersaving features. The first one work like a special cache (FBC
and PSR) and are interested when they should stop caching and when to restart caching. Thisis done by
placing callbacksinto theinvalidate and the flush functions: At invalidate the caching must be stopped and
at flush time it can be restarted. And maybe they need to know when the frontbuffer changes (e.g. when
the hw doesn't initiate an invalidate and flush on its own) which can be achieved with placing callbacks
into the flip functions.

The other type of display power saving feature only cares about busyness (e.g. DRRS). In that case all
three (invalidate, flush and flip) indicate busyness. There is no direct way to detect idleness. Instead an
idle timer work delayed work should be started from the flush and flip functions and cancelled as soon
as busynessis detected.

Note that there's also an older frontbuffer activity tracking scheme which just tracks general activity. This
isdone by the various mark _busy and mark_idle functions. For display power management features using
these functions is deprecated and should be avoided.

619

drm/i915 Intel GFX Driver

Name
intel_fb_obj_invalidate — invalidate frontbuffer object

Synopsis
void intel _fb obj _invalidate (struct drm.i 915 gemobject * obj, enum
fb op _origin origin);

Arguments
obj GEM object to invalidate

ori gi n which operation caused the invalidation

Description

Thisfunction gets called every time rendering on the given object starts and frontbuffer caching (fbc, low
refresh rate for DRRS, panel self refresh) must be invalidated. For ORIGIN_CS any subsequent invalida-
tion will be delayed until the rendering completes or aflip on this frontbuffer plane is schedul ed.

620

drm/i915 Intel GFX Driver

Name
intel_frontbuffer_flush — flush frontbuffer

Synopsis

void intel frontbuffer flush (struct drmdevice * dev, unsigned front-
buffer bits, enumfb_op_origin origin);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

origin which operation caused the flush

Description

This function gets called every time rendering on the given planes has completed and frontbuffer caching
can be started again. Flushes will get delayed if they're blocked by some outstanding asynchronous ren-

dering.

Can be called without any locks held.

621

drm/i915 Intel GFX Driver

Name
intel_fb_obj_flush — flush frontbuffer object

Synopsis

void intel fb obj flush (struct drm.i 915 gem object * obj, bool retire,
enum fb_op_origin origin);

Arguments
obj GEM object to flush
retire setwhen retiring asynchronous rendering
ori gi n which operation caused the flush

Description

This function gets called every time rendering on the given object has completed and frontbuffer caching
can be started again. If r et i r e istrue then any delayed flushes will be unblocked.

622

drm/i915 Intel GFX Driver

Name
intel_frontbuffer_flip_prepare — prepare asynchronous frontbuffer flip

Synopsis

void intel frontbuffer flip prepare (struct drmdevice * dev, unsigned
frontbuffer _bits);

Arguments
dev DRM device

frontbuffer_bits frontbuffer planetracking bits

Description

This function gets called after scheduling a flip on obj . The actual frontbuffer flushing will be delayed
until completion is signalled with intel_frontbuffer_flip_complete. If an invalidate happens in between
this flush will be cancelled.

Can be called without any locks held.

623

drm/i915 Intel GFX Driver

Name

intel_frontbuffer_flip_complete — complete asynchronous frontbuffer flip

Synopsis

voidintel frontbuffer flip _conplete (struct drmdevice * dev, unsigned
frontbuffer _bits);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

Description

Thisfunction gets called after the flip has been latched and will complete on the next vblank. It will execute
the flush if it hasn't been cancelled yet.

Can be called without any locks held.

624

drm/i915 Intel GFX Driver

Name

intel_frontbuffer_flip — synchronous frontbuffer flip

Synopsis

void intel frontbuffer flip (struct drmdevice * dev, unsigned front-
buffer _bits);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

Description

Thisfunction gets called after scheduling aflip on obj . Thisisfor synchronous plane updates which will
happen on the next vblank and which will not get delayed by pending gpu rendering.

Can be called without any locks held.

625

drm/i915 Intel GFX Driver

Name
i915 gem_track_fb — update frontbuffer tracking

Synopsis

void 1915 gemtrack fb (struct drm.i 915 gemobject * old, struct dr-
m i 915 gem obj ect * new, unsigned frontbuffer bits);

Arguments
old current GEM buffer for the frontbuffer sots
new new GEM buffer for the frontbuffer dots

frontbuffer_bits bitmask of frontbuffer slots
Description

This updates the frontbuffer tracking bitsf r ont buf f er _bi t s by clearing them from ol d and setting
themin new. Both ol d and newcan be NULL.

Display FIFO Underrun Reporting

The 1915 driver checks for display fifo underruns using the interrupt signals provided by the hardware.
Thisis enabled by default and fairly useful to debug display issues, especialy watermark settings.

If an underrunisdetected thisislogged into dmesg. To avoid flooding logs and occupying the cpu underrun
interrupts are disabled after the first occurrence until the next modeset on a given pipe.

Note that underrun detection on gmch platforms is a bit more ugly since there is no interrupt (despite
that the signalling bit isin the PIPESTAT pipe interrupt register). Also on some other platforms underrun
interrupts are shared, which means that if we detect an underrun we need to disable underrun reporting
on all pipes.

The code al so supports underrun detection on the PCH transcoder.

626

drm/i915 Intel GFX Driver

Name

i9xx_check_fifo_underruns — check for fifo underruns

Synopsis

void i 9xx_check fifo_underruns (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function checks for fifo underruns on GMCH platforms. This needs to be done manually on modeset
to make sure that we catch al underruns since they do not generate an interrupt by themselves on these

platforms.

627

drm/i915 Intel GFX Driver

Name
intel_set cpu_fifo_underrun_reporting — set cpu fifo underrrun reporting state

Synopsis

bool intel _set cpu fifo _underrun_reporting (struct drm.i 915 private *
dev_priv, enum pi pe pipe, bool enable);

Arguments

dev_priv 915 deviceinstance

pi pe (CPU) pipeto set state for

enabl e whether underruns should be reported or not
Description

This function sets the fifo underrun state for pi pe. It isused in the modeset code to avoid false positives
since on many platforms underruns are expected when disabling or enabling the pipe.

Notice that on some platforms disabling underrun reports for one pipe disables for al dueto shared inter-
rupts. Actual reporting is still per-pipe though.

Returns the previous state of underrun reporting.

628

drm/i915 Intel GFX Driver

Name
intel_set pch_fifo_underrun_reporting — set PCH fifo underrun reporting state

Synopsis

bool intel _set pch fifo _underrun_reporting (struct drm.i 915 private *
dev_priv, enumtranscoder pch_transcoder, bool enable);

Arguments
dev_priv 1915 device instance
pch_transcoder thePCH transcoder (same as pipe on IVB and older)

enabl e whether underruns should be reported or not

Description

This function makes us disable or enable PCH fifo underruns for a specific PCH transcoder. Notice that
on some PCHs (e.g. CPT/PPT), disabling FIFO underrun reporting for one transcoder may also disable all
the other PCH error interruts for the other transcoders, due to the fact that there's just one interrupt mask/
enable bit for all the transcoders.

Returns the previous state of underrun reporting.

629

drm/i915 Intel GFX Driver

Name

intel_cpu_fifo_underrun_irq_handler — handle CPU fifo underrun interrupt

Synopsis

void intel cpu fifo_underrun_irqg_handler (struct drm.i 915 private * de-
V_priv, enum pi pe pipe);

Arguments
dev_priv 915 deviceinstance
pi pe (CPU) pipeto set state for

Description

This handles a CPU fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.

630

drm/i915 Intel GFX Driver

Name
intel_pch_fifo_underrun_irq_handler — handle PCH fifo underrun interrupt

Synopsis

void intel _pch fifo_underrun_irqg_handler (struct drm.i 915 private * de-
v_priv, enumtranscoder pch_transcoder);

Arguments

dev_priv 1915 device instance

pch_transcoder thePCH transcoder (same as pipe on IVB and older)
Description

This handles a PCH fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.

Plane Configuration

This section covers plane configuration and composition with the primary plane, sprites, cursors and over-
lays. Thisincludestheinfrastructure to do atomic vsync'ed updates of all this state and also tightly coupled
topics like watermark setup and computation, framebuffer compression and panel self refresh.

Atomic Plane Helpers

The functions here are used by the atomic plane hel per functions to implement legacy plane updates (i.e.,
drm_plane->updat e_pl ane anddrm_plane->di sabl e_pl ane). Thisallowsplane updatesto usethe
atomic state infrastructure and perform plane updates as separate prepare/check/commit/cleanup steps.

631

drm/i915 Intel GFX Driver

Name
intel_create plane state — create plane state object

Synopsis
struct intel _plane state * intel create plane state (struct drmplane
* pl ane) ;

Arguments

pl ane drm plane
Description

Allocates afresh plane state for the given plane and sets some of the state valuesto sensibleinitial values.

Returns

A newly alocated plane state, or NULL on failure

632

drm/i915 Intel GFX Driver

Name
intel_plane duplicate state — duplicate plane state

Synopsis
struct drmplane _state * intel plane_duplicate state (struct drmpl ane
* pl ane) ;

Arguments

pl ane drm plane
Description

Allocates and returns a copy of the plane state (both common and Intel-specific) for the specified plane.

Returns

The newly allocated plane state, or NULL on failure.

633

drm/i915 Intel GFX Driver

Name
intel_plane destroy_state — destroy plane state

Synopsis

void intel plane _destroy state (struct drmplane * plane, struct dr-
m pl ane_state * state);

Arguments
pl ane drm plane
state state object to destroy

Description

Destroys the plane state (both common and Intel-specific) for the specified plane.

634

drm/i915 Intel GFX Driver

Name
intel_plane_atomic_get_property — fetch plane property value

Synopsis

int intel _plane_atomc_get property (struct drmplane * plane, const
struct drmpl ane_state * state, struct drm property * property, uint64 t

* val);
Arguments
pl ane plane to fetch property for
state state containing the property value

property property to look up

val pointer to write property value into

Description

The DRM core does not store shadow copies of properties for atomic-capable drivers. This entrypoint is
used to fetch the current value of a driver-specific plane property.

635

drm/i915 Intel GFX Driver

Name

intel_plane atomic_set_property — set plane property value

Synopsis

int intel_plane_atomnic_set_property (struct drmplane * plane, struct
drm pl ane_state * state, struct drmproperty * property, uint64_t val);

Arguments
pl ane plane to set property for
state state to update property valuein

property property to set

val value to set property to

Description

Writes the specified property value for a plane into the provided atomic state object.

Returns 0 on success, -EINVAL on unrecognized properties

Output Probing

This section covers output probing and related infrastructure like the hotplug interrupt storm detection
and mitigation code. Note that the 1915 driver still uses most of the common DRM helper code for output
probing, so those sections fully apply.

Hotplug

Simply put, hotplug occurs when a display is connected to or disconnected from the system. However,
there may be adapters and docking stations and Display Port short pulses and MST devices involved,
complicating matters.

Hotplug in 1915 is handled in many different levels of abstraction.

The platform dependent interrupt handling codeini915 irg.c enables, disables, and does preliminary han-
dling of the interrupts. The interrupt handlers gather the hotplug detect (HPD) information from relevant
registersinto a platform independent mask of hotplug pins that have fired.

The platform independent interrupt handler i nt el _hpd_i r g_handl er inintel_hotplug.c does hot-
plug irg storm detection and mitigation, and passes further processing to appropriate bottom halves (Dis-
play Port specific and regular hotplug).

TheDisplay Port work functioni 915 _di gport _wor k_f unc callsintoi nt el _dp_hpd_pul sevia
hooks, which handles DP short pulses and DP MST long pulses, with failures and non-M ST long pulses
triggering regular hotplug processing on the connector.

The regular hotplug work functioni 915 _hot pl ug_wor k_f unc calls connector detect hooks, and, if
connector status changes, triggers sending of hotplug uevent to userspaceviadr m kns_hel per _hot -
pl ug_event.

636

drm/i915 Intel GFX Driver

Finally, the userspace is responsible for triggering amodeset upon receiving the hotplug uevent, disabling
or enabling the crtc as needed.

The hotplug interrupt storm detection and mitigation code keeps track of the number of interrupts per
hotplug pin per aperiod of time, and if the number of interrupts exceeds a certain threshold, the interrupt
is disabled for a while before being re-enabled. The intention is to mitigate issues raising from broken
hardware triggering massive amounts of interrupts and grinding the system to a halt.

Current implementation expects that hotplug interrupt storm will not be seen when display port sink is
connected, hence on platforms whose DP callback is handled by i915 digport_work_func reenabling of
hpd is not performed (it was never expected to be disabled in thefirst place ;)) thisis specific to DP sinks
handled by this routine and any other display such as HDMI or DV enabled on the same port will have
proper logic sinceit will usei915_hotplug_work_func where thislogic is handled.

637

drm/i915 Intel GFX Driver

Name
intel_hpd_irq_storm_detect — gather stats and detect HPD irq storm on a pin

Synopsis

bool intel _hpd irqg stormdetect (struct drmi915 private * dev_priv,
enum hpd_pin pin);

Arguments
dev_priv privatedriver data pointer

pin the pin to gather statson

Description

Gather stats about HPD irgs from the specified pi n, and detect irq storms. Only the pin specific stats and
state are changed, the caller is responsible for further action.

HPD_STORM THRESHOLD irgs are alowed within HPD_STORM DETECT _PERI OD ms, otherwiseit's
considered an irg storm, and the irq state is set to HPD _MARK DI SABLED.

Return trueif an irq storm was detected on pi n.

638

drm/i915 Intel GFX Driver

Name
intel_hpd_irq_handler — main hotplug irq handler

Synopsis

void intel _hpd_irqg_handl er (struct drmdevice * dev, u32 pin_nask, u32
| ong_nask);

Arguments
dev drm device
pi n_mask amask of hpd pinsthat have triggered theirq

| ong_nmask amask of hpd pinsthat may be long hpd pulses

Description

Thisisthe main hotplug irq handler for al platforms. The platform specific irq handlers call the platform
specific hotplug irq handlers, which read and decode the appropriate registers into bitmasks about hpd
pins that have triggered (pi n_mask), and which of those pins may be long pulses (I ong_mask). The
| ong_nask isignored if the port corresponding to the pin is not adigital port.

Here, we do hotplug irq storm detection and mitigation, and pass further processing to appropriate bottom
halves.

639

drm/i915 Intel GFX Driver

Name
intel_hpd_init — initializes and enables hpd support

Synopsis

void intel _hpd init (struct drm.i 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance

Description

This function enables the hotplug support. It requires that interrupts have already been enabled with i n-
tel _irqg_init_hw From this point on hotplug and poll request can run concurrently to other code,
so locking rules must be obeyed.

Thisis a separate step from interrupt enabling to simplify the locking rules in the driver load and resume
code.

Also see

i ntel _hpd_pol | _i ni t, which enables connector polling

drm/i915 Intel GFX Driver

Name

intel_hpd_poll_init — enables/disables polling for connectors with hpd

Synopsis

void intel _hpd poll _init (struct drm.i915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function enables polling for al connectors, regardless of whether or not they support hotplug detec-
tion. Under certain conditions HPD may not be functional. On most Intel GPUs, this happens when we
enter runtime suspend. On Valleyview and Cherryview systems, this also happens when we shut off all
of the powerwells.

Since this function can get called in contexts where we're aready holding dev->mode_config.mutex, we
do the actual hotplug enabling in a seperate worker.

Also see

i ntel _hpd_i ni t, which restores hpd handling.

High Definition Audio

The graphics and audio driverstogether support High Definition Audio over HDMI and Display Port. The
audio programming sequences are divided into audio codec and controller enable and disable sequences.
The graphicsdriver handles the audio codec sequences, whilethe audio driver handlesthe audio controller
sequences.

The disable sequences must be performed before disabling the transcoder or port. The enable sequences
may only be performed after enabling the transcoder and port, and after completed link training. Therefore
the audio enable/disable sequences are part of the modeset sequence.

The codec and controller sequences could be done either parallel or serial, but generally the ELDV/PD
changein the codec sequence indicates to the audio driver that the controller sequence should start. Indeed,
most of the co-operation between the graphics and audio drivers is handled via audio related registers.
(The notable exception is the power management, not covered here.)

The struct 1915 _audio_component is used to interact between the graphics and audio drivers. The struct
1915 audio_component_ops *opsin it is defined in graphics driver and called in audio driver. The struct
1915 audio_component_audio_ops*audio_opsis called from i915 driver.

641

drm/i915 Intel GFX Driver

Name

intel_audio_codec_enable — Enable the audio codec for HD audio

Synopsis

void intel audi o_codec_enable (struct intel _encoder * intel _encoder);

Arguments

i nt el _encoder encoder on which to enable audio

Description

The enable sequences may only be performed after enabling the transcoder and port, and after completed
link training.

642

drm/i915 Intel GFX Driver

Name
intel_audio_codec_disable — Disable the audio codec for HD audio

Synopsis

void intel audi o_codec_disable (struct intel _encoder * intel _encoder);

Arguments

i nt el _encoder encoder on which to disable audio

Description

The disable sequences must be performed before disabling the transcoder or port.

drm/i915 Intel GFX Driver

Name

intel_init_audio — Set up chip specific audio functions
Synopsis

void intel _init_audio (struct drmdevice * dev);
Arguments

dev drmdevice

drm/i915 Intel GFX Driver

Name

1915 audio_component_init — initialize and register the audio component
Synopsis

void i 915 audi o_conponent _init (struct drm.i 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance

Description

This will register with the component framework a child component which will bind dynamically to the
snd_hda_intel driver's corresponding master component when the latter is registered. During binding the
childinitializesan instance of struct i915_audio_component which it receives from the master. The master
can then start to use the interface defined by this struct. Each side can break the binding at any point by
deregistering its own component after which each side's component unbind callback is called.

Weignoreany error during registration and continuewith reduced functionality (i.e. without HDMI audio).

drm/i915 Intel GFX Driver

Name

1915 audio_component_cleanup — deregister the audio component
Synopsis
voi d i 915 audi o_conponent _cl eanup (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

Deregisters the audio component, breaking any existing binding to the corresponding snd_hda_intel dri-
ver's master component.

646

drm/i915 Intel GFX Driver

Name

struct i915_audio_component_ops — callbacks defined in gfx driver

Synopsis

struct i915 audi o_conponent _ops {

struct nodul e * owner;

void (* get power) (struct device *);

void (* put_power) (struct device *);

void (* codec_wake override) (struct device *, bool enable);
int (* get_cdclk freq) (struct device *);

int (* sync_audio rate) (struct device *, int port, int rate);

b

Members
owner the module owner
get_power get the POWER_DOMAIN_AUDIO power well
put_power put the POWER_DOMAIN_AUDIO power well
codec_wake override Enable/Disable generating the codec wake signal
get_cdclk freq get the Core Display Clock in KHz
sync_audio_rate set n/cts based on the sample rate

647

drm/i915 Intel GFX Driver

Name

struct 1915 _audio_component — used for audio video interaction

Synopsis

struct i915 audi o_conponent {
struct device * dev;
i nt aud_sanpl e_rat e[MAX_PORTS] ;
const struct i915 audi o_conponent _ops * ops;
const struct i915 audi o_conponent audi o_ops * audi o_ops;

b
Members
dev the device from gfx driver
aud sample ratefMAX_PORTSY] the array of audio sample rate per port
ops callback for audio driver calling

audio_ops Cal from 915 driver

Panel Self Refresh PSR (PSR/SRD)

Since Haswell Display controller supports Panel Self-Refresh on display panelswitch have aremoteframe
buffer (RFB) implemented according to PSR specin eDP1.3. PSR feature allowsthe display to go to lower
standby stateswhen systemisidlebut display ison asit eliminates display refresh request to DDR memory
completely as long as the frame buffer for that display is unchanged.

Panel Self Refresh must be supported by both Hardware (source) and Panel (sink).

PSR saves power by caching the framebuffer in the panel RFB, which allows us to power down the link
and memory controller. For DSI panels the sameideais called “manua mode”.

The implementation uses the hardware-based PSR support which automatically enters/exits self-refresh
mode. The hardware takes care of sending the required DP aux message and could even retrain the link
(that part isn't enabled yet though). The hardware also keeps track of any frontbuffer changes to know
when to exit self-refresh mode again. Unfortunately that part doesn't work too well, hence why the i915
PSR support uses the software frontbuffer tracking to make sure it doesn't miss a screen update. For this
integrationi nt el _psr_i nval i dat eandi nt el _psr _f | ush get called by thefrontbuffer tracking
code. Note that because of locking issues the self-refresh re-enable code is done from awork queue, which
must be correctly synchronized/cancelled when shutting down the pipe.”

drm/i915 Intel GFX Driver

Name
intel_psr_enable— Enable PSR

Synopsis
void intel _psr_enable (struct intel _dp * intel _dp);

Arguments

intel _dp Intel DP

Description

This function can only be called after the pipeis fully trained and enabled.

649

drm/i915 Intel GFX Driver

Name
intel_psr_disable — Disable PSR

Synopsis
void intel _psr_disable (struct intel _dp * intel _dp);
Arguments

intel _dp Intel DP

Description

This function needs to be called before disabling pipe.

650

drm/i915 Intel GFX Driver

Name
intel_psr_single frame update — Single Frame Update

Synopsis
void intel _psr_single frame_update (struct drmdevice * dev, unsigned
frontbuffer _bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer planetracking bits

Description

Some platforms support a single frame update feature that is used to send and update only one frame on
Remote Frame Buffer. So far it is only implemented for Valleyview and Cherryview because hardware

requires this to be done before a page flip.

651

drm/i915 Intel GFX Driver

Name
intel_psr_invalidate — Invalidade PSR

Synopsis

void intel _psr_invalidate (struct drmdevice * dev, unsigned front-
buffer _bits);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

Description

Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. This function gets called every time frontbuffer rendering starts and a buffer gets dirtied. PSR must
be disabled if the frontbuffer mask contains a buffer relevant to PSR.

Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."

652

drm/i915 Intel GFX Driver

Name
intel_psr_flush — Flush PSR

Synopsis

void intel _psr _flush (struct drmdevice * dev, unsigned front-
buffer bits, enumfb_op_origin origin);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

origin which operation caused the flush

Description

Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. Thisfunction gets called every time frontbuffer rendering has completed and flushed out to memory.
PSR can be enabled again if no other frontbuffer relevant to PSR is dirty.

Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.

653

drm/i915 Intel GFX Driver

Name

intel_psr_init — Init basic PSR work and mutex.
Synopsis

void intel _psr_init (struct drmdevice * dev);
Arguments

dev DRM device

Description

Thisfunction is called only once at driver load to initialize basic PSR stuff.

Frame Buffer Compression (FBC)

FBC triesto save memory bandwidth (and so power consumption) by compressing the amount of memory
used by the display. It istotal transparent to user space and completely handled in the kernel.

The benefits of FBC are mostly visible with solid backgrounds and variation-less patterns. It comes from
keeping the memory footprint small and having fewer memory pages opened and accessed for refreshing

the display.

1915 is responsible to reserve stolen memory for FBC and configure its offset on proper registers. The
hardware takes care of al compress/decompress. However there are many known cases where we have to
forcibly disableit to allow proper screen updates.

654

drm/i915 Intel GFX Driver

Name
intel_fbc_enabled — Is FBC enabled?

Synopsis

bool intel fbc _enabled (struct drm.i 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance
Description

This function is used to verify the current state of FBC.

FIXME

This should be tracked in the plane config eventually instead of queried at runtime for most callers.

655

drm/i915 Intel GFX Driver

Name
intel_fbc _disable — disable FBC

Synopsis

void intel fbc _disable (struct drm.i 915 private * dev_priv);

Arguments

dev_priv 915 deviceinstance

Description

This function disables FBC.

656

drm/i915 Intel GFX Driver

Name

__intel_fbc_update — enable/disable FBC as needed, unlocked
Synopsis

void _intel fbc update (struct drmi 915 private * dev_priv);
Arguments

dev_priv 915 deviceinstance

Description

Set up the framebuffer compression hardware at mode set time. We

enable it if possible

- plane A only (on pre-965) - no pixel mulitply/line duplication - no apha buffer discard - no dual wide
- framebuffer <= max_hdisplay in width, max_vdisplay in height

We can't assume that any compression will take place (worst case), so the compressed buffer hasto be the
same size asthe uncompressed one. It al so must reside (al ong with thelinelength buffer) in stolen memory.

We need to enable/disable FBC on aglobal basis.

657

drm/i915 Intel GFX Driver

Name
intel_fbc_init — Initialize FBC

Synopsis

void intel _fbc_ init (struct drm.i 915 private * dev_priv);
Arguments

dev_priv thei9l5 device

Description

This function might be called during PM init process.

Display Refresh Rate Switching (DRRS)

Display Refresh Rate Switching (DRRS) isapower conservation feature which enabl es swtching between
low and high refresh rates, dynamically, based on the usage scenario. Thisfeatureisapplicablefor internal
panels.

Indication that the panel supports DRRS is given by the panel EDID, which would list multiple refresh
rates for one resolution.

DRRSisof 2 types - static and seamless. Static DRRS involves changing refresh rate (RR) by doing afull
modeset (may appear as ablink on screen) and is used in dock-undock scenario. Seamless DRRSinvolves
changing RR without any visual effect to the user and can be used during normal system usage. Thisis
done by programming certain registers.

Support for static/seamless DRRS may beindicated in the VBT based on inputs from the panel spec.
DRRS saves power by switching to low RR based on usage scenarios.

eDP DRRS:- The implementation is based on frontbuffer tracking implementation. When there is adis-
turbance on the screen triggered by user activity or a periodic system activity, DRRS is disabled (RR is
changed to high RR). When there is no movement on screen, after a timeout of 1 second, a switch to
low RR ismade. For integration with frontbuffer tracking code, i nt el _edp_drrs_i nval i dat e and
i ntel _edp_drrs_flush arecalled.

DRRS can be further extended to support other internal panels and also the scenario of video playback
wherein RR is set based on the rate requested by userspace.

658

drm/i915 Intel GFX Driver

Name
intel_dp_set drrs_state — program registers for RR switch to take effect
Synopsis
void intel _dp_set drrs state (struct drmdevice * dev, int re-

fresh rate);

Arguments
dev DRM device

refresh_rate RRtobeprogranmed

Description

Thisfunction gets called when refresh rate (RR) hasto be changed from one frequency to another. Switches
can be between high and low RR supported by the panel or to any other RR based on media playback (in
this case, RR value needs to be passed from user space).

The caller of thisfunction needsto take alock on dev_priv->drrs.

659

drm/i915 Intel GFX Driver

Name
intel_edp_drrs_enable — init drrs struct if supported

Synopsis
void intel _edp _drrs_enable (struct intel _dp * intel _dp);

Arguments

intel _dp DPstruct

Description

Initializes frontbuffer_bits and drrs.dp

660

drm/i915 Intel GFX Driver

Name
intel_edp_drrs disable— Disable DRRS

Synopsis
void intel _edp drrs_disable (struct intel _dp * intel _dp);
Arguments

intel _dp DPstruct

661

drm/i915 Intel GFX Driver

Name
intel_edp_drrs invalidate — Disable Idleness DRRS

Synopsis

voidintel _edp drrs_invalidate (struct drmdevice * dev, unsigned front-
buffer _bits);

Arguments
dev DRM device
frontbuffer_bits frontbuffer planetracking bits

Description

This function gets called everytime rendering on the given planes start. Hence DRRS needs to be Up-
clocked, i.e. (LOW_RR -> HIGH_RR).

Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.

662

drm/i915 Intel GFX Driver

Name
intel_edp_drrs flush — Restart Idleness DRRS

Synopsis

void intel _edp drrs _flush (struct drmdevice * dev, unsigned front-
buffer _bits);

Arguments
dev DRM device

frontbuffer_bits frontbuffer planetracking bits

Description

This function gets called every time rendering on the given planes has completed or flip on a crtc is
completed. So DRRS should be upclocked (LOW_RR -> HIGH_RR). And also I dleness detection should
be started again, if no other planes are dirty.

Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.

663

drm/i915 Intel GFX Driver

Name
intel_dp_drrs_init — Init basic DRRS work and mutex.

Synopsis

struct drmdisplay node * intel _dp drrs_init (struct intel_connector *
i ntel _connector, struct drmdisplay node * fixed _node);

Arguments
i ntel _connector eDP connector

fi xed_node preferred mode of panel

Description

Thisfunction is called only once at driver load to initialize basic DRRS stuff.
Returns

Downclock mode if panel supportsit, else return NULL. DRRS support is determined by the presence of
downclock mode (apart from VBT setting).

DPIO

VLV, CHV and BXT have dlightly peculiar display PHY sfor driving DP/HDMI ports. DPIO isthe name
given to such a display PHY. These PHY's don't follow the standard programming model using direct
MMIO registers, and instead their registers must be accessed trough 10SF sideband. VLV has one such
PHY for driving ports B and C, and CHV adds another PHY for driving port D. Each PHY responds to
specific IOSF-SB port.

Each display PHY is made up of one or two channels. Each channel houses a common lane part which
contains the PLL and other common logic. CHO common lane aso contains the IOSF-SB logic for the
Common Register Interface (CRI) ie. the DPIO registers. CRI clock must be running when any DPIO
registers are accessed.

In addition to having their own registers, the PHY sare al so controlled through some dedicated signalsfrom
the display controller. These include PLL reference clock enable, PLL enable, and CRI clock selection,
for example.

Eeach channel aso has two splines (also called data lanes), and each spline is made up of one Physical
Access Coding Sub-Layer (PCS) block and two TX lanes. So each channel has two PCS blocks and four
TX lanes. The TX lanes are used as DP lanes or TMDS data/clock pairs depending on the output type.

Additionally the PHY also contains an AUX lane with AUX blocks for each channel. Thisisused for DP
AUX communication, but this fact isn't really relevant for the driver since AUX is controlled from the
display controller side. No DPIO registers need to be accessed during AUX communication,

Generally on VLV/CHV the common lane corresponds to the pipe and the spline (PCS/TX) corresponds
to the port.

For dual channel PHY (VLV/CHV):

pipe A == CMN/PLL/REF CHO

664

drm/i915 Intel GFX Driver

pipe B == CMN/PLL/REF CH1

port B == PCS/TX CHO

port C == PCS/TX CH1

Thisis especially important when we cross the streamsie. drive port B with pipe B, or port C with pipe A.
For single channel PHY (CHV):

pipe C == CMN/PLL/REF CHO

port D == PCS/TX CHO

On BXT theentire PHY channel correspondsto the port. That meansthe PLL is also now associated with
the port rather than the pipe, and so the clock needs to be routed to the appropriate transcoder. Port A PLL
isdirectly connected to transcoder EDP and port B/C PLLs can be routed to any transcoder A/B/C.

Note: DDIO is digital port B, DD1 isdigital port C, and DDI2 isdigital port D (CHV) or port A (BXT).

Table4.1. Dual channel PHY (VLV/CHV/BXT)

CHO CH1
CMN/PLL/REF CMN/PLL/REF
PCS01 PCS23 PCS01 PCS23
TXO TX1 TX2 \ TX3 TXO | TX1 TX2 TX3
DDIO DDI1

Table4.2. Single channel PHY (CHV/BXT)

CHO

CMN/PLL/REF
PCS01 PCS23
TXO ‘ TX1 X2 TX3
DDI2

CSR firmware support for DMC

Display Context Save and Restore (CSR) firmware support added from gen9 onwardsto drive newly added
DMC (Display microcontroller) in display engine to save and restore the state of display engine when it
enter into low-power state and comes back to normal.

Firmware loading status will be one of the below statess FW_UNINITIALIZED, FW_LOADED,
FW_FAILED.

Once the firmware is written into the registers status will be moved from FW_UNINITIALIZED to
FW_L OADED and for any erroneous condition status will be moved to FW_FAILED.

665

drm/i915 Intel GFX Driver

Name
intel_csr_load status get — to get firmware loading status.

Synopsis
enumcsr_state intel _csr_|oad status_get (struct drm.i 915 private * de-
V_priv);

Arguments

dev_priv i915device.
Description
This function helps to get the firmware loading status.

Return

Firmware loading status.

666

drm/i915 Intel GFX Driver

Name
intel_csr_load status set — help to set firmware loading status.

Synopsis
voidintel csr_l|load status_set (struct drm.i 915 private * dev_priv, enum
csr_state state);

Arguments
dev_priv i915device.

state enumeration of firmware loading status.

Description

Set the firmware loading status.

667

drm/i915 Intel GFX Driver

Name

intel_csr_load program — write the firmware from memory to register.
Synopsis

void intel _csr_load program (struct drmdevice * dev);
Arguments

dev drmdevice.

Description

CSR firmware is read from a .bin file and kept in internal memory one time. Everytime display comes
back from low power state this function is called to copy the firmware from internal memory to registers.

668

drm/i915 Intel GFX Driver

Name

intel_csr_ucode init — initialize the firmware loading.
Synopsis

void intel _csr_ucode_init (struct drmdevice * dev);
Arguments

dev drmdevice.

Description

Thisfunctioniscalled at the time of loading the display driver to read firmware from a.bin file and copied
into ainternal memory.

669

drm/i915 Intel GFX Driver

Name

intel_csr_ucode fini — unload the CSR firmware.
Synopsis

void intel _csr_ucode fini (struct drmdevice * dev);
Arguments

dev drmdevice
Description

Firmmware unloading includes freeing the internal momory and reset the firmware loading status.

Memory Management and Command Submis-
sion
This sections covers al things related to the GEM implementation in the i915 driver.

Batchbuffer Parsing

Motivation: Certain OpenGL features (e.g. transform feedback, performance monitoring) require user-
space code to submit batches containing commands such asMI_LOAD_REGISTER_IMM to access var-
ious registers. Unfortunately, some generations of the hardware will noop these commandsin “unsecure”
batches (which includes all userspace batches submitted viai915) even though the commands may be safe

and represent the intended programming model of the device.

The software command parser is similar in operation to the command parsing done in hardware for unse-
cure batches. However, the software parser allows some operations that would be noop'd by hardware, if
the parser determines the operation is safe, and submitsthe batch as*“ secure” to prevent hardware parsing.

Threats: At ahigh level, the hardware (and software) checks attempt to prevent granting userspace undue

privileges. There are three categories of privilege.

First, commands which are explicitly defined as privileged or which should only be used by the kernel dri-
ver. The parser generaly rejects such commands, though it may allow some from the drm master process.

Second, commands which access registers. To support correct/enhanced userspace functionality, particu-
larly certain OpenGL extensions, the parser provides a whitelist of registers which userspace may safely

access (for both normal and drm master processes).

Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). The parser alwaysrejects

such commands.

The majority of the problematic commandsfall in the MI_* range, with only afew specific commands on

each ring (e.g. PIPE_CONTROL and MI_FLUSH_DW).

Implementation: Each ring maintains tables of commands and registers which the parser usesin scanning

batch buffers submitted to that ring.

Since the set of commands that the parser must check for is significantly smaller than the number of
commands supported, the parser tables contain only those commandsrequired by the parser. Thisgenerally

670

drm/i915 Intel GFX Driver

works because command opcode ranges have standard command length encodings. So for commands
that the parser does not need to check, it can easily skip them. Thisisimplemented via a per-ring length
decoding vfunc.

Unfortunately, there are a number of commands that do not follow the standard length encoding for their
opcode range, primarily amongst theMI_* commands. To handlethis, the parser provides away to define
explicit “skip” entriesin the per-ring command tables.

Other command table entries map fairly directly to high level categories mentioned above: rejected, mas-
ter-only, register whitelist. The parser implements a number of checks, including the privileged memory
checks, via a general bitmasking mechanism.

671

drm/i915 Intel GFX Driver

Name
1915 cmd_parser_init_ring — set cmd parser related fields for a ringbuffer

Synopsis

int 1915 cnd_parser _init _ring (struct intel _engine_cs * ring);
Arguments

ring theringbuffer toinitiaize

Description

Optionaly initializes fields related to batch buffer command parsing in the struct intel_engine cs based
on whether the platform requires software command parsing.

Return

non-zero if initidlization fails

672

drm/i915 Intel GFX Driver

Name
1915 cmd_parser_fini_ring — clean up cmd parser related fields

Synopsis
void i915 cnd_parser _fini_ring (struct intel _engine_cs * ring);
Arguments

ri ng theringbuffer to clean up

Description

Releases any resources related to command parsing that may have been initialized for the specified ring.

673

drm/i915 Intel GFX Driver

Name

1915 needs cmd_parser — should a given ring use software command parsing?
Synopsis

bool 915 needs_cnd _parser (struct intel _engine_cs * ring);
Arguments

ring theringinquestion
Description

Only certain platforms require software batch buffer command parsing, and only when enabled viamodule
parameter.

Return

trueif the ring requires software command parsing

674

drm/i915 Intel GFX Driver

Name

1915 parse_cmds — parse a submitted batch buffer for privilege violations
Synopsis
int 1915 parse cnds (struct intel_engine.cs * ring, struct dr-

m.i 915 gemobject * batch obj, struct drm.i915 gemobject * shad-
ow _batch obj, u32 batch _start offset, u32 batch |en, bool is nmaster);

Arguments
ring the ring on which the batch isto execute
bat ch_obj the batch buffer in question
shadow_bat ch_obj copy of the batch buffer in question

bat ch_start_of fset byteoffsetinthe batch at which execution starts

batch_I en length of the commands in batch_obj
i s_nmaster is the submitting process the drm master?
Description

Parses the specified batch buffer looking for privilege violations as described in the overview.
Return

non-zero if the parser finds violations or otherwise fails; -EACCES if the batch appears legal but should
use hardware parsing

675

drm/i915 Intel GFX Driver

Name

1915 cmd_parser_get_version — get the cmd parser version number
Synopsis

int 1915 cnd_parser_get _version (void);
Arguments

voi d noarguments

Description

The cmd parser maintains a simple increasing integer version number suitable for passing to userspace
clients to determine what operations are permitted.

Return

the current version number of the cmd parser

Batchbuffer Pools

In order to submit batch buffers as 'secure’, the software command parser must ensure that a batch buffer
cannot be modified after parsing. It doesthisby copying the user provided batch buffer contentsto akernel
owned buffer from which the hardware will actually execute, and by carefully managing the address space
bindings for such buffers.

The batch pool framework provides a mechanism for the driver to manage a set of scratch buffers to use
for this purpose. The framework can be extended to support other uses cases should they arise.

676

drm/i915 Intel GFX Driver

Name
1915 gem batch_pool_init — initialize a batch buffer pool

Synopsis

void 1915 gembatch pool init (struct drmdevice * dev, struct
i 915 gem batch_pool * pool);

Arguments
dev the drm device

pool the batch buffer pool

677

drm/i915 Intel GFX Driver

Name
1915 gem batch_pool_fini — clean up a batch buffer pool

Synopsis
void i 915 gem batch_pool fini (struct i915 gem batch_pool * pool);
Arguments

pool thepool to clean up

Note

Callers must hold the struct_mutex.

678

drm/i915 Intel GFX Driver

Name
1915 gem batch_pool _get — allocate a buffer from the pool
Synopsis
st ruct drm.i 915 gem obj ect * i 915 gem bat ch_pool _get (struct

i 915_gem bat ch_pool * pool, size_t size);

Arguments

pool the batch buffer pool

si ze theminimum desired size of the returned buffer

Description

Note

Return

Returns an inactive buffer from pool with at least si ze bytes, with the pages pinned. The caller must
i 915 gem obj ect _unpi n_pages on the returned object.

Callers must hold the struct_mutex

the buffer object or an error pointer

Logical Rings, Logical Ring Contexts and Execlists

Motivation: GEN8 brings an expansion of the HW contexts: “Logical Ring Contexts’. These expanded
contexts enable a number of new abilities, especially “Execlists’ (also implemented in thisfile).

One of the main differences with the legacy HW contexts is that logical ring contexts incorporate many
more things to the context's state, like PDPs or ringbuffer control registers:

The reason why PDPs are included in the context is straightforward: as PPGTTs (per-process GTTs) are
actualy per-context, having the PDPs contained there mean you don't need to do a ppgtt->switch_mm
yoursdlf, instead, the GPU will do it for you on the context switch.

But, what about the ringbuffer control registers (head, tail, etc..)? shouldn't we just need a set of those per
engine command streamer? Thisis where the name “Logical Rings’ starts to make sense: by virtualizing
the rings, the engine cs shifts to anew “ring buffer” with every context switch. When you want to submit
a workload to the GPU you: A) choose your context, B) find its appropriate virtualized ring, C) write
commandsto it and then, finally, D) tell the GPU to switch to that context.

Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch to a contexts is via a
context execution list, ergo “Execlists’.

LRC implementation: Regarding the creation of contexts, we have:

- One global default context. - One local default context for each opened fd. - One local extra context for
each context createioctl call.

Now that ringbuffers belong per-context (and not per-engine, like before) and that contexts are uniquely
tied to agiven engine (and not reusable, like before) we need:

679

drm/i915 Intel GFX Driver

- Oneringbuffer per-engine inside each context. - One backing object per-engine inside each context.

The global default context starts its life with these new objects fully allocated and populated. The local
default context for each opened fd is more complex, because we don't know at creation time which engine
is going to use them. To handle this, we have implemented a deferred creation of LR contexts:

The local context starts its life as a hollow or blank holder, that only gets populated for a given engine
once we receive an exechuffer. If later on we receive another execbuffer ioctl for the same context but a
different engine, we allocate/populate a new ringbuffer and context backing object and so on.

Finally, regarding local contexts created using theioctl call: asthey are only allowed with the render ring,
we can allocate & populate them right away (no need to defer anything, at least for now).

Execlistsimplementation: Execlists are the new method by which, on gen8+ hardware, workloads are sub-
mitted for execution (as opposed to the legacy, ringbuffer-based, method). This method works as follows:

When arequest is committed, its commands (the BB start and any leading or trailing commands, like the
segno breadcrumbs) are placed intheringbuffer for the appropriate context. Thetail pointer inthe hardware
context is not updated at this time, but instead, kept by the driver in the ringbuffer structure. A structure
representing this request is added to a request queue for the appropriate engine: this structure contains a
copy of the context'stail after the request was written to the ring buffer and a pointer to the context itself.

If the engine'srequest queue was empty before the request was added, the queueis processed immediately.
Otherwise the queue will be processed during a context switch interrupt. In any case, elements on the
gueue will get sent (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with aglobally unique
20-bits submission ID.

When execution of arequest completes, the GPU updates the context status buffer with a context complete
event and generates a context switch interrupt. During the interrupt handling, the driver examines the
events in the buffer: for each context complete event, if the announced |D matches that on the head of the
request queue, then that request isretired and removed from the queue.

After processing, if any requests were retired and the queue is not empty then anew execution list can be
submitted. The two requests at the front of the queue are next to be submitted but since a context may not
occur twice in an execution list, if subsequent requests have the same ID asthe first then the two requests
must be combined. Thisisdone simply by discarding requests at the head of the queue until either only one
requestsis left (in which case we use aNULL second context) or the first two requests have unique IDs.

By always executing the first two requests in the queue the driver ensures that the GPU is kept as busy as
possible. In the case where a single context completes but a second context is still executing, the request
for this second context will be at the head of the queue when we removethefirst one. Thisrequest will then
be resubmitted along with anew request for adifferent context, which will cause the hardware to continue
executing the second request and queue the new request (the GPU detects the condition of acontext getting
preempted with the same context and optimizes the context switch flow by not doing preemption, but just
sampling the new tail pointer).

680

drm/i915 Intel GFX Driver

Name

intel_sanitize enable_execlists — sanitize i915.enable_execlists
Synopsis

int intel _sanitize enable execlists (struct drmdevice * dev, int en-
abl e_execlists);

Arguments

dev DRM device.

enabl e_execlists vaueofi9l5.enable execlists module parameter.
Description

Only certain platforms support Execlists (the prerequisites being support for Logical Ring Contexts and
Aliasing PPGTT or better).

Return

1if Execlistsis supported and has to be enabled.

681

drm/i915 Intel GFX Driver

Name
intel_execlists ctx_id — get the Execlists Context ID

Synopsis

u32 intel _execlists ctx_id (struct drm.i 915 gem object * ctx_obj);
Arguments

ct x_obj Logica Ring Context backing object.
Description

Do not confuse with ctx->id! Unfortunately we have a name overload

here

the old context 1D we pass to userspace as ahandler so that they can refer to a context, and the new context
ID we pass to the EL SP so that the GPU can inform us of the context status via interrupts.

Return

20-bits globally unique context ID.

682

drm/i915 Intel GFX Driver

Name
intel_Irc_irq_handler — handle Context Switch interrupts

Synopsis

void intel Irc_irg_handler (struct intel _engine _cs * ring);

Arguments

ri ng Engine Command Streamer to handle.

Description

Check the unread Context Status Buffers and manage the submission of new contextsto the EL SP accord-
ingly.

683

drm/i915 Intel GFX Driver

Name

intel_logical_ring_begin — prepare the logical ringbuffer to accept some commands
Synopsis

int intel logical _ring begin (struct drm.i 915 gemrequest * req, int
num dwor ds) ;

Arguments
req The request to start some new work for
num dwor ds number of DWORDSs that we plan to write to the ringbuffer.

Description

The ringbuffer might not be ready to accept the commands right away (maybe it needs to be wrapped, or
wait abit for the tail to be updated). This function takes care of that and also preallocates a request (every
workload submission is still mediated through requests, same asit did with legacy ringbuffer submission).

Return

non-zero if the ringbuffer is not ready to be written to.

684

drm/i915 Intel GFX Driver

Name

intel_execlists_submission — submit a batchbuffer for execution, Execlists style
Synopsis

int intel _execlists submssion (struct i 915 execbhuffer_parans * parans,
struct drm.i 915 gem execbuffer2 * args, struct list_head * vmas);

Arguments

par ans -- undescribed --

args execbuffer call arguments.
vmas list of vmas.
Description

Thisistheevil twin version of 1915 _gem_ringbuffer_submission. It abstracts away the submission details
of the execbuffer ioctl call.

Return

non-zero if the submission fails.

685

drm/i915 Intel GFX Driver

Name
gen8_init_indirectctx_bb — initialize indirect ctx batch with WA

Synopsis

int gen8 init _indirectctx bb (struct intel _engine cs * ring, struct
i 915 wa ctx bb * wa_ctx, uint32_t *const batch, uint32_t * offset);

Arguments
ring only applicable for RCS
wa_ct x structure representing wa._ctx
batch pageinwhich WA are loaded

of f set This field specifies the start of the batch, it should be cache-aligned otherwise it is adjusted
accordingly. Typicaly we only have one indirect_ctx and per_ctx batch buffer which areini-
tialized at the beginning and shared across all contexts but this field helps us to have multiple
batches at different offsets and select them based on acriteria. At the moment this batch always
start at the beginning of the page and at this point we don't have multiple wa_ctx batch buffers.

offset
specifies start of the batch, should be cache-aligned. Thisis updated with the offset value received asinput.
size
size of the batch in DWORDS but HW expects in terms of cachelines
Description
The number of WA applied are not known at the beginning; we use thisfield to return the no of DWORDS
written.
It isto be noted that thisbatch doesnot contain MI_BATCH_BUFFER_END soit adds NOOPs as padding
tomakeit cachelineaigned. MI_BATCH_BUFFER_END will be added to perctx batch and both of them
together makes a compl ete batch buffer.
Return

non-zero if we exceed the PAGE_SIZE limit.

686

drm/i915 Intel GFX Driver

Name
gen8_init_perctx_bb — initialize per ctx batch with WA

Synopsis

int gen8 init _perctx bb (struct intel_engine cs * ring, struct
i 915 wa ctx bb * wa_ctx, uint32_t *const batch, uint32_t * offset);

Arguments
ring only applicable for RCS
wa_ct x structure representing wa._ctx
batch pageinwhich WA are loaded

of f set Thisfield specifies the start of this batch. This batch is started immediately after indirect_ctx
batch. Since we ensurethat indirect_ctx ends on acachelinethisbatch isaligned automatically.

offset

specifies start of the batch, should be cache-aligned.
Size

size of the batch in DWORDS but HW expects in terms of cachelines
Description

The number of DWORDS written are returned using this field.

This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding to align it
with cacheline as padding after MI_BATCH_BUFFER_END is redundant.

687

drm/i915 Intel GFX Driver

Name

intel_logica_ring_cleanup — deall ocate the Engine Command Streamer
Synopsis

void intel _logical _ring cleanup (struct intel _engine cs * ring);
Arguments

ri ng Engine Command Streamer.

688

drm/i915 Intel GFX Driver

Name

intel_logica_rings_init — allocate, populate and init the Engine Command Streamers
Synopsis

int intel logical _rings_init (struct drmdevice * dev);
Arguments

dev DRM device.

Description

This function inits the engines for an Execlists submission style (the equivalent in the legacy ringbuffer
submission world would be i915_gem_init_rings). It doesit only for those engines that are present in the
hardware.

Return

non-zero if theinitialization failed.

689

drm/i915 Intel GFX Driver

Name

intel_Ir_context_free — free the LRC specific bits of a context
Synopsis
void intel Ir_context free (struct intel _context * ctx);
Arguments
ctx thelLR contextto free.
The real context freeing is done in i915_gem_context_free
thisonly
takes care of the bits that are LRC related

the per-engine backing objects and the logical ringbuffer.

690

drm/i915 Intel GFX Driver

Name
intel_Ir_context_deferred alloc — create the LRC specific bits of a context

Synopsis

int intel |Ir_context_deferred alloc (struct intel _context * ctx, struct
intel _engine_cs * ring);

Arguments

ctx LR context to create.

ri ng engineto be used with the context.

Description

Thisfunction can be called more than once, with different engines, if we plan to use the context with them.
The context backing objects and the ringbuffers (specially the ringbuffer backing objects) suck a lot of
memory up, and that's why

the creation is a deferred call

it's better to make sure first that we need to use a given ring with the context.

Return

non-zero on error.

Global GTT views

Background and previous state

Historically objects could exists (be bound) in global GTT space only as singular instances with a view
representing all of the object's backing pagesin alinear fashion. This view will be called a normal view.

To support multiple views of the same object, where the number of mapped pages is not equa to the
backing store, or where the layout of the pagesis not linear, concept of a GGTT view was added.

One example of an alternative view is a stereo display driven by a single image. In this case we would
have a framebuffer looking like this (2x2 pages):

1234

Abovewould represent anormal GGTT view as normally mapped for GPU or CPU rendering. In contrast,
fed to the display engine would be an aternative view which could look something like this:

1212 3434
In this example both the size and layout of pagesin the alternative view is different from the normal view.
Implementation and usage

GGTT views are implemented using VMASs and are distinguished via enum 1915 ggtt view_type and
struct i915_ggtt view.

691

drm/i915 Intel GFX Driver

A new flavour of core GEM functions which work with GGTT bound objects were added with the _ggtt
infix, and sometimes with _view postfix to avoid renaming in large amounts of code. They take the struct
1915 ggtt_view parameter encapsulating all metadata required to implement a view.

Asahelper for callerswhich areonly interested in the normal view, globally consti915_ggtt_view_normal
singleton instance exists. All old core GEM API functions, the ones not taking the view parameter, are
operating on, or with the normal GGTT view.

Code wanting to add or use anew GGTT view needs to:

1. Add anew enumwith asuitable name. 2. Extend the metadatainthei915_ggtt view structureif required.
3. Add supporttoi 915 _get _vna_pages.

New views are required to build a scatter-gather table from within thei915 get vma_pagesfunction. This
tableis stored in the vma.ggtt view and exists for the lifetime of an VMA.

Core AP is designed to have copy semantics which means that passed in struct i915_ggtt_view does not
need to be persistent (left around after calling the core API functions).

692

drm/i915 Intel GFX Driver

Name
gen8_ppgtt_alloc_pagetabs — Allocate page tables for VA range.

Synopsis

int gen8 ppgtt_alloc_pagetabs (struct i915 address _space * vm struct
i 915 page directory * pd, uint64 t start, uint64_t |ength, unsigned | ong

* new pts);
Arguments
vm Master vm structure.
pd Page directory for this address range.

start Starting virtual address to begin alocations.

I ength Sizeof thealocations.

new _pts Bitmap set by function with new allocations. Likely used by the caller to free on error.
Description

Allocate the required number of page tables. Extremely similar to gen8_ppgtt _al | oc_page_di -
rectories. The man difference is here we are limited by the page directory boundary (instead
of the page directory pointer). That boundary is 1GB virtual. Therefore, unlike gen8_ppgtt _al -
| oc_page_directories,itispossble and likely that the caller will need to use multiple calls of
this function to achieve the appropriate allocation.

Return

0 if success; negative error code otherwise.

693

drm/i915 Intel GFX Driver

Name
gen8_ppgtt_alloc_page directories— Allocate page directories for VA range.

Synopsis

int gen8 ppgtt_alloc_page directories (struct i915 address_space * vm
struct 1915 page directory pointer * pdp, uint64_t start, uint64_t
| engt h, unsigned |ong * new pds);

Arguments
vm Master vm structure.
pdp Page directory pointer for this address range.

start Starting virtual address to begin alocations.
I ength Sizeof thealocations.

new_pds Bitmap set by function with new allocations. Likely used by the caller to free on error.

Description

Allocate the required number of page directories starting at the pde index of st art, and ending at the
pdeindex st art +1 engt h. Thisfunction will skip over already allocated page directories within the
range, and only allocate new ones, setting the appropriate pointer within the pdp as well as the correct
position in the bitmap new_pds.

Thefunction will only allocate the pages within the range for a give page directory pointer. |n other words,
if start +1 engt h straddles a virtually addressed PDP boundary (512GB for 4k pages), there will be
more allocationsrequired by the caller, Thisisnot currently possible, and the BUG in the codewill prevent
it.

Return

0 if success; negative error code otherwise.

694

drm/i915 Intel GFX Driver

Name
gen8 ppgtt_aloc_page dirpointers — Allocate pdps for VA range.

Synopsis

int gen8 ppgtt_alloc_page dirpointers (struct i915 address_space * vm
struct 1915 pm4 * pm 4, uint64 t start, uint64_t |ength, unsigned | ong
* new_pdps);

Arguments
vm Master vm structure.
pm 4 Page map level 4 for this address range.
start Starting virtual address to begin alocations.

| ength Size of the allocations.
new _pdps Bitmap set by function with new allocations. Likely used by the caller to free on error.
Description

Allocate the required number of page directory pointers. Extremely similar to gen8_ppgtt _al -
| oc_page_directories andgen8 ppgtt_al |l oc_paget abs. The main differenceis here we
are limited by the pml4 boundary (instead of the page directory pointer).

Return

0 if success; negative error code otherwise.

695

drm/i915 Intel GFX Driver

Name
1915 vma _bind — Setsup PTEs for an VMA in it's corresponding address space.

Synopsis

int 1915 vma_bind (struct 1915 vma * vme, enum i915 cache_| evel
cache_l evel, u32 flags);

Arguments
vima VMA to map
cache_| evel mapping cachelevel

fl ags flags like global or local mapping

Description

DMA addresses are taken from the scatter-gather table of this object (or of this VMA in case of non-
default GGTT views) and PTE entries set up. Note that DMA addresses are also the only part of the SG

table we care about.

696

drm/i915 Intel GFX Driver

Name
1915 ggtt_view_size— Get thesize of aGGTT view.

Synopsis

size t 1915 ggtt _view size (struct drm.i 915 gemobject * obj, const
struct 1915 ggtt _view * view);

Arguments
obj Object the view is of.
vi ew Theview in question.
Description

ret ur n Thesize of the GGTT view in bytes.

GTT Fences and Swizzling

697

drm/i915 Intel GFX Driver

Name

1915 gem_object_put_fence — force-remove fence for an object
Synopsis

int 1915 gem object put_fence (struct drm.i 915 gem object * obj);
Arguments

obj object to map through afence reg

Description

This function force-removes any fence from the given object, which is useful if the kernel wants to do
untiled GTT access.

Returns

0 on success, negative error code on failure.

698

drm/i915 Intel GFX Driver

Name
1915 gem object_get fence — set up fencing for an object

Synopsis
int 1915 gem object get fence (struct drm.i 915 gem object * obj);
Arguments

obj object to map through afence reg

Description

When mapping objects through the GTT, userspace wants to be able to write to them without having to
worry about swizzling if the object is tiled. This function walks the fence regs looking for a free one for

obj , stealing one if it can't find any.
It then sets up the reg based on the object's properties: address, pitch and tiling format.

For an untiled surface, this removes any existing fence.

Returns

0 on success, negative error code on failure.

699

drm/i915 Intel GFX Driver

Name
1915 gem_object_pin_fence — pin fencing state

Synopsis

bool 915 gem object pin _fence (struct drm.i 915 gem object * obj);
Arguments

obj object to pin fencing for

Description

Thispinsthefencing state (whether tiled or untiled) to make sure the object isready to be used as a scanout
target. Fencing status must be synchronize first by callingi 915 _gem obj ect _get fence:

The resulting fence pin reference must be released again withi 915 _gem obj ect _unpi n_f ence.

Returns

Trueif the object has afence, false otherwise.

700

drm/i915 Intel GFX Driver

Name
1915 gem_object_unpin_fence — unpin fencing state

Synopsis

void i 915 gem object _unpin_fence (struct drm.i 915 gem object * obj);
Arguments

obj object to unpin fencing for

Description

This releases the fence pin reference acquired through 1915 gem_object pin_fence. It will handle both
objects with and without an attached fence correctly, callers do not need to distinguish this.

701

drm/i915 Intel GFX Driver

Name

i915 gem restore fences — restore fence state
Synopsis
void i 915 gemrestore fences (struct drmdevice * dev);

Arguments

dev DRM device

Description
Restorethe hw fence state to match the softwaretracking again, to be called after agpu reset and on resume.

702

drm/i915 Intel GFX Driver

Name
1915 gem detect_bit_6 swizzle — detect hit 6 swizzling pattern

Synopsis

void i 915 gem detect bit_ 6 swi zzle (struct drmdevice * dev);

Arguments

dev DRM device

Description

Detects bit 6 swizzling of address lookup between IGD access and CPU access through main memory.

703

drm/i915 Intel GFX Driver

Name
1915 gem object_do_bit 17 swizzle— fixup bit 17 swizzling

Synopsis
void 1915 gemobject _do bit 17 swizzle (struct drm.i 915 gem object *
obj) ;

Arguments

obj 1915 GEM buffer object

Description

This function fixes up the swizzling in case any page frame number for this object has changed in bit 17
since that state has been saved withi 915 _gem obj ect _save_bit _17 swi zzl e.

This is called when pinning backing storage again, since the kernel is free to move unpinned backing
storage around (either by directly moving pages or by swapping them out and back in again).

704

drm/i915 Intel GFX Driver

Name

1915 gem_object_save hit 17 swizzle— save bit 17 swizzling

Synopsis

void i 915 gem object _save bit_ 17 swi zzle (struct drm.i 915 gem object *
obj) ;

Arguments

obj 1915 GEM buffer object

Description

Global

This function saves the bit 17 of each page frame number so that swizzling can be fixed up later on with
i 915 gem obj ect _do_bit_17_ sw zzl e. Thismust be called before the backing storage can be
unpinned.

GTT Fence Handling

Important to avoid confusions: “fences’ in thei915 driver are not execution fences used to track command
completion but hardware detiler objects which wrap a given range of the global GTT. Each platform has
only afairly limited set of these objects.

Fences are used to detile GTT memory mappings. They're aso connected to the hardware frontbuffer
render tracking and henceinterract with frontbuffer conmpression. Furthermore on older platforms fences
are required for tiled objects used by the display engine. They can also be used by the render engine -
they're reguired for blitter commands and are optional for render commands. But on gend+ both display
(with the exception of fbc) and rendering have their own tiling state bits and don't need fences.

Also notethat fences only support X and Y tiling and hence can't be used for the fancier new tiling formats
likeW, Ysand Yf.

Finally note that because fences are such arestricted resource they're dynamically associated with objects.
Furthermorefence stateis committed to the hardwarelazily to avoid unecessary stallson gen2/3. Therefore
codemust explictly calli 915 _gem obj ect _get _f ence tosynchronizefencing statusfor cpu access.
Also note that some code wants an unfenced view, for those cases the fence can be removed forcefully
withi 915 _gem obj ect _put _fence.

Internally these functions will synchronize with userspace access by removing CPU ptesinto GTT mmaps
(not the GTT ptes themselves) as needed.

Hardware Tiling and Swizzling Details

The idea behind tiling is to increase cache hit rates by rearranging pixel data so that a group of pixel
accesses are in the same cacheline. Performance improvement from doing this on the back/depth buffer
are on the order of 30%.

Intel architectures make this somewhat more complicated, though, by adjustments made to addressing of
data when the memory isin interleaved mode (matched pairs of DIMMS) to improve memory bandwidth.
For interleaved memory, the CPU sends every sequential 64 bytes to an alternate memory channel so it
can get the bandwidth from both.

705

drm/i915 Intel GFX Driver

The GPU aso rearrangesits accesses for increased bandwidth to interleaved memory, and it matches what
the CPU does for non-tiled. However, when tiled it does it alittle differently, since one walks addresses
not just in the X direction but also Y. So, along with alternating channels when bit 6 of the address flips,
it also alternates when other bits flip -- Bits 9 (every 512 bytes, an X tile scanline) and 10 (every two X
tile scanlines) are common to both the 915 and 965-class hardware.

The CPU also sometimes XORs in higher bits as well, to improve bandwidth doing strided access like we
do so frequently in graphics. Thisis called “Channel XOR Randomization” in the MCH documentation.
The result isthat the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address decode.

All of this bit 6 XORing has an effect on our memory management, as we need to make sure that the 3d
driver can correctly address object contents.

If we don't have interleaved memory, al tiling is safe and no swizzling is required.

When bit 17 is XORed in, we simply refuse to tile at al. Bit 17 is not just a page offset, so as we page
an objet out and back in, individual pagesin it will have different bit 17 addresses, resulting in each 64
bytes being swapped with its neighbor!

Otherwise, if interleaved, we have to tell the 3d driver what the address swizzling it needsto do is, since
it's writing with the CPU to the pages (bit 6 and potentialy bit 11 XORed in), and the GPU is reading
from the pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling required by the CPU
of XORingin bit 6, 9, 10, and potentially 11, in order to match what the GPU expects.

Object Tiling IOCTLs

706

drm/i915 Intel GFX Driver

Name
1915 gem set tiling— IOCTL handler to set tiling mode

Synopsis

int i915 gemset tiling (struct drmdevice * dev, void * data, struct
drmfile * file);

Arguments
dev DRM device
dat a datapointer for theioctl
file DRM filefortheioctl cal
Description
Setsthe tiling mode of an object, returning the required swizzling of bit 6 of addresses in the object.
Called by the user viaioctl.
Returns

Zero on success, hegative errno on failure.

707

drm/i915 Intel GFX Driver

Name

1915 gem_get_tiling— IOCTL handler to get tiling mode

Synopsis

int i915 gemget tiling (struct drmdevice * dev, void * data, struct
drmfile * file);

Arguments

dev DRM device
dat a datapointer for theioctl

file DRM filefortheioctl cal

Description

Returns

Returns the current tiling mode and required bit 6 swizzling for the object.

Called by the user viaioctl.

Zero on success, hegative errno on failure.

i 915 gemset tilingandi 915 gem get tiling isthe userspace interface to declare fence
register requirements.

In principle GEM doesn't care at all about the internal data layout of an object, and hence it also doesn't
care about tiling or swizzling. There's two exceptions:

- For X and Y tiling the hardware provides detilers for CPU access, so called fences. Since there's only
alimited amount of them the kernel must manage these, and therefore userspace must tell the kernel the
object tiling if it wants to use fences for detiling. - On gen3 and gen4 platforms have a swizzling pattern
for tiled objects which depends upon the physical page frame number. When swapping such objects the
page frame number might change and the kernel must be able to fix this up and hence now thetiling. Note
that on a subset of platforms with asymmetric memory channel population the swizzling pattern changes
in an unknown way, and for those the kernel simply forbids swapping completely.

Since neither of thisappliesfor new tiling layouts on modern platformslike W, Ysand YT tiling GEM only
allows object tiling to be set to X or Y tiled. Anything else can be handled in userspace entirely without
the kernel's invovlement.

Buffer Object Eviction

This section documents the interface functions for evicting buffer objects to make space available in the
virtual gpu address spaces. Notethat thisismostly orthogonal to shrinking buffer objects caches, which has
the goal to make main memory (shared with the gpu through the unified memory architecture) available.

708

drm/i915 Intel GFX Driver

Name

1915 gem_evict_something — Evict vmas to make room for binding a new one
Synopsis
int 1915 gem evict_sonething (struct drmdevice * dev, struct i915 ad-

dress_space * vm int mn_size, unsigned alignnment, unsigned cache_| ev-
el, unsigned |long start, unsigned |long end, unsigned flags);

Arguments
dev drm_device
vm address space to evict from
nmn_size size of the desired free space
al i gnnent alignment constraint of the desired free space

cache_| evel cache level for the desired space

start start (inclusive) of the range from which to evict objects

end end (exclusive) of the range from which to evict objects

flags additional flagsto control the eviction algorithm
Description

This function will try to evict vmas until a free space satisfying the requirements is found. Callers must
check first whether any such hole exists already before calling this function.

Thisfunction is used by the object/vma binding code.

Sincethisfunctionisonly used to free up virtual address spaceit only ignores pinned vmas, and not object
where the backing storageitself is pinned. Hence obj->pages_pin_count does not protect against eviction.

To clarify

Thisisfor freeing up virtual address space, not for freeing memory in e.g. the shrinker.

709

drm/i915 Intel GFX Driver

Name

1915 gem_evict_ vm — Evict dl idle vmas from avm
Synopsis

int 1915 gemevict_vm (struct 1915 address_space * vm bool do_idle);
Arguments

vm Address space to cleanse

do_i dl e Boolean directing whether to idlefirst.

Description

Thisfunction evictsall idlesvmas from avm. If al unpinned vmas should be evicted thedo_i dl e needs
to be set to true.

Thisis used by the execbuf code as a last-ditch effort to defragment the address space.

To clarify

Thisisfor freeing up virtual address space, not for freeing memory in e.g. the shrinker.

Buffer Object Memory Shrinking

This section documents the interface function for shrinking memory usage of buffer object caches. Shrink-
ing is used to make main memory available. Note that thisis mostly orthogonal to evicting buffer objects,
which has the goal to make space in gpu virtual address spaces.

710

drm/i915 Intel GFX Driver

Name

1915 gem_shrink — Shrink buffer object caches

Synopsis

unsi gned long i915 gem shrink (struct drm.i 915 private * dev_priv, un-
signed | ong target, unsigned flags);

Arguments

dev_priv 915 device

t ar get amount of memory to make available, in pages
fl ags control flags for selecting cache types
Description

Returns

This function is the main interface to the shrinker. It will try to release up to t ar get pages of main
memory backing storage from buffer objects. Selection of the specific caches can be done with f | ags.
Thisise.g. useful when purgeabl e objects should be removed from caches preferentially.

Note that it's not guaranteed that released amount is actually available as free system memory - the pages
might still be in-used to due to other reasons (like cpu mmaps) or the mm core has reused them before
we could grab them. Therefore code that needs to explicitly shrink buffer objects caches (e.g. to avoid
deadlocks in memory reclaim) must fall back toi 915_gem shrink_al | .

Also note that any kind of pinning (both per-vmaaddress space pins and backing storage pins at the buffer
object level) result in the shrinker code having to skip the object.

The number of pages of backing storage actually released.

711

drm/i915 Intel GFX Driver

Name
1915 gem _shrink_all — Shrink buffer object caches completely

Synopsis

unsi gned long i 915 gem shrink_all (struct drm.i 915 private * dev_priv);
Arguments

dev_priv i915device
Description

Thisisasimplewraper aroundi 915_gem shr i nk to aggressively shrink all caches completely. It also

first waits for and retires al outstanding requests to also be able to release backing storage for active
objects.

This should only be used in code to intentionally quiescent the gpu or as alast-ditch effort when memory
seems to have run out.

Returns

The number of pages of backing storage actually released.

712

drm/i915 Intel GFX Driver

Name
1915 gem_shrinker_init — Initialize i915 shrinker

Synopsis
void i 915 gem shrinker _init (struct drm.i 915 private * dev_priv);

Arguments

dev_priv i915device

Description

This function registers and sets up the 1915 shrinker and OOM handler.

GuC-based Command Submission
GuC

713

drm/i915 Intel GFX Driver

Name

drivers/gpu/drm/i915/intel_guc_loader.c — Document generation inconsistency
Oops
Warning
The template for this document tried to insert the structured comment from the file dri -

vers/ gpu/drnifi915/intel _guc_l oader. c a this point, but none was found. This
dummy section is inserted to allow generation to continue.

714

drm/i915 Intel GFX Driver

Name
intel_guc_ucode_|load — load GuC uCode into the device

Synopsis

int intel _guc _ucode |oad (struct drmdevice * dev);
Arguments

dev drmdevice
Description

Called fromgem i ni t _hwduring driver loading and also after a GPU reset.

Thefirmwareimage should have already been fetched into memory by theearlier call toi nt el _guc_u-
code_i ni t, so here we need only check that is succeeded, and then transfer the image to the h/w.

Return

non-zero code on error

715

drm/i915 Intel GFX Driver

Name

intel_guc_ucode _init — define parameters and fetch firmware

Synopsis

void intel _guc _ucode_init (struct drmdevice * dev);
Arguments

dev drmdevice
Description

Called early during driver load, but after GEM is initialised.

Thefirmwarewill betransferred to the GuC's memory later, wheni nt el _guc_ucode_| oad iscalled.

716

drm/i915 Intel GFX Driver

Name
intel_guc_ucode fini — clean up al allocated resources
Synopsis
void intel _guc_ucode fini (struct drmdevice * dev);
Arguments
dev drmdevice
GuC Client

717

drm/i915 Intel GFX Driver

Name

drivers/gpu/drm/i915/i915 guc_submission.c — Document generation inconsi stency
Oops
Warning
The template for this document tried to insert the structured comment from the file dri -

vers/ gpu/drnifi915/i 915 guc_subni ssi on. c atthispoint, but nonewasfound. This
dummy section is inserted to allow generation to continue.

718

drm/i915 Intel GFX Driver

Name
1915 guc_submit — Submit commands through GuC

Synopsis

int 1915 guc_submit (struct 1915 guc client * <client, struct dr-
m i 915 gem request * rq);

Arguments
client theguc client where commands will go through
rq -- undescribed --

Return

O if succeed

719

drm/i915 Intel GFX Driver

Name
gem_alocate_guc_obj — Allocate gem object for GuC usage

Synopsis

struct drm.i 915 gemobject * gemallocate _guc_obj (struct drmdevice *
dev, u32 size);

Arguments
dev drmdevice
si ze sizeof object
Description

Thisisawrapper to create agem obj. In order to useit inside GuC, the object needs to be pinned lifetime.
Also we must pin it to gtt space other than [0, GUC_WOPCM_TOP) because thisrange isreserved inside
GuC.

Return

A drm_i915 gem object if successful, otherwise NULL.

720

drm/i915 Intel GFX Driver

Name
gem _release guc_obj — Release gem object allocated for GuC usage

Synopsis
void gemrel ease_guc_obj (struct drm.i 915 gem object * obj);
Arguments

obj gem obj to be released

721

drm/i915 Intel GFX Driver

Name

guc_client_aloc — Allocate an i915_guc_client
Synopsis

struct 1915 guc client * guc_client_alloc (struct drmdevice * dev,
uint32 t priority, struct intel _context * ctx);

Arguments
dev drm device

priority fourlevespriority CRITICAL, HIGH, NORMAL and LOW The kernel client to re-
place ExecList submission is created with NORMAL priority. Priority of aclient for sched-
uler can be HIGH, while a preemption context can use CRITICAL. ct x the context to own
the client (we use the default render context)

ct x -- undescribed --
Return

Ani915 guc client object if success.

722

drm/i915 Intel GFX Driver

Name
intel_guc_suspend — notify GuC entering suspend state

Synopsis
int intel _guc_suspend (struct drmdevice * dev);
Arguments

dev drmdevice

723

drm/i915 Intel GFX Driver

Name

intel_guc_resume — notify GuC resuming from suspend state
Synopsis

int intel _guc _resune (struct drmdevice * dev);
Arguments

dev drmdevice

Tracing

This sections covers al things related to the tracepoints implemented in the i915 driver.

1915 ppgtt _create and i915_ ppgtt_release

With full ppgtt enabled each process using drm will allocate at least one trandation table. With these
tracesit is possible to keep track of the allocation and of the lifetime of the tables; this can be used during
testing/debug to verify that we are not leaking ppgtts. These traces identify the ppgtt through the vm
pointer, which isaso printed by the i915 vma bind and i915_vma_unbind tracepoints.

1915 context_create and 1915 context free

These tracepoints are used to track creation and deletion of contexts. If full ppgtt isenabled, they also print
the address of the vm assigned to the context.

switch_mm

Thistracepoint allows tracking of the mm switch, which is an important point in the lifetime of thevm in
the legacy submission path. This tracepoint is called only if full ppgtt is enabled.

724

Part Ill. vga_switcheroo

vga switcheroo isthe Linux subsystem for laptop hybrid graphics. These come in two flavors:

* muxed: Dual GPUs with a multiplexer chip to switch outputs between GPUs. * muxless: Dual GPUs but only one
of them is connected to outputs. The other one is merely used to offload rendering, its results are copied over PCle
into the framebuffer. On Linux thisis supported with DRI PRIME.

Hybrid graphics started to appear in the late Naughties and wereinitially all muxed. Newer |aptops moved to amuxless
architecturefor cost reasons. A notable exception isthe MacBook Pro which continuesto useamux. Muxes comewith
varying capabilities. Some switch only the panel, others can aso switch external displays. Some switch al display
pins at once while others can switch just the DDC lines. (To alow EDID probing for the inactive GPU.) Also, muxes
are often used to cut power to the discrete GPU whileit is not used.

DRM drivers register GPUs with vga_switcheroo, these are heretoforth called clients. The mux is called the handler.
Muxless machines also register a handler to control the power state of the discrete GPU, its ->switchto callback is
a no-op for obvious reasons. The discrete GPU is often equipped with an HDA controller for the HDMI/DP audio
signal, thiswill also register asaclient so that vga switcheroo can take care of the correct suspend/resume order when
changing the discrete GPU's power state. In total there can thus be up to three clients: Two vga clients (GPUs) and
one audio client (on the discrete GPU). The code is mostly prepared to support machines with more than two GPUs
should they become available.

The GPU to which the outputs are currently switched is called the active client in vga_switcheroo parlance. The GPU
not in useistheinactive client. When the inactive client's DRM driver isloaded, it will be unable to probe the panel's
EDID and hence depends on VBIOS to provide its display modes. If the VBIOS modes are bogus or if there is no
VBIOS at al (which is common on the MacBook Pro), a client may alternatively request that the DDC lines are
temporarily switched to it, provided that the handler supports this. Switching only the DDC lines and not the entire
output avoids unnecessary flickering.

Table of Contents

Y, oo (=o)L U L= PP 727
Manual switching and manual POWEr CONLIOIc..uuiiiiiiiiiiiii e 727
DIiVEr POWES COMLION ... ittt et e e e e 727

6. PUDIIC FUNCLIONS ...ttt e e e et eean s 728
vga switcheroo_register handleroooouiiiiii e 729
vga switcheroo_unregister handlero..o oo 730
vga switcheroo_handler flagsoouiiiiiiii 731
vga SWItCheroo register ClEMtoouiii e 732
vga switcheroo_register audio CHENtoooiiiiiiiii e 733
vga switcheroo_client_probe deferoooe i 734
vga SWItcheroo get ClIENt SEaeoiive i 735
vga SWItCheroo UNregister ClIENTooieuiii e 736
vga switcheroo _client fh Sat ... 737
vga SWItChero0 10CK dOCieeiei e 738
vga SWItcheroo UNIOCK AACoiieniii e 739
vga_switcheroo_process delayed_SWItChoviiiiiiiiiiiii 740
vga switcheroo_set dynamiC SWItChooiiiiiiii i 741
vga switcheroo init_ domain_PIM_OPSceeeieiei e 742
vga switcheroo_init_domain_pm_optimus hdmi_audiocccooviiiiiiiiiiii e, 743

A 0o o U o 1= TP 744
struct vga switcheroo handler ... 745
struct vga SWItCherO0 ClIENT OPSvevniieeiiie e 746

8. PUDIIC CONSLANLS ... ittt ettt e e e et e et e e et r e et e ean s 747
PUDITIC CONSEANES ... ettt e e e et e et e e et e e et e e e e eeaeaes 747

O. PIVALE SITUCLUIES ...t et e e e et e et e e et e e et e e e an e eeaeeenns 751
SEFUCE VOBST_JIMTV ettt ettt ettt ettt e et ettt e e e s e e e nnan s 752
Struct vga SWItChErO0 ClIENTcee e e e 753

726

Chapter 5. Modes of Use
Manual switching and manual power control

In this mode of use, the file /syskernel/debug/vgaswitcheroo/switch can be read to retrieve the current
vga switcheroo state and commands can be written to it to change the state. The file appears as soon
as two GPU drivers and one handler have registered with vga switcheroo. The following commands are
understood:

* OFF: Power off the device not in use. * ON: Power on the device not in use. * 1GD: Switch to the
integrated graphics device. Power on the integrated GPU if necessary, power off the discrete GPU. Pre-
requisite is that no user space processes (e.g. Xorg, alsactl) have opened device files of the GPUs or the
audio client. If the switch fails, the user may invoke1sof(8) or fuser(1) on /dev/dri/ and /dev/snd/control C1
to identify processes blocking the switch. * DIS:; Switch to the discrete graphics device. * DIGD: Delayed
switch to the integrated graphics device. Thiswill perform the switch once the last user space process has
closed the devicefiles of the GPUs and the audio client. * DDIS: Delayed switch to the discrete graphics
device. * MIGD: Mux-only switch to the integrated graphics device. Does not remap console or change
the power state of either gpu. If theintegrated GPU iscurrently off, the screen will turn black. If itison, the
screen will show whatever happensto bein VRAM. Either way, the user hasto blindly enter the command
to switch back. * MDIS: Mux-only switch to the discrete graphics device.

For GPUs whose power state is controlled by the driver's runtime pm, the ON and OFF commands are
ano-op (see next section).

For muxless machines, the IGD/DIS, DIGD/DDIS and MIGD/MDIS commands should not be used.

Driver power control

In this mode of use, the discrete GPU automatically powers up and down at the discretion of the driver's
runtime pm. On muxed machines, the user may still influence the muxer state by way of the debugfs
interface, however the ON and OFF commands become a no-op for the discrete GPU.

This mode is the default on Nvidia HybridPower/Optimus and ATI PowerXpress. Specifying nou-
veau.runpm=0, radeon.runpm=0 or amdgpu.runpm=0 on the kernel command line disablesit.

When the driver decides to power up or down, it notifies vga_switcheroo thereof so that it can (a) power
the audio device on the GPU up or down, and (b) update its internal power state representation for the
device. Thisisachieved by vga_swi t cher oo_set _dynam c_swi t ch.

After the GPU has been suspended, the handler needs to be called to cut power to the
GPU. Likewise it needs to reinstate power before the GPU can resume. This is achieved by
vga_swi tcheroo_init_domai n_pm ops, which augments the GPU's suspend/resume functions
by the requisite calls to the handler.

When the audio device resumes, the GPU needs to be woken. This is achieved by
vga_swi tcheroo_i ni t_domai n_pm opti nmus_hdmi _audi o, which augments the audio de-
vice's resume function.

On muxed machines, if the mux isinitially switched to the discrete GPU, the user ends up with a black
screen when the GPU powers down after boot. As aworkaround, the mux isforced to the integrated GPU
on runtime suspend, cf. https.//bugs.freedesktop.org/show_bug.cgi?d=75917

727

Chapter 6. Public functions

728

Public functions

Name

vga switcheroo_register _handler — register handler
Synopsis

int vga_sw tcheroo_register_handler (const struct vga_sw tcheroo_han-
dl er * handl er, enumvga_sw tcheroo_handl er _flags_t handl er _fl ags);

Arguments
handl er handler callbacks
handl er _fl ags handler flags
Description

Register handler. Enable vga switcheroo if two vga clients have already registered.

Return

0 on success, -EINVAL if ahandler was aready registered.

729

Public functions

Name

vga switcheroo_unregister_handler — unregister handler
Synopsis
voi d vga_switcheroo_unregi ster_handler (void);

Arguments

voi d noarguments

Description

Unregister handler. Disable vga_switcheroo.

730

Public functions

Name
vga switcheroo_handler_flags — obtain handler flags

Synopsis
enum vga_swi tcheroo_handler _flags_t vga_sw tcheroo_handler_flags (
voi d) ;

Arguments

voi d noarguments

Description

Helper for clientsto obtain the handler flags bitmask.

Return

Handler flags. A value of 0 meansthat no handler isregistered or that the handler has no special capabilities.

731

Public functions

Name

vga switcheroo_register client — register vgaclient
Synopsis

int vga_switcheroo_register_client (struct pci_dev * pdev, const struct
vga_swi tcheroo_client_ops * ops, bool driver_power_control);

Arguments
pdev client pci device
ops client callbacks

driver_power_control whether power stateis controlled by the driver's runtime pm

Description
Register vga client (GPU). Enable vga switcheroo if another GPU and a handler have already regis-

tered. The power state of the client is assumed to be ON. Beforehand, vga_swi t cheroo_cl i en-
t _probe_def er shal be called to ensure that all prerequisites are met.

Return

0 on success, -ENOMEM on memory allocation error.

732

Public functions

Name

vga switcheroo_register audio_client — register audio client

Synopsis
int vga_switcheroo_register_audio_client (struct pci_dev * pdev, const
struct vga_switcheroo_client_ops * ops, enum vga_sw tcheroo_client_id
id);

Arguments

pdev client pci device

ops client callbacks

id client identifier
Description

Register audio client (audio device on a GPU). The power state of the client is assumed to be ON.

Return

0 on success, -ENOMEM on memory allocation error.

733

Public functions

Name

vga switcheroo_client_probe defer — whether to defer probing a given client
Synopsis
bool vga_swi tcheroo_client_probe_defer (struct pci_dev * pdev);

Arguments

pdev client pci device

Description
Determine whether any prerequisites are not fulfilled to probe a given client. Drivers shall invoke this

early on in their ->probe callback and return - EPROBE_DEFERif it evaluatesto t r ue. Thou shalt not
register the client ere thou hast called this.

Return

t r ue if probing should be deferred, otherwisef al se.

734

Public functions

Name

vga switcheroo_get_client_state — obtain power state of agiven client
Synopsis

enum vga_switcheroo_state vga switcheroo_get client_state (struct
pci _dev * pdev);

Arguments

pdev client pci device

Description

Obtain power state of agiven client as seen fromvga switcheroo. Thefunctionisonly caled from hda in-
tel.c.

Return

Power state.

735

Public functions

Name

vga switcheroo_unregister_client — unregister client
Synopsis
voi d vga_switcheroo_unregister_client (struct pci_dev * pdev);

Arguments

pdev client pci device

Description

Unregister client. Disable vga_switcheroo if thisisavgaclient (GPU).

736

Public functions

Name
vga switcheroo_client_fb_set — set framebuffer of agiven client

Synopsis
voi d vga_swi tcheroo_client_fb_set (struct pci_dev * pdev, struct fb_info
* info);

Arguments

pdev client pci device

i nf o framebuffer

Description

Set framebuffer of agiven client. The console will be remapped to this on switching.

737

Public functions

Name

vga switcheroo_lock_ddc — temporarily switch DDC linesto a given client
Synopsis
int vga_switcheroo_|l ock_ddc (struct pci_dev * pdev);

Arguments

pdev client pci device

Description

Temporarily switch DDC lines to the client identified by pdev (but leave the outputs otherwise switched
to where they are). This allows the inactive client to probe EDID. The DDC lines must afterwards be
switched back by callingvga_swi t cher oo_unl ock_ddc, even if thisfunction returns an error.

Return

Previous DDC owner on success or a hegative int on error. Specifically, - ENODEV if no handler has
registered or if the handler does not support switching the DDC lines. Also, a negative value returned by
the handler is propagated back to the caller. The return value has merely an informational purpose for any
caller which might be interested in it. It is acceptable to ignore the return value and simply rely on the
result of the subsequent EDID probe, which will be NULL if DDC switching failed.

738

Public functions

Name

vga switcheroo_unlock _ddc — switch DDC lines back to previous owner
Synopsis
int vga_switcheroo_unl ock_ddc (struct pci_dev * pdev);

Arguments

pdev client pci device

Description

Switch DDC lines back to the previous owner after callingvga_swi t cher oo_| ock_ddc. This must
becaled evenif vga_swi t cher oo_| ock_ddc returned an error.

Return

Previous DDC owner on success (i.e. the client identifier of pdev) or anegativeint on error. Specifically,
- ENODEV if no handler has registered or if the handler does not support switching the DDC lines. Also,
a negative value returned by the handler is propagated back to the caler. Finally, invoking this function
without callingvga_swi t cher oo_| ock_ddc firstisnot alowed and will result in - EI NVAL.

739

Public functions

Name
vga_switcheroo_process delayed_switch — helper for delayed switching

Synopsis
int vga_swi tcheroo_process_del ayed_switch (void);

Arguments

voi d noarguments

Manual switching and manual power control

Process a delayed switch if oneis pending. DRM drivers should call this from their ->lastclose callback.

Return

0 on success. -EINVAL if no delayed switchispending, if the client has unregistered in the meantime or if
there are other clients blocking the switch. If the actual switch fails, an error isreported and O is returned.

740

Public functions

Name

vga switcheroo_set dynamic_switch — helper for driver power control

Synopsis

void vga_sw tcheroo_set_dynam c_switch (struct pci_dev * pdev, enum
vga_swi tcheroo_state dynamc);

Arguments

pdev client pci device

dynam ¢ new power state

Description

Helper for GPUs whose power state is controlled by the driver's runtime pm. When the driver decides to
power up or down, it notifies vga_switcheroo thereof using this helper so that it can (a) power the audio
device on the GPU up or down, and (b) update its internal power state representation for the device.

741

Public functions

Name

vga switcheroo_init_domain_pm_ops— helper for driver power control

Synopsis

int vga_switcheroo_init_domai n_pmops (struct device * dev, struct de-
v_pm domai n * donain);

Arguments

dev vga client device

domai n power domain

Description

Helper for GPUs whose power state is controlled by the driver's runtime pm. After the GPU has been
suspended, the handler needs to be called to cut power to the GPU. Likewise it needs to reinstate power
beforethe GPU can resume. To thisend, this hel per augmentsthe suspend/resumefunctionsby therequisite
callsto the handler. It needs only be called on platforms where the power switch is separate to the device
being powered down.

742

Public functions

Name

vga switcheroo_init_domain_pm_optimus_hdmi_audio — helper for driver power control
Synopsis

int vga_switcheroo_init_domain_pmoptinms_hdm _audio (struct device *
dev, struct dev_pmdomain * donuain);

Arguments
dev audio client device
domai n power domain
Description

Helper for GPUs whose power state is controlled by the driver's runtime pm. When the audio device
resumes, the GPU needs to be woken. This hel per augments the audio device's resume function to do that.

Return

0 on success, -EINVAL if no power management operations are defined for this device.

743

Chapter 7. Public structures

744

Public structures

Name

struct vga_switcheroo_handler — handler callbacks

Synopsis

struct vga_sw tcheroo_handl er {
int (* init) (void);
int (* switchto) (enum vga_swi tcheroo_client_id id);
int (* switch_ddc) (enumvga_switcheroo_client_id id);
int (* power_state) (enum vga_swi tcheroo_client_id id, enumvga_sw tcheroo_state
enum vga_swi tcheroo_client _id (* get_client_id) (struct pci_dev *pdev);

1
Members
init initialize handler. Optional. This gets called when vga_switcheroo is enabled, i.e.
when two vgaclients have registered. It allowsthe handler to perform some delayed
initialization that depends on the existence of the vga clients. Currently only the
radeon and amdgpu drivers use this. The return value is ignored
switchto switch outputs to given client. Mandatory. For muxless machines this should be a
no-op. Returning O denotes success, anything else failure (in which case the switch
is aborted)
switch_ddc switch DDC linesto given client. Optional. Should return the previous DDC owner
0nh success or a negative int on failure
power_state cut or reinstate power of given client. Optional. The return value isignored
get_client_id determineif given pci device isintegrated or discrete GPU. Mandatory
Description

Handler callbacks. The multiplexer itself. The swi t cht o and get _cl i ent _i d methods are manda-
tory, all others may be set to NULL.

745

Public structures

Name

struct vga_switcheroo_client_ops— client callbacks

Synopsis

struct vga_sw tcheroo_client_ops {

void (* set_gpu_state) (struct pci_dev *dev, enum vga_sw tcheroo_state);
void (* reprobe) (struct pci_dev *dev);

bool (* can_switch) (struct pci_dev *dev);

I
Members
set_gpu_state do the equivalent of suspend/resume for the card. Mandatory. This should not cut
power to the discrete GPU, which isthe job of the handler
reprobe poll outputs. Optional. This gets called after waking the GPU and switching the
outputsto it
can_switch check if the device is in a position to switch now. Mandatory. The client should
return false if a user space process has one of its device files open
Description

Client callbacks. A client can be either a GPU or an audio deviceon aGPU. Theset _gpu_st at e and
can_sw t ch methods are mandatory, r epr obe may be set to NULL. For audio clients, ther epr obe
member is bogus.

746

Chapter 8. Public constants

Public constants

747

Public constants

Name

enum vga switcheroo_handler_flags t — handler flags bitmask

Synopsis

enum vga_swi tcheroo_handler _flags_ t {
VGA_SW TCHEROO_CAN_SW TCH_DDC,
VGA_SW TCHEROO NEEDS _EDP_CONFI G

¥
Constants

VGA_SWITCHEROO_CAN_SWITCWh&her the handler is able to switch the DDC lines separate-
DC ly. This signals to clients that they should call dr m get _e-
di d_swi t cher oo to probe the EDID

VGA_SWITCHEROO_NEEDS ED- whether the handler isunableto switch the AUX channel separate-

P_CONFIG ly. This signals to clients that the active GPU needs to train the
link and communicate the link parametersto theinactive GPU (me-
diated by vga switcheroo). The inactive GPU may then skip the
AUX handshake and set up its output with these pre-calibrated val-
ues (DisplayPort specification v1.1a, section 2.5.3.3)

Description

Handler flagsbitmask. Used by handlersto declaretheir capabilities upon registering with vga_switcheroo.

748

Public constants

Name

enum vga switcheroo_client_id — client identifier

Synopsis

enum vga_swi tcheroo client _id {
VGA_SW TCHEROCO_UNKNOWN I D,

VGA_SW TCHERCO | GD,
VGA_SW TCHERCO DI S,
VGA_SW TCHEROO_MAX_CLI ENTS

¥
Constants

VGA_SWITCHEROO_UN-
KNOWN_ID

VGA_SWITCHEROO_IGD

VGA_SWITCHEROO_DIS

initial identifier assigned to vgaclients. Determining theid requires
the handler, so GPUs are given their true id in adelayed fashion in
vga_swi tcheroo_enabl e

integrated graphics device

discrete graphics device

VGA_SWITCHEROO_MAX_CLIENeurrently no more than two GPUs are supported

TS

Description

Client identifier. Audio clients use the same identifier & 0x100.

749

Public constants

Name

enum vga switcheroo_state — client power state

Synopsis

enum vga_sw tcheroo_state {
VGA_SW TCHEROO_OFF,
VGA_SW TCHEROO _ON,
VGA_SW TCHEROO_NOT_FOUND

};

Constants
VGA_SWITCHEROO_OFF off
VGA_SWITCHEROO ON on

VGA_SWITCHEROO_NOT_FOUNLxlient has not registered with vga switcheroo. Only used in
vga_swi t cheroo_get client_statewhichinturnison-
ly called from hda_intel.c

Description

Client power state.

750

Chapter 9. Private structures

751

Private structures

Name

struct vgasr_priv — vga_switcheroo private data

Synopsis

struct vgasr_priv {

bool acti ve;

bool del ayed_switch_acti ve;

enum vga_sw tcheroo_client _id delayed_client_id;
struct dentry * debugfs_root;

struct dentry * switch file;

int registered_clients;

struct list _head clients;

const struct vga_sw tcheroo_handl er * handl er;
enum vga_sw t cheroo_handl er_flags_t handl er _fl ags;
struct mutex mux_hw | ock;

i nt ol d _ddc_owner;

I
Members
active whether vga switcheroo is enabled. Prerequisite is the registration of
two GPUs and a handler
delayed switch_active whether a delayed switch is pending
delayed client_id client to which a delayed switch is pending
debugfs root directory for vga switcheroo debugfs interface
switch file filefor vga switcheroo debugfs interface
registered_clients number of registered GPUs (counting only vgaclients, not audio clients)
clients list of registered clients
handler registered handler
handler_flags flags of registered handler
mux_hw_lock protects mux state (in particular while DDC lines are temporarily
switched)
old_ddc_owner client to which DDC lines will be switched back on unlock
Description

vga switcheroo private data. Currently only one vga_switcheroo instance per system is supported.

752

Private structures

Name

struct vga_switcheroo_client — registered client

Synopsis

struct vga_sw tcheroo_client {
struct pci_dev * pdev;
struct fb_info * fb_info;
enum vga_sw tcheroo_state pw _state;
const struct vga_sw tcheroo_client_ops * ops;
enum vga_sw tcheroo_client _id id;

bool acti ve;

bool driver_power_control;
struct list _head list;

b
Members

pdev
fb_info
pwr_state
ops

id

active

driver_power_control

list

Description

client pci device

framebuffer to which console is remapped on switching
current power state

client callbacks

client identifier. Determining the id requires the handler, so gpus are ini-
tially assigned VGA_SWITCHEROO_UNKNOWN_ID and later given
their trueidinvga_swi t cher oo_enabl e

whether the outputs are currently switched to this client

whether power stateis controlled by thedriver's runtime pm. If true, writ-
ing ON and OFF to the vga switcheroo debugfs interface is a no-op so
as not to interfere with runtime pm

client list

Registered client. A client can be either aGPU or an audio device onaGPU. For audio clients, thef b_i n-
fo,activeanddriver_power _control membersare bogus.

753

	Linux GPU Driver Developer's Guide
	Table of Contents
	Part I. DRM Core
	Chapter 1. Introduction
	Chapter 2. DRM Internals
	Driver Initialization
	Driver Information
	Driver Features
	Major, Minor and Patchlevel
	Name, Description and Date

	Device Instance and Driver Handling
	drm_put_dev
	drm_dev_alloc
	drm_dev_ref
	drm_dev_unref
	drm_dev_register
	drm_dev_unregister
	drm_dev_set_unique

	Driver Load
	IRQ Registration
	Managed IRQ Registration
	Manual IRQ Registration

	Memory Manager Initialization
	Miscellaneous Device Configuration

	Bus-specific Device Registration and PCI Support
	drm_pci_alloc
	drm_pci_free
	drm_get_pci_dev
	drm_pci_init
	drm_pci_exit
	drm_platform_init

	Memory management
	The Translation Table Manager (TTM)
	TTM initialization

	The Graphics Execution Manager (GEM)
	GEM Initialization
	GEM Objects Creation
	GEM Objects Lifetime
	GEM Objects Naming
	GEM Objects Mapping
	Memory Coherency
	Command Execution
	GEM Function Reference
	drm_gem_object_init
	drm_gem_private_object_init
	drm_gem_handle_delete
	drm_gem_dumb_destroy
	drm_gem_handle_create
	drm_gem_free_mmap_offset
	drm_gem_create_mmap_offset_size
	drm_gem_create_mmap_offset
	drm_gem_get_pages
	drm_gem_put_pages
	drm_gem_object_free
	drm_gem_mmap_obj
	drm_gem_mmap

	VMA Offset Manager
	drm_vma_offset_manager_init
	drm_vma_offset_manager_destroy
	drm_vma_offset_lookup_locked
	drm_vma_offset_add
	drm_vma_offset_remove
	drm_vma_node_allow
	drm_vma_node_revoke
	drm_vma_node_is_allowed
	drm_vma_offset_exact_lookup_locked
	drm_vma_offset_lock_lookup
	drm_vma_offset_unlock_lookup
	drm_vma_node_reset
	drm_vma_node_start
	drm_vma_node_size
	drm_vma_node_has_offset
	drm_vma_node_offset_addr
	drm_vma_node_unmap
	drm_vma_node_verify_access

	PRIME Buffer Sharing
	Overview and Driver Interface
	PRIME Helper Functions

	PRIME Function References
	drm_gem_dmabuf_release
	drm_gem_prime_export
	drm_gem_prime_handle_to_fd
	drm_gem_prime_import
	drm_gem_prime_fd_to_handle
	drm_prime_pages_to_sg
	drm_prime_sg_to_page_addr_arrays
	drm_prime_gem_destroy

	DRM MM Range Allocator
	Overview
	LRU Scan/Eviction Support

	DRM MM Range Allocator Function References
	drm_mm_reserve_node
	drm_mm_insert_node_generic
	drm_mm_insert_node_in_range_generic
	drm_mm_remove_node
	drm_mm_replace_node
	drm_mm_init_scan
	drm_mm_init_scan_with_range
	drm_mm_scan_add_block
	drm_mm_scan_remove_block
	drm_mm_clean
	drm_mm_init
	drm_mm_takedown
	drm_mm_debug_table
	drm_mm_dump_table
	drm_mm_node_allocated
	drm_mm_initialized
	drm_mm_hole_node_start
	drm_mm_hole_node_end
	drm_mm_for_each_node
	drm_mm_for_each_hole
	drm_mm_insert_node
	drm_mm_insert_node_in_range

	CMA Helper Functions Reference
	drm_gem_cma_create
	drm_gem_cma_free_object
	drm_gem_cma_dumb_create_internal
	drm_gem_cma_dumb_create
	drm_gem_cma_dumb_map_offset
	drm_gem_cma_mmap
	drm_gem_cma_describe
	drm_gem_cma_prime_get_sg_table
	drm_gem_cma_prime_import_sg_table
	drm_gem_cma_prime_mmap
	drm_gem_cma_prime_vmap
	drm_gem_cma_prime_vunmap
	struct drm_gem_cma_object

	Mode Setting
	Display Modes Function Reference
	drm_mode_is_stereo
	drm_mode_debug_printmodeline
	drm_mode_create
	drm_mode_destroy
	drm_mode_probed_add
	drm_cvt_mode
	drm_gtf_mode_complex
	drm_gtf_mode
	drm_display_mode_from_videomode
	drm_display_mode_to_videomode
	of_get_drm_display_mode
	drm_mode_set_name
	drm_mode_vrefresh
	drm_mode_set_crtcinfo
	drm_mode_copy
	drm_mode_duplicate
	drm_mode_equal
	drm_mode_equal_no_clocks
	drm_mode_equal_no_clocks_no_stereo
	drm_mode_validate_basic
	drm_mode_validate_size
	drm_mode_prune_invalid
	drm_mode_sort
	drm_mode_connector_list_update
	drm_mode_parse_command_line_for_connector
	drm_mode_create_from_cmdline_mode

	Atomic Mode Setting Function Reference
	drm_atomic_state_default_release
	drm_atomic_state_init
	drm_atomic_state_alloc
	drm_atomic_state_default_clear
	drm_atomic_state_clear
	drm_atomic_state_free
	drm_atomic_get_crtc_state
	drm_atomic_set_mode_for_crtc
	drm_atomic_set_mode_prop_for_crtc
	drm_atomic_crtc_set_property
	drm_atomic_get_plane_state
	drm_atomic_plane_set_property
	drm_atomic_get_connector_state
	drm_atomic_connector_set_property
	drm_atomic_set_crtc_for_plane
	drm_atomic_set_fb_for_plane
	drm_atomic_set_crtc_for_connector
	drm_atomic_add_affected_connectors
	drm_atomic_add_affected_planes
	drm_atomic_connectors_for_crtc
	drm_atomic_legacy_backoff
	drm_atomic_check_only
	drm_atomic_commit
	drm_atomic_async_commit
	drm_atomic_clean_old_fb

	Frame Buffer Creation
	Dumb Buffer Objects
	Output Polling
	Locking

	KMS Initialization and Cleanup
	CRTCs (struct drm_crtc)
	CRTC Initialization
	CRTC Operations
	Set Configuration
	Page Flipping
	Miscellaneous

	Planes (struct drm_plane)
	Plane Initialization
	Plane Operations

	Encoders (struct drm_encoder)
	Encoder Initialization
	Encoder Operations

	Connectors (struct drm_connector)
	Connector Initialization
	Connector Operations
	DPMS
	Modes
	Connection Status
	Miscellaneous

	Cleanup
	Output discovery and initialization example
	KMS API Functions
	drm_get_connector_status_name
	drm_get_subpixel_order_name
	drm_get_format_name
	drm_mode_object_find
	drm_framebuffer_init
	drm_framebuffer_lookup
	drm_framebuffer_unreference
	drm_framebuffer_reference
	drm_framebuffer_unregister_private
	drm_framebuffer_cleanup
	drm_framebuffer_remove
	drm_crtc_init_with_planes
	drm_crtc_cleanup
	drm_crtc_index
	drm_display_info_set_bus_formats
	drm_connector_init
	drm_connector_cleanup
	drm_connector_register
	drm_connector_unregister
	drm_connector_unplug_all
	drm_encoder_init
	drm_encoder_index
	drm_encoder_cleanup
	drm_universal_plane_init
	drm_plane_init
	drm_plane_cleanup
	drm_plane_index
	drm_plane_from_index
	drm_plane_force_disable
	drm_mode_create_dvi_i_properties
	drm_mode_create_tv_properties
	drm_mode_create_scaling_mode_property
	drm_mode_create_aspect_ratio_property
	drm_mode_create_dirty_info_property
	drm_mode_create_suggested_offset_properties
	drm_mode_set_config_internal
	drm_crtc_get_hv_timing
	drm_crtc_check_viewport
	drm_mode_legacy_fb_format
	drm_property_create
	drm_property_create_enum
	drm_property_create_bitmask
	drm_property_create_range
	drm_property_create_signed_range
	drm_property_create_object
	drm_property_create_bool
	drm_property_add_enum
	drm_property_destroy
	drm_object_attach_property
	drm_object_property_set_value
	drm_object_property_get_value
	drm_property_create_blob
	drm_property_unreference_blob
	drm_property_reference_blob
	drm_property_lookup_blob
	drm_mode_connector_set_path_property
	drm_mode_connector_set_tile_property
	drm_mode_connector_update_edid_property
	drm_mode_plane_set_obj_prop
	drm_mode_connector_attach_encoder
	drm_mode_crtc_set_gamma_size
	drm_mode_config_reset
	drm_fb_get_bpp_depth
	drm_format_num_planes
	drm_format_plane_cpp
	drm_format_horz_chroma_subsampling
	drm_format_vert_chroma_subsampling
	drm_rotation_simplify
	drm_mode_config_init
	drm_mode_config_cleanup
	drm_mode_get_tile_group
	drm_mode_create_tile_group

	KMS Data Structures
	struct drm_crtc_state
	struct drm_crtc_funcs
	struct drm_crtc
	struct drm_connector_state
	struct drm_connector_funcs
	struct drm_encoder_funcs
	struct drm_encoder
	struct drm_connector
	struct drm_plane_state
	struct drm_plane_funcs
	struct drm_plane
	struct drm_bridge_funcs
	struct drm_bridge
	struct drm_atomic_state
	struct drm_mode_set
	struct drm_mode_config_funcs
	struct drm_mode_config
	drm_for_each_plane_mask
	drm_for_each_encoder_mask
	drm_crtc_mask
	drm_encoder_crtc_ok

	KMS Locking
	struct drm_modeset_acquire_ctx
	struct drm_modeset_lock
	drm_modeset_lock_init
	drm_modeset_lock_fini
	drm_modeset_is_locked
	drm_modeset_lock_all
	drm_modeset_unlock_all
	drm_modeset_lock_crtc
	drm_modeset_legacy_acquire_ctx
	drm_modeset_unlock_crtc
	drm_warn_on_modeset_not_all_locked
	drm_modeset_acquire_init
	drm_modeset_acquire_fini
	drm_modeset_drop_locks
	drm_modeset_backoff
	drm_modeset_backoff_interruptible
	drm_modeset_lock
	drm_modeset_lock_interruptible
	drm_modeset_unlock
	drm_modeset_lock_all_ctx

	Mode Setting Helper Functions
	Helper Functions
	CRTC Helper Operations
	Encoder Helper Operations
	Connector Helper Operations
	Atomic Modeset Helper Functions Reference
	Overview
	Implementing Asynchronous Atomic Commit
	Atomic State Reset and Initialization
	drm_atomic_crtc_for_each_plane
	drm_atomic_crtc_state_for_each_plane
	drm_atomic_helper_check_modeset
	drm_atomic_helper_check_planes
	drm_atomic_helper_check
	drm_atomic_helper_update_legacy_modeset_state
	drm_atomic_helper_commit_modeset_disables
	drm_atomic_helper_commit_modeset_enables
	drm_atomic_helper_wait_for_vblanks
	drm_atomic_helper_commit
	drm_atomic_helper_prepare_planes
	drm_atomic_helper_commit_planes
	drm_atomic_helper_commit_planes_on_crtc
	drm_atomic_helper_cleanup_planes
	drm_atomic_helper_swap_state
	drm_atomic_helper_update_plane
	drm_atomic_helper_disable_plane
	drm_atomic_helper_set_config
	drm_atomic_helper_disable_all
	drm_atomic_helper_suspend
	drm_atomic_helper_resume
	drm_atomic_helper_crtc_set_property
	drm_atomic_helper_plane_set_property
	drm_atomic_helper_connector_set_property
	drm_atomic_helper_page_flip
	drm_atomic_helper_connector_dpms
	drm_atomic_helper_crtc_reset
	__drm_atomic_helper_crtc_duplicate_state
	drm_atomic_helper_crtc_duplicate_state
	__drm_atomic_helper_crtc_destroy_state
	drm_atomic_helper_crtc_destroy_state
	drm_atomic_helper_plane_reset
	__drm_atomic_helper_plane_duplicate_state
	drm_atomic_helper_plane_duplicate_state
	__drm_atomic_helper_plane_destroy_state
	drm_atomic_helper_plane_destroy_state
	__drm_atomic_helper_connector_reset
	drm_atomic_helper_connector_reset
	__drm_atomic_helper_connector_duplicate_state
	drm_atomic_helper_connector_duplicate_state
	drm_atomic_helper_duplicate_state
	__drm_atomic_helper_connector_destroy_state
	drm_atomic_helper_connector_destroy_state

	Modeset Helper Functions Reference
	struct drm_crtc_helper_funcs
	struct drm_encoder_helper_funcs
	struct drm_connector_helper_funcs
	drm_helper_move_panel_connectors_to_head
	drm_helper_encoder_in_use
	drm_helper_crtc_in_use
	drm_helper_disable_unused_functions
	drm_crtc_helper_set_mode
	drm_crtc_helper_set_config
	drm_helper_connector_dpms
	drm_helper_mode_fill_fb_struct
	drm_helper_resume_force_mode
	drm_helper_crtc_mode_set
	drm_helper_crtc_mode_set_base

	Output Probing Helper Functions Reference
	drm_kms_helper_poll_enable_locked
	drm_helper_probe_single_connector_modes
	drm_helper_probe_single_connector_modes_nomerge
	drm_kms_helper_hotplug_event
	drm_kms_helper_poll_disable
	drm_kms_helper_poll_enable
	drm_kms_helper_poll_init
	drm_kms_helper_poll_fini
	drm_helper_hpd_irq_event

	fbdev Helper Functions Reference
	drm_fb_helper_single_add_all_connectors
	drm_fb_helper_debug_enter
	drm_fb_helper_debug_leave
	drm_fb_helper_restore_fbdev_mode_unlocked
	drm_fb_helper_blank
	drm_fb_helper_prepare
	drm_fb_helper_init
	drm_fb_helper_alloc_fbi
	drm_fb_helper_unregister_fbi
	drm_fb_helper_release_fbi
	drm_fb_helper_unlink_fbi
	drm_fb_helper_sys_read
	drm_fb_helper_sys_write
	drm_fb_helper_sys_fillrect
	drm_fb_helper_sys_copyarea
	drm_fb_helper_sys_imageblit
	drm_fb_helper_cfb_fillrect
	drm_fb_helper_cfb_copyarea
	drm_fb_helper_cfb_imageblit
	drm_fb_helper_set_suspend
	drm_fb_helper_setcmap
	drm_fb_helper_check_var
	drm_fb_helper_set_par
	drm_fb_helper_pan_display
	drm_fb_helper_fill_fix
	drm_fb_helper_fill_var
	drm_fb_helper_initial_config
	drm_fb_helper_hotplug_event
	struct drm_fb_helper_surface_size
	struct drm_fb_helper_funcs
	struct drm_fb_helper

	Display Port Helper Functions Reference
	struct drm_dp_aux_msg
	struct drm_dp_aux
	drm_dp_dpcd_readb
	drm_dp_dpcd_writeb
	drm_dp_dpcd_read
	drm_dp_dpcd_write
	drm_dp_dpcd_read_link_status
	drm_dp_link_probe
	drm_dp_link_power_up
	drm_dp_link_power_down
	drm_dp_link_configure
	drm_dp_aux_register
	drm_dp_aux_unregister

	Display Port Dual Mode Adaptor Helper Functions Reference
	enum drm_dp_dual_mode_type
	drm_dp_dual_mode_read
	drm_dp_dual_mode_write
	drm_dp_dual_mode_detect
	drm_dp_dual_mode_max_tmds_clock
	drm_dp_dual_mode_get_tmds_output
	drm_dp_dual_mode_set_tmds_output
	drm_dp_get_dual_mode_type_name

	Display Port MST Helper Functions Reference
	struct drm_dp_vcpi
	struct drm_dp_mst_port
	struct drm_dp_mst_branch
	struct drm_dp_mst_topology_mgr
	drm_dp_update_payload_part1
	drm_dp_update_payload_part2
	drm_dp_mst_topology_mgr_set_mst
	drm_dp_mst_topology_mgr_suspend
	drm_dp_mst_topology_mgr_resume
	drm_dp_mst_hpd_irq
	drm_dp_mst_detect_port
	drm_dp_mst_get_edid
	drm_dp_find_vcpi_slots
	drm_dp_mst_allocate_vcpi
	drm_dp_mst_reset_vcpi_slots
	drm_dp_mst_deallocate_vcpi
	drm_dp_check_act_status
	drm_dp_calc_pbn_mode
	drm_dp_mst_dump_topology
	drm_dp_mst_topology_mgr_init
	drm_dp_mst_topology_mgr_destroy

	MIPI DSI Helper Functions Reference
	struct mipi_dsi_msg
	struct mipi_dsi_packet
	struct mipi_dsi_host_ops
	struct mipi_dsi_host
	struct mipi_dsi_device
	enum mipi_dsi_dcs_tear_mode
	struct mipi_dsi_driver
	of_find_mipi_dsi_device_by_node
	mipi_dsi_attach
	mipi_dsi_detach
	mipi_dsi_packet_format_is_short
	mipi_dsi_packet_format_is_long
	mipi_dsi_create_packet
	mipi_dsi_generic_write
	mipi_dsi_generic_read
	mipi_dsi_dcs_write_buffer
	mipi_dsi_dcs_write
	mipi_dsi_dcs_read
	mipi_dsi_dcs_nop
	mipi_dsi_dcs_soft_reset
	mipi_dsi_dcs_get_power_mode
	mipi_dsi_dcs_get_pixel_format
	mipi_dsi_dcs_enter_sleep_mode
	mipi_dsi_dcs_exit_sleep_mode
	mipi_dsi_dcs_set_display_off
	mipi_dsi_dcs_set_display_on
	mipi_dsi_dcs_set_column_address
	mipi_dsi_dcs_set_page_address
	mipi_dsi_dcs_set_tear_off
	mipi_dsi_dcs_set_tear_on
	mipi_dsi_dcs_set_pixel_format
	mipi_dsi_driver_register_full
	mipi_dsi_driver_unregister

	EDID Helper Functions Reference
	drm_edid_header_is_valid
	drm_edid_block_valid
	drm_edid_is_valid
	drm_do_get_edid
	drm_probe_ddc
	drm_get_edid
	drm_edid_duplicate
	drm_match_cea_mode
	drm_get_cea_aspect_ratio
	drm_edid_to_eld
	drm_edid_to_sad
	drm_edid_to_speaker_allocation
	drm_av_sync_delay
	drm_select_eld
	drm_detect_hdmi_monitor
	drm_detect_monitor_audio
	drm_rgb_quant_range_selectable
	drm_add_edid_modes
	drm_add_modes_noedid
	drm_set_preferred_mode
	drm_hdmi_avi_infoframe_from_display_mode
	drm_hdmi_vendor_infoframe_from_display_mode

	Rectangle Utilities Reference
	struct drm_rect
	drm_rect_adjust_size
	drm_rect_translate
	drm_rect_downscale
	drm_rect_width
	drm_rect_height
	drm_rect_visible
	drm_rect_equals
	drm_rect_intersect
	drm_rect_clip_scaled
	drm_rect_calc_hscale
	drm_rect_calc_vscale
	drm_rect_calc_hscale_relaxed
	drm_rect_calc_vscale_relaxed
	drm_rect_debug_print
	drm_rect_rotate
	drm_rect_rotate_inv

	Flip-work Helper Reference
	struct drm_flip_task
	struct drm_flip_work
	drm_flip_work_allocate_task
	drm_flip_work_queue_task
	drm_flip_work_queue
	drm_flip_work_commit
	drm_flip_work_init
	drm_flip_work_cleanup

	HDMI Infoframes Helper Reference
	union hdmi_infoframe
	hdmi_avi_infoframe_init
	hdmi_avi_infoframe_pack
	hdmi_spd_infoframe_init
	hdmi_spd_infoframe_pack
	hdmi_audio_infoframe_init
	hdmi_audio_infoframe_pack
	hdmi_vendor_infoframe_init
	hdmi_vendor_infoframe_pack
	hdmi_infoframe_pack
	hdmi_infoframe_log
	hdmi_infoframe_unpack

	Plane Helper Reference
	drm_plane_helper_check_update
	drm_primary_helper_update
	drm_primary_helper_disable
	drm_primary_helper_destroy
	drm_crtc_init
	drm_plane_helper_update
	drm_plane_helper_disable

	Tile group
	Bridges
	Overview
	Default bridge callback sequence
	drm_bridge_add
	drm_bridge_remove
	drm_bridge_attach
	drm_bridge_mode_fixup
	drm_bridge_disable
	drm_bridge_post_disable
	drm_bridge_mode_set
	drm_bridge_pre_enable
	drm_bridge_enable
	of_drm_find_bridge

	KMS Properties
	Existing KMS Properties

	Vertical Blanking
	Vertical Blanking and Interrupt Handling Functions Reference
	drm_vblank_cleanup
	drm_vblank_init
	drm_irq_install
	drm_irq_uninstall
	drm_calc_timestamping_constants
	drm_calc_vbltimestamp_from_scanoutpos
	drm_vblank_count
	drm_crtc_vblank_count
	drm_vblank_count_and_time
	drm_crtc_vblank_count_and_time
	drm_arm_vblank_event
	drm_crtc_arm_vblank_event
	drm_send_vblank_event
	drm_crtc_send_vblank_event
	drm_vblank_get
	drm_crtc_vblank_get
	drm_vblank_put
	drm_crtc_vblank_put
	drm_wait_one_vblank
	drm_crtc_wait_one_vblank
	drm_vblank_off
	drm_crtc_vblank_off
	drm_crtc_vblank_reset
	drm_vblank_on
	drm_crtc_vblank_on
	drm_vblank_pre_modeset
	drm_vblank_post_modeset
	drm_handle_vblank
	drm_crtc_handle_vblank
	drm_vblank_no_hw_counter
	drm_crtc_vblank_waitqueue

	Open/Close, File Operations and IOCTLs
	Open and Close
	File Operations
	IOCTLs
	drm_noop
	drm_invalid_op
	drm_ioctl
	drm_ioctl_flags

	Legacy Support Code
	Legacy Suspend/Resume
	Legacy DMA Services

	Chapter 3. Userland interfaces
	Render nodes
	VBlank event handling

	Part II. DRM Drivers
	Chapter 4. drm/i915 Intel GFX Driver
	Core Driver Infrastructure
	Runtime Power Management
	__intel_display_power_is_enabled
	intel_display_power_is_enabled
	intel_display_set_init_power
	intel_display_power_get
	intel_display_power_put
	intel_power_domains_init
	intel_power_domains_fini
	intel_power_domains_init_hw
	intel_runtime_pm_get
	intel_runtime_pm_get_noresume
	intel_runtime_pm_put
	intel_runtime_pm_enable
	intel_uncore_forcewake_get
	intel_uncore_forcewake_get__locked
	intel_uncore_forcewake_put
	intel_uncore_forcewake_put__locked

	Interrupt Handling
	intel_irq_init
	intel_runtime_pm_disable_interrupts
	intel_runtime_pm_enable_interrupts

	Intel GVT-g Guest Support(vGPU)
	i915_check_vgpu
	intel_vgt_deballoon
	intel_vgt_balloon

	Display Hardware Handling
	Mode Setting Infrastructure
	Frontbuffer Tracking
	intel_fb_obj_invalidate
	intel_frontbuffer_flush
	intel_fb_obj_flush
	intel_frontbuffer_flip_prepare
	intel_frontbuffer_flip_complete
	intel_frontbuffer_flip
	i915_gem_track_fb

	Display FIFO Underrun Reporting
	i9xx_check_fifo_underruns
	intel_set_cpu_fifo_underrun_reporting
	intel_set_pch_fifo_underrun_reporting
	intel_cpu_fifo_underrun_irq_handler
	intel_pch_fifo_underrun_irq_handler

	Plane Configuration
	Atomic Plane Helpers
	intel_create_plane_state
	intel_plane_duplicate_state
	intel_plane_destroy_state
	intel_plane_atomic_get_property
	intel_plane_atomic_set_property

	Output Probing
	Hotplug
	intel_hpd_irq_storm_detect
	intel_hpd_irq_handler
	intel_hpd_init
	intel_hpd_poll_init

	High Definition Audio
	intel_audio_codec_enable
	intel_audio_codec_disable
	intel_init_audio
	i915_audio_component_init
	i915_audio_component_cleanup
	struct i915_audio_component_ops
	struct i915_audio_component

	Panel Self Refresh PSR (PSR/SRD)
	intel_psr_enable
	intel_psr_disable
	intel_psr_single_frame_update
	intel_psr_invalidate
	intel_psr_flush
	intel_psr_init

	Frame Buffer Compression (FBC)
	intel_fbc_enabled
	intel_fbc_disable
	__intel_fbc_update
	intel_fbc_init

	Display Refresh Rate Switching (DRRS)
	intel_dp_set_drrs_state
	intel_edp_drrs_enable
	intel_edp_drrs_disable
	intel_edp_drrs_invalidate
	intel_edp_drrs_flush
	intel_dp_drrs_init

	DPIO
	CSR firmware support for DMC
	intel_csr_load_status_get
	intel_csr_load_status_set
	intel_csr_load_program
	intel_csr_ucode_init
	intel_csr_ucode_fini

	Memory Management and Command Submission
	Batchbuffer Parsing
	i915_cmd_parser_init_ring
	i915_cmd_parser_fini_ring
	i915_needs_cmd_parser
	i915_parse_cmds
	i915_cmd_parser_get_version

	Batchbuffer Pools
	i915_gem_batch_pool_init
	i915_gem_batch_pool_fini
	i915_gem_batch_pool_get

	Logical Rings, Logical Ring Contexts and Execlists
	intel_sanitize_enable_execlists
	intel_execlists_ctx_id
	intel_lrc_irq_handler
	intel_logical_ring_begin
	intel_execlists_submission
	gen8_init_indirectctx_bb
	gen8_init_perctx_bb
	intel_logical_ring_cleanup
	intel_logical_rings_init
	intel_lr_context_free
	intel_lr_context_deferred_alloc

	Global GTT views
	gen8_ppgtt_alloc_pagetabs
	gen8_ppgtt_alloc_page_directories
	gen8_ppgtt_alloc_page_dirpointers
	i915_vma_bind
	i915_ggtt_view_size

	GTT Fences and Swizzling
	i915_gem_object_put_fence
	i915_gem_object_get_fence
	i915_gem_object_pin_fence
	i915_gem_object_unpin_fence
	i915_gem_restore_fences
	i915_gem_detect_bit_6_swizzle
	i915_gem_object_do_bit_17_swizzle
	i915_gem_object_save_bit_17_swizzle
	Global GTT Fence Handling
	Hardware Tiling and Swizzling Details

	Object Tiling IOCTLs
	i915_gem_set_tiling
	i915_gem_get_tiling

	Buffer Object Eviction
	i915_gem_evict_something
	i915_gem_evict_vm

	Buffer Object Memory Shrinking
	i915_gem_shrink
	i915_gem_shrink_all
	i915_gem_shrinker_init

	GuC-based Command Submission
	GuC
	drivers/gpu/drm/i915/intel_guc_loader.c
	intel_guc_ucode_load
	intel_guc_ucode_init
	intel_guc_ucode_fini

	GuC Client
	drivers/gpu/drm/i915/i915_guc_submission.c
	i915_guc_submit
	gem_allocate_guc_obj
	gem_release_guc_obj
	guc_client_alloc
	intel_guc_suspend
	intel_guc_resume

	Tracing
	i915_ppgtt_create and i915_ppgtt_release
	i915_context_create and i915_context_free
	switch_mm

	Part III. vga_switcheroo
	Chapter 5. Modes of Use
	Manual switching and manual power control
	Driver power control

	Chapter 6. Public functions
	vga_switcheroo_register_handler
	vga_switcheroo_unregister_handler
	vga_switcheroo_handler_flags
	vga_switcheroo_register_client
	vga_switcheroo_register_audio_client
	vga_switcheroo_client_probe_defer
	vga_switcheroo_get_client_state
	vga_switcheroo_unregister_client
	vga_switcheroo_client_fb_set
	vga_switcheroo_lock_ddc
	vga_switcheroo_unlock_ddc
	vga_switcheroo_process_delayed_switch
	vga_switcheroo_set_dynamic_switch
	vga_switcheroo_init_domain_pm_ops
	vga_switcheroo_init_domain_pm_optimus_hdmi_audio

	Chapter 7. Public structures
	struct vga_switcheroo_handler
	struct vga_switcheroo_client_ops

	Chapter 8. Public constants
	Public constants
	enum vga_switcheroo_handler_flags_t
	enum vga_switcheroo_client_id
	enum vga_switcheroo_state

	Chapter 9. Private structures
	struct vgasr_priv
	struct vga_switcheroo_client

