
Industrial I/O driver developer's guide

Daniel Baluta <daniel.baluta@intel.com>

Industrial I/O driver developer's guide
by Daniel Baluta
Copyright © 2015 Intel Corporation

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.

Table of Contents
1. Introduction .. 1
2. Industrial I/O core ... 2

Industrial I/O devices ... 2
IIO device sysfs interface .. 8
IIO device channels .. 9

Industrial I/O buffers .. 13
IIO buffer sysfs interface .. 18
IIO buffer setup ... 18

Industrial I/O triggers .. 20
IIO trigger sysfs interface .. 23
IIO trigger setup .. 23
IIO trigger ops ... 24

Industrial I/O triggered buffers ... 25
IIO triggered buffer setup .. 25

3. Resources ... 30

iii

Chapter 1. Introduction
The main purpose of the Industrial I/O subsystem (IIO) is to provide support for devices that in some sense
perform either analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC) or both. The
aim is to fill the gap between the somewhat similar hwmon and input subsystems. Hwmon is directed at
low sample rate sensors used to monitor and control the system itself, like fan speed control or temperature
measurement. Input is, as its name suggests, focused on human interaction input devices (keyboard, mouse,
touchscreen). In some cases there is considerable overlap between these and IIO.

Devices that fall into this category include:

• analog to digital converters (ADCs)

• accelerometers

• capacitance to digital converters (CDCs)

• digital to analog converters (DACs)

• gyroscopes

• inertial measurement units (IMUs)

• color and light sensors

• magnetometers

• pressure sensors

• proximity sensors

• temperature sensors

Usually these sensors are connected via SPI or I2C. A common use case of the sensors devices is to have
combined functionality (e.g. light plus proximity sensor).

1

Chapter 2. Industrial I/O core
The Industrial I/O core offers:

• a unified framework for writing drivers for many different types of embedded sensors.

• a standard interface to user space applications manipulating sensors.

The implementation can be found under drivers/iio/industrialio-*

Industrial I/O devices

2

Industrial I/O core

Name
struct iio_dev — industrial I/O device

Synopsis

struct iio_dev {
 int id;
 int modes;
 int currentmode;
 struct device dev;
 struct iio_event_interface * event_interface;
 struct iio_buffer * buffer;
 struct list_head buffer_list;
 int scan_bytes;
 struct mutex mlock;
 const unsigned long * available_scan_masks;
 unsigned masklength;
 const unsigned long * active_scan_mask;
 bool scan_timestamp;
 unsigned scan_index_timestamp;
 struct iio_trigger * trig;
 struct iio_poll_func * pollfunc;
 struct iio_poll_func * pollfunc_event;
 struct iio_chan_spec const * channels;
 int num_channels;
 struct list_head channel_attr_list;
 struct attribute_group chan_attr_group;
 const char * name;
 const struct iio_info * info;
 struct mutex info_exist_lock;
 const struct iio_buffer_setup_ops * setup_ops;
 struct cdev chrdev;
#define IIO_MAX_GROUPS 6
 const struct attribute_group * groups[IIO_MAX_GROUPS + 1];
 int groupcounter;
 unsigned long flags;
#if defined(CONFIG_DEBUG_FS)
 struct dentry * debugfs_dentry;
 unsigned cached_reg_addr;
#endif
};

Members

id [INTERN] used to identify device internally

modes [DRIVER] operating modes supported by device

currentmode [DRIVER] current operating mode

dev [DRIVER] device structure, should be assigned a parent and owner

event_interface [INTERN] event chrdevs associated with interrupt lines

3

Industrial I/O core

buffer [DRIVER] any buffer present

buffer_list [INTERN] list of all buffers currently attached

scan_bytes [INTERN] num bytes captured to be fed to buffer demux

mlock [INTERN] lock used to prevent simultaneous device state changes

available_scan_masks [DRIVER] optional array of allowed bitmasks

masklength [INTERN] the length of the mask established from channels

active_scan_mask [INTERN] union of all scan masks requested by buffers

scan_timestamp [INTERN] set if any buffers have requested timestamp

scan_index_timestamp [INTERN] cache of the index to the timestamp

trig [INTERN] current device trigger (buffer modes)

pollfunc [DRIVER] function run on trigger being received

pollfunc_event [DRIVER] function run on events trigger being received

channels [DRIVER] channel specification structure table

num_channels [DRIVER] number of channels specified in channels.

channel_attr_list [INTERN] keep track of automatically created channel attributes

chan_attr_group [INTERN] group for all attrs in base directory

name [DRIVER] name of the device.

info [DRIVER] callbacks and constant info from driver

info_exist_lock [INTERN] lock to prevent use during removal

setup_ops [DRIVER] callbacks to call before and after buffer enable/disable

chrdev [INTERN] associated character device

groups[IIO_MAX_GROUPS + 1] [INTERN] attribute groups

groupcounter [INTERN] index of next attribute group

flags [INTERN] file ops related flags including busy flag.

debugfs_dentry [INTERN] device specific debugfs dentry.

cached_reg_addr [INTERN] cached register address for debugfs reads.

4

Industrial I/O core

Name
iio_device_alloc — allocate an iio_dev from a driver

Synopsis

struct iio_dev * iio_device_alloc (int sizeof_priv);

Arguments

sizeof_priv Space to allocate for private structure.

5

Industrial I/O core

Name
iio_device_free — free an iio_dev from a driver

Synopsis

void iio_device_free (struct iio_dev * dev);

Arguments

dev the iio_dev associated with the device

6

Industrial I/O core

Name
iio_device_register — register a device with the IIO subsystem

Synopsis

int iio_device_register (struct iio_dev * indio_dev);

Arguments

indio_dev Device structure filled by the device driver

7

Industrial I/O core

Name
iio_device_unregister — unregister a device from the IIO subsystem

Synopsis

void iio_device_unregister (struct iio_dev * indio_dev);

Arguments

indio_dev Device structure representing the device.

An IIO device usually corresponds to a single hardware sensor and it provides all the information needed
by a driver handling a device. Let's first have a look at the functionality embedded in an IIO device then
we will show how a device driver makes use of an IIO device.

There are two ways for a user space application to interact with an IIO driver.

• /sys/bus/iio/iio:deviceX/, this represents a hardware sensor and groups together the data
channels of the same chip.

• /dev/iio:deviceX, character device node interface used for buffered data transfer and for events
information retrieval.

A typical IIO driver will register itself as an I2C or SPI driver and will create two routines, probe and
remove . At probe:

• call iio_device_alloc, which allocates memory for an IIO device.

• initialize IIO device fields with driver specific information (e.g. device name, device channels).

• call iio_device_register, this registers the device with the IIO core. After this call the device
is ready to accept requests from user space applications.

At remove, we free the resources allocated in probe in reverse order:

• iio_device_unregister, unregister the device from the IIO core.

• iio_device_free, free the memory allocated for the IIO device.

IIO device sysfs interface
Attributes are sysfs files used to expose chip info and also allowing applications to set various configuration
parameters. For device with index X, attributes can be found under /sys/bus/iio/iio:deviceX/
directory. Common attributes are:

• name, description of the physical chip.

• dev, shows the major:minor pair associated with /dev/iio:deviceX node.

• sampling_frequency_available, available discrete set of sampling frequency values for de-
vice.

Available standard attributes for IIO devices are described in the Documentation/ABI/test-
ing/sysfs-bus-iio file in the Linux kernel sources.

8

Industrial I/O core

IIO device channels

9

Industrial I/O core

Name
struct iio_chan_spec — specification of a single channel

Synopsis

struct iio_chan_spec {
 enum iio_chan_type type;
 int channel;
 int channel2;
 unsigned long address;
 int scan_index;
 struct scan_type;
 long info_mask_separate;
 long info_mask_shared_by_type;
 long info_mask_shared_by_dir;
 long info_mask_shared_by_all;
 const struct iio_event_spec * event_spec;
 unsigned int num_event_specs;
 const struct iio_chan_spec_ext_info * ext_info;
 const char * extend_name;
 const char * datasheet_name;
 unsigned modified:1;
 unsigned indexed:1;
 unsigned output:1;
 unsigned differential:1;
};

Members

type What type of measurement is the channel making.

channel What number do we wish to assign the channel.

channel2 If there is a second number for a differential channel then this is it.
If modified is set then the value here specifies the modifier.

address Driver specific identifier.

scan_index Monotonic index to give ordering in scans when read from a buffer.

scan_type Sign: 's' or 'u' to specify signed or unsigned

info_mask_separate What information is to be exported that is specific to this channel.

info_mask_shared_by_type What information is to be exported that is shared by all channels
of the same type.

info_mask_shared_by_dir What information is to be exported that is shared by all channels of
the same direction.

info_mask_shared_by_all What information is to be exported that is shared by all channels.

event_spec Array of events which should be registered for this channel.

num_event_specs Size of the event_spec array.

10

Industrial I/O core

ext_info Array of extended info attributes for this channel. The array is
NULL terminated, the last element should have its name field set
to NULL.

extend_name Allows labeling of channel attributes with an informative name.
Note this has no effect codes etc, unlike modifiers.

datasheet_name A name used in in-kernel mapping of channels. It should correspond
to the first name that the channel is referred to by in the datasheet
(e.g. IND), or the nearest possible compound name (e.g. IND-INC).

modified Does a modifier apply to this channel. What these are depends
on the channel type. Modifier is set in channel2. Examples are
IIO_MOD_X for axial sensors about the 'x' axis.

indexed Specify the channel has a numerical index. If not, the channel in-
dex number will be suppressed for sysfs attributes but not for event
codes.

output Channel is output.

differential Channel is differential.

realbits

Number of valid bits of data

storage_bits

Realbits + padding

shift

Shift right by this before masking out realbits.

endianness

little or big endian

repeat

Number of times real/storage bits repeats. When the repeat element is more than 1, then the type element
in sysfs will show a repeat value. Otherwise, the number of repetitions is omitted.

An IIO device channel is a representation of a data channel. An IIO device can have one or multiple
channels. For example:

• a thermometer sensor has one channel representing the temperature measurement.

• a light sensor with two channels indicating the measurements in the visible and infrared spectrum.

• an accelerometer can have up to 3 channels representing acceleration on X, Y and Z axes.

An IIO channel is described by the struct iio_chan_spec . A thermometer driver for the temperature sensor
in the example above would have to describe its channel as follows:

11

Industrial I/O core

 static const struct iio_chan_spec temp_channel[] = {
 {
 .type = IIO_TEMP,
 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
 },
 };

Channel sysfs attributes exposed to userspace are specified in the form of bitmasks. Depending on their
shared info, attributes can be set in one of the following masks:

• info_mask_separate, attributes will be specific to this channel

• info_mask_shared_by_type, attributes are shared by all channels of the same type

• info_mask_shared_by_dir, attributes are shared by all channels of the same direction

• info_mask_shared_by_all, attributes are shared by all channels

When there are multiple data channels per channel type we have two ways to distinguish between them:

• set .modified field of iio_chan_spec to 1. Modifiers are specified using .channel2 field of the same
iio_chan_spec structure and are used to indicate a physically unique characteristic of the channel such
as its direction or spectral response. For example, a light sensor can have two channels, one for infrared
light and one for both infrared and visible light.

• set .indexed field of iio_chan_spec to 1. In this case the channel is simply another instance with an
index specified by the .channel field.

Here is how we can make use of the channel's modifiers:

 static const struct iio_chan_spec light_channels[] = {
 {
 .type = IIO_INTENSITY,
 .modified = 1,
 .channel2 = IIO_MOD_LIGHT_IR,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 },
 {
 .type = IIO_INTENSITY,
 .modified = 1,
 .channel2 = IIO_MOD_LIGHT_BOTH,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 },
 {
 .type = IIO_LIGHT,
 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
 .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 },

 }

12

Industrial I/O core

This channel's definition will generate two separate sysfs files for raw data retrieval:

• /sys/bus/iio/iio:deviceX/in_intensity_ir_raw

• /sys/bus/iio/iio:deviceX/in_intensity_both_raw

one file for processed data:

• /sys/bus/iio/iio:deviceX/in_illuminance_input

and one shared sysfs file for sampling frequency:

• /sys/bus/iio/iio:deviceX/sampling_frequency.

Here is how we can make use of the channel's indexing:

 static const struct iio_chan_spec light_channels[] = {
 {
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .channel = 0,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 },
 {
 .type = IIO_VOLTAGE,
 .indexed = 1,
 .channel = 1,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 },
 }

This will generate two separate attributes files for raw data retrieval:

• /sys/bus/iio/devices/iio:deviceX/in_voltage0_raw, representing voltage mea-
surement for channel 0.

• /sys/bus/iio/devices/iio:deviceX/in_voltage1_raw, representing voltage mea-
surement for channel 1.

Industrial I/O buffers

13

Industrial I/O core

Name
struct iio_buffer — general buffer structure

Synopsis

struct iio_buffer {
 int length;
 int bytes_per_datum;
 struct attribute_group * scan_el_attrs;
 long * scan_mask;
 bool scan_timestamp;
 const struct iio_buffer_access_funcs * access;
 struct list_head scan_el_dev_attr_list;
 struct attribute_group scan_el_group;
 wait_queue_head_t pollq;
 bool stufftoread;
 struct list_head demux_list;
 void * demux_bounce;
 struct list_head buffer_list;
 struct kref ref;
 unsigned int watermark;
};

Members

length [DEVICE] number of datums in buffer

bytes_per_datum [DEVICE] size of individual datum including timestamp

scan_el_attrs [DRIVER] control of scan elements if that scan mode control method
is used

scan_mask [INTERN] bitmask used in masking scan mode elements

scan_timestamp [INTERN] does the scan mode include a timestamp

access [DRIVER] buffer access functions associated with the implementation.

scan_el_dev_attr_list [INTERN] list of scan element related attributes.

scan_el_group [DRIVER] attribute group for those attributes not created from the
iio_chan_info array.

pollq [INTERN] wait queue to allow for polling on the buffer.

stufftoread [INTERN] flag to indicate new data.

demux_list [INTERN] list of operations required to demux the scan.

demux_bounce [INTERN] buffer for doing gather from incoming scan.

buffer_list [INTERN] entry in the devices list of current buffers.

ref [INTERN] reference count of the buffer.

14

Industrial I/O core

watermark [INTERN] number of datums to wait for poll/read.

15

Industrial I/O core

Name
iio_validate_scan_mask_onehot — Validates that exactly one channel is selected

Synopsis

bool iio_validate_scan_mask_onehot (struct iio_dev * indio_dev, const
unsigned long * mask);

Arguments

indio_dev the iio device

mask scan mask to be checked

Description

Return true if exactly one bit is set in the scan mask, false otherwise. It can be used for devices where only
one channel can be active for sampling at a time.

16

Industrial I/O core

Name
iio_buffer_get — Grab a reference to the buffer

Synopsis

struct iio_buffer * iio_buffer_get (struct iio_buffer * buffer);

Arguments

buffer The buffer to grab a reference for, may be NULL

Description

Returns the pointer to the buffer that was passed into the function.

17

Industrial I/O core

Name
iio_buffer_put — Release the reference to the buffer

Synopsis

void iio_buffer_put (struct iio_buffer * buffer);

Arguments

buffer The buffer to release the reference for, may be NULL

The Industrial I/O core offers a way for continuous data capture based on a trigger source. Multiple data
channels can be read at once from /dev/iio:deviceX character device node, thus reducing the CPU
load.

IIO buffer sysfs interface
An IIO buffer has an associated attributes directory under /sys/bus/iio/iio:de-
viceX/buffer/. Here are the existing attributes:

• length, the total number of data samples (capacity) that can be stored by the buffer.

• enable, activate buffer capture.

IIO buffer setup
The meta information associated with a channel reading placed in a buffer is called a scan element . The
important bits configuring scan elements are exposed to userspace applications via the /sys/bus/
iio/iio:deviceX/scan_elements/ directory. This file contains attributes of the following form:

• enable, used for enabling a channel. If and only if its attribute is non zero, then a triggered capture will
contain data samples for this channel.

• type, description of the scan element data storage within the buffer and hence the form in which it is
read from user space. Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] .

• be or le, specifies big or little endian.

• s or u, specifies if signed (2's complement) or unsigned.

• bits, is the number of valid data bits.

• storagebits, is the number of bits (after padding) that it occupies in the buffer.

• shift, if specified, is the shift that needs to be applied prior to masking out unused bits.

• repeat, specifies the number of bits/storagebits repetitions. When the repeat element is 0 or 1, then
the repeat value is omitted.

For example, a driver for a 3-axis accelerometer with 12 bit resolution where data is stored in two 8-bits
registers as follows:

 7 6 5 4 3 2 1 0

18

Industrial I/O core

 +---+---+---+---+---+---+---+---+
 |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
 +---+---+---+---+---+---+---+---+

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
 +---+---+---+---+---+---+---+---+

will have the following scan element type for each axis:

 $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
 le:s12/16>>4

A user space application will interpret data samples read from the buffer as two byte little endian signed
data, that needs a 4 bits right shift before masking out the 12 valid bits of data.

For implementing buffer support a driver should initialize the following fields in iio_chan_spec definition:

 struct iio_chan_spec {
 /* other members */
 int scan_index
 struct {
 char sign;
 u8 realbits;
 u8 storagebits;
 u8 shift;
 u8 repeat;
 enum iio_endian endianness;
 } scan_type;
 };

The driver implementing the accelerometer described above will have the following channel definition:

 struct struct iio_chan_spec accel_channels[] = {
 {
 .type = IIO_ACCEL,
 .modified = 1,
 .channel2 = IIO_MOD_X,
 /* other stuff here */
 .scan_index = 0,
 .scan_type = {
 .sign = 's',
 .realbits = 12,
 .storgebits = 16,
 .shift = 4,
 .endianness = IIO_LE,
 },
 }

19

Industrial I/O core

 /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
 * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
 */
 }

Here scan_index defines the order in which the enabled channels are placed inside the buffer. Channels
with a lower scan_index will be placed before channels with a higher index. Each channel needs to have
a unique scan_index.

Setting scan_index to -1 can be used to indicate that the specific channel does not support buffered capture.
In this case no entries will be created for the channel in the scan_elements directory.

Industrial I/O triggers

20

Industrial I/O core

Name
struct iio_trigger — industrial I/O trigger device

Synopsis

struct iio_trigger {
 const struct iio_trigger_ops * ops;
 int id;
 const char * name;
 struct device dev;
 struct list_head list;
 struct list_head alloc_list;
 atomic_t use_count;
 struct irq_chip subirq_chip;
 int subirq_base;
 struct iio_subirq subirqs[CONFIG_IIO_CONSUMERS_PER_TRIGGER];
 unsigned long pool[BITS_TO_LONGS(CONFIG_IIO_CONSUMERS_PER_TRIGGER)];
 struct mutex pool_lock;
};

Members

ops [DRIVER] operations structure

id [INTERN] unique id number

name [DRIVER] unique name

dev [DRIVER] associated device (if relevant)

list [INTERN] used in maintenance of global trigger list

alloc_list [DRIVER] used for driver specific trigger list

use_count use count for the trigger

subirq_chip [INTERN] associate 'virtual' irq chip.

subirq_base [INTERN] base number for irqs provided by trigger.

subirqs[CON-
FIG_IIO_CONSUMERS_PER_TRIG-
GER]

[INTERN] information about the 'child' irqs.

pool[BITS_TO_LONGS(CON-
FIG_IIO_CONSUMERS_PER_TRIG-
GER)]

[INTERN] bitmap of irqs currently in use.

pool_lock [INTERN] protection of the irq pool.

21

Industrial I/O core

Name
devm_iio_trigger_alloc — Resource-managed iio_trigger_alloc

Synopsis

struct iio_trigger * devm_iio_trigger_alloc (struct device * dev, const
char * fmt, ...);

Arguments

dev Device to allocate iio_trigger for

fmt trigger name format. If it includes format specifiers, the additional arguments following format are
formatted and inserted in the resulting string replacing their respective specifiers.

... variable arguments

Description

Managed iio_trigger_alloc. iio_trigger allocated with this function is automatically freed on driver detach.

If an iio_trigger allocated with this function needs to be freed separately, devm_iio_trigger_free
must be used.

RETURNS

Pointer to allocated iio_trigger on success, NULL on failure.

22

Industrial I/O core

Name
devm_iio_trigger_free — Resource-managed iio_trigger_free

Synopsis

void devm_iio_trigger_free (struct device * dev, struct iio_trigger *
iio_trig);

Arguments

dev Device this iio_dev belongs to

iio_trig the iio_trigger associated with the device

Description

Free iio_trigger allocated with devm_iio_trigger_alloc.

In many situations it is useful for a driver to be able to capture data based on some external event (trigger)
as opposed to periodically polling for data. An IIO trigger can be provided by a device driver that also
has an IIO device based on hardware generated events (e.g. data ready or threshold exceeded) or provided
by a separate driver from an independent interrupt source (e.g. GPIO line connected to some external
system, timer interrupt or user space writing a specific file in sysfs). A trigger may initiate data capture
for a number of sensors and also it may be completely unrelated to the sensor itself.

IIO trigger sysfs interface
There are two locations in sysfs related to triggers:

• /sys/bus/iio/devices/triggerY, this file is created once an IIO trigger is registered with the
IIO core and corresponds to trigger with index Y. Because triggers can be very different depending on
type there are few standard attributes that we can describe here:

• name, trigger name that can be later used for association with a device.

• sampling_frequency, some timer based triggers use this attribute to specify the frequency for trigger
calls.

• /sys/bus/iio/devices/iio:deviceX/trigger/, this directory is created once the device
supports a triggered buffer. We can associate a trigger with our device by writing the trigger's name in
the current_trigger file.

IIO trigger setup
Let's see a simple example of how to setup a trigger to be used by a driver.

 struct iio_trigger_ops trigger_ops = {
 .set_trigger_state = sample_trigger_state,
 .validate_device = sample_validate_device,
 }

 struct iio_trigger *trig;

23

Industrial I/O core

 /* first, allocate memory for our trigger */
 trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);

 /* setup trigger operations field */
 trig->ops = &trigger_ops;

 /* now register the trigger with the IIO core */
 iio_trigger_register(trig);

IIO trigger ops

24

Industrial I/O core

Name
struct iio_trigger_ops — operations structure for an iio_trigger.

Synopsis

struct iio_trigger_ops {
 struct module * owner;
 int (* set_trigger_state) (struct iio_trigger *trig, bool state);
 int (* try_reenable) (struct iio_trigger *trig);
 int (* validate_device) (struct iio_trigger *trig,struct iio_dev *indio_dev);
};

Members

owner used to monitor usage count of the trigger.

set_trigger_state switch on/off the trigger on demand

try_reenable function to reenable the trigger when the use count is zero (may be NULL)

validate_device function to validate the device when the current trigger gets changed.

Description

This is typically static const within a driver and shared by instances of a given device.

Notice that a trigger has a set of operations attached:

• set_trigger_state, switch the trigger on/off on demand.

• validate_device, function to validate the device when the current trigger gets changed.

Industrial I/O triggered buffers
Now that we know what buffers and triggers are let's see how they work together.

IIO triggered buffer setup

25

Industrial I/O core

Name
iio_triggered_buffer_setup — Setup triggered buffer and pollfunc

Synopsis

int iio_triggered_buffer_setup (struct iio_dev * indio_dev, irqreturn_t
(*h) (int irq, void *p), irqreturn_t (*thread) (int irq, void *p), const
struct iio_buffer_setup_ops * setup_ops);

Arguments

indio_dev IIO device structure

h Function which will be used as pollfunc top half

thread Function which will be used as pollfunc bottom half

setup_ops Buffer setup functions to use for this device. If NULL the default setup functions for
triggered buffers will be used.

Description

This function combines some common tasks which will normally be performed when setting up a triggered
buffer. It will allocate the buffer and the pollfunc.

Before calling this function the indio_dev structure should already be completely initialized, but not yet
registered. In practice this means that this function should be called right before iio_device_reg-
ister.

To free the resources allocated by this function call iio_triggered_buffer_cleanup.

26

Industrial I/O core

Name
iio_triggered_buffer_cleanup — Free resources allocated by iio_triggered_buffer_setup

Synopsis

void iio_triggered_buffer_cleanup (struct iio_dev * indio_dev);

Arguments

indio_dev IIO device structure

27

Industrial I/O core

Name
struct iio_buffer_setup_ops — buffer setup related callbacks

Synopsis

struct iio_buffer_setup_ops {
 int (* preenable) (struct iio_dev *);
 int (* postenable) (struct iio_dev *);
 int (* predisable) (struct iio_dev *);
 int (* postdisable) (struct iio_dev *);
 bool (* validate_scan_mask) (struct iio_dev *indio_dev,const unsigned long *scan_mask);
};

Members

preenable [DRIVER] function to run prior to marking buffer enabled

postenable [DRIVER] function to run after marking buffer enabled

predisable [DRIVER] function to run prior to marking buffer disabled

postdisable [DRIVER] function to run after marking buffer disabled

validate_scan_mask [DRIVER] function callback to check whether a given scan mask is valid
for the device.

A typical triggered buffer setup looks like this:

 const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
 .preenable = sensor_buffer_preenable,
 .postenable = sensor_buffer_postenable,
 .postdisable = sensor_buffer_postdisable,
 .predisable = sensor_buffer_predisable,
 };

 irqreturn_t sensor_iio_pollfunc(int irq, void *p)
 {
 pf->timestamp = iio_get_time_ns();
 return IRQ_WAKE_THREAD;
 }

 irqreturn_t sensor_trigger_handler(int irq, void *p)
 {
 u16 buf[8];
 int i = 0;

 /* read data for each active channel */
 for_each_set_bit(bit, active_scan_mask, masklength)
 buf[i++] = sensor_get_data(bit)

 iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);

 iio_trigger_notify_done(trigger);

28

Industrial I/O core

 return IRQ_HANDLED;
 }

 /* setup triggered buffer, usually in probe function */
 iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
 sensor_trigger_handler,
 sensor_buffer_setup_ops);

The important things to notice here are:

• iio_buffer_setup_ops, the buffer setup functions to be called at predefined points in the buffer
configuration sequence (e.g. before enable, after disable). If not specified, the IIO core uses the default
iio_triggered_buffer_setup_ops.

• sensor_iio_pollfunc, the function that will be used as top half of poll function. It should do as
little processing as possible, because it runs in interrupt context. The most common operation is record-
ing of the current timestamp and for this reason one can use the IIO core defined iio_pollfunc_s-
tore_time function.

• sensor_trigger_handler, the function that will be used as bottom half of the poll function. This
runs in the context of a kernel thread and all the processing takes place here. It usually reads data from
the device and stores it in the internal buffer together with the timestamp recorded in the top half.

29

Chapter 3. Resources
• drivers/iio/, contains the IIO core plus and directories for each sensor type (e.g. accel, magne-

tometer, etc.)

• include/linux/iio/, contains the header files, nice to read for the internal kernel interfaces.

• include/uapi/linux/iio/, contains files to be used by user space applications.

• tools/iio/, contains tools for rapidly testing buffers, events and device creation.

• drivers/staging/iio/, contains code for some drivers or experimental features that are not yet
mature enough to be moved out.

Besides the code, there are some good online documentation sources:

• Industrial I/O mailing list [http://marc.info/?l=linux-iio]

• Analog Device IIO wiki page [http://wiki.analog.com/software/linux/docs/iio/iio]

• Using the Linux IIO framework for SDR, Lars-Peter Clausen's presentation at FOSDEM [https://fos-
dem.org/2015/schedule/event/iiosdr/]

30

http://marc.info/?l=linux-iio
http://marc.info/?l=linux-iio
http://wiki.analog.com/software/linux/docs/iio/iio
http://wiki.analog.com/software/linux/docs/iio/iio
https://fosdem.org/2015/schedule/event/iiosdr/
https://fosdem.org/2015/schedule/event/iiosdr/
https://fosdem.org/2015/schedule/event/iiosdr/

	Industrial I/O driver developer's guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Industrial I/O core
	Industrial I/O devices
	struct iio_dev
	iio_device_alloc
	iio_device_free
	iio_device_register
	iio_device_unregister
	IIO device sysfs interface
	IIO device channels
	struct iio_chan_spec

	Industrial I/O buffers
	struct iio_buffer
	iio_validate_scan_mask_onehot
	iio_buffer_get
	iio_buffer_put
	IIO buffer sysfs interface
	IIO buffer setup

	Industrial I/O triggers
	struct iio_trigger
	devm_iio_trigger_alloc
	devm_iio_trigger_free
	IIO trigger sysfs interface
	IIO trigger setup
	IIO trigger ops
	struct iio_trigger_ops

	Industrial I/O triggered buffers
	IIO triggered buffer setup
	iio_triggered_buffer_setup
	iio_triggered_buffer_cleanup
	struct iio_buffer_setup_ops

	Chapter 3. Resources

