The Userspace I/O HOWTO

Hans-Jirgen Koch



The Userspace I/O HOWTO

Hans-Jurgen Koch

Publication date 2006-12-11
Copyright © 2006-2008 Hans-Jirgen Koch.
Copyright © 2009 Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)

Abstract

This HOWTO describes concept and usage of Linux kernel's Userspace I/O system.

This documentation is Free Software licensed under the terms of the GPL version 2.




Table of Contents

1. ADOUL thiS OCUMENT ...ttt ettt e et e et e eeeana s 1
THRANSIAITONS ..ttt e e et ettt 1
PrE AR ..t e e e e 1
ACKNOWIEAGMENTS ...ttt ettt e e et e e e ena s 1
FEEADACK ... et aaaeeae 1
2. ABOUL UTO ettt e e et e e ettt e a e 2
HOW UTO WOFKS ..ttt e et et e e et e e e aee s 2
3. Writing your own Kernel MOAUIE ...........uiiiiieii e 5
LS (U Tox A 0T To T o T PP 5
Adding an interrupt NANAIEN ........oooeei e 6
Using uio_pdrv for platform deVICES .........uiiiiiiieeie e 7
Using uio_pdrv_genirg for platform deviCes .........ooovviieiiiiiee e 7
Using uio_dmem_genirg for platform deviCeS .........ovveveiiiiiiiii e 7
4. WIiting @ ArVEr N USEISPBCE ....ceeveieeieit ettt ettt e e et e et e e et e e e e e e e eae s 9
Getting information about YOUr UIO EVICE ...........uiiiiiiiiiiiiii e 9
MMBP() AEVICE MEIMOIY ...ttt ettt e et e et e et e e e e et e e e e enan s 9
WaItING FOr INTEITUDES ...ttt 9
5. GENENIC PCl UTO AIVEN .ooeieiiii ettt e e e e 11
Making the driver recognize the deVICE ...........uiiiiiiiii e 11
Things to KNOW about UI0_PCI_GENENIC ....cveerieiiiiie et eeees 11
Writing userspace driver USINg Ui0_PCI_gENEITC ...uuniiereieiiiiiiee et 12
Example code USING Ui0_PCi_GENENIC ...cevuuneiiiiiieieiie ettt e e e e 12
AL FUhEr iNFOMMIBLEION ...ttt e e 14




Chapter 1. About this document

Translations

If you know of any tranglations for this document, or you are interested in trandlating it, please email me
<hj k@ansj koch. de>.

Preface

For many types of devices, creating aLinux kernel driver isoverkill. All that isreally needed is some way
to handle an interrupt and provide access to the memory space of the device. The logic of controlling the
device does not necessarily have to be within the kernel, as the device does not need to take advantage
of any of other resources that the kernel provides. One such common class of devices that are like this
arefor industrial 1/0 cards.

To address this situation, the userspace I/0 system (UIO) was designed. For typical industrial 1/0 cards,
only avery small kernel moduleisneeded. Themain part of thedriver will runin user space. Thissimplifies
development and reduces the risk of serious bugs within akernel module.

Please note that UIO is not an universal driver interface. Devices that are already handled well by other
kernel subsystems (like networking or serial or USB) are no candidates for an UIO driver. Hardware that
isideally suited for an UIO driver fulfillsal of the following:

» The device has memory that can be mapped. The device can be controlled completely by writing to
this memory.

» Thedevice usually generates interrupts.

» Thedevice does not fit into one of the standard kernel subsystems.

Acknowledgments

I'd like to thank Thomas Gleixner and Benedikt Spranger of Linutronix, who have not only written most
of the UIO code, but also helped greatly writing this HOWTO by giving me al kinds of background
information.

Feedback

Find something wrong with this document? (Or perhaps something right?) | would love to hear from you.
Please email me at <hj k@ansj koch. de>.




Chapter 2. About UIO

If you use UIO for your card's driver, here's what you get:

 only one small kernel module to write and maintain.

* develop the main part of your driver in user space, with all the tools and libraries you're used to.
» bugsin your driver won't crash the kernel.

* updates of your driver can take place without recompiling the kernel.

How UIO works

Each UIO deviceis accessed through adevice file and several sysfs attribute files. The device file will be
called/ dev/ ui o0 for thefirst device, and/ dev/ ui 01,/ dev/ ui 02 and so on for subsequent devices.

/ dev/ ui oXisused to access the address space of the card. Just use nmrap( ) to accessregistersor RAM
locations of your card.

Interrupts are handled by reading from/ dev/ ui oX. A blockingr ead() from/ dev/ ui oXwill return
as soon as an interrupt occurs. You can also use sel ect () on/ dev/ ui oX to wait for an interrupt.
The integer value read from / dev/ ui oX represents the total interrupt count. You can use this number
to figure out if you missed some interrupts.

For some hardware that has more than one interrupt source internally, but not separate IRQ mask and
status registers, there might be situations where userspace cannot determine what the interrupt source was
if the kernel handler disables them by writing to the chip's IRQ register. In such a case, the kernel has to
disable the IRQ completely to leave the chip's register untouched. Now the userspace part can determine
the cause of the interrupt, but it cannot re-enable interrupts. Another cornercaseis chipswhere re-enabling
interrupts is a read-modify-write operation to a combined IRQ status/acknowledge register. This would
beracy if anew interrupt occurred simultaneously.

To address these problems, UIO also implements a write() function. It is normally not used and can be
ignored for hardware that has only a single interrupt source or has separate IRQ mask and status registers.
If you need it, however, awriteto/ dev/ ui oX will call thei rgcontrol () functionimplemented by
the driver. Y ou have to write a 32-bit value that is usually either O or 1 to disable or enable interrupts. If a
driver does not implementi rqcontrol (),wite() will return with - ENOSYS.

To handle interrupts properly, your custom kernel module can provide its own interrupt handler. It will
automatically be called by the built-in handler.

For cards that don't generate interrupts but need to be polled, there is the possibility to set up atimer that
triggers the interrupt handler at configurable time intervals. This interrupt simulation is done by calling
ui o_event _notify() fromthetimer'sevent handler.

Each driver provides attributes that are used to read or write variables. These attributes are accessible
through sysfsfiles. A custom kernel driver module can add its own attributes to the device owned by the
uio driver, but not added to the UIO device itself at thistime. This might change in the futureif it would
be found to be useful.

The following standard attributes are provided by the UIO framework:

e nane: The name of your device. It is recommended to use the name of your kernel module for this.




About UIO

e versi on: A version string defined by your driver. This allows the user space part of your driver to
deal with different versions of the kernel module.

» event : Thetotal number of interruptshandled by thedriver sincethelast timethe device nodewasread.

These attributes appear under the / sys/ cl ass/ ui o/ ui oX directory. Please note that this directory
might beasymlink, and not areal directory. Any userspace codethat accessesit must be ableto handlethis.

Each UIO device can make one or more memory regions available for memory mapping. Thisis necessary
because some industrial 1/0 cards require access to more than one PCl memory region in adriver.

Each mapping has its own directory in sysfs, the first mapping appearsas/ sys/ cl ass/ ui o/ ui oX/
maps/ map0/ . Subsequent mappings create directoriesmapl/ , map2/ , and so on. These directorieswill
only appear if the size of the mapping is not 0.

Each mapX/ directory contains four read-only files that show attributes of the memory:

* name: A string identifier for this mapping. This is optional, the string can be empty. Drivers can set
thisto make it easier for userspace to find the correct mapping.

» addr : The address of memory that can be mapped.
e si ze: Thesize, in bytes, of the memory pointed to by addr.

» of f set: The offset, in bytes, that has to be added to the pointer returned by mmap() to get to the
actual device memory. This is important if the device's memory is not page aigned. Remember that
pointers returned by mmap() are always page aligned, so it is good style to aways add this offset.

From userspace, the different mappings are distinguished by adjusting the of f set parameter of the
nmmrap( ) call. To map the memory of mapping N, you have to use N times the page size as your offset:

of fset = N * get pagesi ze();

Sometimes there is hardware with memory-like regions that can not be mapped with the technique de-
scribed here, but there are still waysto accessthem from userspace. The most common examplearex86 io-
ports. On x86 systems, userspace can accesstheseioportsusingi oper n() ,i opl () ,i nb(),out b(),
and similar functions.

Since these ioport regions can not be mapped, they will not appear under / sys/ cl ass/ ui o/ ui oX/
maps/ likethe normal memory described above. Without information about the port regions a hardware
has to offer, it becomes difficult for the userspace part of the driver to find out which ports belong to
which UIO device.

To address this situation, the new directory / sys/ cl ass/ ui o/ ui oX/ porti o/ was added. It only
existsif the driver wantsto passinformation about one or more port regionsto userspace. If that isthe case,
subdirectories named port 0, por t 1, and so on, will appear underneath / sys/ cl ass/ ui o/ ui oX/
portiol.

Each port X/ directory contains four read-only files that show name, start, size, and type of the port
region:

e nane: A string identifier for this port region. The string is optional and can be empty. Drivers can set
it to make it easier for userspace to find a certain port region.

e start: Thefirst port of thisregion.




About UIO

e si ze: The number of portsin thisregion.

* porttype: A string describing the type of port.




Chapter 3. Writing your own kernel
module

Pleasehavealook at ui o_ci f. ¢ asan example. Thefollowing paragraphs explain the different sections
of thisfile.

struct uio_info

This structure tells the framework the details of your driver, Some of the members are required, others
are optional.

e const char *nane: Required. The name of your driver as it will appear in sysfs. | recommend
using the name of your module for this.

» const char *ver si on: Required. Thisstring appearsin/ sys/ cl ass/ ui o/ ui oX/ ver si on.

e struct uio_nmem nen] MAX U O MAPS ]: Requiredif you have memory that can be mapped
with nmap() . For each mapping you need to fill one of the ui o_nmemstructures. See the description
below for details.

e struct uio_port port][ MAX U O PORTS REG ONS ]: Required if you want to passin-
formation about ioports to userspace. For each port region you need to fill one of theui o_port struc-
tures. See the description below for details.

* | ong irq: Required. If your hardware generates an interrupt, it's your modules task to determine the
irq number during initialization. If you don't have a hardware generated interrupt but want to trigger the
interrupt handler in some other way, seti r g toUl O | RQ_CUSTOM If you had no interrupt at all, you
couldseti rqtoU O _| RQ NONE, though this rarely makes sense.

e unsigned long irq_fl ags: Required if you've seti r g to a hardware interrupt number. The
flags given here will beused inthecall tor equest _irq().

e int (*rmuap)(struct uio_info *info, struct vmarea_struct *vna):Optiona.
If you need a special mmap() function, you can set it here. If this pointer is not NULL, your mmap()
will be called instead of the built-in one.

e int (*open)(struct uio_info *info, struct inode *inode) : Optiona.You
might want to have your own open( ) , e.g. to enable interrupts only when your deviceis actually used.

e int (*release)(struct uio_info *info, struct inode *inode) :Optiona. If
you define your own open() , you will probably also want acustomr el ease() function.

e int (*irqcontrol)(struct uio_info *info, s32 irg_on) : Optional. If you need
to be ableto enable or disableinterrupts from userspace by writingto/ dev/ ui 0X, you canimplement
this function. The parameter i r q_on will be O to disable interrupts and 1 to enable them.

Usually, your device will have one or more memory regions that can be mapped to user space. For each
region, you haveto set upastruct ui o_nmemintheneni] array. Here's a description of the fields
of struct uio_nem

e const char *name: Optional. Set this to help identify the memory region, it will show up in the
corresponding sysfs node.




Writing your own kernel module

e int nmentype: Requiredif themappingisused. Set thistoU O_MEM PHYS if you you have physical
memory on your card to be mapped. UseUl O MEM LOQd CAL for logical memory (e.g. allocated with
kmal | oc() ). Theresaso U O MEM VI RTUAL for virtual memory.

e phys_addr t addr: Required if the mapping is used. Fill in the address of your memory block.
This address is the one that appearsin sysfs.

e resource_size_t size:Fillinthesizeof thememory block that addr pointsto. If si ze iszero,
the mapping isconsidered unused. Notethat you must initializesi ze with zerofor all unused mappings.

e voi d *i nternal _addr:If youhaveto accessthis memory region from within your kernel module,
you will want to map it internally by using something like i or emap() . Addresses returned by this
function cannot be mapped to user space, so you must not store it in addr . Usei nt er nal _addr
instead to remember such an address.

Please do not touch the map element of st ruct ui o_nem It isused by the UIO framework to set up
sysfsfilesfor this mapping. Simply leave it alone.

Sometimes, your device can have one or more port regions which can not be mapped to userspace. But if
there are other possihilities for userspace to access these ports, it makes sense to make information about
the ports available in sysfs. For each region, you haveto set upast ruct ui o_port intheport[]
array. Here's adescription of thefieldsof st ruct ui o_port:

e char *porttype: Required. Set thisto one of the predefined constants. Use Ul O_PORT_X86 for
the ioports found in x86 architectures.

* unsigned |ong start: Required if the port region is used. Fill in the number of the first port
of thisregion.

* unsi gned | ong size: Fill inthe number of portsin this region. If si ze is zero, the region is
considered unused. Note that you must initialize si ze with zero for all unused regions.

Please do not touch the porti o element of struct ui o_port! It isused internaly by the UIO
framework to set up sysfsfilesfor thisregion. Simply leaveit alone.

Adding an interrupt handler

What you need to do in your interrupt handler depends on your hardware and on how you want to handleit.
Y ou should try to keep the amount of code in your kernel interrupt handler low. If your hardware requires
no action that you have to perform after each interrupt, then your handler can be empty.

If, on the other hand, your hardware needs some action to be performed after each interrupt, then you
must do it in your kernel module. Note that you cannot rely on the userspace part of your driver. Your
userspace program can terminate at any time, possibly leaving your hardware in a state where proper
interrupt handling is still required.

There might also be applications where you want to read data from your hardware at each interrupt and
buffer it in a piece of kernel memory you've alocated for that purpose. With this technique you could
avoid loss of dataif your userspace program misses an interrupt.

A note on shared interrupts: Y our driver should support interrupt sharing whenever thisis possible. It is
possibleif and only if your driver can detect whether your hardware hastriggered theinterrupt or not. This
isusually done by looking at an interrupt status register. If your driver seesthat the IRQ bit is actually set,
it will perform its actions, and the handler returns IRQ_HANDLED. If the driver detects that it was not
your hardware that caused the interrupt, it will do nothing and return IRQ_NONE, allowing the kernel to
call the next possible interrupt handler.




Writing your own kernel module

If you decide not to support shared interrupts, your card won't work in computerswith no freeinterrupts. As
this frequently happens on the PC platform, you can save yourself alot of trouble by supporting interrupt
sharing.

Using uio_pdrv for platform devices

In many cases, UIO driversfor platform devices can be handled in ageneric way. In the same place where
you defineyour st ruct pl at f orm devi ce, you simply aso implement your interrupt handler and
fillyourst ruct ui o_i nfo.A pointertothisst ruct ui o_i nf oisthenusedaspl at f or m dat a
for your platform device.

You also need to set up an array of st ruct resour ce containing addresses and sizes of your memory
mappings. Thisinformation is passed to the driver using the . r esour ce and. num r esour ces ee-
mentsof st ruct pl at f or m devi ce.

You now have to set the . name element of struct platform device to"ui o _pdrv" touse
the generic UIO platform device driver. This driver will fill the meni ] array according to the resources
given, and register the device.

The advantage of this approach is that you only have to edit a file you need to edit anyway. Y ou do not
have to create an extra driver.

Using uio_pdrv_genirq for platform devices

Especially in embedded devices, you frequently find chips where the irq pin is tied to its own dedicated
interrupt line. In such cases, whereyou can bereally suretheinterrupt is not shared, we can take the concept
of ui o_pdr v one step further and use a generic interrupt handler. That's what ui o_pdrv_geni rq
does.

The setup for this driver is the same as described above for ui o_pdr v, except that you do not imple-
ment an interrupt handler. The . handl er element of st ruct ui o_i nf o must remain NULL. The
.irg_fl ags element must not contain | RQF_SHARED.

You will set the. name element of struct pl atform deviceto"ui o_pdrv_genirqg" touse
thisdriver.

The generic interrupt handler of ui o_pdrv_geni rq will simply disable the interrupt line using
di sabl e_i rg_nosync() . After doing its work, userspace can reenable the interrupt by writing
0x00000001 to the UIO device file. The driver already implementsani r g_control () to make this
possible, you must not implement your own.

Using ui o_pdr v_geni r g not only saves a few lines of interrupt handler code. Y ou also do not need
to know anything about the chip'sinternal registersto create the kernel part of the driver. All you need to
know istheirg number of the pin the chip is connected to.

Using uio_dmem_genirqg for platform devices

In addition to statically allocated memory ranges, they may also be a desire to use dynamically allocated
regionsin auser space driver. In particular, being able to access memory made available through the dma-
mapping API, may be particularly useful. Theui o_dnem geni r q driver providesaway to accomplish
this.

This driver is used in a similar manner to the " ui o_pdrv_geni rq" driver with respect to interrupt
configuration and handling.




Writing your own kernel module

Setthe. nane elementof st ruct pl atf orm devi ceto" ui o_dnmem geni r q" tousethisdriver.

Whenusing thisdriver, fill inthe. pl at f or m dat a elementof st ruct pl at f or m devi ce,which
isof typestruct ui o_dnem geni r g_pdat a and which contains the following elements:

e struct ui o_info uioinfo: Thesamestructure used astheui o_pdr v_geni r q platform data

e unsigned int *dynam c_regi on_si zes: Pointer to list of sizes of dynamic memory regions
to be mapped into user space.

e unsi gned int num.dynani c_regi ons: Number of elementsindynam c_r egi on_si zes
array.

Thedynamic regionsdefined in the platform datawill beappendedtothe neni] array after theplatform
deviceresources, which impliesthat the total number of static and dynamic memory regions cannot exceed
MAX_Ul O_MAPS.

The dynamic memory regionswill be allocated when the UIO devicefile, / dev/ ui oXisopened. Similar
to static memory resources, the memory region information for dynamic regions is then visible via sysfs
at / sys/ cl ass/ ui o/ ui oX/ maps/ mapY/ *. The dynamic memory regions will be freed when the
UIO device file is closed. When no processes are holding the device file open, the address returned to
userspace is ~0.




Chapter 4. Writing a driver in
userspace

Onceyou have aworking kernel modulefor your hardware, you can write the userspace part of your driver.
Y ou don't need any special libraries, your driver can be written in any reasonable language, you can use
floating point numbers and so on. In short, you can use all the tools and libraries you'd normally use for
writing a userspace application.

Getting information about your UIO device

Information about all UIO devices is available in sysfs. The first thing you should do in your driver is
check nane and ver si on to make sure your talking to the right device and that its kernel driver has
the version you expect.

Y ou should also make sure that the memory mapping you need exists and has the size you expect.
Thereisatool caled | sui o that lists UIO devices and their attributes. It is available here:

http://mww.osadl .org/projects/downl oads/UI O/user/ [http://www.osadl .org/projects/downloads/U1 O/
user/]

With | sui o you can quickly check if your kernel module isloaded and which attributes it exports. Have
alook at the manpage for details.

The source code of | sui 0 can serve as an example for getting information about an UIO device. Thefile
ui o_hel per. c containsalot of functions you could use in your userspace driver code.

mmap() device memory

After you made sure you've got the right device with the memory mappings you need, al you have to do
isto cal mmap() to map the device's memory to userspace.

The parameter of f set of the mmap() cal has a specia meaning for UIO devices:. It is used to select
which mapping of your device you want to map. To map the memory of mapping N, you have to use N
times the page size as your offset:

of fset = N * getpagesi ze();

N starts from zero, so if you've got only one memory rangeto map, set of f set = 0. A drawback of this
technique is that memory is always mapped beginning with its start address.

Waiting for interrupts

After you successfully mapped your devices memory, you can accessit likean ordinary array. Usually, you
will perform some initialization. After that, your hardware starts working and will generate an interrupt as
soon asit's finished, has some data available, or needs your attention because an error occurred.

/ dev/ ui oXisaread-only file. A r ead() will alwaysblock until an interrupt occurs. Thereisonly one
legal value for the count parameter of r ead( ), and that is the size of a signed 32 bit integer (4). Any



http://www.osadl.org/projects/downloads/UIO/user/
http://www.osadl.org/projects/downloads/UIO/user/
http://www.osadl.org/projects/downloads/UIO/user/

Writing adriver in userspace

other valuefor count causesr ead() tofail. Thesigned 32 bit integer read isthe interrupt count of your
device. If the value is one more than the value you read the last time, everything is OK. If the difference
is greater than one, you missed interrupts.

Youcanasousesel ect () on/ dev/ ui oX

10



Chapter 5. Generic PCI UIO driver

The generic driver is a kernel module named uio_pci_generic. It can work with any device compliant
to PCI 2.3 (circa 2002) and any compliant PCl Express device. Using this, you only need to write the
userspace driver, removing the need to write a hardware-specific kernel module.

Making the driver recognize the device

Since the driver does not declare any deviceids, it will not get loaded automatically and will not automat-
ically bind to any devices, you must load it and allocate id to the driver yourself. For example:

nodpr obe ui o_pci _generic
echo "8086 10f5" > /sys/bus/pci/drivers/uio_pci_generic/new_id

If there aready is a hardware specific kernel driver for your device, the generic driver still won't bind to
it, in this case if you want to use the generic driver (why would you?) you'll have to manually unbind the
hardware specific driver and bind the generic driver, like this:

echo -n 0000:00:19.0 > /sys/bus/pci/drivers/el000e/ unbi nd
echo -n 0000: 00:19.0 > /sys/bus/pci/drivers/uio_pci_generic/bind

You can verify that the device has been bound to the driver by looking for it in sysfs, for example like
the following:

I's -1 /sys/bus/pci/devices/0000: 00:19. 0/dri ver
Which if successful should print
.../0000:00:19.0/driver -> ../../../bus/pci/drivers/uio_pci_generic

Note that the generic driver will not bind to old PCI 2.2 devices. If binding the device failed, run the
following command:

dnesg

and look in the output for failure reasons

Things to know about uio_pci_generic

Interrupts are handled using the Interrupt Disable bit in the PClI command register and Interrupt Status bit
in the PCI status register. All devices compliant to PCI 2.3 (circa 2002) and all compliant PCl Express
devices should support these bits. uio_pci_generic detects this support, and won't bind to devices which
do not support the Interrupt Disable Bit in the command register.

11



Generic PCI UIO driver

On eachinterrupt, uio_pci_generic setsthe Interrupt Disable bit. This prevents the device from generating
further interrupts until the bit is cleared. The userspace driver should clear this bit before blocking and
waiting for more interrupts.

Writing userspace driver using uio_pci_generic

Userspace driver can use pci sysfsinterface, or the libpci libray that wraps it, to talk to the device and to
re-enable interrupts by writing to the command register.

Example code using uio_pci_generic

Here is some sample userspace driver code using uio_pci_generic:

#incl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#include <fcntl. h>
#i ncl ude <errno. h>

int main()
{
int uiofd,
i nt configfd;
int err;
int i;
unsi gned i count;
unsi gned char commrand_hi gh

ui ofd = open("/dev/ui 00", O RDONLY)
if (uiofd < 0) {
perror("uio open:");
return errno;
}
configfd = open("/sys/class/uio/uio0O/device/config", ORDWR);
if (configfd < 0) {
perror("config open:");
return errno;

}

/* Read and cache conmand val ue */
err = pread(configfd, &onmand_hi gh, 1, 5);
if (err 1'=1) {

perror("conmand config read:");

return errno;

}
command_hi gh &= ~0x4;

for(i = 0;; ++i) {
/* Print out a message, for debugging. */
if (i ==0)

12



Generic PCI UIO driver

fprintf(stderr, "Started uio test driver.\n");
el se
fprintf(stderr, "Interrupts: %\n", icount);

/****************************************/

/* Here we got an interrupt fromthe

device. Do something to it. */
/****************************************/

/* Re-enable interrupts. */
err = pwite(configfd, &omrand_high, 1, 5);
if (err 1=1) {

perror("config wite:");

br eak;

}

/* Wait for next interrupt. */
err = read(uiofd, & count, 4);
if (err 1'=4) {

perror("uio read:");

br eak;

}
}

return errno;

}

13



Appendix A. Further information

» OSADL homepage. [http://www.osadl.org]

 Linutronix homepage. [http://www.linutronix.de]

14


http://www.osadl.org
http://www.osadl.org
http://www.linutronix.de
http://www.linutronix.de

	The Userspace I/O HOWTO
	Table of Contents
	Chapter 1. About this document
	Translations
	Preface
	Acknowledgments
	Feedback

	Chapter 2. About UIO
	How UIO works

	Chapter 3. Writing your own kernel module
	struct uio_info
	Adding an interrupt handler
	Using uio_pdrv for platform devices
	Using uio_pdrv_genirq for platform devices
	Using uio_dmem_genirq for platform devices

	Chapter 4. Writing a driver in userspace
	Getting information about your UIO device
	mmap() device memory
	Waiting for interrupts

	Chapter 5. Generic PCI UIO driver
	Making the driver recognize the device
	Things to know about uio_pci_generic
	Writing userspace driver using uio_pci_generic
	Example code using uio_pci_generic

	Appendix A. Further information

