X Window System Protocol
X Consortium Standard

X Version 11, Release 6.7 DRAFT

Robert W. Scheifler

X Consortium, Inc.

X Window System is a trademark of The Open Group.
Copyright © 1986, 1987, 1988, 1994, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ““Software™), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the Open Group shall not be used in advertising or otherwise to promote

the sale, use or other dealings in this Software without prior written authorization from the Open Group.

Acknowledgments

The primary contributers to the X11 protocol are:

Dave Carver (Digital HPW)

Branko Gerovac (Digital HPW)

Jim Gettys (MIT/Project Athena, Digital)
Phil Karlton (Digital WSL)

Scott McGregor (Digital SSG)

Ram Rao (Digital UEG)

David Rosenthal (Sun)

Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)

The invited reviewers who provided useful input are:

Andrew Cherenson (Berkeley)
Burns Fisher (Digital)

Dan Garfinkel (HP)

Leo Hourvitz (Next)

Brock Krizan (HP)

David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)

John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)

Craig Taylor (Sun)

Jeffery Vroom (Stellar)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting this document.

This document does not attempt to provide the rationale or pragmatics required to fully under-
stand the protocol or to place it in perspective within a complete system.

The protocol contains many management mechanisms that are not intended for normal applica-
tions. Not all mechanisms are needed to build a particular user interface. It is important to keep
in mind that the protocol is intended to provide mechanism, not policy.

Robert W. Scheifler
X Consortium, Inc.

1. Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of four
bytes. Every request consists of four bytes of a header (containing the major opcode, the length
field, and a data byte) followed by zero or more additional bytes of data. The length field defines
the total length of the request, including the header. The length field in a request must equal the
minimum length required to contain the request. If the specified length is smaller or larger than
the required length, an error is generated. Unused bytes in a request are not required to be zero.
Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to contain
multiple requests, so extension requests typically have an additional minor opcode encoded in the
second data byte in the request header. However, the placement and interpretation of this minor
opcode and of all other fields in extension requests are not defined by the core protocol. Every
request on a given connection is implicitly assigned a sequence number, starting with one, that is
used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply consists of
32 bytes followed by zero or more additional bytes of data, as specified in the length field.
Unused bytes within a reply are not guaranteed to be zero. Every reply also contains the least sig-
nificant 16 bits of the sequence number of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes 128
through 255 are reserved for extensions. Every error also includes the major and minor opcodes
of the failed request and the least significant 16 bits of the sequence number of the request. For
the following errors (see section 4), the failing resource ID is also returned: Colormap, Cursor,
Drawable, Font, GContext, IDChoice, Pixmap, and Window. For Atom errors, the failing
atom is returned. For Value errors, the failing value is returned. Other core errors return no addi-
tional data. Unused bytes within an error are not guaranteed to be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero. Every
event contains an 8-bit type code. The most significant bit in this code is set if the event was gen-
erated from a SendEvent request. Event codes 64 through 127 are reserved for extensions,
although the core protocol does not define a mechanism for selecting interest in such events.
Every core event (with the exception of KeymapNotify) also contains the least significant 16 bits
of the sequence number of the last request issued by the client that was (or is currently being) pro-
cessed by the server.

2. Syntactic Conventions

The rest of this document uses the following syntactic conventions.

. The syntax {...} encloses a set of alternatives.

J The syntax [...] encloses a set of structure components.

. In general, TYPEs are in uppercase and AlternativeValues are capitalized.
. Requests in section 9 are described in the following format:

X Protocol X11, Release 6.7 DRAFT
RequestName
argl: typel
argN: typeN
%

resultl: typel

resultM: typeM

Errors: kindl, ..., kindK

Description.

If no — is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If —+ is used, then one or more replies can be gener-
ated for a single request.

. Events in section 11 are described in the following format:

EventName

valuel : typel

valueN: typeN

Description.

3. Common Types

Name Value

LISTofFOO A type name of the form LISTofFOO means a counted list of elements of
type FOO. The size of the length field may vary (it is not necessarily the
same size as a FOO), and in some cases, it may be implicit. It is fully
specified in Appendix B. Except where explicitly noted, zero-length lists
are legal.

BITMASK The types BITMASK and LISTof VALUE are somewhat special. Various

LISTof VALUE requests contain arguments of the form:

value-mask: BITMASK

value-list: LISTof VALUE

These are used to allow the client to specify a subset of a heterogeneous
collection of optional arguments. The value-mask specifies which argu-
ments are to be provided; each such argument is assigned a unique bit
position. The representation of the BITMASK will typically contain
more bits than there are defined arguments. The unused bits in the value-
mask must be zero (or the server generates a Value error). The value-list
contains one value for each bit set to 1 in the mask, from least significant
to most significant bit in the mask. Each value is represented with four
bytes, but the actual value occupies only the least significant bytes as
required. The values of the unused bytes do not matter.

X Protocol

X11, Release 6.7 DRAFT

Name Value
OR A type of the form “T1 or ... or Tn” means the union of the indicated
types. A single-element type is given as the element without enclosing
braces.

WINDOW 32-bit value (top three bits guaranteed to be zero)

PIXMAP 32-bit value (top three bits guaranteed to be zero)

CURSOR 32-bit value (top three bits guaranteed to be zero)

FONT 32-bit value (top three bits guaranteed to be zero)

GCONTEXT 32-bit value (top three bits guaranteed to be zero)

COLORMAP 32-bit value (top three bits guaranteed to be zero)

DRAWABLE WINDOW or PIXMAP

FONTABLE FONT or GCONTEXT

ATOM 32-bit value (top three bits guaranteed to be zero)

VISUALID 32-bit value (top three bits guaranteed to be zero)

VALUE 32-bit quantity (used only in LISTof VALUE)

BYTE 8-bit value

INT8 8-bit signed integer

INT16 16-bit signed integer

INT32 32-bit signed integer

CARDS 8-bit unsigned integer

CARDI16 16-bit unsigned integer

CARD32 32-bit unsigned integer

TIMESTAMP CARD32

BITGRAVITY { Forget, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast }

WINGRAVITY { Unmap, Static, NorthWest, North, NorthEast, West, Center,
East, SouthWest, South, SouthEast }

BOOL { True, False }

EVENT { KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,
ButtonRelease, EnterWindow, LeaveWindow, PointerMotion,
PointerMotionHint, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, ButtonSMotion, ButtonMotion,
Exposure, VisibilityChange, StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState }

POINTEREVENT { ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion, ButtonSMotion,
ButtonMotion, KeymapState }

DEVICEEVENT { KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, Button1Motion, Button2Motion, Button3Motion,
ButtondMotion, ButtonSMotion, ButtonMotion }

KEYSYM 32-bit value (top three bits guaranteed to be zero)

KEYCODE CARDS8

BUTTON CARDS8

KEYMASK { Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, Mod5 }

BUTMASK { Buttonl, Button2, Button3, Buttond4, Button5}

KEYBUTMASK KEYMASK or BUTMASK

X Protocol X11, Release 6.7 DRAFT

Name Value
STRINGS8 LISTofCARDS
STRING16 LISTofCHAR2B
CHAR2B [bytel, byte2: CARDS]
POINT [x,y: INT16]
RECTANGLE [x, y: INT16,

width, height: CARD16]
ARC [x, y: INT16,

width, height: CARD16,
anglel, angle2: INT16]

HOST [family: { Internet, InternetV6, DECnet, Chaos }
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRINGI16 is that they are composed of two
bytes used to index a two-dimensional matrix, hence, the use of CHAR2B rather than CARD16.
This corresponds to the JIS/ISO method of indexing 2-byte characters. It is expected that most
large fonts will be defined with 2-byte matrix indexing. For large fonts constructed with linear
indexing, a CHAR2B can be interpreted as a 16-bit number by treating bytel as the most signifi-
cant byte. This means that clients should always transmit such 16-bit character values most sig-
nificant byte first, as the server will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see Change-
Hosts request).

4. Errors

In general, when a request terminates with an error, the request has no side effects (that is, there is
no partial execution). The only requests for which this is not true are ChangeWindowAt-
tributes, ChangeGC, PolyText8, PolyText16, FreeColors, StoreColors, and ChangeKey-
boardControl.

The following error codes result from various requests as follows:

Error Description

Access An attempt is made to grab a key/button combination already
grabbed by another client.

An attempt is made to free a colormap entry not allocated by the
client or to free an entry in a colormap that was created with all
entries writable.

An attempt is made to store into a read-only or an unallocated col-
ormap entry.

An attempt is made to modify the access control list from other than
the local host (or otherwise authorized client).

An attempt is made to select an event type that only one client can
select at a time when another client has already selected it.

X Protocol

X11, Release 6.7 DRAFT

Error

Description

Alloc

Atom

Colormap

Cursor

Drawable

Font

GContext

IDChoice

Implementation

Length

Match

Name
Pixmap

Request

The server failed to allocate the requested resource. Note that the
explicit listing of Alloc errors in request only covers allocation
errors at a very coarse level and is not intended to cover all cases of a
server running out of allocation space in the middle of service. The
semantics when a server runs out of allocation space are left unspeci-
fied, but a server may generate an Alloc error on any request for this
reason, and clients should be prepared to receive such errors and han-
dle or discard them.

A value for an ATOM argument does not name a defined ATOM.

A value for a COLORMAP argument does not name a defined COL-
ORMAP.

A value for a CURSOR argument does not name a defined CUR-
SOR.

A value for a DRAWABLE argument does not name a defined WIN-
DOW or PIXMAP.

A value for a FONT argument does not name a defined FONT.

A value for a FONTABLE argument does not name a defined FONT
or a defined GCONTEXT.

A value for a GCONTEXT argument does not name a defined
GCONTEXT.

The value chosen for a resource identifier either is not included in the
range assigned to the client or is already in use.

The server does not implement some aspect of the request. A server
that generates this error for a core request is deficient. As such, this
error is not listed for any of the requests, but clients should be pre-
pared to receive such errors and handle or discard them.

The length of a request is shorter or longer than that required to mini-
mally contain the arguments.

The length of a request exceeds the maximum length accepted by the
server.

An InputOnly window is used as a DRAWABLE.

In a graphics request, the GCONTEXT argument does not have the
same root and depth as the destination DRAWABLE argument.

Some argument (or pair of arguments) has the correct type and range,
but it fails to match in some other way required by the request.

A font or color of the specified name does not exist.
A value for a PIXMAP argument does not name a defined PIXMAP.

The major or minor opcode does not specify a valid request.

X Protocol X11, Release 6.7 DRAFT

Error Description

Value Some numeric value falls outside the range of values accepted by the
request. Unless a specific range is specified for an argument, the full
range defined by the argument’s type is accepted. Any argument
defined as a set of alternatives typically can generate this error (due
to the encoding).

Window A value for a WINDOW argument does not name a defined WIN-
DOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap, and Win-
dow errors are also used when the argument type is extended by union with a set of
fixed alternatives, for example, <WINDOW or PointerRoot or None>.

5. Keyboards

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive range [8,255].
A keycode value carries no intrinsic information, although server implementors may attempt to
encode geometry information (for example, matrix) to be interpreted in a server-dependent fash-
ion. The mapping between keys and keycodes cannot be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined KEYSYMs
include the character sets Latin-1, Latin-2, Latin-3, Latin-4, Kana, Arabic, Cyrillic, Greek, Tech,
Special, Publish, APL, Hebrew, Thai, and Korean as well as a set of symbols common on
keyboards (Return, Help, Tab, and so on). KEYSYMs with the most significant bit (of the 29
bits) set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey the set of
symbols on the corresponding key. If the list (ignoring trailing NoSymbol entries) is a single
KEYSYM “K”, then the list is treated as if it were the list “K NoSymbol K NoSymbol™. If the
list (ignoring trailing NoSymbol entries) is a pair of KEYSYMs “K/ K2, then the list is treated
as if it were the list “K71 K2 K1 K2”. If the list (ignoring trailing NoSymbol entries) is a triple of
KEYSYMs “KI K2 K37, then the list is treated as if it were the list “K7 K2 K3 NoSymbol™.
When an explicit “void” element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KEYSYMs. Group 1 contains the
first and second KEYSYMs, Group 2 contains the third and fourth KEYSYMs. Within each
group, if the second element of the group is NoSymbol, then the group should be treated as if the
second element were the same as the first element, except when the first element is an alphabetic
KEYSYM “K” for which both lowercase and uppercase forms are defined. In that case, the
group should be treated as if the first element were the lowercase form of “K’’ and the second ele-
ment were the uppercase form of “K”’.

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only the Group
1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in the list is defined. The modi-
fier state determines which group to use. Switching between groups is controlled by the
KEYSYM named MODE SWITCH, by attaching that KEYSYM to some KEYCODE and attach-
ing that KEYCODE to any one of the modifiers Mod1 through ModS. This modifier is called
the “group modifier”. For any KEYCODE, Group 1 is used when the group modifier is off, and
Group 2 is used when the group modifier is on.

X Protocol X11, Release 6.7 DRAFT

The Lock modifier is interpreted as CapsLock when the KEYSYM named CAPS LOCK is
attached to some KEYCODE and that KEYCODE is attached to the Lock modifier. The Lock
modifier is interpreted as ShiftL.ock when the KEYSYM named SHIFT LOCK is attached to
some KEYCODE and that KEYCODE is attached to the Lock modifier. If the Lock modifier
could be interpreted as both CapsLock and ShiftLock, the CapsLock interpretation is used.

The operation of “keypad’ keys is controlled by the KEYSYM named NUM LOCK, by attach-
ing that KEYSYM to some KEYCODE and attaching that KEYCODE to any one of the modi-
fiers Mod1 through ModS. This modifier is called the ‘““numlock modifier”’. The standard
KEYSYMs with the prefix KEYPAD in their name are called ‘“‘keypad” KEYSYMs; these are
KEYSYMS with numeric value in the hexadecimal range #xFF80 to #xFFBD inclusive. In addi-
tion, vendor-specific KEYSYMS in the hexadecimal range #x11000000 to #x1100FFFF are also
keypad KEYSYMs.

Within a group, the choice of KEYSYM is determined by applying the first rule that is satisfied
from the following list:

. The numlock modifier is on and the second KEYSYM is a keypad KEYSYM. In this case,
if the Shift modifier is on, or if the Lock modifier is on and is interpreted as ShiftLock,
then the first KEYSYM is used; otherwise, the second KEYSYM is used.

J The Shift and Lock modifiers are both off. In this case, the first KEYSYM is used.

. The Shift modifier is off, and the Lock modifier is on and is interpreted as CapsLock. In
this case, the first KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then the
corresponding uppercase KEYSYM is used instead.

. The Shift modifier is on, and the Lock modifier is on and is interpreted as CapsLock. In
this case, the second KEYSYM is used, but if that KEYSYM is lowercase alphabetic, then
the corresponding uppercase KEYSYM is used instead.

J The Shift modifier is on, or the Lock modifier is on and is interpreted as ShiftL.ock, or
both. In this case, the second KEYSYM is used.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it is merely
stored for reading and writing by clients.

6. Pointers

Buttons are always numbered starting with one.

7. Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environments, but they
will eliminate many InternAtom requests in most applications. Note that they are predefined
only in the sense of having numeric values, not in the sense of having required semantics. The
core protocol imposes no semantics on these names, but semantics are specified in other X.Org
standards, such as the Inter-Client Communication Conventions Manual and the X Logical Font
Description Conventions.

The following names have predefined atom values. Note that uppercase and lowercase matter.

ARC ITALIC_ANGLE STRING

ATOM MAX_SPACE SUBSCRIPT_X

BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION

X Protocol

COPYRIGHT
CURSOR
CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFERS
CUT_BUFFER6
CUT_BUFFER7

POINT

POINT_SIZE

PRIMARY
QUAD_WIDTH
RECTANGLE
RESOLUTION
RESOURCE_MANAGER
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_COLOR_MAP

X11, Release 6.7 DRAFT

UNDERLINE_THICKNESS
VISUALID

WEIGHT

WINDOW

WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE

DRAWABLE RGB_DEFAULT_MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMAL_HINTS
FAMILY_NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT X_HEIGHT

INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be imposed (either at the
protocol level or in terms of higher level user interface models), names beginning with an under-
score should be used for atoms that are private to a particular vendor or organization. To guaran-
tee no conflicts between vendors and organizations, additional prefixes need to be used. However,
the protocol does not define the mechanism for choosing such prefixes. For names private to a
single application or end user but stored in globally accessible locations, it is suggested that two
leading underscores be used to avoid conflicts with other names.

8. Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed. The value
of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B) means values are trans-
mitted most significant byte first, and value 154 (ASCII lowercase 1) means values are transmitted
least significant byte first. Except where explicitly noted in the protocol, all 16-bit and 32-bit
quantities sent by the client must be transmitted with this byte order, and all 16-bit and 32-bit
quantities returned by the server will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRINGS8

The version numbers indicate what version of the protocol the client expects the server to imple-
ment.

The authorization name indicates what authorization (and authentication) protocol the client
expects the server to use, and the data is specific to that protocol. Specification of valid authoriza-
tion mechanisms is not part of the core X protocol. A server that does not implement the protocol
the client expects or that only implements the host-based mechanism may simply ignore this
information. If both name and data strings are empty, this is to be interpreted as ‘“‘no explicit
authorization.”

X Protocol X11, Release 6.7 DRAFT

Server Response
The client receives the following information at connection setup:
success: { Failed, Success, Authenticate }

The client receives the following additional data if the returned success value is Failed, and the
connection is not successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16
reason: STRING8

The client receives the following additional data if the returned success value is Authenticate,
and further authentication negotiation is required:

reason: STRINGS8

The contents of the reason string are specific to the authorization protocol in use. The semantics
of this authentication negotiation are not constrained, except that the negotiation must eventually
terminate with a reply from the server containing a success value of Failed or Success.

The client receives the following additional data if the returned success value is Success, and the
connection is successfully established:

protocol-major-version: CARD16
protocol-minor-version: CARD16

vendor: STRING8

release-number: CARD32

resource-id-base, resource-id-mask: CARD32
image-byte-order: { LSBFirst, MSBFirst }
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: { LeastSignificant, MostSignificant }
pixmap-formats: LISTofFORMAT

roots: LISTofSCREEN

motion-buffer-size: CARD32
maximum-request-length: CARD16
min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARDS,
bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

X Protocol X11, Release 6.7 DRAFT

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARDS
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: { Never, WhenMapped, Always }
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARDS
visuals: LISTof VISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: { StaticGray, StaticColor, TrueColor, GrayScale,
PseudoColor, DirectColor }
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

Server Information
The information that is global to the server is:

The protocol version numbers are an escape hatch in case future revisions of the protocol are nec-
essary. In general, the major version would increment for incompatible changes, and the minor
version would increment for small upward compatible changes. Barring changes, the major ver-
sion will be 11, and the minor version will be 0. The protocol version numbers returned indicate
the protocol the server actually supports. This might not equal the version sent by the client. The
server can (but need not) refuse connections from clients that offer a different version than the
server supports. A server can (but need not) support more than one version simultaneously.

The vendor string gives some identification of the owner of the server implementation. The ven-
dor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client allocates
resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT, and COLORMAP
by choosing a value with only some subset of these bits set and ORing it with resource-id-base.
Only values constructed in this way can be used to name newly created resources over this con-
nection. Resource IDs never have the top three bits set. The client is not restricted to linear or
contiguous allocation of resource IDs. Once an ID has been freed, it can be reused. An ID must
be unique with respect to the IDs of all other resources, not just other resources of the same type.
However, note that the value spaces of resource identifiers, atoms, visualids, and keysyms are dis-
tinguished by context, and as such, are not required to be disjoint; for example, a given numeric
value might be both a valid window ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the client, images
are always transmitted and received in formats (including byte order) specified by the server. The
byte order for images is given by image-byte-order and applies to each scanline unit in XY format
(bitmap format) and to each pixel value in Z format.

10

X Protocol X11, Release 6.7 DRAFT

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits as given
by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is quantized in multi-
ples of bits as given by bitmap-scanline-unit. The bitmap-scanline-unit is always less than or
equal to the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is either the
least significant or most significant bit in the unit, as given by bitmap-bit-order. If a pixmap is
represented in XY format, each plane is represented as a bitmap, and the planes appear from most
significant to least significant in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z format used
to represent images of that depth. An entry for a depth is included if any screen supports that
depth, and all screens supporting that depth must support only that Z format for that depth. In Z
format, the pixels are in scanline order, left to right within a scanline. The number of bits used to
hold each pixel is given by bits-per-pixel. Bits-per-pixel may be larger than strictly required by
the depth, in which case the least significant bits are used to hold the pixmap data, and the values
of the unused high-order bits are undefined. When the bits-per-pixel is 4, the order of nibbles in
the byte is the same as the image byte-order. When the bits-per-pixel is 1, the format is identical
for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-pad. When
bits-per-pixel is 1, this will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is transparent to
the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granularity than is
reported by MotionNotify events. The GetMotionEvents request makes such history available.
The motion-buffer-size gives the approximate maximum number of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the server, in
4-byte units. That is, length is the maximum value that can appear in the length field of a request.
Requests larger than this maximum generate a Length error, and the server will read and simply
discard the entire request. Maximum-request-length will always be at least 4096 (that is, requests
of length up to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values transmitted by the
server. Min-keycode is never less than 8, and max-keycode is never greater than 255. Not all
keycodes in this range are required to have corresponding keys.

Screen Information
The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps are sup-
ported for each depth listed, and windows of that depth are supported if at least one visual type is
listed for the depth. A pixmap depth of one is always supported and listed, but windows of depth
one might not be supported. A depth of zero is never listed, but zero-depth InputOnly windows
are always supported.

Root-depth and root-visual specify the depth and visual type of the root window. Width-in-pixels
and height-in-pixels specify the size of the root window (which cannot be changed). The class of
the root window is always InputQutput. Width-in-millimeters and height-in-millimeters can be
used to determine the physical size and the aspect ratio.

The default-colormap is the one initially associated with the root window. Clients with minimal
color requirements creating windows of the same depth as the root may want to allocate from this
map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application. These pixel
values are for permanently allocated entries in the default-colormap. The actual RGB values may

11

X Protocol X11, Release 6.7 DRAFT

be settable on some screens and, in any case, may not actually be black and white. The names are
intended to convey the expected relative intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The initial back-
ground of the root window is a pixmap filled with some unspecified two-color pattern using
black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed simulta-
neously (with InstallColormap), regardless of the number of entries allocated in each map.
Max-installed-maps specifies the maximum number of maps that might possibly be installed
simultaneously, depending on their allocations. Multiple static-visual colormaps with identical
contents but differing in resource ID should be considered as a single map for the purposes of this
number. For the typical case of a single hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen, although it may
be storage limited in the number of windows it can support at once. If save-unders is True, the
server can support the save-under mode in CreateWindow and ChangeWindowA ttributes,
although again it may be storage limited.

The current-input-events is what GetWindowAfttributes would return for the all-event-masks for
the root window.

Visual Information
The information that applies per visual-type is:
A given visual type might be listed for more than one depth or for more than one screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB values; the
RGB values can be changed dynamically. GrayScale is treated in the same way as Pseudo-
Color except which primary drives the screen is undefined; thus, the client should always store
the same value for red, green, and blue in colormaps. For DirectColor, a pixel value is decom-
posed into separate RGB subfields, and each subfield separately indexes the colormap for the cor-
responding value. The RGB values can be changed dynamically. TrueColor is treated in the
same way as DirectColor except the colormap has predefined read-only RGB values. These val-
ues are server-dependent but provide linear or near-linear increasing ramps in each primary.
StaticColor is treated in the same way as PseudoColor except the colormap has predefined
read-only RGB values, which are server-dependent. StaticGray is treated in the same way as
StaticColor except the red, green, and blue values are equal for any single pixel value, resulting
in shades of gray. StaticGray with a two-entry colormap can be thought of as monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and TrueColor.
Each has one contiguous set of bits set to 1 with no intersections. Usually each mask has the
same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity values
(individually) of red, green, and blue. This number need not bear any relation to the number of
colormap entries. Actual RGB values are always passed in the protocol within a 16-bit spectrum,
with 0 being minimum intensity and 65535 being the maximum intensity. On hardware that pro-
vides a linear zero-based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of available col-
ormap entries in a newly created colormap. For DirectColor and TrueColor, this will usually
be 2 to the power of the maximum number of bits set to 1 in red-mask, green-mask, and blue-
mask.

12

X Protocol X11, Release 6.7 DRAFT

9. Requests

CreateWindow

wid, parent: WINDOW

class: { InputOutput, InputOnly, CopyFromParent }
depth: CARDS

visual: VISUALID or CopyFromParent

x,y: INT16

width, height, border-width: CARD16

value-mask: BITMASK

value-list: LISTof VALUE

Errors: Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero for class
InputOutput or CopyFromParent means the depth is taken from the parent. A visual of
CopyFromParent means the visual type is taken from the parent. For class InputOutput, the
visual type and depth must be a combination supported for the screen (or a Match error results).
The depth need not be the same as the parent, but the parent must not be of class InputOnly (or a
Match error results). For class InputOnly, the depth must be zero (or a Match error results),
and the visual must be one supported for the screen (or a Match error results). However, the par-
ent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window cannot be
used as a drawable (as a source or destination for graphics requests). InputOnly and InputOut-
put windows act identically in other respects—properties, grabs, input control, and so on.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside the
border at the inside, upper-left corner.

The x and y coordinates for the window are relative to the parent’s origin and specify the position
of the upper-left outer corner of the window (not the origin). The width and height specify the
inside size (not including the border) and must be nonzero (or a Value error results). The border-
width for an InputOnly window must be zero (or a Match error results).

The window is placed on top in the stacking order with respect to siblings.

The value-mask and value-list specify attributes of the window that are to be explicitly initialized.
The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32

border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32

bit-gravity BITGRAVITY

13

X Pro

tocol X11, Release 6.7 DRAFT

Attribute Type

win-gravity WINGRAVITY

backing-store { NotUseful, WhenMapped, Always }
backing-planes CARD32

backing-pixel CARD32

save-under BOOL

event-mask SETofEVENT
do-not-propagate-mask ~ SETofDEVICEEVENT
override-redirect BOOL

colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel Zero

save-under False

event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False

colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:

Itisa

win-gravity
event-mask
do-not-propagate-mask
override-redirect
cursor

Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The background
pixmap and the window must have the same root and the same depth (or a Match error results).
Any size pixmap can be used, although some sizes may be faster than others. If background

None

is specified, the window has no defined background. If background ParentRelative is

specified, the parent’s background is used, but the window must have the same depth as the parent
(or a Match error results). If the parent has background None, then the window will also have
background None. A copy of the parent’s background is not made. The parent’s background is
reexamined each time the window background is required. If background-pixel is given, it over-
rides the default background-pixmap and any background-pixmap given explicitly, and a pixmap

14

X Protocol X11, Release 6.7 DRAFT

of undefined size filled with background-pixel is used for the background. Range checking is not
performed on the background-pixel value; it is simply truncated to the appropriate number of bits.
For a ParentRelative background, the background tile origin always aligns with the parent’s
background tile origin. Otherwise, the background tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow’s background unless the window has a background of None. If the background is None, the
previous screen contents from other windows of the same depth as the window are simply left in
place if the contents come from the parent of the window or an inferior of the parent; otherwise,
the initial contents of the exposed regions are undefined. Exposure events are then generated for
the regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If border-pixmap is given,
it overrides the default border-pixmap. The border pixmap and the window must have the same
root and the same depth (or a Match error results). Any size pixmap can be used, although some
sizes may be faster than others. If CopyFromParent is given, the parent’s border pixmap is
copied (subsequent changes to the parent’s border attribute do not affect the child), but the win-
dow must have the same depth as the parent (or a Match error results). The pixmap might be
copied by sharing the same pixmap object between the child and parent or by making a complete
copy of the pixmap contents. If border-pixel is given, it overrides the default border-pixmap and
any border-pixmap given explicitly, and a pixmap of undefined size filled with border-pixel is
used for the border. Range checking is not performed on the border-pixel value; it is simply trun-
cated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is never
affected.

The bit-gravity defines which region of the window should be retained if the window is resized,
and win-gravity defines how the window should be repositioned if the parent is resized (see Con-
figureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of obscured
regions when the window is mapped would be beneficial. A backing-store of Always advises the
server that maintaining contents even when the window is unmapped would be beneficial. In this
case, the server may generate an exposure event when the window is created. A value of NotUse-
ful advises the server that maintaining contents is unnecessary, although a server may still choose
to maintain contents while the window is mapped. Note that if the server maintains contents, then
the server should maintain complete contents not just the region within the parent boundaries,
even if the window is larger than its parent. While the server maintains contents, exposure events
will not normally be generated, but the server may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is mapped, saving the contents
of windows it obscures would be beneficial.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination (and source, when the window is the source)
of graphics requests, but regions obscured by inferior windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing-stores and during save-unders. The backing-pixel speci-
fies what value to use in planes not covered by backing-planes. The server is free to save only the
specified bit planes in the backing-store or save-under and regenerate the remaining planes with
the specified pixel value. Any bits beyond the specified depth of the window in these values are
simply ignored.

15

X Protocol X11, Release 6.7 DRAFT

The event-mask defines which events the client is interested in for this window (or for some event
types, inferiors of the window). The do-not-propagate-mask defines which events should not be
propagated to ancestor windows when no client has the event type selected in this window.

The override-redirect specifies whether map and configure requests on this window should over-
ride a SubstructureRedirect on the parent, typically to inform a window manager not to tamper
with the window.

The colormap specifies the colormap that best reflects the true colors of the window. Servers
capable of supporting multiple hardware colormaps may use this information, and window man-
agers may use it for InstallColormap requests. The colormap must have the same visual type
and root as the window (or a Match error results). If CopyFromParent is specified, the parent’s
colormap is copied (subsequent changes to the parent’s colormap attribute do not affect the child).
However, the window must have the same visual type as the parent (or a Match error results),
and the parent must not have a colormap of None (or a Match error results). For an explanation
of None, see FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None is speci-
fied, the parent’s cursor will be used when the pointer is in the window, and any change in the
parent’s cursor will cause an immediate change in the displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no further
explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect on the window
state. The server might or might not make a copy of the pixmap.

ChangeWindowA ttributes

window: WINDOW
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values and restric-
tions are the same as for CreateWindow .

Setting a new background, whether by background-pixmap or background-pixel, overrides any
previous background. Setting a new border, whether by border-pixel or border-pixmap, overrides
any previous border.

Changing the background does not cause the window contents to be changed. Setting the border
or changing the background such that the border tile origin changes causes the border to be
repainted. Changing the background of a root window to None or ParentRelative restores the
default background pixmap. Changing the border of a root window to CopyFromParent
restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or changing
the backing-planes, backing-pixel, or save-under of a mapped window may have no immediate
effect.

16

X Protocol X11, Release 6.7 DRAFT

Multiple clients can select input on the same window; their event-masks are disjoint. When an
event is generated, it will be reported to all interested clients. However, only one client at a time
can select for SubstructureRedirect, only one client at a time can select for ResizeRedirect,
and only one client at a time can select for ButtonPress. An attempt to violate these restrictions
results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the contents of the
existing map) generates a ColormapNotify event. Changing the colormap of a visible window
might have no immediate effect on the screen (see InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is generated,
a subset of the attributes may have been altered.

GetWindowAttributes
window: WINDOW
%

visual: VISUALID

class: { InputOutput, InputOnly }

bit-gravity: BITGRAVITY

win-gravity: WINGRAVITY

backing-store: { NotUseful, WhenMapped, Always }
backing-planes: CARD32

backing-pixel: CARD32

save-under: BOOL

colormap: COLORMAP or None
map-is-installed: BOOL

map-state: { Unmapped, Unviewable, Viewable }
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable if it is
mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR of all event masks
selected on the window by clients. Your-event-mask is the event mask selected by the querying
client.

DestroyWindow
window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automatically. The
window and all inferiors are then destroyed, and a DestroyNotify event is generated for each
window. The ordering of the DestroyNotify events is such that for any given window,

17

X Protocol X11, Release 6.7 DRAFT

DestroyNotify is generated on all inferiors of the window before being generated on the window
itself. The ordering among siblings and across subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

DestroySubwindows
window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the window, in bottom-to-top
stacking order.

ChangeSaveSet

window: WINDOW
mode: { Insert, Delete }

Errors:
Match, Value, Window

This request adds or removes the specified window from the client’s save-set. The window must
have been created by some other client (or a Match error results). For further information about
the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow

window , parent: WINDOW
x,y: INT16

Errors: Match, Window

If the window is mapped, an UnmapWindow request is performed automatically first. The win-
dow is then removed from its current position in the hierarchy and is inserted as a child of the
specified parent. The x and y coordinates are relative to the parent’s origin and specify the new
position of the upper-left outer corner of the window. The window is placed on top in the stack-
ing order with respect to siblings. A ReparentNotify event is then generated. The override-redi-
rect attribute of the window is passed on in this event; a value of True indicates that a window
manager should not tamper with this window. Finally, if the window was originally mapped, a
MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The server might not
generate exposure events for regions from the initial unmap that are immediately obscured by the
final map.

A Match error is generated if:

. The new parent is not on the same screen as the old parent.

18

X Protocol X11, Release 6.7 DRAFT

. The new parent is the window itself or an inferior of the window.
. The new parent is InputOnly, and the window is not.
. The window has a ParentRelative background, and the new parent is not the same depth

as the window.

MapWindow
window: WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, then a MapRequest event is generated, but the window
remains unmapped. Otherwise, the window is mapped, and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled with its
background (if no background is defined, the existing screen contents are not altered), and zero or
more exposure events are generated. If a backing-store has been maintained while the window
was unmapped, no exposure events are generated. If a backing-store will now be maintained, a
full-window exposure is always generated. Otherwise, only visible regions may be reported.
Similar tiling and exposure take place for any newly viewable inferiors.

MapSubwindows
window: WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children of the window, in top-to-
bottom stacking order.

UnmapWindow
window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window is
unmapped, and an UnmapNotify event is generated. Normal exposure processing on formerly
obscured windows is performed.

UnmapSubwindows
window: WINDOW

Errors: Window

19

X Protocol X11, Release 6.7 DRAFT

This request performs an UnmapWindow request on all mapped children of the window, in bot-
tom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK
value-list: LISTof VALUE

Errors: Match, Value, Window

This request changes the configuration of the window. The value-mask and value-list specify
which values are to be given. The possible values are:

Attribute Type

X INT16

y INT16
width CARDI16
height CARDI16
border-width CARDI16
sibling WINDOW

stack-mode { Above, Below, Toplf, BottomlIf, Opposite }

The x and y coordinates are relative to the parent’s origin and specify the position of the upper-
left outer corner of the window. The width and height specify the inside size, not including the
border, and must be nonzero (or a Value error results). Those values not specified are taken from
the existing geometry of the window. Note that changing just the border-width leaves the outer-
left corner of the window in a fixed position but moves the absolute position of the window’s ori-
gin. Itis a Match error to attempt to make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirect on the parent, a ConfigureRequest event is generated, and no further pro-
cessing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or height of
the window is being changed, a ResizeRequest event is generated, and the current inside width
and height are used instead. Note that the override-redirect attribute of the window has no effect
on ResizeRedirect and that SubstructureRedirect on the parent has precedence over Resiz-
eRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among siblings,
and a ConfigureNotify event is generated if the state of the window actually changes. If the
inside width or height of the window has actually changed, then children of the window are
affected, according to their win-gravity. Exposure processing is performed on formerly obscured
windows (including the window itself and its inferiors if regions of them were obscured but now
are not). Exposure processing is also performed on any new regions of the window (as a result of
increasing the width or height) and on any regions where window contents are lost.

If the inside width or height of a window is not changed but the window is moved or its border is
changed, then the contents of the window are not lost but move with the window. Changing the
inside width or height of the window causes its contents to be moved or lost, depending on the

20

X Protocol X11, Release 6.7 DRAFT

bit-gravity of the window. It also causes children to be reconfigured, depending on their win-
gravity. For a change of width and height of W and H, we define the [Xx, y] pairs as:

Direction Deltas
NorthWest [0, 0]
North [W/2,0]
NorthEast [W, 0]
West [0,H/2]
Center [W/2,H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2,H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-gravities
has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. This repositioning generates a GravityNotify event. GravityNotify
events are generated after the ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to the origin of
the root window. If the change in size of the window is coupled with a change in position of [X,
Y], then for bit-gravity the change in position of each pixel is [-X, —Y] and for win-gravity the
change in position of a child when its parent is so resized is [-X, —Y]. Note that Static gravity
still only takes effect when the width or height of the window is changed, not when the window is
simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a size
change, even if backing-store or save-under has been requested. The window is tiled with its
background (except, if no background is defined, the existing screen contents are not altered) and
Zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped when the parent is
resized, and an UnmapNotify event is generated. UnmapNotify events are generated after the
ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above

The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, then the window is placed at the top of
the stack.

BottomlIf If the window occludes the sibling, then the window is placed at the bottom
of the stack.

Opposite If the sibling occludes the window, then the window is placed at the top of

the stack. Otherwise, if the window occludes the sibling, then the window is
placed at the bottom of the stack.

21

X Protocol