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Abstract

This document provides the user with a description of the algebraic programming system RE-
DUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.
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Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter how com-
plicated the expressions become. It can manipulate polynomials in a variety of forms, both
expanding and factoring them, and extract various parts of them as required. REDUCE can
also do differentiation and integration, but we shall only show trivial examples of this in this
introduction. Other topics not considered include the use of arrays, the definition of proce-
dures and operators, the specific routines for high energy physics calculations, the use of files
to eliminate repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that are available
for varying computational procedures, output forms, number systems used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an algebraic
expression and see its value before moving on to the next calculation. For those systems that do
not support interactive use, or for those calculations, especially long ones, for which a standard
script can be defined, REDUCE can also be used in batch mode. In this case, a sequence of
commands can be given to REDUCE and results obtained without any user interaction during
the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE, since this
illustrates most completely the capabilities of the system. When REDUCE is called, it begins
by printing a banner message like:

REDUCE 3.7, 15-Jan-99 ...

where the version number and the system release date will change from time to time. It then
prompts the user for input by:

1:

You can now type a REDUCE statement, terminated by a semicolon to indicate the end of the
expression, for example:

(x+y+z)^2;

This expression would normally be followed by another character (a Return on an ASCII
keyboard) to “wake up” the system, which would then input the expression, evaluate it, and
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return the result:

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

Let us review this simple example to learn a little more about the way that REDUCE works.
First, we note that REDUCE deals with variables, and constants like other computer languages,
but that in evaluating the former, a variable can stand for itself. Expression evaluation normally
follows the rules of high school algebra, so the only surprise in the above example might be that
the expression was expanded. REDUCE normally expands expressions where possible, collecting
like terms and ordering the variables in a specific manner. However, expansion, ordering of
variables, format of output and so on is under control of the user, and various declarations are
available to manipulate these.

Another characteristic of the above example is the use of lower case on input and upper case
on output. In fact, input may be in either mode, but output is usually in lower case. To make
the difference between input and output more distinct in this manual, all expressions intended
for input will be shown in lower case and output in upper case. However, for stylistic reasons,
we represent all single identifiers in the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later computation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer arithmetic be
performed to arbitrary precision, as in the above example. Furthermore, the FOR statement in
the above is illustrative of a whole range of combining forms that REDUCE supports for the
convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as multiple
precision floating point with any specified number of digits — of use if roundoff in, say, the
100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding calculations.
One way to do this is via an assignment for a variable, such as

u := (x+y+z)^2;

If we now use U in later calculations, the value of the right-hand side of the above will be used.

The results of a given calculation are also saved in the variable WS (for WorkSpace), so this can
be used in the next calculation for further processing.
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For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of (x+y+z)^2 with respect to X.
Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

m := mat((a,b),(c,d));

gives its elements values. Expressions that include M and make algebraic sense may now be
evaluated, such as 1/m to give the inverse, 2*m - u*m^2 to give us another matrix and det(m)
to give us the determinant of M.

REDUCE has a wide range of substitution capabilities. The system knows about elementary
functions, but does not automatically invoke many of their well-known properties. For exam-
ple, products of trigonometrical functions are not converted automatically into multiple angle
expressions, but if the user wants this, he can say, for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
where cos(~x)*cos(~y) = (cos(x+y)+cos(x-y))/2,

cos(~x)*sin(~y) = (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variables X and Y indicates that the rules apply for all values of
those variables. The result of this calculation is

-(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapter 23), CAMAL (chapter 28) and
TRIGSIMP (chapter 85).

Another very commonly used capability of the system, and an illustration of one of the many
output modes of REDUCE, is the ability to output results in a FORTRAN compatible form.
Such results can then be used in a FORTRAN based numerical calculation. This is particularly
useful as a way of generating algebraic formulas to be used as the basis of extensive numerical
calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);
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will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. REDUCE is based
on Standard Lisp. A symbolic mode is also available for executing Lisp statements. These
statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the full
REDUCE manual in order to learn just how extensive the range of facilities really is. If further
tutorial material is desired, the seven REDUCE Interactive Lessons by David R. Stoutemyer
are recommended. These are normally distributed with the system.



Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated sequentially
by the computer. These commands are built up from declarations, statements and expressions.
Such entities are composed of sequences of numbers, variables, operators, strings, reserved
words and delimiters (such as commas and parentheses), which in turn are sequences of basic
characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 letters a through z

2. The 10 decimal digits 0 through 9

3. The special characters ! ” $ % ’ ( ) * + , - . / : ; < > = { } <blank>

With the exception of strings and characters preceded by an exclamation mark, the case of
characters is ignored: depending of the underlying LISP they will all be converted internally
into lower case or upper case: ALPHA, Alpha and alpha represent the same symbol. Most imple-
mentations allow you to switch this conversion off. The operating instructions for a particular
implementation should be consulted on this point. For portability, we shall limit ourselves to
the standard character set in this exposition.

2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist of a signed
or unsigned sequence of decimal digits written without a decimal point, for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as exact arithmetic
is used in most implementations. (You should however check the specific instructions for your
particular system implementation to make sure that this is true.) For example, if you ask for
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the value of 22000 you get it displayed as a number of 603 decimal digits, taking up nine lines of
output on an interactive display. It should be borne in mind of course that computations with
such long numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers, in lowest
terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!) to ask
REDUCE to work with floating point approximations to numbers again, to any precision. Such
numbers are called real. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an embedded or
trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letter E followed by a
signed or unsigned integer.

e.g. 32. +32.0 0.32E2 and 320.E-1 are all representations of 32.

The declaration SCIENTIFIC NOTATION controls the output format of floating point numbers.
At the default settings, any number with five or less digits before the decimal point is printed
in a fixed-point notation, e.g., 12345.6. Numbers with more than five digits are printed
in scientific notation, e.g., 1.234567E+5. Similarly, by default, any number with eleven or
more zeros after the decimal point is printed in scientific notation. To change these defaults,
SCIENTIFIC NOTATION can be used in one of two ways. SCIENTIFIC NOTATION m;, where m is
a positive integer, sets the printing format so that a number with more than m digits before
the decimal point, or m or more zeros after the decimal point, is printed in scientific notation.
SCIENTIFIC NOTATION {m,n}, with m and n both positive integers, sets the format so that a
number with more than m digits before the decimal point, or n or more zeros after the decimal
point is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a decimal point, as this
causes confusion with the CONS (.) operator, i.e., NOT ALLOWED: .5 -.23 +.12; use 0.5
-0.23 +0.12 instead.

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alphabetic letters
or decimal digits) the first of which must be alphabetic. The maximum number of characters
allowed is implementation dependent, although twenty-four is permitted in most implementa-
tions. In addition, the underscore character ( ) is considered a letter if it is within an identifier.
For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.
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A sequence of alphanumeric characters in which the first is a digit is interpreted as a product.
For example, 2ab3c is interpreted as 2*ab3c. There is one exception to this: If the first letter
after a digit is E, the system will try to interpret that part of the sequence as a real number,
which may fail in some cases. For example, 2E12 is the real number 2.0∗1012, 2e3c is 2000.0*C,
and 2ebc gives an error.

Special characters, such as −, *, and blank, may be used in identifiers too, even as the first
character, but each must be preceded by an exclamation mark in input. For example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their names (especially *
and =). If the user accidentally picks the name of one of them for his own purposes it may
have catastrophic consequences for his REDUCE run. Users are therefore advised to avoid such
names.

Identifiers are used as variables, labels and to name arrays, operators and procedures.

Restrictions

The reserved words listed in another section may not be used as identifiers. No spaces may
appear within an identifier, and an identifier may not extend over a line of text. (Hyphenation
of an identifier, by using a reserved character as a hyphen before an end-of-line character is
possible in some versions of REDUCE).

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is of no concern
to the ordinary user. Most variables are allowed to have the default type, called scalar. These
can receive, as values, the representation of any ordinary algebraic expression. In the absence
of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be changed by the
user. These variables include:

E Intended to represent the base of the natural logarithms. log(e), if it occurs in
an expression, is automatically replaced by 1. If ROUNDED is on, E is replaced by the
value of E to the current degree of floating point precision.

I Intended to represent the square root of −1. i^2 is replaced by −1, and appro-
priately for higher powers of I. This applies only to the symbol I used on the top
level, not as a formal parameter in a procedure, a local variable, nor in the context
for i:= ...
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INFINITY Intended to represent ∞ in limit and power series calculations for example. Note
however that the current system does not do proper arithmetic on∞. For example,
infinity + infinity is 2*infinity.

NIL In REDUCE (algebraic mode only) taken as a synonym for zero. Therefore NIL
cannot be used as a variable.

PI Intended to represent the circular constant. With ROUNDED on, it is replaced by the
value of π to the current degree of floating point precision.

T Should not be used as a formal parameter or local variable in procedures, since
conflict arises with the symbolic mode meaning of T as true.

Other reserved variables, such as LOW POW, described in other sections, are listed in Appendix
A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions. These usually
have an asterisk in their names, so it is unlikely a casual user would use one. An example of
such a variable is K!* used in the asymptotic command package.

Certain words are reserved in REDUCE. They may only be used in the manner intended. A
list of these is given in the section “Reserved Identifiers”. There are, of course, an impossibly
large number of such names to keep in mind. The reader may therefore want to make himself
a copy of the list, deleting the names he doesn’t think he is likely to use by mistake.

2.5 Strings

Strings are used in WRITE statements, in other output statements (such as error messages), and
to name files. A string consists of any number of characters enclosed in double quotes. For
example:

"A String".

Lower case characters within a string are not converted to upper case.

The string "" represents the empty string. A double quote may be included in a string by
preceding it by another double quote. Thus "a""b" is the string a"b, and """" is the string ".

2.6 Comments

Text can be included in program listings for the convenience of human readers, in such a way
that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the word COMMENT to the next statement terminator, normally ; or $, is
ignored. Such comments can be placed anywhere a blank could properly appear. (Note
that END and >> are not treated as COMMENT delimiters!)
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2. Everything from the symbol % to the end of the line on which it appears is ignored. Such
comments can be placed as the last part of any line. Statement terminators have no
special meaning in such comments. Remember to put a semicolon before the % if the
earlier part of the line is intended to be so terminated. Remember also to begin each line
of a multi-line % comment with a % sign.

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, infix and prefix.
Operators can be purely abstract, just symbols with no properties; they can have values assigned
(using := or simple LET declarations) for specific arguments; they can have properties declared
for some collection of arguments (using more general LET declarations); or they can be fully
defined (usually by a procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally occur
between their arguments. For example:

a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and operators. They
are required only where operator names are spelled out with letters (such as the AND in the
example) and must be unambiguously separated from another such or from a variable (like Y).
Wherever one space can be used, so can any larger number.

Prefix operators occur to the left of their arguments, which are written as a list enclosed in
parentheses and separated by commas, as with normal mathematical functions, e.g.,

cos(u)
df(x^2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, naturally lead to
syntax errors. The parentheses can be omitted (replaced by a space following the operator
name) if the operator is unary and the argument is a single symbol or begins with a prefix
operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)
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A unary prefix operator has a precedence higher than any infix operator, including unary infix
operators. In other words, REDUCE will always interpret cos y + 3 as (cos y) + 3 rather
than as cos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., +(a,b,c). On output,
however, such expressions will always be printed in infix form (i.e., a + b + c for this example).

A number of prefix operators are built into the system with predefined properties. Users may
also add new operators and define their rules for simplification. The built in operators are
described in another section.

Built-In Infix Operators

The following infix operators are built into the system. They are all defined internally as
procedures.

<infix operator>::= where|:=|or|and|member|memq|=|neq|eq|
>=|>|<=|<|+|-|*|/|^|**|.

These operators may be further divided into the following subclasses:

<assignment operator> ::= :=
<logical operator> ::= or|and|member|memq
<relational operator> ::= =|neq|eq|>=|>|<=|<
<substitution operator> ::= where
<arithmetic operator> ::= +|-|*|/|^|**
<construction operator> ::= .

MEMQ and EQ are not used in the algebraic mode of REDUCE. They are explained in the section
on symbolic mode. WHERE is described in the section on substitutions.

In previous versions of REDUCE, not was also defined as an infix operator. In the present
version it is a regular prefix operator, and interchangeable with null.

For compatibility with the intermediate language used by REDUCE, each special character
infix operator has an alternative alphanumeric identifier associated with it. These identifiers
may be used interchangeably with the corresponding special character names on input. This
correspondence is as follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq
< lessp
+ plus
- difference (if unary, minus)
* times
/ quotient (if unary, recip)
^ or ** expt (raising to a power)
. cons
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Note: NEQ is used to mean not equal. There is no special symbol provided for it.

The above operators are binary, except NOT which is unary and + and * which are nary (i.e.,
taking an arbitrary number of arguments). In addition, - and / may be used as unary operators,
e.g., /2 means the same as 1/2. Any other operator is parsed as a binary operator using a left
association rule. Thus a/b/c is interpreted as (a/b)/c. There are two exceptions to this rule:
:= and . are right associative. Example: a:=b:=c is interpreted as a:=(b:=c). Unlike ALGOL
and PASCAL, ^ is left associative. In other words, a^b^c is interpreted as (a^b)^c.

The operators <, <=, >, >= can only be used for making comparisons between numbers. No
meaning is currently assigned to this kind of comparison between general expressions.

Parentheses may be used to specify the order of combination. If parentheses are omitted then
this order is by the ordering of the precedence list defined by the right-hand side of the <infix
operator> table at the beginning of this section, from lowest to highest. In other words, WHERE
has the lowest precedence, and . (the dot operator) the highest.
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Expressions

REDUCE expressions may be of several types and consist of sequences of numbers, variables,
operators, left and right parentheses and commas. The most common types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + - * / ^ (power) and parentheses, scalar expressions are
composed from numbers, ordinary “scalar” variables (identifiers), array names with subscripts,
operator or procedure names with arguments and statement expressions.

Examples:

x
x^3 - 2*y/(2*z^2 - df(x,z))
(p^2 + m^2)^(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (^) for forming powers,
particularly in those systems that do not support a caret symbol.

Statement expressions, usually in parentheses, can also form part of a scalar expression, as in
the example

w + (c:=x+y) + z .

When the algebraic value of an expression is needed, REDUCE determines it, starting with the
algebraic values of the parts, roughly as follows:

Variables and operator symbols with an argument list have the algebraic values they were last
assigned, or if never assigned stand for themselves. However, array elements have the algebraic
values they were last assigned, or, if never assigned, are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately, this algebraic
evaluation of an expression is not as unambiguous as is numerical evaluation. This process is
generally referred to as “simplification” in the sense that the evaluation usually but not always
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produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification. If the user
doesn’t specify any method, the default method is used. The default evaluation of an expression
involves expansion of the expression and collection of like terms, ordering of the terms, evalua-
tion of derivatives and other functions and substitution for any expressions which have values
assigned or declared (see assignments and LET statements). In many cases, this is all that the
user needs.

The declarations by which the user can exercise some control over the way in which the evalua-
tion is performed are explained in other sections. For example, if a real (floating point) number
is encountered during evaluation, the system will normally convert it into a ratio of two integers.
If the user wants to use real arithmetic, he can effect this by the command on rounded;. Other
modes for coefficient arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions are called
with the wrong number of arguments, and so on, an appropriate error message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables in them,
evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)^2 - x^2 - 6*x

are obviously integer expressions.

j + k - 2 * j^2

is an integer expression when J and K have values that are integers, or if not integers are such
that “the variables and fractions cancel out”, as in

k - 7/3 - j + 2/3 + 2*j^2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE, boolean
expressions have the syntactical form:

<expression> <relational operator> <expression>

or

<boolean operator> (<arguments>)

or



3.3. BOOLEAN EXPRESSIONS 45

<boolean expression> <logical operator>
<boolean expression>.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators, the following
boolean operators are also defined:

EVENP(U) determines if the number U is even or not;

FIXP(U) determines if the expression U is integer or not;

FREEOF(U,V) determines if the expression U does not contain the
kernel V anywhere in its structure;

NUMBERP(U) determines if U is a number or not;

ORDP(U,V) determines if U is ordered ahead of V by some canon-
ical ordering (based on the expression structure and
an internal ordering of identifiers);

PRIMEP(U) true if U is a prime object.

Examples:

j<1
x>0 or x=-2
numberp x
fixp x and evenp x
numberp x and x neq 0

Boolean expressions can only appear directly within IF, FOR, WHILE, and UNTIL statements,
as described in other sections. Such expressions cannot be used in place of ordinary algebraic
expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these operators is different
in that mode. For example, NUMBERP is true only for integers and reals in symbolic mode.

When two or more boolean expressions are combined with AND, they are evaluated one by one
until a false expression is found. The rest are not evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless X and Y are both verified to be numbers.

Similarly, evaluation of a sequence of boolean expressions connected by OR stops as soon as a
true expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected, the algebraic
value 0 is interpreted as false, while all other algebraic values are converted to true. So in
algebraic mode a procedure can be written for direct usage in boolean expressions, returning
say 1 or 0 as its value as in
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procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example, a block
without a RETURN statement in it) has the boolean value false.

3.4 Equations

Equations are a particular type of expression with the syntax

<expression> = <expression>.

In addition to their role as boolean expressions, they can also be used as arguments to several
operators (e.g., SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but not the left-
hand-side. This also applies to any substitutions made by the SUB operator. If both sides are
to be evaluated, the switch EVALLHSEQP should be turned on.

To facilitate the handling of equations, two selectors, LHS and RHS, which return the left- and
right-hand sides of a equation respectively, are provided. For example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some kind, which
can in turn be used as an expression or part of an expression. For example, an assignment
statement itself has a value, namely the value assigned. So

2 * (x := a+b)

is equal to 2*(a+b), as well as having the “side-effect” of assigning the value a+b to X. In
context,

y := 2 * (x := a+b);

sets X to a+b and Y to 2*(a+b).

The sections on the various proper statement types indicate which of these statements are also
useful as expressions.
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Lists

A list is an object consisting of a sequence of other objects (including lists themselves), separated
by commas and surrounded by braces. Examples of lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create new lists
using braces and commas. Alternatively, one can use the operator LIST to construct a list. An
important class of operations on lists are MAP and SELECT operations. For details, please
refer to the chapters on MAP, SELECT and the FOR command. See also the documentation
on the ASSIST package.

To facilitate the use of lists, a number of operators are also available for manipulating them.
PART(<list>,n) for example will return the nth element of a list. LENGTH will return the length
of a list. Several operators are also defined uniquely for lists. For those familiar with them, these
operators in fact mirror the operations defined for Lisp lists. These operators are as follows:

4.1.1 LIST

The operator LIST is an alternative to the usage of curly brackets. LIST accepts an arbitrary
number of arguments and returns a list of its arguments. This operator is useful in cases where
operators have to be passed as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}
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4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is not a list,
or the list is empty.

4.1.3 SECOND

SECOND returns the second member of a list. An error occurs if the argument is not a list or has
no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is not a list
or has no third element.

4.1.5 REST

REST returns its argument with the first element removed. An error occurs if the argument is
not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list. Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.

4.1.8 REVERSE

The operator REVERSE returns its argument with the elements in the reverse order. It only
applies to the top level list, not any lower level lists that may occur. Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argument that
is a list, then the result of this operation will be a list in which that operator is applied to
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each element of the list. For example, the result of evaluating log{a,b,c} is the expression
{LOG(A),LOG(B),LOG(C)}.

There are two ways to inhibit this operator distribution. Firstly, the switch LISTARGS, if on,
will globally inhibit such distribution. Secondly, one can inhibit this distribution for a spe-
cific operator by the declaration LISTARGP. For example, with the declaration listargp log,
log{a,b,c} would evaluate to LOG({A,B,C}).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available only after loading the
package ASSIST.

Please note that a non-list as second argument to CONS (a ”dotted pair” in LISP terms) is not
allowed and causes an ”invalid as list” error.

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to set list type variables
explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};
luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do
<< hit := part(list_1_n,random(n-k+1) + 1);

list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end; % In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with respect to a list of
variables:

procedure allcoeffs(q,lis); % q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else
allcoeffs1(foreach qq in q join coeff(qq,first lis),rest lis);
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Statements

A statement is any combination of reserved words and expressions, and has the syntax

<statement> ::= <expression>|<proper statement>

A REDUCE program consists of a series of commands which are statements followed by a
terminator:

<terminator> ::= ;|$

The division of the program into lines is arbitrary. Several statements can be on one line,
or one statement can be freely broken onto several lines. If the program is run interactively,
statements ending with ; or $ are not processed until an end-of-line character is encountered.
This character can vary from system to system, but is normally the Return key on an ASCII
terminal. Specific systems may also use additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or may not be
printed out, and the response may or may not depend on the terminator used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the result is
printed. If the terminator is a dollar sign, the result is not printed. Because it is not usually
possible to know in advance how large an expression will be, no explicit format statements are
offered to the user. However, a variety of output declarations are available so that the output
can be produced in different forms. These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.

5.1 Assignment Statements

These statements have the syntax

<assignment statement> ::= <expression> := <expression>

The <expression> on the left side is normally the name of a variable, an operator symbol with
its list of arguments filled in, or an array name with the proper number of integer subscript
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values within the array bounds. For example:

a1 := b + c
h(l,m) := x-2*y (where h is an operator)
k(3,5) := x-2*y (where k is a 2-dim. array)

More general assignments such as a+b := c are also allowed. The effect of these is explained
in Section 10.2.5.

An assignment statement causes the expression on the right-hand-side to be evaluated. If the
left-hand-side is a variable, the value of the right-hand-side is assigned to that unevaluated
variable. If the left-hand-side is an operator or array expression, the arguments of that operator
or array are evaluated, but no other simplification done. The evaluated right-hand-side is then
assigned to the resulting expression. For example, if A is a single-dimensional array, a(1+1) :=
b assigns the value B to the array element a(2).

If a semicolon is used as the terminator when an assignment is issued as a command (i.e. not as
a part of a group statement or procedure or other similar construct), the left-hand side symbol
of the assignment statement is printed out, followed by a “:=”, followed by the value of the
expression on the right.

It is also possible to write a multiple assignment statement:

<expression> := ... := <expression> := <expression>

In this form, each <expression> but the last is set to the value of the last <expression>. If a
semicolon is used as a terminator, each expression except the last is printed followed by a “:=”
ending with the value of the last expression.

5.1.1 Set Statement

In some cases, it is desirable to perform an assignment in which both the left- and right-hand
sides of an assignment are evaluated. In this case, the SET statement can be used with the
syntax:

SET(<expression>,<expression>);

For example, the statements

j := 23;
set(mkid(a,j),x);

assigns the value X to A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single statement, but a
series of actions needs to be performed. It is formed by enclosing one or more statements (of
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any kind) between the symbols << and >>, separated by semicolons or dollar signs – it doesn’t
matter which. The statements are executed one after another.

Examples will be given in the sections on IF and other types of statements in which the <<
. . .>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value of the group
statement. Care must be taken not to have a semicolon or dollar sign after the last grouped
statement, if the value of the group is relevant: such an extra terminator causes the group to
have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

<conditional statement> ::=
IF <boolean expression> THEN <statement> [ELSE <statement>]

The boolean expression is evaluated. If this is true, the first <statement> is executed. If it is
false, the second is.

Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.
Conditional statements associate to the right; i.e.,

IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>

parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a conditional
expression instead. Its value is the value of whichever statement was executed. (If the executed
statement has no value, the conditional expression has no value or the value 0, depending on
how it is used.)
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Examples:

a:=if x<5 then 123 else 456;
b:=u + v^(if numberp z then 10*z else 1) + w;

If the value is of no concern, the ELSE clause may be omitted if no action is required in the false
case.

if x=5 then a:=b+c;

Note: As explained in Section 3.3,a if a scalar or numerical expression is used in place of the
boolean expression – for example, a variable is written there – the true alternative is followed
unless the expression has the value 0.

5.4 FOR Statements

The FOR statement is used to define a variety of program loops. Its general syntax is as follows:

FOR


〈var〉 := 〈number〉

{
STEP 〈number〉 UNTIL

:

}
〈number〉

EACH 〈var〉
{
IN
ON

}
〈list〉

 〈action〉 〈exprn〉

where

〈action〉 ::= do|product|sum|collect|join.

The assignment form of the FOR statement defines an iteration over the indicated numerical
range. If expressions that do not evaluate to numbers are used in the designated places, an
error will result.

The FOR EACH form of the FOR statement is designed to iterate down a list. Again, an error will
occur if a list is not used.

The action DO means that <exprn> is simply evaluated and no value kept; the statement return-
ing 0 in this case (or no value at the top level). COLLECT means that the results of evaluating
<exprn> each time are linked together to make a list, and JOIN means that the values of <exprn>
are themselves lists that are joined to make one list (similar to CONC in Lisp). Finally, PRODUCT
and SUM form the respective combined value out of the values of <exprn>.

In all cases, <exprn> is evaluated algebraically within the scope of the current value of <var>.
If <action> is DO, then nothing else happens. In other cases, <action> is a binary operator
that causes a result to be built up and returned by FOR. In those cases, the loop is initialized
to a default value (0 for SUM, 1 for PRODUCT, and an empty list for the other actions). The test
for the end condition is made before any action is taken. As in Pascal, if the variable is out
of range in the assignment case, or the <list> is empty in the FOR EACH case, <exprn> is not
evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores 52 through 102 in A(5) through
A(10), and at the same time stores the cubes in the B array:
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for i := 5 step 1 until 10 do <<a(i):=i^2; b(i):=i^3>>

2. As a convenience, the common construction

STEP 1 UNTIL

may be abbreviated to a colon. Thus, instead of the above we could write:

for i := 5:10 do <<a(i):=i^2; b(i):=i^3>>

3. The following sets C to the sum of the squares of 1,3,5,7,9; and D to the expression
x*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum j^2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list {a,b,c}:

for each x in {a,b,c} collect x^2;

5. The following forms a list of the listed squares of the elements of the list {a,b,c} (i.e.,
{{A^2},{B^2},{C^2}}):

for each x in {a,b,c} collect {x^2};

6. The following also forms a list of the squares of the elements of the list {a,b,c}, since
the JOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {x^2};

The control variable used in the FOR statement is actually a new variable, not related to the
variable of the same name outside the FOR statement. In other words, executing a statement
for i:= . . . doesn’t change the system’s assumption that i2 = −1. Furthermore, in algebraic
mode, the value of the control variable is substituted in <exprn> only if it occurs explicitly in
that expression. It will not replace a variable of the same name in the value of that expression.
For example:

b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE . . . DO

The FOR ...DO feature allows easy coding of a repeated operation in which the number of
repetitions is known in advance. If the criterion for repetition is more complicated, WHILE
...DO can often be used. Its syntax is:

WHILE <boolean expression> DO <statement>
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The WHILE ...DO controls the single statement following DO. If several statements are to be
repeated, as is almost always the case, they must be grouped using the << . . .>> or BEGIN
...END as in the example below.

The WHILE condition is tested each time before the action following the DO is attempted. If the
condition is false to begin with, the action is not performed at all. Make sure that what is to
be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach a term which
is less than 1/1000 in value. For our simple example, let us suppose the first term equals 1 and
each term is obtained from the one before by taking one third of it and adding one third its
square. We would write:

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term^2)/3>>;
ex;

As long as TERM is greater than or equal to (>=) 1/1000 it will be added to EX and the next
TERM calculated. As soon as TERM becomes less than 1/1000 the WHILE test fails and the TERM
will not be added.

5.6 REPEAT . . . UNTIL

REPEAT ...UNTIL is very similar in purpose to WHILE ...DO. Its syntax is:

REPEAT <statement> UNTIL <boolean expression>

(PASCAL users note: Only a single statement – usually a group statement – is allowed between
the REPEAT and the UNTIL.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of statements) is executed,
so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polarity” is the
opposite of that in WHILE ...DO.

As an example, we rewrite the example from the WHILE ...DO section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + term^2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case is a term added to
EX which is less than 1/1000.



5.7. COMPOUND STATEMENTS 57

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be carried out one
after the other. In many cases, this can be achieved by use of the group statement. However,
each step often provides some intermediate result, until at the end we have the final result
wanted. Alternatively, iterations on the steps are needed that are not possible with constructs
such as WHILE or REPEAT statements. In such cases the steps of the process must be enclosed
between the words BEGIN and END forming what is technically called a block or compound
statement. Such a compound statement can in fact be used wherever a group statement appears.
The converse is not true: BEGIN ...END can be used in ways that << . . .>> cannot.

If intermediate results must be formed, local variables must be provided in which to store them.
Local means that their values are deleted as soon as the block’s operations are complete, and
there is no conflict with variables outside the block that happen to have the same name. Local
variables are created by a SCALAR declaration immediately after the BEGIN:

scalar a,b,c,z;

If more convenient, several SCALAR declarations can be given one after another:

scalar a,b,c;
scalar z;

In place of SCALAR one can also use the declarations INTEGER or REAL. In the present version of
REDUCE variables declared INTEGER are expected to have only integer values, and are initialized
to 0. REAL variables on the other hand are currently treated as algebraic mode SCALARs.

CAUTION: INTEGER, REAL and SCALAR declarations can only be given immediately after a
BEGIN. An error will result if they are used after other statements in a block (including ARRAY
and OPERATOR declarations, which are global in scope), or outside the top-most block (e.g., at
the top level). All variables declared SCALAR are automatically initialized to zero in algebraic
mode (NIL in symbolic mode).

Any symbols not declared as local variables in a block refer to the variables of the same name in
the current calling environment. In particular, if they are not so declared at a higher level (e.g.,
in a surrounding block or as parameters in a calling procedure), their values can be permanently
changed.

Following the SCALAR declaration(s), if any, write the statements to be executed, one after the
other, separated by delimiters (e.g., ; or $) (it doesn’t matter which). However, from a stylistic
point of view, ; is preferred.

The last statement in the body, just before END, need not have a terminator (since the BEGIN
...END are in a sense brackets confining the block statements). The last statement must also
be the command RETURN followed by the variable or expression whose value is to be the value
returned by the procedure. If the RETURN is omitted (or nothing is written after the word
RETURN) the procedure will have no value or the value zero, depending on how it is used (and
NIL in symbolic mode). Remember to put a terminator after the END.

Example:

Given a previously assigned integer value for N, the following block will compute the Legendre
polynomial of degree N in the variable X:
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begin scalar seed,deriv,top,fact;
seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the BEGIN ...END brackets than indi-
cated in the previous example. That the individual lines of the program need not be assignment
statements, but could be almost any other kind of statement or command, needs no explanation.
For example, conditional statements, and WHILE and REPEAT constructions, have an obvious
role in defining more intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and GO TOs within a
compound statement, and also to use RETURN in places within the block other than just be-
fore the END. The following subsections discuss these matters in detail. For many readers the
following example, presenting one possible definition of a process to calculate the factorial of N
for preassigned N will suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;
go to l

end;

5.7.2 Labels and GO TO Statements

Within a BEGIN ...END compound statement it is possible to label statements, and transfer to
them out of sequence using GO TO statements. Only statements on the top level inside compound
statements can be labeled, not ones inside subsidiary constructions like << . . .>>, IF . . . THEN
. . . , WHILE . . . DO . . . , etc.

Labels and GO TO statements have the syntax:

<go to statement> ::= GO TO <label> | GOTO <label>
<label> ::= <identifier>
<labeled statement> ::= <label>:<statement>

Note that statement names cannot be used as labels.

While GO TO is an unconditional transfer, it is frequently used in conditional statements such
as



5.7. COMPOUND STATEMENTS 59

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using GO TOs can only occur within the block in which the GO TO is used. In other
words, you cannot transfer from an inner block to an outer block using a GO TO. However, if a
group statement occurs within a compound statement, it is possible to jump out of that group
statement to a point within the compound statement using a GO TO.

5.7.3 RETURN Statements

The value corresponding to a BEGIN ...END compound statement, such as a procedure body,
is normally 0 (NIL in symbolic mode). By executing a RETURN statement in the compound
statement a different value can be returned. After a RETURN statement is executed, no further
statements within the compound statement are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are permitted. The last
example is equivalent to return 0 or return nil, depending on whether the block is used as
part of an expression or not.

Since RETURN actually moves up only one block level, in a sense the casual user is not expected
to understand, we tabulate some cautions concerning its use.

1. RETURN can be used on the top level inside the compound statement, i.e. as one of the
statements bracketed together by the BEGIN ...END

2. RETURN can be used within a top level << . . .>> construction within the compound
statement. In this case, the RETURN transfers control out of both the group statement and
the compound statement.

3. RETURN can be used within an IF . . . THEN . . . ELSE . . . on the top level within the compound
statement.

NOTE: At present, there is no construct provided to permit early termination of a FOR, WHILE,
or REPEAT statement. In particular, the use of RETURN in such cases results in a syntax error.
For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.
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Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause visible results
(such as calling for input or output); others, usually called declarations, set options, define
properties of variables, or define procedures. Commands are formally defined as a statement
followed by a terminator

<command> ::= <statement> <terminator>
<terminator> ::= ;|$

Some REDUCE commands and declarations are described in the following sub-sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements. For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an array is referred to in
standard FORTRAN notation, e.g. A(2).

We can also use an expression for defining an array bound, provided the value of the expression
is a positive integer. For example, if X has the value 10 and Y the value 7 then array c(5*x+y)
is the same as array c(57).

If an array is referenced by an index outside its range, an error occurs. If the array is to be
one-dimensional, and the bound a number or a variable (not a more general expression) the
parentheses may be omitted:

array a 10, c 57;

The operator LENGTH applied to an array name returns a list of its dimensions.

All array elements are initialized to 0 at declaration time. In other words, an array element has
an instant evaluation property and cannot stand for itself. If this is required, then an operator
should be used instead.
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Array declarations can appear anywhere in a program. Once a symbol is declared to name
an array, it can not also be used as a variable, or to name an operator or a procedure. It can
however be re-declared to be an array, and its size may be changed at that time. An array name
can also continue to be used as a parameter in a procedure, or a local variable in a compound
statement, although this use is not recommended, since it can lead to user confusion over the
type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere in the pro-
gram. In other words, unlike arrays in most other languages, a declaration within a block (or a
procedure) does not limit the scope of the array to that block, nor does the array go away on
exiting the block (use CLEAR instead for this purpose).

6.2 Mode Handling Declarations

The ON and OFF declarations are available to the user for controlling various system options.
Each option is represented by a switch name. ON and OFF take a list of switch names as argument
and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU time since the
last command, or since TIME was last turned off, or the session began. Another useful switch
with interactive use is DEMO, which causes the system to pause after each command in a file
(with the exception of comments) until a Return is typed on the terminal. This enables a user
to set up a demonstration file and step through it command by command.

As with most declarations, arguments to ON and OFF may be strung together separated by
commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while most ON and OFF commands are obeyed almost instantaneously, some
trigger time-consuming actions such as reading in necessary modules from secondary storage.

A diagnostic message is printed if ON or OFF are used with a switch that is not known to the
system. For example, if you misspell DEMO and type

on demq;

you will get the message

***** DEMQ not defined as switch.

6.3 END

The identifier END has two separate uses.

1) Its use in a BEGIN ...END bracket has been discussed in connection with compound state-
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ments.

2) Files to be read using IN should end with an extra END; command. The reason for this is
explained in the section on the IN command. This use of END does not allow an immediately
preceding END (such as the END of a procedure definition), so we advise using ;END; there.

6.4 BYE Command

The command BYE; (or alternatively QUIT;) stops the execution of REDUCE, closes all open
output files, and returns you to the calling program (usually the operating system). Your
REDUCE session is normally destroyed.

6.5 SHOWTIME Command

SHOWTIME; prints the elapsed time since the last call of this command or, on its first call, since
the current REDUCE session began. The time is normally given in milliseconds and gives
the time as measured by a system clock. The operations covered by this measure are system
dependent.

6.6 DEFINE Command

The command DEFINE allows a user to supply a new name for any identifier or replace it by
any well-formed expression. Its argument is a list of expressions of the form

<identifier> = <number>|<identifier>|<operator>|
<reserved word>|<expression>

Example:

define be==,x=y+z;

means that BE will be interpreted as an equal sign, and X as the expression y+z from then on.
This renaming is done at parse time, and therefore takes precedence over any other replacement
declared for the same identifier. It stays in effect until the end of the REDUCE run.

The identifiers ALGEBRAIC and SYMBOLIC have properties which prevent DEFINE from being used
on them. To define ALG to be a synonym for ALGEBRAIC, use the more complicated construction

put(’alg,’newnam,’algebraic);



64 CHAPTER 6. COMMANDS AND DECLARATIONS



Chapter 7

Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators built into RE-
DUCE that are not defined in other sections (such as substitution operators). Some are fully
defined internally as procedures; others are more nearly abstract operators, with only some of
their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows. Each formal
parameter is given a name and followed by its allowed type. The names of classes referred to
in the definition are printed in lower case, and parameter names in upper case. If a parameter
type is not commonly used, it may be a specific set enclosed in brackets { . . . }. Operators that
accept formal parameter lists of arbitrary length have the parameter and type class enclosed
in square brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most numerical
systems. With numerical arguments, such functions return the expected result. However, they
may also be called with non-numerical arguments. In such cases, except where noted, the
system attempts to simplify the expression as far as it can. In such cases, a residual expression
involving the original operator usually remains. These operators are as follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has a numerical value. A
non-numerical argument is returned as an absolute value, with an overall numerical coefficient
taken outside the absolute value operator. For example:

abs(-3/4) -> 3/4
abs(2a) -> 2*ABS(A)
abs(i) -> 1
abs(-x) -> ABS(X)
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7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argument) if its
single argument has a numerical value. A non-numerical argument is returned as an expression
in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operators REPART and IMPART.
For example:

conj(1+i) -> 1-I
conj(a+i*b) -> REPART(A) - REPART(B)*I - IMPART(A)*I

- IMPART(B)

7.1.4 FACTORIAL

If the single argument of FACTORIAL evaluates to a non-negative integer, its factorial is returned.
Otherwise an expression involving FACTORIAL is returned. For example:

factorial(5) -> 120
factorial(a) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if its single
argument has a numerical value. A non-numerical argument is returned as an expression in the
original operator. For example:

fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argument) if its
single argument has a numerical value. A non-numerical argument is returned as an expression
in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> FLOOR(A)
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7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an numerical
value. A non-numerical argument is returned as an expression in the operators REPART and
IMPART. For example:

impart(1+i) -> 1
impart(a+i*b) -> REPART(B) + IMPART(A)

7.1.8 MAX/MIN

MAX and MIN can take an arbitrary number of expressions as their arguments. If all arguments
evaluate to numerical values, the maximum or minimum of the argument list is returned. If
any argument is non-numeric, an appropriately reduced expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> MAX(A,3)
min(x) -> X

MAX or MIN of an empty list returns 0.

7.1.9 NEXTPRIME

NEXTPRIME returns the next prime greater than its integer argument, using a probabilistic
algorithm. A type error occurs if the value of the argument is not an integer. For example:

nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereas nextprime(a) gives a type error.

7.1.10 RANDOM

random(n) returns a random number r in the range 0 ≤ r < n. A type error occurs if the value
of the argument is not a positive integer in algebraic mode, or positive number in symbolic
mode. For example:

random(5) -> 3
random(1000) -> 191

whereas random(a) gives a type error.
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7.1.11 RANDOM NEW SEED

random new seed(n) reseeds the random number generator to a sequence determined by the
integer argument n. It can be used to ensure that a repeatable pseudo-random sequence will
be delivered regardless of any previous use of RANDOM, or can be called early in a run with an
argument derived from something variable (such as the time of day) to arrange that different runs
of a REDUCE program will use different random sequences. When a fresh copy of REDUCE
is first created it is as if random new seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REPART

This returns the real part of an expression, if that argument has an numerical value. A non-
numerical argument is returned as an expression in the operators REPART and IMPART. For
example:

repart(1+i) -> 1
repart(a+i*b) -> REPART(A) - IMPART(B)

7.1.13 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argument if that
argument has a numerical value. A non-numeric argument is returned as an expression in the
original operator. For example:

round(-5/4) -> -1
round(a) -> ROUND(A)

7.1.14 SIGN

SIGN tries to evaluate the sign of its argument. If this is possible SIGN returns one of 1, 0 or -1.
Otherwise, the result is the original form or a simplified variant. For example:

sign(-5) -> -1
sign(-a^2*b) -> -SIGN(B)

Note that even powers of formal expressions are assumed to be positive only as long as the
switch COMPLEX is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take arbitrary
scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG EI EXP
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HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

where LOG is the natural logarithm (and equivalent to LN), and LOGB has two arguments of which
the second is the logarithmic base.

The derivatives of all these functions are also known to the system.

REDUCE knows various elementary identities and properties of these functions. For example:

cos(-x) = cos(x) sin(-x) = - sin (x)
cos(n*pi) = (-1)^n sin(n*pi) = 0
log(e) = 1 e^(i*pi/2) = i
log(1) = 0 e^(i*pi) = -1
log(e^x) = x e^(3*i*pi/2) = -i

Beside these identities, there are a lot of simplifications for elementary functions defined in the
REDUCE system as rulelists. In order to view these, the SHOWRULES operator can be used,
e.g.

SHOWRULES tan;

{tan(~n*arbint(~i)*pi + ~(~ x)) => tan(x) when fixp(n),

tan(~x)

=> trigquot(sin(x),cos(x)) when knowledge_about(sin,x,tan)

,

~x + ~(~ k)*pi
tan(----------------)

~d

x k 1
=> - cot(---) when x freeof pi and abs(---)=---,

d d 2

~(~ w) + ~(~ k)*pi w + remainder(k,d)*pi
tan(--------------------) => tan(-----------------------)

~(~ d) d

k
when w freeof pi and ratnump(---) and fixp(k)

d

k
and abs(---)>=1,

d

tan(atan(~x)) => x,
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2
df(tan(~x),~x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric functions, see the
TRIGSIMP package documentation.

Functions not listed above may be defined in the special functions package SPECFN.

The user can add further rules for the reduction of expressions involving these operators by
using the LET command.

In many cases it is desirable to expand product arguments of logarithms, or collect a sum
of logarithms into a single logarithm. Since these are inverse operations, it is not possible to
provide rules for doing both at the same time and preserve the REDUCE concept of idempotent
evaluation. As an alternative, REDUCE provides two switches EXPANDLOGS and COMBINELOGS
to carry out these operations. Both are off by default. Thus to expand LOG(X*Y) into a sum of
logs, one can say

ON EXPANDLOGS; LOG(X*Y);

and to combine this sum into a single log:

ON COMBINELOGS; LOG(X) + LOG(Y);

At the present time, it is possible to have both switches on at once, which could lead to infinite
recursion. However, an expression is switched from one form to the other in this case. Users
should not rely on this behavior, since it may change in the next release.

The current version of REDUCE does a poor job of simplifying surds. In particular, expressions
involving the product of variables raised to non-integer powers do not usually have their powers
combined internally, even though they are printed as if those powers were combined. For
example, the expression

x^(1/3)*x^(1/6);

will print as

SQRT(X)

but will have an internal form containing the two exponentiated terms. If you now subtract
sqrt(x) from this expression, you will not get zero. Instead, the confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the switch COMBINEEXPT should be turned
on.

The square root function can be input using the name SQRT, or the power operation ^(1/2). On
output, unsimplified square roots are normally represented by the operator SQRT rather than a
fractional power. With the default system switch settings, the argument of a square root is first
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simplified, and any divisors of the expression that are perfect squares taken outside the square
root argument. The remaining expression is left under the square root. Thus the expression

sqrt(-8a^2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble if A is eventually given a value that is a negative
number. If it is important that the positive property of the square root and higher even roots
always be preserved, the switch PRECISE should be set on (the default value). This causes any
non-numerical factors taken out of surds to be represented by their absolute value form. With
PRECISE on then, the above example would become

2*abs(a)*sqrt(-2*b).

The statement that REDUCE knows very little about these functions applies only in the math-
ematically exact off rounded mode. If ROUNDED is on, any of the functions

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP HYPOT
LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

when given a numerical argument has its value calculated to the current degree of floating point
precision. In addition, real (non-integer valued) powers of numbers will also be evaluated.

If the COMPLEX switch is turned on in addition to ROUNDED, these functions will also calculate a
real or complex result, again to the current degree of floating point precision, if given complex
arguments. For example, with on rounded,complex;

2.3^(5.6i) -> -0.0480793490914 - 0.998843519372*I
cos(2+3i) -> -4.18962569097 - 9.10922789376*I

7.3 DF Operator

The operator DF is used to represent partial differentiation with respect to one or more variables.
It is used with the syntax:

DF(EXPRN:algebraic[,VAR:kernel<,NUM:integer>]):algebraic.

The first argument is the expression to be differentiated. The remaining arguments specify the
differentiation variables and the number of times they are applied.

The number NUM may be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x2
1 ∂x2∂x

2
3.
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The evaluation of df(y,x) proceeds as follows: first, the values of Y and X are found. Let us
assume that X has no assigned value, so its value is X. Each term or other part of the value of
Y that contains the variable X is differentiated by the standard rules. If Z is another variable,
not X itself, then its derivative with respect to X is taken to be 0, unless Z has previously been
declared to DEPEND on X, in which case the derivative is reported as the symbol df(z,x).

7.3.1 Adding Differentiation Rules

The LET statement can be used to introduce rules for differentiation of user-defined operators.
Its general form is

FOR ALL <var1>,...,<varn>
LET DF(<operator><varlist>,<vari>)=<expression>

where <varlist> ::= (<var1>,. . . ,<varn>), and <var1>,...,<varn> are the dummy variable ar-
guments of <operator>.

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x)= 1 + tan(x)^2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);

Notice that all dummy arguments of the relevant operator must be declared arbitrary by the FOR
ALL command, and that rules may be supplied for operators with any number of arguments.
If no differentiation rule appears for an argument in an operator, the differentiation routines
will return as result an expression in terms of DF. For example, if the rule for the differentiation
with respect to the second argument of F is not supplied, the evaluation of df(f(x,z),z) would
leave this expression unchanged. (No DEPEND declaration is needed here, since f(x,z) obviously
“depends on” Z.)

Once such a rule has been defined for a given operator, any future differentiation rules for that
operator must be defined with the same number of arguments for that operator, otherwise we
get the error message

Incompatible DF rule argument length for <operator>

7.4 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of the Risch-
Norman algorithm and pattern matching. It is used with the syntax:

INT(EXPRN:algebraic,VAR:kernel):algebraic.
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This will return correctly the indefinite integral for expressions comprising polynomials, log
functions, exponential functions and tan and atan. The arbitrary constant is not represented.
If the integral cannot be done in closed terms, it returns a formal integral for the answer in one
of two ways:

1. It returns the input, INT(...,...) unchanged.

2. It returns an expression involving INTs of some other functions (sometimes more compli-
cated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the program.
In addition it will attempt to integrate expressions involving error functions, dilogarithms and
other trigonometric expressions. In these cases it might not always succeed in finding the
solution, even if one exists.

Examples:

int(log(x),x) -> X*(LOG(X) - 1),
int(e^x,x) -> E**X.

The program checks that the second argument is a variable and gives an error if it is not.

Note: If the int operator is called with 4 arguments, REDUCE will implicitly call the definite
integration package (DEFINT) and this package will interpret the third and fourth arguments
as the lower and upper limit of integration, respectively. For details, consult the documentation
on the DEFINT package.

7.4.1 Options

The switch TRINT when on will trace the operation of the algorithm. It produces a great deal
of output in a somewhat illegible form, and is not of much interest to the general user. It is
normally off.

If the switch FAILHARD is on the algorithm will terminate with an error if the integral cannot
be done in closed terms, rather than return a formal integration form. FAILHARD is normally
off.

The switch NOLNR suppresses the use of the linear properties of integration in cases when the
integral cannot be found in closed terms. It is normally off.

7.4.2 Advanced Use

If a function appears in the integrand that is not one of the functions EXP, ERF, TAN, ATAN,
LOG, DILOG then the algorithm will make an attempt to integrate the argument if it can,
differentiate it and reach a known function. However the answer cannot be guaranteed in
this case. If a function is known to be algebraically independent of this set it can be flagged
transcendental by

flag(’(trilog),’transcendental);
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in which case this function will be added to the permitted field descriptors for a genuine decision
procedure. If this is done the user is responsible for the mathematical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration of expressions
involving square roots and other like things can lead to trouble. A contributed package that
supports integration of functions involving square roots is available, however (ALGINT, chap-
ter 20). In addition there is a definite integration package, DEFINT( chapter 35).

7.4.3 References

A. C. Norman & P. M. A. Moore, “Implementing the New Risch Algorithm”, Proc. 4th In-
ternational Symposium on Advanced Comp. Methods in Theor. Phys., CNRS, Marseilles,
1977.

S. J. Harrington, “A New Symbolic Integration System in Reduce”, Comp. Journ. 22 (1979) 2.

A. C. Norman & J. H. Davenport, “Symbolic Integration — The Dust Settles?”, Proc. EU-
ROSAM 79, Lecture Notes in Computer Science 72, Springer-Verlag, Berlin Heidelberg New
York (1979) 398-407.

7.5 LENGTH Operator

LENGTH is a generic operator for finding the length of various objects in the system. The meaning
depends on the type of the object. In particular, the length of an algebraic expression is the
number of additive top-level terms its expanded representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The explicit
meaning in these cases is included in the description of these objects.

7.6 MAP Operator

The MAP operator applies a uniform evaluation pattern to all members of a composite structure:
a matrix, a list, or the arguments of an operator expression. The evaluation pattern can be a
unary procedure, an operator, or an algebraic expression with one free variable.

It is used with the syntax:

MAP(U:function,V:object)

Here object is a list, a matrix or an operator expression. Function can be one of the following:

1. the name of an operator for a single argument: the operator is evaluated once with each
element of object as its single argument;
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2. an algebraic expression with exactly one free variable, that is a variable preceded by the
tilde symbol. The expression is evaluated for each element of object, where the element
is substituted for the free variable;

3. a replacement rule of the form var => rep where var is a variable (a kernel without a
subscript) and rep is an expression that contains var. Rep is evaluated for each element
of object where the element is substituted for var. Var may be optionally preceded by a
tilde.

The rule form for function is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(~w,x), mat((x^2,x^5),(x^4,x^5))) ->

[ 3 6 ]
[ x x ]
[---- ----]
[ 3 6 ]
[ ]
[ 5 6 ]
[ x x ]
[---- ----]
[ 5 6 ]

map(~w*6, x^2/3 = y^3/2 -1) -> 2*X^2=3*(Y^3-2)

You can use MAP in nested expressions. However, you cannot apply MAP to a non-composed
object, e.g. an identifier or a number.

7.7 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in a consistent
manner. In most cases, it is sufficient to create such names from two components. The operator
MKID is provided for this purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id

for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES

while mkid(a+b,2) gives an error.

The SET operator can be used to give a value to the identifiers created by MKID, for example

set(mkid(a,3),3);
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will give A3 the value 2.

7.8 PF Operator

PF(<exp>,<var>) transforms the expression <exp> into a list of partial fractions with respect
to the main variable, <var>. PF does a complete partial fraction decomposition, and as the
algorithms used are fairly unsophisticated (factorization and the extended Euclidean algorithm),
the code may be unacceptably slow in complicated cases.

Example: Given 2/((x+1)^2*(x+2)) in the workspace, pf(ws,x); gives the result

2 - 2 2
{-------,-------,--------------} .

X + 2 X + 1 2
X + 2*X + 1

If you want the denominators in factored form, use off exp;. Thus, with 2/((x+1)^2*(x+2))
in the workspace, the commands off exp; pf(ws,x); give the result

2 - 2 2
{-------,-------,----------} .

X + 2 X + 1 2
(X + 1)

To recombine the terms, FOR EACH ...SUM can be used. So with the above list in the workspace,
for each j in ws sum j; returns the result

2
------------------

2
(X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.9 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n–ary operator, elements
corresponding to a boolean predicate. It is used with the syntax:

SELECT(U:function,V:list)

Function can be one of the following forms:

1. the name of an operator for a single argument: the operator is evaluated once with each
element of object as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable preceded by the
tilde symbol. The expression is evaluated for each element of 〈object〉, where the element
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is substituted for the free variable;

3. a replacement rule of the form 〈var => rep〉 where var is a variable (a kernel without
subscript) and rep is an expression that contains var. Rep is evaluated for each element
of object where the element is substituted for var. var may be optionally preceded by a
tilde.

The rule form for function is needed when more than one free variable occurs.

The result of evaluating function is interpreted as a boolean value corresponding to the conven-
tions of REDUCE. These values are composed with the leading operator of the input expression.

Examples:

select( ~w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(~w,y),part((x+y)^5,0):=list)

-> {X^5 ,10*X^3*Y^2 ,5*X*Y^4}
select(evenp deg(~w,x),2x^2+3x^3+4x^4) -> 4X^4 + 2X^2

7.10 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations. It is used with
the syntax:

SOLVE(EXPRN:algebraic[,VAR:kernel|,VARLIST:list of kernels])
:list.

EXPRN is of the form <expression> or { <expression1>,<expression2>, . . . }. Each expression
is an algebraic equation, or is the difference of the two sides of the equation. The second
argument is either a kernel or a list of kernels representing the unknowns in the system. This
argument may be omitted if the number of distinct, non-constant, top-level kernels equals the
number of unknowns, in which case these kernels are presumed to be the unknowns.

For one equation, SOLVE recursively uses factorization and decomposition, together with the
known inverses of LOG, SIN, COS, ^, ACOS, ASIN, and linear, quadratic, cubic, quartic, or binomial
factors. Solutions of equations built with exponentials or logarithms are often expressed in
terms of Lambert’s W function. This function is (partially) implemented in the special functions
package.

Linear equations are solved by the multi-step elimination method due to Bareiss, unless the
switch CRAMER is on, in which case Cramer’s method is used. The Bareiss method is usually
more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package. Users should note that this
can be quite a time consuming process.

Examples:

solve(log(sin(x+3))^5 = 8,x);
solve(a*log(sin(x+3))^5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});
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SOLVE returns a list of solutions. If there is one unknown, each solution is an equation for the
unknown. If a complete solution was found, the unknown will appear by itself on the left-hand
side of the equation. On the other hand, if the solve package could not find a solution, the
“solution” will be an equation for the unknown in terms of the operator ROOT OF. If there are
several unknowns, each solution will be a list of equations for the unknowns. For example,

solve(x^2=1,x); -> {X=-1,X=1}

solve(x^7-x^6+x^2=1,x)
6

-> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}

solve({x+3y=7,y-x=1},{x,y}) -> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution multiplicities
are stored in the global variable ROOT MULTIPLICITIES rather than the solution list. The value
of this variable is a list of the multiplicities of the solutions for the last call of SOLVE. For
example,

solve(x^2=2x-1,x); root_multiplicities;

gives the results

{X=1}

{2}

If you want the multiplicities explicitly displayed, the switch MULTIPLICITIES can be turned
on. For example

on multiplicities; solve(x^2=2x-1,x);

yields the result

{X=1,X=1}

7.10.1 Handling of Undetermined Solutions

When SOLVE cannot find a solution to an equation, it normally returns an equation for the
relevant indeterminates in terms of the operator ROOT OF. For example, the expression

solve(cos(x) + log(x),x);

returns the result

{X=ROOT_OF(COS(X_) + LOG(X_),X_,TAG_1)} .

An expression with a top-level ROOT OF operator is implicitly a list with an unknown number of
elements (since we don’t always know how many solutions an equation has). If a substitution
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is made into such an expression, closed form solutions can emerge. If this occurs, the ROOT OF
construct is replaced by an operator ONE OF. At this point it is of course possible to transform
the result of the original SOLVE operator expression into a standard SOLVE solution. To effect
this, the operator EXPAND CASES can be used.

The following example shows the use of these facilities:
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solve(-a*x^3+a*x^2+x^4-x^3-4*x^2+4,x);
2 3

{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4,X_,TAG_2),X=1}

sub(a=-1,ws);

{X=ONE_OF({2,-1,-2},TAG_2),X=1}

expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.10.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch FULLROOTS is available,
that, when off (the default), will prevent the production of a result in closed form. The ROOT OF
construct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used where
appropriate. This option is under the control of a switch TRIGFORM, which is normally on.

The following example illustrates the use of these facilities:

let xx = solve(x^3+x+1,x);

xx;
3

{X=ROOT_OF(X_ + X_ + 1,X_)}

on fullroots;

xx;

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
{X=(I*(SQRT(3)*SIN(-----------------------)

3
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- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
- COS(-----------------------)))/SQRT(3),

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
X=( - I*(SQRT(3)*SIN(-----------------------)

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
+ COS(-----------------------)))/SQRT(

3

3),

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
2*COS(-----------------------)*I

3
X=----------------------------------}

SQRT(3)

off trigform;

xx;
2/3

{X=( - (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3 ),

2/3
X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) + 2 *SQRT(3)*I
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2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3 ),

2/3 2/3
(SQRT(31) - 3*SQRT(3)) - 2

X=-------------------------------------}
1/3 1/3 1/6

(SQRT(31) - 3*SQRT(3)) *6 *3

7.10.3 Other Options

If SOLVESINGULAR is on (the default setting), degenerate systems such as x+y=0, 2x+2y=0 will be
solved by introducing appropriate arbitrary constants. The consistent singular equation 0=0 or
equations involving functions with multiple inverses may introduce unique new indeterminant
kernels ARBCOMPLEX(j), or ARBINT(j), (j=1,2,...), representing arbitrary complex or integer
numbers respectively. To automatically select the principal branches, do off allbranch; .
To avoid the introduction of new indeterminant kernels do OFF ARBVARS – then no equations
are generated for the free variables and their original names are used to express the solution
forms. To suppress solutions of consistent singular equations do OFF SOLVESINGULAR.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be treated as ^, SIN, and COS are
in the SOLVE module source.

Arguments of ASIN and ACOS are not checked to ensure that the absolute value of the real
part does not exceed 1; and arguments of LOG are not checked to ensure that the absolute
value of the imaginary part does not exceed π; but checks (perhaps involving user response for
non-numerical arguments) could be introduced using LET statements for these operators.

7.10.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to SOLVE is important
for the structure of the solution of an equation system. Any unknown in the system not in this
list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z});
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produces an empty list as a result because there is no function z = z(x, y) which fulfills both
equations for arbitrary x and y values. In such a case the share variable requirements displays
a set of restrictions for the parameters of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which disappears only if the
parameters of the initial system are set such that all members of the requirements list take the
value zero. For a linear system the set is complete: a solution of the requirements list makes
the initial system solvable. E.g. in the above case a substitution x = 4y makes the equation
set consistent. For a non-linear system only one inconsistency is detected. If such a system has
more than one inconsistency, you must reduce them one after the other. 1 The set shows you
also the dependency among the parameters: here one of x and y is free and a formal solution
of the system can be computed by adding it to the variable list of solve. The requirement set
is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y a*y + b
{{z=---,x=---------}}

b b

which is not valid for all possible values of the parameters. The variable assumptions contains
then a list of restrictions: the solutions are valid only as long as none of these expressions
vanishes. Any zero of one of them represents a special case that is not covered by the formal
solution. In the above case the value is

1 The difference between linear and non–linear inconsistent systems is based on the algorithms which produce
this information as a side effect when attempting to find a formal solution; example: solve({x = a, x = b, y =
c, y = d}, {x, y} gives a set {a− b, c− d} while solve({x2 = a, x2 = b, y2 = c, y2 = d}, {x, y} leads to {a− b}.
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assumptions;

{b}

which excludes formally the case b = 0; obviously this special parameter value makes the system
singular. The set of assumptions is complete for both, linear and non–linear systems.

SOLVE rearranges the variable sequence to reduce the (expected) computing time. This behavior
is controlled by the switch varopt, which is on by default. If it is turned off, the supplied variable
sequence is used or the system kernel ordering is taken if the variable list is omitted. The effect
is demonstrated by an example:

s:= {y^3+3x=0,x^2+y^2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*( - x + 2*x - 10)

y=-----------------------}}
3

In the first case, solve forms the solution as a set of pairs (yi, x(yi)) because the degree of x is
higher – such a rearrangement makes the internal computation of the Gröbner basis generally
faster. For the second case the explicitly given variable sequence is used such that the solution
has now the form (xi, y(xi)). Controlling the variable sequence is especially important if the
system has one or more free variables. As an alternative to turning off varopt, a partial
dependency among the variables can be declared using the depend statement: solve then
rearranges the variable sequence but keeps any variable ahead of those on which it depends.
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on varopt;
s:={a^3+b,b^2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to interchanging a
and b.

7.11 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declarations EVEN and
ODD respectively. Expressions involving an operator declared in this manner are transformed if
the first argument contains a minus sign. Any other arguments are not affected. In addition, if
say F is declared odd, then f(0) is replaced by zero unless F is also declared non zero by the
declaration NONZERO. For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> F1(A)
f2(-a) -> -F2(A)
f1(-a,-b) -> F1(A,-B)
f2(0) -> 0.

To inhibit the last transformation, say nonzero f2;.

7.12 Linear Operators

An operator can be declared to be linear in its first argument over powers of its second argument.
If an operator F is so declared, F of any sum is broken up into sums of Fs, and any factors that
are not powers of the variable are taken outside. This means that F must have (at least) two
arguments. In addition, the second argument must be an identifier (or more generally a kernel),
not an expression.
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Example:

If F were declared linear, then

5
f(a*x^5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the scope of the F
operator, but so will any variable and its powers that had been declared to DEPEND on the
prescribed variable; and so would any expression that contains that variable or a dependent
variable on any level, e.g. cos(sin(x)).

To declare operators F and G to be linear operators, use:

linear f,g;

The analysis is done of the first argument with respect to the second; any other arguments are
ignored. It uses the following rules of evaluation:

f(0) -> 0
f(-y,x) -> -F(Y,X)
f(y+z,x) -> F(Y,X)+F(Z,X)
f(y*z,x) -> Z*F(Y,X) if Z does not depend on X
f(y/z,x) -> F(Y,X)/Z if Z does not depend on X

To summarize, Y “depends” on the indeterminate X in the above if either of the following hold:

1. Y is an expression that contains X at any level as a variable, e.g.: cos(sin(x))

2. Any variable in the expression Y has been declared dependent on X by use of the declaration
DEPEND.

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn, “Analytic
Computation of Some Integrals in Fourth Order Quantum Electrodynamics” Journ. Comp.
Phys. 14 (1974) 301-317, which contains a complete listing of a program for definite integration
of some expressions that arise in fourth order quantum electrodynamics.

7.13 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the declaration
NONCOM.

Example:

After the declaration
noncom u,v;
the expressions u(x)*u(y)-u(y)*u(x) and u(x)*v(y)-v(y)*u(x) will remain unchanged on
simplification, and in particular will not simplify to zero.

Note that it is the operator (U and V in the above example) and not the variable that has the
non-commutative property.
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The LET statement may be used to introduce rules of evaluation for such operators. In particular,
the boolean operator ORDP is useful for introducing an ordering on such expressions.

Example:

The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator of u(x) and u(y) for all X and Y. Note that since ordp(x,x)
is true, the equality check is necessary in the degenerate case to avoid a circular loop in the
rule.

7.14 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the declaration
SYMMETRIC. For example

symmetric u,v;

means that any expression involving the top level operators U or V will have its arguments
reordered to conform to the internal order used by REDUCE. The user can change this order
for kernels by the command KORDER.

For example, u(x,v(1,2)) would become u(v(2,1),x), since numbers are ordered in decreasing
order, and expressions are ordered in decreasing order of complexity.

Similarly the declaration ANTISYMMETRIC declares an operator antisymmetric. For example,

antisymmetric l,m;

means that any expression involving the top level operators L or M will have its arguments
reordered to conform to the internal order of the system, and the sign of the expression changed
if there are an odd number of argument interchanges necessary to bring about the new order.

For example, l(x,m(1,2)) would become -l(-m(2,1),x) since one interchange occurs with
each operator. An expression like l(x,x) would also be replaced by 0.

7.15 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration OPERATOR. For
example:

operator h,g1,arctan;

adds the prefix operators H, G1 and ARCTAN to the system.

This allows symbols like h(w), h(x,y,z), g1(p+q), arctan(u/v) to be used in expressions,
but no meaning or properties of the operator are implied. The same operator symbol can be
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used equally well as a 0-, 1-, 2-, 3-, etc.-place operator.

To give a meaning to an operator symbol, or express some of its properties, LET statements can
be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the user to do
so in interactive mode, or do it automatically in non-interactive mode. A diagnostic message
will also be printed if an identifier is declared OPERATOR more than once.

Operators once declared are global in scope, and so can then be referenced anywhere in the
program. In other words, a declaration within a block (or a procedure) does not limit the scope
of the operator to that block, nor does the operator go away on exiting the block (use CLEAR
instead for this purpose).

7.16 Declaring New Infix Operators

Users can add new infix operators by using the declarations INFIX and PRECEDENCE. For exam-
ple,

infix mm;
precedence mm,-;

The declaration infix mm; would allow one to use the symbol MM as an infix operator:

a mm b instead of mm(a,b).

The declaration precedence mm,-; says that MM should be inserted into the infix operator
precedence list just after the − operator. This gives it higher precedence than − and lower
precedence than * . Thus

a - b mm c - d means a - (b mm c) - d,

while

a * b mm c * d means (a * b) mm (c * d).

Both infix and prefix operators have no transformation properties unless LET statements or
procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.17 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and the linear oper-
ator facility, that can utilize knowledge of the dependency between various variables, or kernels.
Such dependency may be expressed by the command DEPEND. This takes an arbitrary number
of arguments and sets up a dependency of the first argument on the remaining arguments. For
example,
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depend x,y,z;

says that X is dependent on both Y and Z.

depend z,cos(x),y;

says that Z is dependent on COS(X) and Y.

Dependencies introduced by DEPEND can be removed by NODEPEND. The arguments of this are
the same as for DEPEND. For example, given the above dependencies,

nodepend z,cos(x);

says that Z is no longer dependent on COS(X), although it remains dependent on Y.
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Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the user to obtain
various parts of algebraic expressions and also display their structure in a variety of forms. Also
presented are some additional concepts in the REDUCE design that help the user gain a better
understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or simplification)
function associated with it that transforms the expression into an internal canonical form. This
form, which bears little resemblance to the original expression, is described in detail in Hearn,
A. C., “REDUCE 2: A System and Language for Algebraic Manipulation,” Proc. of the Second
Symposium on Symbolic and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative ways. First,
it may convert the expression into other operators in the system, leaving no functions of the
original operator for further manipulation. This is in a sense true of the evaluation functions
associated with the operators +, * and / , for example, because the canonical form does not
include these operators explicitly. It is also true of an operator such as the determinant operator
DET because the relevant evaluation function calculates the appropriate determinant, and the
operator DET no longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operator COS, a residual
expression like COS(X) may remain after evaluation unless a rule for the reduction of cosines
into exponentials, for example, were introduced. These residual functions of an operator are
termed kernels and are stored uniquely like variables. Subsequently, the kernel is carried through
the calculation as a variable unless transformations are introduced for the operator at a later
stage.

In those cases where the evaluation process leaves an operator expression with non-trivial argu-
ments, the form of the argument can vary depending on the state of the system at the point of
evaluation. Such arguments are normally produced in expanded form with no terms factored
or grouped in any way. For example, the expression cos(2*x+2*y) will normally be returned
in the same form. If the argument 2*x+2*y were evaluated at the top level, however, it would

91
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be printed as 2*(X+Y). If it is desirable to have the arguments themselves in a similar form, the
switch INTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the system puts them
in a canonical order, based on an internal intrinsic ordering of the variables. However, some
commands allow arguments in the form of kernels, and the user has no way of telling what
internal order the system will assign to these arguments. To resolve this difficulty, we introduce
the notion of a kernel form as an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)^4

are not.

We see that kernel forms can usually be used as generalized variables, and most algebraic
properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated expressions.
The simplest of these refers to the last algebraic expression simplified. When an assignment of
an algebraic expression is made, or an expression is evaluated at the top level, (i.e., not inside
a compound statement or procedure) the results of the evaluation are automatically saved in a
variable WS that we shall refer to as the workspace. (More precisely, the expression is assigned
to the variable WS that is then available for further manipulation.)

Example:

If we evaluate the expression (x+y)^2 at the top level and next wish to differentiate it with
respect to Y, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use, the SAVEAS
statement can be used. It has the syntax

SAVEAS <expression>

For example, after the differentiation in the last example, the workspace holds the expression
2*x+2*y. If we wish to assign this to the variable Z we can now say

saveas z;
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If the user wishes to save the expression in a form that allows him to use some of its variables
as arbitrary parameters, the FOR ALL command can be used.

Example:

for all x saveas h(x);

with the above expression would mean that h(z) evaluates to 2*Y+2*Z.

A further method for referencing more than the last expression is described in the section on
interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of expressions gen-
erated during calculations. No explicit format statements are supplied, as these are in most
cases of little use in algebraic calculations, where the size of output or its composition is not
generally known in advance. Instead, REDUCE provides a series of mode options to the user
that should enable him to produce his output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top level evaluation.
This is accomplished by turning off the switch OUTPUT which is normally on. It is useful
for limiting output when loading large files or producing “clean” output from the prettyprint
programs.

In most circumstances, however, we wish to view the output, so we need to know how to format
it appropriately. As we mentioned earlier, an algebraic expression is normally printed in an
expanded form, filling the whole output line with terms. Certain output declarations, however,
can be used to affect this format. To begin with, we look at an operator for changing the length
of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

LINELENGTH(NUM:integer):integer

and sets the output line length to the integer NUM. It returns the previous output line length (so
that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for controlling output
formats. It should be noted, however, that the transformation of large expressions to produce
these varied output formats can take a lot of computing time and space. If a user wishes to
speed up the printing of the output in such cases, he can turn off the switch PRI. If this is done,
then output is produced in one fixed format, which basically reflects the internal form of the
expression, and none of the options below apply. PRI is normally on.

With PRI on, the output declarations and switches available are as follows:
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ORDER Declaration

The declaration ORDER may be used to order variables on output. The syntax is:

order v1,...vn;

where the vi are kernels. Thus,

order x,y,z;

orders X ahead of Y, Y ahead of Z and all three ahead of other variables not given an order. order
nil; resets the output order to the system default. The order of variables may be changed by
further calls of ORDER, but then the reordered variables would have an order lower than those
in earlier ORDER calls. Thus,

order x,y,z;
order y,x;

would order Z ahead of Y and X. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. FACTOR is not a factoring
command (use FACTORIZE or the FACTOR switch for this purpose); rather it is a separation
command. All terms involving fixed powers of the declared expressions are printed as a product
of the fixed powers and a sum of the rest of the terms.

All expressions involving a given prefix operator may also be factored by putting the operator
name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of X and SIN(X) and all functions of COS to be factored.

Note that FACTOR does not affect the order of its arguments. You should also use ORDER if this
is important.

The declaration remfac v1,...,vn; removes the factoring flag from the expressions v1 through
vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switching various
output control switches using the declarations ON and OFF. We shall illustrate the use of these
switches by an example, namely the printing of the expression

x^2*(y^2+2*y)+x*(y^2+z)/(2*a) .

The relevant switches are as follows:
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ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-expression enclosed
in parentheses, for simple multiplicative factors and print them outside the parentheses. Thus
our expression with ALLFAC off will print as

2 2 2 2
(2*X *Y *A + 4*X *Y*A + X*Y + X*Z)/(2*A)

and with ALLFAC on as

2 2
X*(2*X*Y *A + 4*X*Y*A + Y + Z)/(2*A) .

ALLFAC is normally on, and is on in the following examples, except where otherwise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple factors that it
divides into the numerator, so that rational fractions and negative powers appear in the output.
With DIV on, our expression would print as

2 2 (-1) (-1)
X*(X*Y + 2*X*Y + 1/2*Y *A + 1/2*A *Z) .

DIV is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line. With LIST on,
our expression prints as

2
X*(2*X*Y *A

+ 4*X*Y*A

2
+ Y

+ Z)/(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across lines at a
natural point. This is a fairly expensive process. If you are not overly concerned about where
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the end-of-line breaks come, you can speed up the printing of expressions by turning off the
switch NOSPLIT. This switch is normally on.

RAT Switch

This switch is only useful with expressions in which variables are factored with FACTOR. With this
mode, the overall denominator of the expression is printed with each factored sub-expression.
We assume a prior declaration factor x; in the following output. We first print the expression
with RAT off:

2 2
(2*X *Y*A*(Y + 2) + X*(Y + Z))/(2*A) .

With RAT on the output becomes:
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2 2
X *Y*(Y + 2) + X*(Y + Z)/(2*A) .

RAT is normally off.

Next, if we leave X factored, and turn on both DIV and RAT, the result becomes

2 (-1) 2
X *Y*(Y + 2) + 1/2*X*A *(Y + Z) .

Finally, with X factored, RAT on and ALLFAC off we retrieve the original structure

2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line, the output
routines will print them in a two dimensional notation, with numerator and denominator on
separate lines and a line of dashes in between. For example, (a+b)/2 will print as

A + B
-----

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some situations (e.g.,
when a power series is output), the opposite ordering is more convenient. The switch REVPRI
if on causes such a reverse ordering of terms. For example, the expression y*(x+1)^2+(y+3)^2
will normally print as

2 2
X *Y + 2*X*Y + Y + 7*Y + 9

whereas with REVPRI on, it will print as

2 2
9 + 7*Y + Y + 2*X*Y + X *Y.

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the value of any
expression is automatically printed if a semicolon is used as a delimiter. There are, however,
several situations in which such a command is useful.
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In a FOR, WHILE, or REPEAT statement it may be desired to output something each time the
statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information while it
is running. It may be desired to have results labeled in special ways, especially if the output is
directed to a file or device other than the terminal.

The WRITE command consists of the word WRITE followed by one or more items separated by
commas, and followed by a terminator. There are three kinds of items that can be used:

1. Expressions (including variables and constants). The expression is evaluated, and the
result is printed out.

2. Assignments. The expression on the right side of the := operator is evaluated, and is
assigned to the variable on the left; then the symbol on the left is printed, followed by
a “:=”, followed by the value of the expression on the right – almost exactly the way an
assignment followed by a semicolon prints out normally. (The difference is that if the
WRITE is in a FOR statement and the left-hand side of the assignment is an array position
or something similar containing the variable of the FOR iteration, then the value of that
variable is inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote marks (e.g.,
"string").

The items specified by a single WRITE statement print side by side on one line. (The line is
broken automatically if it is too long.) Strings print exactly as quoted. The WRITE command
itself however does not return a value.

The print line is closed at the end of a WRITE command evaluation. Therefore the command
WRITE ""; (specifying nothing to be printed except the empty string) causes a line to be skipped.

Examples:

1. If A is X+5, B is itself, C is 123, M is an array, and Q=3, then

write m(q):=a," ",b/c," THANK YOU";

will set M(3) to x+5 and print

M(Q) := X + 5 B/123 THANK YOU

The blanks between the 5 and B, and the 3 and T, come from the blanks in the quoted
strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",i^2;

3. To print a table of the squares of the integers from 1 to 20, and at the same time store
them in positions 1 to 20 of an array A:

for i:=1:20 do <<a(i):=i^2; write i," ",a(i)>>;
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This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=i^2;

we would also get A(i) := repeated on each line.

4. The following more complete example calculates the famous f and g series, first reported
in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic Computation of f and g Series
by Computer”, Astronomical Journal 70 (May 1965).

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sig^2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);
write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$

end;

A portion of the output, to illustrate the printout from the WRITE command, is as follows:

... <prior output> ...

2
F(4) := MU*(3*EPS - 15*SIG + MU)

G(4) := 6*SIG*MU

2
F(5) := 15*SIG*MU*( - 3*EPS + 7*SIG - MU)

2
G(5) := MU*(9*EPS - 45*SIG + MU)

... <more output> ...

8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form <expression>
:= 0) printed, especially in printing large arrays with many zero elements. The output from
such assignments can be suppressed by turning on the switch NERO.
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8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving all variables
and sub-expressions numerical values. However, as we pointed out elsewhere the user must
declare real arithmetical operation by turning on the switch ROUNDED. However, it should be
remembered that arithmetic in REDUCE is not particularly fast, since results are interpreted
rather than evaluated in a compiled form. The user with a large amount of numerical compu-
tation after all necessary algebraic manipulations have been performed is therefore well advised
to perform these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical processing.

First, when the switch FORT is on, the system will print expressions in a FORTRAN notation.
Expressions begin in column seven. If an expression extends over one line, a continuation mark
(.) followed by a blank appears on subsequent cards. After a certain number of lines have been
produced (according to the value of the variable CARD NO), a new expression is started. If the
expression printed arises from an assignment to a variable, the variable is printed as the name
of the expression. Otherwise the expression is given the default name ANS. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use the WRITE command to produce other programs.

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)^11;
write "C it was foolish to expand this expression";
write " print 1,x";
write " end";
shut "forfil";
off fort;

will generate a file forfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u

. **2*v**8*w+1980.*u**2*v**7*w**2+4620.*u**2*v**6*w**3+

. 6930.*u**2*v**5*w**4+6930.*u**2*v**4*w**5+4620.*u**2*v**3*

. w**6+1980.*u**2*v**2*w**7+495.*u**2*v*w**8+55.*u**2*w**9+

. 11.*u*v**10+110.*u*v**9*w+495.*u*v**8*w**2+1320.*u*v**7*w

. **3+2310.*u*v**6*w**4+2772.*u*v**5*w**5+2310.*u*v**4*w**6

. +1320.*u*v**3*w**7+495.*u*v**2*w**8+110.*u*v*w**9+11.*u*w
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. **10+v**11+11.*v**10*w+55.*v**9*w**2+165.*v**8*w**3+330.*

. v**7*w**4+462.*v**6*w**5+462.*v**5*w**6+330.*v**4*w**7+

. 165.*v**3*w**8+55.*v**2*w**9+11.*v*w**10+w**11
x=u**11+11.*u**10*v+11.*u**10*w+55.*u**9*v**2+110.*u**9*v*

. w+55.*u**9*w**2+165.*u**8*v**3+495.*u**8*v**2*w+495.*u**8

. *v*w**2+165.*u**8*w**3+330.*u**7*v**4+1320.*u**7*v**3*w+

. 1980.*u**7*v**2*w**2+1320.*u**7*v*w**3+330.*u**7*w**4+462.

. *u**6*v**5+2310.*u**6*v**4*w+4620.*u**6*v**3*w**2+4620.*u

. **6*v**2*w**3+2310.*u**6*v*w**4+462.*u**6*w**5+462.*u**5*

. v**6+2772.*u**5*v**5*w+6930.*u**5*v**4*w**2+9240.*u**5*v

. **3*w**3+6930.*u**5*v**2*w**4+2772.*u**5*v*w**5+462.*u**5

. *w**6+330.*u**4*v**7+2310.*u**4*v**6*w+6930.*u**4*v**5*w

. **2+11550.*u**4*v**4*w**3+11550.*u**4*v**3*w**4+6930.*u**

. 4*v**2*w**5+2310.*u**4*v*w**6+330.*u**4*w**7+165.*u**3*v

. **8+1320.*u**3*v**7*w+4620.*u**3*v**6*w**2+9240.*u**3*v**

. 5*w**3+11550.*u**3*v**4*w**4+9240.*u**3*v**3*w**5+4620.*u

. **3*v**2*w**6+ans1
c it was foolish to expand this expression

print 1,x
end

If the arguments of a WRITE statement include an expression that requires continuation records,
the output will need editing, since the output routine prints the arguments of WRITE sequentially,
and the continuation mechanism therefore generates its auxiliary variables after the preceding
expression has been printed.

Finally, since there is no direct analog of list in FORTRAN, a comment line of the form

c ***** invalid fortran construct (list) not printed

will be printed if you try to print a list with FORT on.

FORTRAN Output Options

There are a number of methods available to change the default format of the FORTRAN output.

The breakup of the expression into subparts is such that the number of continuation lines
produced is less than a given number. This number can be modified by the assignment

card_no := <number>;

where <number> is the total number of cards allowed in a statement. The default value of
CARD NO is 20.

The width of the output expression is also adjustable by the assignment

fort_width := <integer>;

which sets the total width of a given line to <integer>. The initial FORTRAN output width
is 70.

REDUCE automatically inserts a decimal point after each isolated integer coefficient in a FOR-
TRAN expression (so that, for example, 4 becomes 4. ). To prevent this, set the PERIOD mode
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switch to OFF.

FORTRAN output is normally produced in lower case. If upper case is desired, the switch
FORTUPPER should be turned on.

Finally, the default name ANS assigned to an unnamed expression and its subparts can be
changed by the operator VARNAME. This takes a single identifier as argument, which then
replaces ANS as the expression name. The value of VARNAME is its argument.

Further facilities for the production of FORTRAN and other language output are provided by
the SCOPE and GENTRAN packagesdescribed in chapters 42 and 73.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input in further calcu-
lations. The commands for opening and closing output files are explained elsewhere. However,
we see in the examples on output of expressions that the standard “natural” method of printing
expressions is not compatible with the input syntax. So to print the expression in an input
compatible form we must inhibit this natural style by turning off the switch NAT. If this is done,
a dollar sign will also be printed at the end of the expression.

Example:

The following sequence of commands

off nat; out "out"; x := (y+z)^2; write "end";
shut "out"; on nat;

will generate a file out that contains

X := Y**2 + 2*Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient to display
the skeletal structure of the answer. The operator STRUCTR, that takes a single expression as
argument, will do this for you. Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with auxiliary
names. If the optional ID1 is absent, the auxiliary names are prefixed by the root ANS. This root
may be changed by the operator VARNAME. If the optional ID1 is present, and is an array name,
the subparts are named as elements of that array, otherwise ID1 is used as the root prefix. (The
second optional argument ID2 is explained later.)

The EXPRN can be either a scalar or a matrix expression. Use of any other will result in an error.

Example:

Let us suppose that the workspace contains ((A+B)^2+C)^3+D. Then the input STRUCTR WS;
will (with EXP off) result in the output:
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ANS3

where

3
ANS3 := ANS2 + D

2
ANS2 := ANS1 + C

ANS1 := A + B

The workspace remains unchanged after this operation, since STRUCTR in the default situation
returns no value (if STRUCTR is used as a sub-expression, its value is taken to be 0). In addition,
the sub-expressions are normally only displayed and not retained. If you wish to access the
sub-expressions with their displayed names, the switch SAVESTRUCTR should be turned on. In
this case, STRUCTR returns a list whose first element is a representation for the expression, and
subsequent elements are the sub-expression relations. Thus, with SAVESTRUCTR on, STRUCTR WS
in the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

The PART operator can be used to retrieve the required parts of the expression. For example,
to get the value of ANS2 in the above, one could say:

part(ws,3,2);

If FORT is on, then the results are printed in the reverse order; the algorithm in fact guaranteeing
that no sub-expression will be referenced before it is defined. The second optional argument
ID2 may also be used in this case to name the actual expression (or expressions in the case of
a matrix argument).

Example:

Let us suppose that M, a 2 by 1 matrix, contains the elements ((a+b)^2 + c)^3 + d and (a +
b)*(c + d) respectively, and that V has been declared to be an array. With EXP off and FORT
on, the statement structr(2*m,v,k); will result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D
V(4)=C+D
K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant effect on
the space and time associated with a calculation. In its default state, REDUCE uses a specific
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order for this which may vary between sessions. However, it is possible for the user to change
this internal order by means of the declaration KORDER. The syntax for this is:

korder v1,...,vn;

where the Vi are kernels. With this declaration, the Vi are ordered internally ahead of any
other kernels in the system. V1 has the highest order, V2 the next highest, and so on. A further
call of KORDER replaces a previous one. KORDER NIL; resets the internal order to the system
default.

Unlike the ORDER declaration, that has a purely cosmetic effect on the way results are printed,
the use of KORDER can have a significant effect on computation time. In critical cases then, the
user can experiment with the ordering of the variables used to determine the optimum set for
a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an expression, or even
change such a part to another expression. A number of operators are available in REDUCE for
this purpose, and will be described in this section. In addition, operators for obtaining specific
parts of polynomials and rational functions (such as a denominator) are described in another
section.

8.5.1 COEFF Operator

Syntax:

COEFF(EXPRN:polynomial,VAR:kernel)

COEFF is an operator that partitions EXPRN into its various coefficients with respect to VAR and
returns them as a list, with the coefficient independent of VAR first.

Under normal circumstances, an error results if EXPRN is not a polynomial in VAR, although the
coefficients themselves can be rational as long as they do not depend on VAR. However, if the
switch RATARG is on, denominators are not checked for dependence on VAR, and are taken to be
part of the coefficients.

Example:

coeff((y^2+z)^3/z,y);

returns the result

2
{Z ,0,3*Z,0,3,0,1/Z}.

whereas

coeff((y^2+z)^3/y,y);
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gives an error if RATARG is off, and the result

3 2
{Z /Y,0,3*Z /Y,0,3*Z/Y,0,1/Y}

if RATARG is on.

The length of the result of COEFF is the highest power of VAR encountered plus 1. In the above
examples it is 7. In addition, the variable HIGH POW is set to the highest non-zero power found
in EXPRN during the evaluation, and LOW POW to the lowest non-zero power, or zero if there is
a constant term. If EXPRN is a constant, then HIGH POW and LOW POW are both set to zero.

8.5.2 COEFFN Operator

The COEFFN operator is designed to give the user a particular coefficient of a variable in a
polynomial, as opposed to COEFF that returns all coefficients. COEFFN is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

It returns the nth coefficient of VAR in the polynomial EXPRN.

8.5.3 PART Operator

Syntax:

PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as printed or as it would have been printed
at that point in the calculation bearing in mind all the relevant switch settings at that point.
The reader therefore needs some familiarity with the way that expressions are represented in
prefix form in REDUCE to use these operators effectively. Furthermore, it is assumed that PRI
is ON at that point in the calculation. The reason for this is that with PRI off, an expression
is printed by walking the tree representing the expression internally. To save space, it is never
actually transformed into the equivalent prefix expression as occurs when PRI is on. However,
the operations on polynomials described elsewhere can be equally well used in this case to obtain
the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other words,

PART(<expression>,<integer1>,<integer2>)
-> PART(PART(<expression>,<integer1>),<integer2>)

and so on, and

PART(<expression>) -> <expression>.

INTEXP can be any expression that evaluates to an integer. If the integer is positive, then that
term of the expression is found. If the integer is 0, the operator is returned. Finally, if the
integer is negative, the counting is from the tail of the expression rather than the head.
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For example, if the expression a+b is printed as A+B (i.e., the ordering of the variables is alpha-
betical), then

part(a+b,2) -> B
part(a+b,-1) -> B

and
part(a+b,0) -> PLUS

An operator ARGLENGTH is available to determine the number of arguments of the top level
operator in an expression. If the expression does not contain a top level operator, then −1 is
returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1

8.5.4 Substituting for Parts of Expressions

PART may also be used to substitute for a given part of an expression. In this case, the PART
construct appears on the left-hand side of an assignment statement, and the expression to
replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:

xx := a+b;
part(xx,2) := c; -> A+C
part(c+d,0) := -; -> C-D

Note that xx in the above is not changed by this substitution. In addition, unlike expressions
such as array and matrix elements that have an instant evaluation property, the values of
part(xx,2) and part(c+d,0) are also not changed.



Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational functions. In
this section, we review some of the switches and operators available for this purpose. These are
in addition to those that work on general expressions (such as DF and INT) described elsewhere.
In the case of operators, the arguments are first simplified before the operations are applied.
In addition, they operate only on arguments of prescribed types, and produce a type mismatch
error if given arguments which cannot be interpreted in the required mode with the current
switch settings. For example, if an argument is required to be a kernel and a/2 is used (with
no other rules for A), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational function, these
operations have potentially significant effects on the space and time associated with a given
calculation. The user should therefore experiment with their use in a given calculation in order
to determine the optimum set for a given problem.

One such operation provided by the system is an operator LENGTH which returns the number
of top level terms in the numerator of its argument. For example,

length ((a+b+c)^3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first select the
denominator by the operator DEN and then call LENGTH, as in

length den ((a+b+c)^3/(c+d));

Other operations currently supported, the relevant switches and operators, and the required
argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch EXP controls the expansion of expressions. If it is off, no expansion of powers or
products of expressions occurs. Users should note however that in this case results come out

107
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in a normal but not necessarily canonical form. This means that zero expressions simplify to
zero, but that two equivalent expressions need not necessarily simplify to the same form.

Example: With EXP on, the two expressions

(a+b)*(a+2*b)

and

a^2+3*a*b+2*b^2

will both simplify to the latter form. With EXP off, they would remain unchanged, unless the
complete factoring (ALLFAC) option were in force. EXP is normally on.

Several operators that expect a polynomial as an argument behave differently when EXP is off,
since there is often only one term at the top level. For example, with EXP off

length((a+b+c)^3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that have integer
coefficients, finding all factors that also have integer coefficients. The package for doing this
was written by Dr. Arthur C. Norman and Ms. P. Mary Ann Moore at The University of
Cambridge. It is described in P. M. A. Moore and A. C. Norman, “Implementing a Polynomial
Factorization and GCD Package”, Proc. SYMSAC ’81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the switch FACTOR, which causes all expressions
to be output in a factored form. For example, with FACTOR on, the expression A^2-B^2 is
returned as (A+B)*(A-B).

It is also possible to factorize a given expression explicitly. The operator FACTORIZE that invokes
this facility is used with the syntax

FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and display all factors of
the cyclotomic polynomial x105 − 1, one could write:

factorize(x^105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall numerical
factor in the result, so the results will consist only of polynomials in x. The number of such
polynomials can be found by using the operator LENGTH. If there is a numerical factor, as in
factorizing 12x2 − 12, that factor will appear as the first member of the result. It will however
not be factored further. Prime factors of such numbers can be found, using a probabilistic
algorithm, by turning on the switch IFACTOR. For example,

on ifactor; factorize(12x^2-12);
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would result in the output

{{2,2},{3,1},{X + 1,1},{X - 1,1}}.

If the first argument of FACTORIZE is an integer, it will be decomposed into its prime components,
whether or not IFACTOR is on.

Note that the IFACTOR switch only affects the result of FACTORIZE. It has no effect if the FACTOR
switch is also on.

The order in which the factors occur in the result (with the exception of a possible overall
numerical coefficient which comes first) can be system dependent and should not be relied on.
Similarly it should be noted that any pair of individual factors can be negated without altering
their product, and that REDUCE may sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and then solving
the univariate ones modulo small primes. It normally selects both evaluation points and primes
using a random number generator that should lead to different detailed behavior each time
any particular problem is tackled. If, for some reason, it is known that a certain (probably
univariate) factorization can be performed effectively with a known prime, P say, this value of
P can be handed to FACTORIZE as a second argument. An error will occur if a non-prime is
provided to FACTORIZE in this manner. It is also an error to specify a prime that divides the
discriminant of the polynomial being factored, but users should note that this condition is not
checked by the program, so this capability should be used with care.

Factorization can be performed over a number of polynomial coefficient domains in addition
to integers. The particular description of the relevant domain should be consulted to see if
factorization is supported. For example, the following statements will factorize x4 + 1 modulo
7:

setmod 7;
on modular;
factorize(x^4+1);

The factorization module is provided with a trace facility that may be useful as a way of
monitoring progress on large problems, and of satisfying curiosity about the internal workings
of the package. The most simple use of this is enabled by issuing the REDUCE command on
trfac; . Following this, all calls to the factorizer will generate informative messages reporting
on such things as the reduction of multivariate to univariate cases, the choice of a prime and the
reconstruction of full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example, TRALLFAC
gives tracing information at all levels of detail. The switch that can be set by on timings;
makes it possible for one who is familiar with the algorithms used to determine what part of
the factorization code is consuming the most resources. on overview; reduces the amount of
detail presented in other forms of trace. Other forms of trace output are enabled by directives
of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, ... . This facility is intended to make it possible
to discover in fairly great detail what just some small part of the code has been doing — the
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numbers refer mainly to depths of recursion when the factorizer calls itself, and to the split
between its work forming and factorizing images and reconstructing full factors from these. If
NIL is used in place of a filename the trace output requested is directed to the standard output
stream. After use of this trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with MCD off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numerators and de-
nominators of expressions, at the option of the user. The system will perform this greatest
common divisor computation if the switch GCD is on. (GCD is normally off.)

A check is automatically made, however, for common variable and numerical products in the
numerators and denominators of expressions, and the appropriate cancellations made.

When GCD is on, and EXP is off, a check is made for square free factors in an expression.
This includes separating out and independently checking the content of a given polynomial
where appropriate. (For an explanation of these terms, see Anthony C. Hearn, “Non-Modular
Computation of Polynomial GCDs Using Trial Division”, Proc. EUROSAM 79, published as
Lecture Notes on Comp. Science, Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example: With EXP off and GCD on, the polynomial a*c+a*d+b*c+b*d would be returned as
(A+B)*(C+D).

Under normal circumstances, GCDs are computed using an algorithm described in the above
paper. It is also possible in REDUCE to compute GCDs using an alternative algorithm, called
the EZGCD Algorithm, which uses modular arithmetic. The switch EZGCD, if on in addition to
GCD, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic algorithm,
often by orders of magnitude. We therefore strongly advise users to use the EZGCD switch where
they have the resources available for supporting the package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ GCD
Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE: This package shares code with the factorizer, so a certain amount of trace information
can be produced using the factorizer trace switches.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

GCD(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynomials EXPRN1 and EXPRN2.

Examples:
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gcd(x^2+2*x+1,x^2+3*x+2) -> X+1
gcd(2*x^2-2*y^2,4*x+4*y) -> 2*X+2*Y
gcd(x^2+y^2,x-y) -> 1.

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive work with large
rational expressions is required. However, in many cases, the only significant cancellations
arise from the fact that there are often common factors in the various denominators which
are combined when two rationals are added. Since these denominators tend to be smaller and
more regular in structure than the numerators, considerable savings in both time and space
can occur if a full GCD check is made when the denominators are combined and only a partial
check when numerators are constructed. In other words, the true least common multiple of the
denominators is computed at each step. The switch LCM is available for this purpose, and is
normally on.

In addition, the operator LCM, used with the syntax

LCM(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the least common multiple of the two polynomials EXPRN1 and EXPRN2.

Examples:

lcm(x^2+2*x+1,x^2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*x^2-2*y^2,4*x+4*y) -> 4*(X**2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression over a
common denominator. However, if the user does not want denominators combined, he or she
can turn off the switch MCD which controls this process. The latter switch is particularly useful
if no greatest common divisor calculations are desired, or excessive differentiation of rational
functions is required.

CAUTION: With MCD off, results are not guaranteed to come out in either normal or canonical
form. In other words, an expression equivalent to zero may in fact not be simplified to zero.
This option is therefore most useful for avoiding expression swell during intermediate parts of
a calculation.

MCD is normally on.

9.6 REMAINDER Operator

This operator is used with the syntax

REMAINDER(EXPRN1:polynomial,EXPRN2:polynomial):polynomial.
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It returns the remainder when EXPRN1 is divided by EXPRN2. This is the true remainder based
on the internal ordering of the variables, and not the pseudo-remainder. The pseudo-remainder
and in general pseudo-division of polynomials can be calculated after loading the polydiv

package. Please refer to the documentation of this package for details.

Examples:

remainder((x+y)*(x+2*y),x+3*y) -> 2*Y**2
remainder(2*x+y,2) -> Y.

CAUTION: In the default case, remainders are calculated over the integers. If you need the
remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(x^2-2,x+sqrt(2)); -> X^2 - 2
load_package arnum;
defpoly sqrt2**2-2;
remainder(x^2-2,x+sqrt2); -> 0

9.7 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial,EXPRN2:polynomial,VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the given variable, the
coefficients of the polynomials can be taken from any domain. The result can be identified as
the determinant of a Sylvester matrix, but can often also be thought of informally as the result
obtained when the given variable is eliminated between the two input polynomials. If the two
input polynomials have a non-trivial GCD their resultant vanishes.

The switch Bezout controls the computation of the resultants. It is off by default. In this case
a subresultant algorithm is used. If the switch Bezout is turned on, the resultant is computed
via the Bezout Matrix. However, in the latter case, only polynomial coefficients are permitted.
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The sign conventions used by the resultant function follow those in R. Loos, “Computing in
Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic Computation”, Second
Ed., Edited by B. Buchberger, G.E. Collins and R. Loos, Springer-Verlag, 1983. Namely, with
A and B not dependent on X:

deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,x)

deg(p)
resultant(a,p(x),x) = a

resultant(a,b,x) = 1

Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.8 DECOMPOSE Operator

The DECOMPOSE operator takes a multivariate polynomial as argument, and returns an expression
and a list of equations from which the original polynomial can be found by composition. Its
syntax is:

DECOMPOSE(EXPRN:polynomial):list.

For example:

decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
218900*x^3+65690*x^2-7700*x+234)

2 2 2
-> {U + 35*U + 234, U=V + 10*V, V=X - 22*X}

2
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decompose(u^2+v^2+2u*v+1) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not unique.

9.9 INTERPOL operator

Syntax:

INTERPOL(<values>,<variable>,<points>);

where <values> and <points> are lists of equal length and <variable> is an algebraic expres-
sion (preferably a kernel).

INTERPOL generates an interpolation polynomial f in the given variable of degree length(<values>)-
1. The unique polynomial f is defined by the property that for corresponding elements v of
<values> and p of <points> the relation f(p) = v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result even with
rounded numbers and an ill-conditioned problem.

9.10 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure. Except for
the cost of rearrangement of the structure, these operations take very little time to perform.

For those operators in this section that take a kernel VAR as their second argument, an error
results if the first expression is not a polynomial in VAR, although the coefficients themselves
can be rational as long as they do not depend on VAR. However, if the switch RATARG is on,
denominators are not checked for dependence on VAR, and are taken to be part of the coefficients.

9.10.1 DEG Operator

This operator is used with the syntax

DEG(EXPRN:polynomial,VAR:kernel):integer.

It returns the leading degree of the polynomial EXPRN in the variable VAR. If VAR does not occur
as a variable in EXPRN, 0 is returned.

Examples:

deg((a+b)*(c+2*d)^2,a) -> 1
deg((a+b)*(c+2*d)^2,d) -> 2
deg((a+b)*(c+2*d)^2,e) -> 0.

Note also that if RATARG is on,

deg((a+b)^3/a,a) -> 3
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since in this case, the denominator A is considered part of the coefficients of the numerator in
A. With RATARG off, however, an error would result in this case.

9.10.2 DEN Operator

This is used with the syntax:

DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expression EXPRN. If EXPRN is a polynomial, 1 is
returned.

Examples:

den(x/y^2) -> Y**2
den(100/6) -> 3

[since 100/6 is first simplified to 50/3]
den(a/4+b/6) -> 12
den(a+b) -> 1

9.10.3 LCOF Operator

LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.

It returns the leading coefficient of the polynomial EXPRN in the variable VAR. If VAR does not
occur as a variable in EXPRN, EXPRN is returned.
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Examples:

lcof((a+b)*(c+2*d)^2,a) -> C**2+4*C*D+4*D**2
lcof((a+b)*(c+2*d)^2,d) -> 4*(A+B)
lcof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

9.10.4 LPOWER Operator

Syntax:

LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power of EXPRN with respect to VAR. If EXPRN does not depend
on VAR, 1 is returned.

Examples:

lpower((a+b)*(c+2*d)^2,a) -> A
lpower((a+b)*(c+2*d)^2,d) -> D**2
lpower((a+b)*(c+2*d),e) -> 1

9.10.5 LTERM Operator

Syntax:

LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term of EXPRN with respect to VAR. If EXPRN does not depend on
VAR, EXPRN is returned.

Examples:

lterm((a+b)*(c+2*d)^2,a) -> A*(C**2+4*C*D+4*D**2)
lterm((a+b)*(c+2*d)^2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCE, LTERM returned 0 if the EXPRN did
not depend on VAR. In the present version, EXPRN is always equal to LTERM(EXPRN,VAR) +
REDUCT(EXPRN,VAR).

9.10.6 MAINVAR Operator

Syntax:

MAINVAR(EXPRN:polynomial):expression.

Returns the main variable (based on the internal polynomial representation) of EXPRN. If EXPRN
is a domain element, 0 is returned.

Examples:



9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 117

Assuming A has higher kernel order than B, C, or D:

mainvar((a+b)*(c+2*d)^2) -> A
mainvar(2) -> 0

9.10.7 NUM Operator

Syntax:

NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expression EXPRN. If EXPRN is a polynomial, that polyno-
mial is returned.

Examples:

num(x/y^2) -> X
num(100/6) -> 50
num(a/4+b/6) -> 3*A+2*B
num(a+b) -> A+B

9.10.8 REDUCT Operator

Syntax:

REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum of EXPRN with respect to VAR (i.e., the part of EXPRN left after the leading
term is removed). If EXPRN does not depend on the variable VAR, 0 is returned.

Examples:

reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)
reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> 0

Compatibility Note: In some earlier versions of REDUCE, REDUCT returned EXPRN if it did
not depend on VAR. In the present version, EXPRN is always equal to LTERM(EXPRN,VAR) +
REDUCT(EXPRN,VAR).

9.11 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients of polynomials
used in calculations. The default mode is integer arithmetic, although the possibility of using
real coefficients has been discussed elsewhere. Rational coefficients have also been available
by using integer coefficients in both the numerator and denominator of an expression, using
the ON DIV option to print the coefficients as rationals. However, REDUCE includes several
other coefficient options in its basic version which we shall describe in this section. All such
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coefficient modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Bradford, A.C. Hearn,
J.A. Padget and E. Schrüfer, “Enlarging the REDUCE Domain of Computation,” Proc. of
SYMSAC ’86, ACM, New York (1986), 100–106.

9.11.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational expression,
it is also possible to use them as polynomial coefficients directly. This is accomplished by turning
on the switch RATIONAL.

Example: With RATIONAL off, the input expression a/2 would be converted into a rational
expression, whose numerator was A and denominator 2. With RATIONAL on, the same input
would become a rational expression with numerator 1/2*A and denominator 1. Thus the latter
can be used in operations that require polynomial input whereas the former could not.

9.11.2 Real Coefficients in Polynomials

The switch ROUNDED permits the use of arbitrary sized real coefficients in polynomial expressions.
The actual precision of these coefficients can be set by the operator PRECISION. For example,
precision 50; sets the precision to fifty decimal digits. The default precision is system depen-
dent and can be found by precision 0;. In this mode, denominators are automatically made
monic, and an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a/2 would be converted into a rational ex-
pression whose numerator is 0.5*A and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision supported by the under-
lying machine hardware, and so-called bigfloats for higher precision or whenever necessary to
represent numbers whose value cannot be represented in floating point. The internal precision
is two decimal digits greater than the external precision to guard against roundoff inaccuracies.
Bigfloats represent the fraction and exponent parts of a floating-point number by means of
(arbitrary precision) integers, which is a more precise representation in many cases than the
machine floating point arithmetic, but not as efficient. If a case arises where use of the machine
arithmetic leads to problems, a user can force REDUCE to use the bigfloat representation at
all precisions by turning on the switch ROUNDBF. In rare cases, this switch is turned on by the
system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the user wishes
to print such numbers with less precision, the printing precision can be set by the command
PRINT PRECISION. For example, print precision 5; will cause such numbers to be printed
with five digits maximum.

Under normal circumstances when ROUNDED is on, REDUCE converts the number 1.0 to the
integer 1. If this is not desired, the switch NOCONVERT can be turned on.

Numbers that are stored internally as bigfloats are normally printed with a space between every
five digits to improve readability. If this feature is not required, it can be suppressed by turning
off the switch BFSPACE.
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Further information on the bigfloat arithmetic may be found in T. Sasaki, “Manual for Arbitrary
Precision Real Arithmetic System in REDUCE”, Department of Computer Science, University
of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect at the time
the number is read. If it is desired to keep the full precision of all numbers input, the switch
ADJPREC (for adjust precision) can be turned on. While on, ADJPREC will automatically increase
the precision, when necessary, to match that of any integer or real input, and a message printed
to inform the user of the precision increase.

When ROUNDED is on, rational numbers are normally converted to rounded representation. How-
ever, if a user wishes to keep such numbers in a rational form until used in an operation that
returns a real number, the switch ROUNDALL can be turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two exceptions: if the
result is recognized as 0 or 1 to the current precision, the integer result is returned.

9.11.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are computed mod-
ulo a given base. To use this option, two commands must be used; SETMOD <integer>, to set the
prime modulus, and ON MODULAR to cause the actual modular calculations to occur. For exam-
ple, with setmod 3; and on modular;, the polynomial (a+2*b)^3 would become A^3+2*B^3.

The argument of SETMOD is evaluated algebraically, except that non-modular (integer) arithmetic
is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1] where p is the
current modulus. Sometimes it is more convenient to use an equivalent symmetric representation
in the interval [-p/2+1,p/2], or more precisely [-floor((p-1)/2), ceiling((p-1)/2)], especially if
the modular numbers map objects that include negative quantities. The switch BALANCED MOD
allows you to select the symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients only. It is
not currently possible to reduce the exponents since no check for a prime modulus is made
(which would allow xp−1 to be reduced to 1 mod p). Note also that any division by a number
not co-prime with the modulus will result in the error “Invalid modular division”.

9.11.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent to −1, this is not
sufficient to reduce expressions involving i to lowest terms, or to factor such expressions over
the complex numbers. For example, in the default case,

factorize(a^2+1);

gives the result
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{{A**2+1,1}}

and

(a^2+b^2)/(a+i*b)

is not reduced further. However, if the switch COMPLEX is turned on, full complex arithmetic is
then carried out. In other words, the above factorization will give the result

{{A + I,1},{A - I,1}}

and the quotient will be reduced to A-I*B.

The switch COMPLEX may be combined with ROUNDED to give complex real numbers; the appro-
priate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators of expressions. To
do this if COMPLEX is off, you must turn the switch RATIONALIZE on.
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Substitution Commands

An important class of commands in REDUCE define substitutions for variables and expressions
to be made during the evaluation of expressions. Such substitutions use the prefix operator
SUB, various forms of the command LET, and rule sets.

10.1 SUB Operator

Syntax:

SUB(<substitution_list>,EXPRN1:algebraic):algebraic

where <substitution list> is a list of one or more equations of the form

VAR:kernel=EXPRN:algebraic

or a kernel that evaluates to such a list.

The SUB operator gives the algebraic result of replacing every occurrence of the variable VAR
in the expression EXPRN1 by the expression EXPRN. Specifically, EXPRN1 is first evaluated using
all available rules. Next the substitutions are made, and finally the substituted expression is
reevaluated. When more than one variable occurs in the substitution list, the substitution is
performed by recursively walking down the tree representing EXPRN1, and replacing every VAR
found by the appropriate EXPRN. The EXPRN are not themselves searched for any occurrences of
the various VARs. The trivial case SUB(EXPRN1) returns the algebraic value of EXPRN1.

Examples:

2 2
sub({x=a+y,y=y+1},x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

and with s := {x=a+y,y=y+1},

2 2
sub(s,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

Note that the global assignments x:=a+y, etc., do not take place.

121
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EXPRN1 can be any valid algebraic expression whose type is such that a substitution process is
defined for it (e.g., scalar expressions, lists and matrices). An error will occur if an expression
of an invalid type for substitution occurs either in EXPRN or EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

10.2 LET Rules

Unlike substitutions introduced via SUB, LET rules are global in scope and stay in effect until
replaced or CLEARed.

The simplest use of the LET statement is in the form

LET <substitution list>

where <substitution list> is a list of rules separated by commas, each of the form:

<variable> = <expression>

or

<prefix operator>(<argument>,...,<argument>) = <expression>

or

<argument> <infix operator>,..., <argument> = <expression>

For example,

let {x = y^2,
h(u,v) = u - v,
cos(pi/3) = 1/2,
a*b = c,
l+m = n,
w^3 = 2*z - 3,
z^10 = 0}

The list brackets can be left out if preferred. The above rules could also have been entered as
seven separate LET statements.

After such LET rules have been input, X will always be evaluated as the square of Y, and so on.
This is so even if at the time the LET rule was input, the variable Y had a value other than Y. (In
contrast, the assignment x:=y^2 will set X equal to the square of the current value of Y, which
could be quite different.)

The rule let a*b=c means that whenever A and B are both factors in an expression their product
will be replaced by C. For example, a^5*b^7*w would be replaced by c^5*b^2*w.
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The rule for l+m will not only replace all occurrences of l+m by N, but will also normally replace
L by n-m, but not M by n-l. A more complete description of this case is given in Section 10.2.5.

The rule pertaining to w^3 will apply to any power of W greater than or equal to the third.

Note especially the last example, let z^10=0. This declaration means, in effect: ignore the
tenth or any higher power of Z. Such declarations, when appropriate, often speed up a compu-
tation to a considerable degree. (See Section 10.4 for more details.)

Any new operators occurring in such LET rules will be automatically declared OPERATOR by the
system, if the rules are being read from a file. If they are being entered interactively, the system
will ask DECLARE ... OPERATOR? . Answer Y or N and hit Return .

In each of these examples, substitutions are only made for the explicit expressions given; i.e.,
none of the variables may be considered arbitrary in any sense. For example, the command

let h(u,v) = u - v;

will cause h(u,v) to evaluate to U - V, but will not affect h(u,z) or H with any arguments
other than precisely the symbols U,V.

These simple LET rules are on the same logical level as assignments made with the := operator.
An assignment x := p+q cancels a rule let x = y^2 made earlier, and vice versa.

CAUTION: A recursive rule such as

let x = x + 1;

is erroneous, since any subsequent evaluation of X would lead to a non-terminating chain of
substitutions:

x -> x + 1 -> (x + 1) + 1 -> ((x + 1) + 1) + 1 -> ...

Similarly, coupled substitutions such as

let l = m + n, n = l + r;

would lead to the same error. As a result, if you try to evaluate an X, L or N defined as above,
you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a LET statement. However,
because of their instant evaluation property, it is the value of the element that is substituted
for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) = c;

results in B being substituted by C; the assignment for a(2) does not change.

Finally, if an error occurs in any equation in a LET statement (including generalized statements
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involving FOR ALL and SUCH THAT), the remaining rules are not evaluated.

10.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator is required, the
declaration FOR ALL may be used. The syntax of such a command is

FOR ALL <variable>,...,<variable>
<LET statement> <terminator>

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = x^y;

The first of these declarations would cause h(a,b) to be evaluated as A-B, h(u+v,u+w) to be
V-W, etc. If the operator symbol H is used with more or fewer argument places, not two, the LET
would have no effect, and no error would result.

The second declaration would cause k(a,y) to be evaluated as a^y, but would have no effect
on k(a,z) since the rule didn’t say FOR ALL Y ... .

Where we used X and Y in the examples, any variables could have been used. This use of a
variable doesn’t affect the value it may have outside the LET statement. However, you should
remember what variables you actually used. If you want to delete the rule subsequently, you
must use the same variables in the CLEAR command.

It is possible to use more complicated expressions as a template for a LET statement, as explained
in the section on substitutions for general expressions. In nearly all cases, the rule will be
accepted, and a consistent application made by the system. However, if there is a sole constant
or a sole free variable on the left-hand side of a rule (e.g., let 2=3 or for all x let x=2),
then the system is unable to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in the FOR ALL part will have its symbol preceded by an
equal sign: X in the above example will appear as =X. An error will also occur if a variable in
the FOR ALL part is not properly matched on both sides of the LET equation.

10.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an operator or other
expression, but not all values, a conditional form of the FOR ALL ...LET declaration can be
used.

Example:

for all x such that numberp x and x<0 let h(x)=0;

will cause h(-5) to be evaluated as 0, but H of a positive integer, or of an argument that is
not an integer at all, would not be affected. Any boolean expression can follow the SUCH THAT
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keywords.

10.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression by the com-
mand CLEAR, in the form

CLEAR <expression>,...,<expression><terminator>

e.g.

clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements cannot be cleared with
CLEAR. For example, if A is an array, you must say

a(3) := 0;

rather than

clear a(3);

to “clear” element a(3).

On the other hand, a whole array (or matrix) A can be cleared by the command clear a; This
means much more than resetting to 0 all the elements of A. The fact that A is an array, and what
its dimensions are, are forgotten, so A can be redefined as another type of object, for example
an operator.

The more general types of LET declarations can also be deleted by using CLEAR. Simply repeat
the LET rule to be deleted, using CLEAR in place of LET, and omitting the equal sign and right-
hand part. The same dummy variables must be used in the FOR ALL part, and the boolean
expression in the SUCH THAT part must be written the same way. (The placing of blanks doesn’t
have to be identical.)

Example: The LET rule

for all x such that numberp x and x<0 let h(x)=0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

10.2.4 Overlapping LET Rules

CLEAR is not the only way to delete a LET rule. A new LET rule identical to the first, but with a
different expression after the equal sign, replaces the first. Replacements are also made in other
cases where the existing rule would be in conflict with the new rule. For example, a rule for x^4
would replace a rule for x^5. The user should however be cautioned against having several LET
rules in effect that relate to the same expression. No guarantee can be given as to which rules
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will be applied by REDUCE or in what order. It is best to CLEAR an old rule before entering a
new related LET rule.

10.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very simple rules. How-
ever, the substitution mechanism used in REDUCE is very general, and can handle arbitrarily
complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A. C., “REDUCE,
A User-Oriented Interactive System for Algebraic Simplification,” Interactive Systems for Ex-
perimental Applied Mathematics, (edited by M. Klerer and J. Reinfelds), Academic Press, New
York (1968), 79-90, and Hearn. A. C., “The Problem of Substitution,” Proc. 1968 Summer
Institute on Symbolic Mathematical Computation, IBM Programming Laboratory Report FSC
69-0312 (1969). For the reasons given in these references, REDUCE does not attempt to im-
plement a general pattern matching algorithm. However, the present system uses far more
sophisticated techniques than those discussed in the above papers. It is now possible for the
rules appearing in arguments of LET to have the form

<substitution expression> = <expression>

where any rule to which a sensible meaning can be assigned is permitted. However, this meaning
can vary according to the form of <substitution expression>. The semantic rules associated
with the application of the substitution are completely consistent, but somewhat complicated
by the pragmatic need to perform such substitutions as efficiently as possible. The following
rules explain how the majority of the cases are handled.

To begin with, the <substitution expression> is first partly simplified by collecting like
terms and putting identifiers (and kernels) in the system order. However, no substitutions are
performed on any part of the expression with the exception of expressions with the instant
evaluation property, such as array and matrix elements, whose actual values are used. It should
also be noted that the system order used is not changeable by the user, even with the KORDER
command. Specific cases are then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an expression with
a top-level algebraic operator or a power, then the rule is added without further change
to the appropriate table.

2. If the operator * appears at the top level of the simplified left-hand side, then any constant
arguments in that expression are moved to the right-hand side of the rule. The remaining
left-hand side is then added to the appropriate table. For example,

let 2*x*y=3

becomes

let x*y=3/2

so that x*y is added to the product substitution table, and when this rule is applied, the
expression x*y becomes 3/2, but X or Y by themselves are not replaced.
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3. If the operators +, - or / appear at the top level of the simplified left-hand side, all but
the first term is moved to the right-hand side of the rule. Thus the rules

let l+m=n, x/2=y, a-b=c

become

let l=n-m, x=2*y, a=c+b.

One problem that can occur in this case is that if a quantified expression is moved to the right-
hand side, a given free variable might no longer appear on the left-hand side, resulting in an
error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all x,y let f(x)=x*y-f(y)

which no longer has Y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules can lead to
confusion at times. Consider for example the statements

array a(5); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will become X, and the second 0. Thus the first rule will be
instantiated as a substitution for X, and the second will result in an error.

The order in which a list of rules is applied is not easily understandable without a detailed
knowledge of the system simplification protocol. It is also possible for this order to change from
release to release, as improved substitution techniques are implemented. Users should therefore
assume that the order of application of rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined in case a new
allowed substitution has been generated. This process is continued until no more substitutions
can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the substitution
is made if that expression divides the product. For example, the rule

let a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X and a^2*c^2 by 3*Z*C. If the substitution is
desired only when the substitution expression appears in a product with the explicit powers
supplied in the rule, the command MATCH should be used instead.

For example,

match a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X, but a^2*c^2 would not be replaced. MATCH can
also be used with the FOR ALL constructions described above.
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To remove substitution rules of the type discussed in this section, the CLEAR command can be
used, combined, if necessary, with the same FOR ALL clause with which the rule was defined,
for example:

for all x clear log(e^x),e^log(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this case must be the same as those used
in defining the substitution.

10.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different from either
SUB or LET. In fact, they provide the best features of both, since they have all the capabilities of
LET, but the rules can also be applied locally as is possible with SUB. In time, they will be used
more and more in REDUCE. However, since they are relatively new, much of the REDUCE
code you see uses the older constructs.

A rule list is a list of rules that have the syntax

<expression> => <expression> (WHEN <boolean expression>)

For example,

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~n*pi) => (-1)^n when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much as a variable in a
FOR ALL clause in a LET statement. The first occurrence of that variable in each relevant rule
must be so marked on input, otherwise inconsistent results can occur. For example, the rule list

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(x)^2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second rule would only
apply to the explicit argument X. Later occurrences in the same rule may also be marked,
but this is optional (internally, all such rules are stored with each relevant variable explicitly
marked). The optional WHEN clause allows constraints to be placed on the application of the
rule, much as the SUCH THAT clause in a LET statement.

A rule list may be named, for example

trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos(~x)^2 => (1+cos(2*x))/2,
sin(~x)^2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the command trig1; would cause the
above list to be printed.
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Rule lists may be used in two ways. They can be globally instantiated by means of the command
LET. For example,

let trig1;

would cause the above list of rules to be globally active from then on until cancelled by the
command CLEARRULES, as in

clearrules trig1;

CLEARRULES has the syntax

CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by means of a WHERE clause. For
example

cos(a)*cos(b+c)
where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2};

or

cos(a)*sin(b) where trigrules;

The syntax of an expression with a WHERE clause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...)

so the first example above could also be written

cos(a)*cos(b+c)
where cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the WHERE clause only apply to the expression
on the left of WHERE. They have no effect outside the expression. In particular, they do not affect
previously defined WHERE clauses or LET statements. For example, the sequence

let a=2;
a where a=>4;
a;

would result in the output

4

2

Although WHERE has a precedence less than any other infix operator, it still binds higher than
keywords such as ELSE, THEN, DO, REPEAT and so on. Thus the expression
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if a=2 then 3 else a+2 where a=3

will parse as

if a=2 then 3 else (a+2 where a=3)

WHERE may be used to introduce auxiliary variables in symbolic mode expressions, as described
in Section 16.4. However, the symbolic mode use has different semantics, so expressions do not
carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions of rule lists released
through the Network Library, it is currently possible to use an equal sign interchangeably with
the replacement sign => in rules and LET statements. However, since this will change in future
versions, the replacement sign is preferable in rules and the equal sign in non-rule-based LET
statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more complicated
rules than those discussed so far, and in many cases to write more compact rule lists. These
features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with the same
number of arguments. The free operator is written in the same style as a variable. For example,
the implementation of the product rule of differentiation can be written as:

operator diff, !~f, !~g;

prule := {diff(~f(~x) * ~g(~x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operator may be used as an alternative to a single slash (quotient) in order
to match quotients properly. E.g., in the example of the Gamma function above, one can use:

gammarule :=
{gamma(~z)//(~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0,
gamma(~z)//gamma(~zz) => gamma(z)/(gamma(zz-1)*zz)
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when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);

1
----------------------

3 2
z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in order to perform
the required operation. This can be simplified by the use of double tilde variables. E.g. the
rule list

GGrule := {
gamma(~z)//(~~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, double tilde
variables are bound to the neutral element with respect to the operation in which they are
used.
Pattern given Argument used Binding

˜z + ˜˜y x z=x; y=0
˜z + ˜˜y x+3 z=x; y=3 or z=3; y=x

˜z * ˜˜y x z=x; y=1
˜z * ˜˜y x*3 z=x; y=3 or z=3; y=x

˜z / ˜˜y x z=x; y=1
˜z / ˜˜y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed. Also, using
double tilde variables may lead to recursion errors when the zero case is not handled properly.

let f(~~a * ~x,x) => a * f(x,x) when freeof (a,x);

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(~~a * ~x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;

ff(z,z);
ff(z,z)
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ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operator SHOWRULES takes a single identifier as argument, and returns in rule-list form the
operator rules associated with that argument. For example:

showrules log;

{LOG(E) => 1,

LOG(1) => 0,

~X
LOG(E ) => ~X,

1
DF(LOG(~X),~X) => ----}

~X

Such rules can then be manipulated further as with any list. For example rhs first ws; has
the value 1. Note that an operator may have other properties that cannot be displayed in such
a form, such as the fact it is an odd function, or has a definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In general, it is very
difficult to specify this order precisely, so that it is best to assume that the order is arbitrary.
However, if only one operator is involved, the order of application of the rules for this operator
can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free variables.

2. Rules activated in the most recent LET command are applied first.

3. LET with several entries generate the same order of application as a corresponding sequence
of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are applied in their given
order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free variables is
applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the Gamma function:
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operator gamma,gamma_error;
gamma_rules :=
{gamma(~x)=>sqrt(pi)/2 when x=1/2,
gamma(~n)=>factorial(n-1) when fixp n and n>0,
gamma(~n)=>gamma_error(n) when fixp n,
gamma(~x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(~x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out; e.g. the
rule leading to the error expression will be applied for negative integers only, since the positive
integers are caught by the preceding rule, and the last rule will apply for negative odd multiples
of 1/2 only. Alternatively the first rule could have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case x = 1/2 should be excluded in the WHEN part of the last rule explicitly because
a rule without free variables cannot take precedence over the other rules.

10.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is often desir-
able to throw away all powers of these variables beyond a certain point to avoid unnecessary
computation. The command LET may be used to do this. For example, if only powers of X up
to x^7 are needed, the command

let x^8 = 0;

will cause the system to delete all powers of X higher than 7.

CAUTION: This particular simplification works differently from most substitution mechanisms
in REDUCE in that it is applied during polynomial manipulation rather than to the whole
evaluated expression. Thus, with the above rule in effect, x^10/x^5 would give the result zero,
since the numerator would simplify to zero. Similarly x^20/x^10 would give a Zero divisor
error message, since both numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several variables having
different degrees of smallness. In this case, it is necessary to supply an asymptotic weight to
each variable and count up the total weight of each product in an expanded expression before
deciding whether to keep the term or not. There are two associated commands in the system
to permit this type of asymptotic constraint. The command WEIGHT takes a list of equations
of the form

<kernel form> = <number>

where <number> must be a positive integer (not just evaluate to a positive integer). This
command assigns the weight <number> to the relevant kernel form. A check is then made
in all algebraic evaluations to see if the total weight of the term is greater than the weight
level assigned to the calculation. If it is, the term is deleted. To compute the total weight
of a product, the individual weights of each kernel form are multiplied by their corresponding
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powers and then added.

The weight level of the system is initially set to 1. The user may change this setting by the
command

wtlevel <number>;

which sets <number> as the new weight level of the system. <number> must evaluate to a positive
integer. WTLEVEL will also allow NIL as an argument, in which case the current weight level
is returned.
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File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files into the system,
or to write output on other files. REDUCE offers four commands for this purpose, namely, IN,
OUT, SHUT, LOAD, and LOAD PACKAGE. The first three operators are described here; LOAD and
LOAD PACKAGE are discussed in Section 18.2.

11.1 IN Command

This command takes a list of file names as argument and directs the system to input each file
(that should contain REDUCE statements and commands) into the system. File names can
either be an identifier or a string. The explicit format of these will be system dependent and, in
many cases, site dependent. The explicit instructions for the implementation being used should
therefore be consulted for further details. For example:

in f1,"ggg.rr.s";

will first load file F1, then ggg.rr.s. When a semicolon is used as the terminator of the IN
statement, the statements in the file are echoed on the terminal or written on the current output
file. If $ is used as the terminator, the input is not shown. Echoing of all or part of the input
file can be prevented, even if a semicolon was used, by placing an off echo; command in the
input file.

Files to be read using IN should end with ;END;. Note the two semicolons! First of all, this is
protection against obscure difficulties the user will have if there are, by mistake, more BEGINs
than ENDs on the file. Secondly, it triggers some file control book-keeping which may improve
system efficiency. If END is omitted, an error message "End-of-file read" will occur.

11.2 OUT Command

This command takes a single file name as argument, and directs output to that file from then
on, until another OUT changes the output file, or SHUT closes it. Output can go to only one file
at a time, although many can be open. If the file has previously been used for output during
the current job, and not SHUT, the new output is appended to the end of the file. Any existing
file is erased before its first use for output in a job, or if it had been SHUT before the new OUT.

135
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To output on the terminal without closing the output file, the reserved file name T (for terminal)
may be used. For example, out ofile; will direct output to the file OFILE and out t; will
direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the terminal. In
particular x^2 would appear on two lines, an X on the lower line and a 2 on the line above. If
the purpose of the output file is to save results to be read in later, this is not an appropriate
form. We first must turn off the NAT switch that specifies that output should be in standard
mathematical notation.

Example: To create a file ABCD from which it will be possible to read – using IN – the value of
the expression XYZ:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each expression

% printed will end with a $ .
out abcd$ % output to new file
linelength 72$ % for systems with fixed input line length.
xyz:=xyz; % will output "XYZ := " followed by the value

% of XYZ
write ";end"$ % standard for ending files for IN
shut abcd$ % save ABCD, return to terminal output
on nat$ % restore usual output form

11.3 SHUT Command

This command takes a list of names of files that have been previously opened via an OUT
statement and closes them. Most systems require this action by the user before he ends the
REDUCE job (if not sooner), otherwise the output may be lost. If a file is shut and a further
OUT command issued for the same file, the file is erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. Attempts to shut
files that have not been opened by OUT, or an input file, will lead to errors.



Chapter 12

Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in a batch
processing or background mode by taking its input command by command from the relevant
input stream. There is a basic difference, however, between interactive and batch use of the
system. In the former case, whenever the system discovers an ambiguity at some point in a
calculation, such as a forgotten type assignment for instance, it asks the user for the correct
interpretation. In batch operation, it is not practical to terminate the calculation at such points
and require resubmission of the job, so the system makes the most obvious guess of the user’s
intentions and continues the calculation.

There is also a difference in the handling of errors. In the former case, the computation can
continue since the user has the opportunity to correct the mistake. In batch mode, the error may
lead to consequent erroneous (and possibly time consuming) computations. So in the default
case, no further evaluation occurs, although the remainder of the input is checked for syntax
errors. A message "Continuing with parsing only" informs the user that this is happening.
On the other hand, the switch ERRCONT, if on, will cause the system to continue evaluating
expressions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is marked with
three dollar signs ($$$). In interactive mode, the user can then use ED to correct the error, or
retype the command. When a non-syntactical error occurs in interactive mode, the command
being evaluated at the time the last error occurred is saved, and may later be reevaluated by
the command RETRY.

12.1 Referencing Previous Results

It is often useful to be able to reference results of previous computations during a REDUCE
session. For this purpose, REDUCE maintains a history of all interactive inputs and the results
of all interactive computations during a given session. These results are referenced by the
command number that REDUCE prints automatically in interactive mode. To use an input
expression in a new computation, one writes input(n), where n is the command number. To
use an output expression, one writes WS(n). WS references the previous command. E.g., if
command number 1 was INT(X-1,X); and the result of command number 7 was X-1, then

2*input(1)-ws(7)^2;
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would give the result -1, whereas

2*ws(1)-ws(7)^2;

would yield the same result, but without a recomputation of the integral.

The operator DISPLAY is available to display previous inputs. If its argument is a positive
integer, n say, then the previous n inputs are displayed. If its argument is ALL (or in fact any
non-numerical expression), then all previous inputs are displayed.

12.2 Interactive Editing

It is possible when working interactively to edit any REDUCE input that comes from the user’s
terminal, and also some user-defined procedure definitions. At the top level, one can access any
previous command string by the command ed(n), where n is the desired command number
as prompted by the system in interactive mode. ED; (i.e. no argument) accesses the previous
command.

After ED has been called, you can now edit the displayed string using a string editor with the
following commands:

B move pointer to beginning
C<character> replace next character by character
D delete next character
E end editing and reread text
F<character> move pointer to next occurrence of

character
I<string><escape> insert string in front of pointer
K<character> delete all characters until character
P print string from current pointer
Q give up with error exit
S<string><escape> search for first occurrence of string, po-

sitioning pointer just before it
space or X move pointer right one character.

The above table can be displayed online by typing a question mark followed by a carriage
return to the editor. The editor prompts with an angle bracket. Commands can be combined
on a single line, and all command sequences must be followed by a carriage return to become
effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be executed, the fol-
lowing edit command sequence could be used:

f1c2e<return>.

The interactive editor may also be used to edit a user-defined procedure that has not been
compiled. To do this, one says:

editdef <id>;

where <id> is the name of the procedure. The procedure definition will then be displayed in
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editing mode, and may then be edited and redefined on exiting from the editor.

Some versions of REDUCE now include input editing that uses the capabilities of modern
window systems. Please consult your system dependent documentation to see if this is possible.
Such editing techniques are usually much easier to use then ED or EDITDEF.

12.3 Interactive File Control

If input is coming from an external file, the system treats it as a batch processed calculation.
If the user desires interactive response in this case, he can include the command on int; in
the file. Likewise, he can issue the command off int; in the main program if he does not
desire continual questioning from the system. Regardless of the setting of INT, input commands
from a file are not kept in the system, and so cannot be edited using ED. However, many
implementations of REDUCE provide a link to an external system editor that can be used for
such editing. The specific instructions for the particular implementation should be consulted
for information on this.

Two commands are available in REDUCE for interactive use of files. PAUSE; may be inserted at
any point in an input file. When this command is encountered on input, the system prints the
message CONT? on the user’s terminal and halts. If the user responds Y (for yes), the calculation
continues from that point in the file. If the user responds N (for no), control is returned to
the terminal, and the user can input further statements and commands. Later on he can use
the command cont; to transfer control back to the point in the file following the last PAUSE
encountered. A top-level pause; from the user’s terminal has no effect.
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Chapter 13

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations can be per-
formed. To extend our syntax to this class of calculations we need to add another prefix
operator, MAT, and a further variable and expression type as follows:

13.1 MAT Operator

This prefix operator is used to represent n ×m matrices. MAT has n arguments interpreted as
rows of the matrix, each of which is a list of m expressions representing elements in that row.
For example, the matrix (

a b c
d e f

)
would be written as mat((a,b,c),(d,e,f)).

Note that the single column matrix (
x
y

)
becomes mat((x),(y)). The inside parentheses are required to distinguish it from the single
row matrix (

x y
)

that would be written as mat((x,y)).

13.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration MATRIX. The size of the
matrix may be declared explicitly in the matrix declaration, or by default in assigning such a
variable to a matrix expression. For example,

matrix x(2,1),y(3,4),z;

declares X to be a 2 x 1 (column) matrix, Y to be a 3 x 4 matrix and Z a matrix whose size is
to be declared later.

141



142 CHAPTER 13. MATRIX CALCULATIONS

Matrix declarations can appear anywhere in a program. Once a symbol is declared to name
a matrix, it can not also be used to name an array, operator or a procedure, or used as an
ordinary variable. It can however be redeclared to be a matrix, and its size may be changed
at that time. Note however that matrices once declared are global in scope, and so can then
be referenced anywhere in the program. In other words, a declaration within a block (or a
procedure) does not limit the scope of the matrix to that block, nor does the matrix go away
on exiting the block (use CLEAR instead for this purpose). An element of a matrix is referred
to in the expected manner; thus x(1,1) gives the first element of the matrix X defined above.
References to elements of a matrix whose size has not yet been declared leads to an error. All
elements of a matrix whose size is declared are initialized to 0. As a result, a matrix element has
an instant evaluation property and cannot stand for itself. If this is required, then an operator
should be used to name the matrix elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

13.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

<matrix expression> ::=
MAT<matrix description>|<matrix variable>|
<scalar expression>*<matrix expression>|
<matrix expression>*<matrix expression>
<matrix expression>+<matrix expression>|
<matrix expression>^<integer>|
<matrix expression>/<matrix expression>

Sums and products of matrix expressions must be of compatible size; otherwise an error will
result during their evaluation. Similarly, only square matrices may be raised to a power. A
negative power is computed as the inverse of the matrix raised to the corresponding positive
power. a/b is interpreted as a*b^(-1).

Examples:

Assuming X and Y have been declared as matrices, the following are matrix expressions

y
y^2*x-3*y^(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimination method
due to Bareiss. An alternative method using Cramer’s method is also available. This is usually
less efficient than the Bareiss method unless the matrices are large and dense, although we have
no solid statistics on this as yet. To use Cramer’s method instead, the switch CRAMER should be
turned on.
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13.4 Operators with Matrix Arguments

The operator LENGTH applied to a matrix returns a list of the number of rows and columns in the
matrix. Other operators useful in matrix calculations are defined in the following subsections.
Attention is also drawn to the LINALG (chapter 52) and NORMFORM (chapter 57) packages.

13.4.1 DET Operator

Syntax:

DET(EXPRN:matrix_expression):algebraic.

The operator DET is used to represent the determinant of a square matrix expression. E.g.,

det(y^2)

is a scalar expression whose value is the determinant of the square of the matrix Y, and

det mat((a,b,c),(d,e,f),(g,h,j));

is a scalar expression whose value is the determinant of the matrix a b c
d e f
g h j


Determinant expressions have the instant evaluation property. In other words, the statement

let det mat((a,b),(c,d)) = 2;

sets the value of the determinant to 2, and does not set up a rule for the determinant itself.

13.4.2 MATEIGEN Operator

Syntax:

MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGEN calculates the eigenvalue equation and the corresponding eigenvectors of a matrix,
using the variable ID to denote the eigenvalue. A square free decomposition of the characteristic
polynomial is carried out. The result is a list of lists of 3 elements, where the first element is
a square free factor of the characteristic polynomial, the second its multiplicity and the third
the corresponding eigenvector (as an n by 1 matrix). If the square free decomposition was
successful, the product of the first elements in the lists is the minimal polynomial. In the case
of degeneracy, several eigenvectors can exist for the same eigenvalue, which manifests itself in
the appearance of more than one arbitrary variable in the eigenvector. To extract the various
parts of the result use the operations defined on lists.

Example: The command
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mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

{{ETA - 1,2,

[ARBCOMPLEX(1)]
[ ]
[ARBCOMPLEX(1)]
[ ]
[ 0 ]

},

{ETA - 2,1,

[ 0 ]
[ ]
[ARBCOMPLEX(2)]
[ ]
[ARBCOMPLEX(2)]

}}

13.4.3 TP Operator

Syntax:

TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

13.4.4 Trace Operator

Syntax:

TRACE(EXPRN:matrix_expression):algebraic.

The operator TRACE is used to represent the trace of a square matrix.

13.4.5 Matrix Cofactors

Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):
algebraic
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The operator COFACTOR returns the cofactor of the element in row ROW and column COLUMN of
the matrix MATRIX. Errors occur if ROW or COLUMN do not simplify to integer expressions or if
MATRIX is not square.

13.4.6 NULLSPACE Operator

Syntax:

NULLSPACE(EXPRN:matrix_expression):list

NULLSPACE calculates for a matrix A a list of linear independent vectors (a basis) whose linear
combinations satisfy the equation Ax = 0. The basis is provided in a form such that as many
upper components as possible are isolated.

Note that with b := nullspace a the expression length b is the nullity of A, and that second
length a - length b calculates the rank of A. The rank of a matrix expression can also be
found more directly by the RANK operator described below.

Example: The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[ 1 ]
[ ]
[ 0 ]
[ ]
[ - 3]
[ ]
[ 2 ]
,
[ 0 ]
[ ]
[ 1 ]
[ ]
[ - 2]
[ ]
[ 1 ]
}

In addition to the REDUCE matrix form, NULLSPACE accepts as input a matrix given as a list
of lists, that is interpreted as a row matrix. If that form of input is chosen, the vectors in the
result will be represented by lists as well. This additional input syntax facilitates the use of
NULLSPACE in applications different from classical linear algebra.
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13.4.7 RANK Operator

Syntax:

RANK(EXPRN:matrix_expression):integer

RANK calculates the rank of its argument, that, like NULLSPACE can either be a standard matrix
expression, or a list of lists, that can be interpreted either as a row matrix or a set of equations.

Example:

rank mat((a,b,c),(d,e,f));

returns the value 2.

13.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If the left-hand
side of the assignment, which must be a variable, has not already been declared a matrix, it is
declared by default to the size of the right-hand side. The variable is then set to the value of
the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of linear equat-
ions. For example, to find the solution of the following set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

13.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard array element
notation. Thus y(2,1) refers to the element in the second row and first column of the matrix
Y.
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Procedures

It is often useful to name a statement for repeated use in calculations with varying parameters,
or to define a complete evaluation procedure for an operator. REDUCE offers a procedural
declaration for this purpose. Its general syntax is:

[<procedural type>] PROCEDURE <name>[<varlist>];<statement>;

where

<varlist> ::= (<variable>,...,<variable>)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the <procedure type> can be omitted, since the default
is ALGEBRAIC. Procedures of type INTEGER or REAL may also be used. In the former case, the
system checks that the value of the procedure is an integer. At present, such checking is not
done for a real procedure, although this will change in the future when a more complete type
checking mechanism is installed. Users should therefore only use these types when appropriate.
An empty variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source program, system
procedures are not protected against user redefinition. If a procedure is redefined, a message

*** <procedure name> REDEFINED

is printed. If this occurs, and the user is not redefining his own procedure, he is well advised
to rename it, and possibly start over (because he has already redefined some internal procedure
whose correct functioning may be required for his job!)

All required procedures should be defined at the top level, since they have global scope through-
out a program. In particular, an attempt to define a procedure within a procedure will cause
an error to occur.
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14.1 Procedure Heading

Each procedure has a heading consisting of the word PROCEDURE (optionally preceded by the
word ALGEBRAIC), followed by the name of the procedure to be defined, and followed by its
formal parameters – the symbols that will be used in the body of the definition to illustrate
what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semicolon or dollar
sign).

procedure abc;

When such a procedure is used in an expression or command, abc(), with empty paren-
theses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one space, then follow
with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by commas, then follow
with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the symbols
abc(u,p*q,123) appear, the operations of the procedure body will be carried out as if X had
the same value as U does, Y the same value as p*q does, and Z the value 123. The values of X,
Y, Z, after the procedure body operations are completed are unchanged. So, normally, are the
values of U, P, Q, and (of course) 123. (This is technically referred to as call by value.)

The reader will have noted the word normally a few lines earlier. The call by value protections
can be bypassed if necessary, as described elsewhere.

14.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single statement defining the
action to be performed or the value to be delivered. A terminator must follow the statement. If
it is a semicolon, the name of the procedure just defined is printed. It is not printed if a dollar
sign is used.

If the result wanted is given by a formula of some kind, the body is just that formula, using the
variables in the procedure heading.

Simple Example:

If f(x) is to mean (x+5)*(x+6)/(x+7), the entire procedure definition could read
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procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17, f(a-6) to A*(A-1)/(A+1), and so on.

More Complicated Example:

Suppose we need a function p(n,x) that, for any positive integer N, is the Legendre polynomial
of order n. We can define this operator using the textbook formula defining these functions:

pn(x) =
1
n!

dn

dyn
1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomial pn(x) is the result of substituting y = 0 in the nth

partial derivative with respect to y of a certain fraction involving x and y, then dividing that
by n!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(y^2-2*x*y+1)^(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*W - 1 .

If the desired process is best described as a series of steps, then a group or compound statement
can be used.
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Example:

The above Legendre polynomial example can be rewritten as a series of steps instead of a single
formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can include
references to the procedure name itself, or to other procedures that themselves reference the
given procedure. As an example, we can define the Legendre polynomial through its standard
recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operator REDERR in the above example provides for a simple error exit from an algebraic
procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions of p(n,x) are quite inefficient if
extensive use is to be made of such polynomials, since each call effectively recomputes all lower
order polynomials. It would be better to store these expressions in an array, and then use say
the recurrence relation to compute only those polynomials that have not already been derived.
We leave it as an exercise for the reader to write such a definition.

14.3 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to bypass the call-
by-value protection. If X is a formal parameter or local variable of the procedure (i.e. is in the
heading or in a local declaration), and LET is used instead of := to make an assignment to X,
e.g.

let x = 123;

then it is the variable that is the value of X that is changed. This effect also occurs with local
variables defined in a block. If the value of X is not a variable, but a more general expression,
then it is that expression that is used on the left-hand side of the LET statement. For example,
if X had the value p*q, it is as if let p*q = 123 had been executed.
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14.4 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure definition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.

x := 123;

in the PROCEDURE case it is a variable holding a copy of the first actual argument that is changed.
The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, if ABC is defined using LET, and
abc(u,v,w) is evaluated, the value of U changes to 123. That is, the LET form of definition
allows the user to bypass the protections that are enforced by the call by value conventions of
standard PROCEDURE definitions.

Example: We take our earlier FACTORIAL procedure and write it as a LET statement.

for all n let factorial n =
begin scalar m,s;
m:=1; s:=n;

l1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to l1

end;

The reader will notice that we introduced a new local variable, S, and set it equal to N. The
original form of the procedure contained the statement n:=n-1;. If the user asked for the value
of factorial(5) then N would correspond to, not just have the value of, 5, and REDUCE would
object to trying to execute the statement 5 := 5− 1.

If PQR is a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as a LET statement quite simply:

let pqr = <procedure body>;

To call procedure PQR, if defined in the latter form, the empty parentheses would not be used:
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use PQR not PQR() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined. PQR can be defined in
the standard PROCEDURE form. Then a LET statement

let pqr = pqr();

would allow a user to use PQR instead of PQR() in calling the procedure.

A feature available with LET-defined procedures and not with procedures defined in the standard
way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVW of an integer would be calculated as prescribed by the procedure body, while UVW of a
general argument, such as Z or p+q (assuming these evaluate to themselves) would simply stay
uvw(z) or uvw(p+q) as the case may be.
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User Contributed Packages

The complete REDUCE system includes a number of packages contributed by users that are
provided as a service to the user community. Questions regarding these packages should be
directed to their individual authors.

All such packages have been precompiled as part of the installation process. However, many
must be specifically loaded before they can be used. (Those that are loaded automatically
are so noted in their description.) You should also consult the user notes for your particular
implementation for further information on whether this is necessary. If it is, the relevant
command is LOAD PACKAGE, which takes a list of one or more package names as argument,
for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except those noted
here that have no additional documentation), which is included, along with the source of the
package, in the REDUCE system distribution. These items should be studied for any additional
details on the use of a particular package.

Part 2 of this manual contains short documentation for the packages

• ALGINT: Integration of square roots (chapter 20);

• APPLYSYM: Infinitesimal symmetries of differential equations (chapter 21);

• ARNUM: An algebraic number package (chapter 22);

• ASSIST: Useful utilities for various applications (chapter 23);

• ATENSOR: Tensor simplification (chapter 24);

• AVECTOR: A vector algebra and calculus package (chapter 25);

• BOOLEAN: A package for boolean algebra (chapter 26);

• CALI: A package for computational commutative algebra (chapter 27);

• CAMAL: Calculations in celestial mechanics (chapter 28);
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• CGB: Comprehensive Gröbner bases (chapter 29);

• CHANGEVR: Change of Independent Variable(s) in DEs (chapter 30);

• COMPACT: Package for compacting expressions (chapter 31);

• CONTFR: Approximation of a number by continued fractions (chapter 32);

• CRACK: Solving overdetermined systems of PDEs or ODEs (chapter 33);

• CVIT: Fast calculation of Dirac gamma matrix traces (chapter 34);

• DEFINT: A definite integration interface for REDUCE (chapter 35);

• DESIR: Differential linear homogeneous equation solutions in the neighborhood of irreg-
ular and regular singular points (chapter 36);

• DFPART: Derivatives of generic functions (chapter 37);

• DUMMY: Canonical form of expressions with dummy variables (chapter 38);

• EXCALC: A differential geometry package (chapter 39);

• FIDE: Finite difference method for partial differential equations (chapter 40);

• FPS: Automatic calculation of formal power series (chapter 41);

• GENTRAN: A code generation package (chapter 42);

• GEOMETRY: Mechanized (plane) geometry manipulations (chapter 43);

• GNUPLOT: Display of functions and surfaces (chapter 44);

• GROEBNER: A Gröbner basis package (chapter 45);

• IDEALS: Arithmetic for polynomial ideals (chapter 46);

• INEQ: Support for solving inequalities (chapter 47);

• INVBASE: A package for computing involutive bases (chapter 48);

• LAPLACE: Laplace and inverse Laplace transforms (chapter 49);

• LIE: Functions for the classification of real n-dimensional Lie algebras (chapter 50);

• LIMITS: A package for finding limits (chapter 51);

• LINALG: Linear algebra package (chapter 52);

• MATHML: Interface for MathML (chapter 53);

• MODSR: Modular solve and roots (chapter 54);

• MRVLIMIT: Limits of ’exp-log’ functions (chapter 55);

• NCPOLY: Non–commutative polynomial ideals (chapter 56);

• NORMFORM: Computation of matrix normal forms (chapter 57);
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• NUMERIC: Solving numerical problems (chapter 58);

• ODESOLVE: Ordinary differential equations solver (chapter 59);

• ORTHOVEC: Manipulation of scalars and vectors (chapter 60);

• PHYSOP: Operator calculus in quantum theory (chapter 61);

• PM: A REDUCE pattern matcher (chapter 62);

• QSUM: q-hypergeometric sums (chapter 63);

• RANDPOLY: A random polynomial generator (chapter 64);

• RATAPRX: Rational Approximations (chapter 65);

• REACTEQN: Support for chemical reaction equation systems (chapter 66);

• REDLOG: Reduce Logic System (chapter 67);

• RESET: Code to reset REDUCE to its initial state (chapter 68);

• RESIDUE: A residue package (chapter 69);

• RLFI: REDUCE LaTeX formula interface (chapter 70);

• ROOTS: A REDUCE root finding package (chapter 71);

• RSOLVE: Rational/integer polynomial solvers (chapter 72);

• SCOPE: REDUCE source code optimization package (chapter 73);

• SETS: A basic set theory package (chapter 74);

• SPARSE: Sparse Matrices (chapter 75);

• SPDE: A package for finding symmetry groups of PDE’s (chapter 76);

• SPECFN: Package for special functions (chapter 77);

• SPECFN2: Package for special special functions (chapter 78);

• SUM: A package for series summation (chapter 79);

• SUSY2: Super Symmetry (chapter 80);

• SYMMETRY: Operations on symmetric matrices (chapter 81);

• TAYLOR: Manipulation of Taylor series (chapter 82);

• TPS: A truncated power series package (chapter 83);

• TRI: TeX REDUCE interface (chapter 84);

• TRIGSIMP: Simplification and factorization of trigonometric and hyperbolic functions
(chapter 85);

• WU: Wu algorithm for polynomial systems (chapter 86);
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• XCOLOR: Calculation of the color factor in non-abelian gauge field theories (chapter 87);

• XIDEAL: Gröbner Bases for exterior algebra (chapter 88);

• ZEILBERG: A package for indefinite and definite summation (chapter 89);

• ZTRANS: Z-transform package (chapter 90);



Chapter 16

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language Lisp known
as Standard Lisp which is described in J. Marti, Hearn, A. C., Griss, M. L. and Griss, C.,
“Standard LISP Report” SIGPLAN Notices, ACM, New York, 14, No 10 (1979) 48-68. We
shall assume in this section that the reader is familiar with the material in that paper. This
also assumes implicitly that the reader has a reasonable knowledge about Lisp in general, say
at the level of the LISP 1.5 Programmer’s Manual (McCarthy, J., Abrahams, P. W., Edwards,
D. J., Hart, T. P. and Levin, M. I., “LISP 1.5 Programmer’s Manual”, M.I.T. Press, 1965) or
any of the books mentioned at the end of this section. Persons unfamiliar with this material
will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source language is gen-
eral enough to allow for a full range of Lisp-like symbolic calculations. To achieve this generality,
however, it is necessary to provide the user with two modes of evaluation, namely an algebraic
mode and a symbolic mode. To enter symbolic mode, the user types symbolic; (or lisp;)
and to return to algebraic mode one types algebraic;. Evaluations proceed differently in each
mode so the user is advised to check what mode he is in if a puzzling error arises. He can find
his mode by typing

eval_mode;

The current mode will then be printed as ALGEBRAIC or SYMBOLIC.

Expression evaluation may proceed in either mode at any level of a calculation, provided the
results are passed from mode to mode in a compatible manner. One simply prefixes the relevant
expression by the appropriate mode. If the mode name prefixes an expression at the top level,
it will then be handled as if the global system mode had been changed for the scope of that
particular calculation.

For example, if the current mode is ALGEBRAIC, then the commands

157
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symbolic car ’(a);
x+y;

will cause the first expression to be evaluated and printed in symbolic mode and the second in
algebraic mode. Only the second evaluation will thus affect the expression workspace. On the
other hand, the statement

x + symbolic car ’(12);

will result in the algebraic value X+12.

The use of SYMBOLIC (and equivalently ALGEBRAIC) in this manner is the same as any operator.
That means that parentheses could be omitted in the above examples since the meaning is
obvious. In other cases, parentheses must be used, as in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whose first argument is quoted is being eval-
uated in symbolic mode, regardless of the mode in effect at that time. Thus, the first example
above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic constructions carry
over into symbolic mode. However, there are some differences. First, expression evaluation now
becomes Lisp evaluation. Secondly, assignment statements are handled differently, as we shall
discuss shortly. Thirdly, local variables and array elements are initialized to NIL rather than 0.
(In fact, any variables not explicitly declared INTEGER are also initialized to NIL in algebraic
mode, but the algebraic evaluator recognizes NIL as 0.) Finally, function definitions follow the
conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed primarily if
not exclusively for symbolic mode.

16.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic mode, namely
. (CONS), EQ and MEMQ. The precedence of these operators was given in another section.
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16.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the Lisp meta
language.

Examples:

x
car u . reverse v
simp (u+v^2)

16.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value, it is necessary
to add to REDUCE the concept of a quoted expression by analogy with the Lisp QUOTE function.
This is provided by the single quote mark ’. For example,

’a represents the Lisp S-expression (quote a)
’(a b c) represents the Lisp S-expression (quote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in symbolic mode.
Thus, to print the string "A String", one would write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE. Thus (A !. B) is
the list consisting of the three elements A, ., and B, whereas (A . B) is the dotted pair of A
and B.

16.4 Lambda Expressions

LAMBDA expressions provide the means for constructing Lisp LAMBDA expressions in symbolic
mode. They may not be used in algebraic mode.

Syntax:

<LAMBDA expression> ::=
LAMBDA <varlist><terminator><statement>

where

<varlist> ::= (<variable>,...,<variable>)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the Lisp LAMBDA expression
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(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBDA expressions may be used in symbolic mode in place of prefix operators, or as an argument
of the reserved word FUNCTION.

In those cases where a LAMBDA expression is used to introduce local variables to avoid recompu-
tation, a WHERE statement can also be used. For example, the expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possible, WHERE syntax is preferred to LAMBDA syntax, since it is more natural.

16.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable, a SETQ of the right-
hand side to that variable occurs. If the left-hand side is an expression, it must be of the form
of an array element, otherwise an error will result. For example, x:=y translates into (SETQ
X Y) whereas a(3) := 3 will be valid if A has been previously declared a single dimensioned
array of at least four elements.

16.6 FOR EACH Statement

The FOR EACH form of the FOR statement, designed for iteration down a list, is more general in
symbolic mode. Its syntax is:

FOR EACH ID:identifier {IN|ON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keyword IN is used, iteration is on each element of the list. With
ON, iteration is on the whole list remaining at each point in the iteration. As a result, we have
the following equivalence between each form of FOR EACH and the various mapping functions in
Lisp:

DO COLLECT JOIN
IN MAPC MAPCAR MAPCAN
ON MAP MAPLIST MAPCON

Example: To list each element of the list (a b c):

for each x in ’(a b c) collect list x;
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16.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in symbolic mode.
Additional functions may also be defined as symbolic procedures. For example, to define the
Lisp function ASSOC, the following could be used:

symbolic procedure assoc(u,v);
if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, then SYMBOLIC could be omitted in the above definition.
MACROs may be defined by prefixing the keyword PROCEDURE by the word MACRO. (In fact, ordinary
functions may be defined with the keyword EXPR prefixing PROCEDURE as was used in the
Standard Lisp Report.) For example, we could define a MACRO CONSCONS by

symbolic macro procedure conscons l;
expand(cdr l,’cons);

Another form of macro, the SMACRO is also available. These are described in the Standard Lisp
Report. The Report also defines a function type FEXPR. However, its use is discouraged since it
is hard to implement efficiently, and most uses can be replaced by macros. At the present time,
there are no FEXPRs in the core REDUCE system.

16.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning on the switch
DEFN (for definition). The system then prints the Lisp translation of his input but does not
evaluate it. Normal operation is resumed when DEFN is turned off.

16.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to learn about
symbolic mode is that it gives one access to a wider range of techniques than is possible in
algebraic mode alone. For example, if a user wishes to use parts of the system defined in the
basic system source code, or refine their algebraic code definitions to make them more efficient,
then it is necessary to understand the source language in fairly complete detail. Moreover, it
is also necessary to know a little more about the way REDUCE operates internally. Basically,
REDUCE considers expressions in two forms: prefix form, which follow the normal Lisp rules
of function composition, and so-called canonical form, which uses a completely different syntax.

Once these details are understood, the most critical problem faced by a user is how to make
expressions and procedures communicate between symbolic and algebraic mode. The purpose
of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that expression in
symbolic mode calculations, or vice versa, the easiest way to do this is to assign a variable to
that expression whose value is easily obtainable in both modes. To facilitate this, a declaration
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SHARE is available. SHARE takes a list of identifiers as argument, and marks these variables as
having recognizable values in both modes. The declaration may be used in either mode.

E.g.,

share x,y;

says that X and Y will receive values to be used in both modes.

If a SHARE declaration is made for a variable with a previously assigned algebraic value, that
value is also made available in symbolic mode.

16.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic mode, one simply
makes an assignment of a shared variable to the relevant expression in algebraic mode. For
example, if one wishes to work with (a+b)^2, one would say, in algebraic mode:

x := (a+b)^2;

assuming that X was declared shared as above. If we now change to symbolic mode and say

x;

its value will be printed as a prefix form with the syntax:

(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor currently likes to
transfer prefix forms from command to command, but doesn’t like to reconvert standard forms
(which represent polynomials) and standard quotients back to a true Lisp prefix form for the
expression (which would result in excessive computation). So *SQ is used to tell the algebraic
processor that it is dealing with a prefix form which is really a standard quotient and the second
argument (T or NIL) tells it whether it needs further processing (essentially, an already simplified
flag).

So to get the true standard quotient form in symbolic mode, one needs CADR of the variable.
E.g.,

z := cadr x;

would store in Z the standard quotient form for (a+b)^2.

Once you have this expression, you can now manipulate it as you wish. To facilitate this, a
standard set of selectors and constructors are available for getting at parts of the form. Those
presently defined are as follows:
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REDUCE Selectors

DENR denominator of standard quotient

LC leading coefficient of polynomial

LDEG leading degree of polynomial

LPOW leading power of polynomial

LT leading term of polynomial

MVAR main variable of polynomial

NUMR numerator (of standard quotient)

PDEG degree of a power

RED reductum of polynomial

TC coefficient of a term

TDEG degree of a term

TPOW power of a term

REDUCE Constructors

.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.^ raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set of functions defined
for this purpose. Those currently implemented include:
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!*A2F convert an algebraic expression to a standard form. If result
is rational, an error results;

!*A2K converts an algebraic expression to a kernel. If this is not
possible, an error results;

!*F2A converts a standard form to an algebraic expression;

!*F2Q convert a standard form to a standard quotient;

!*K2F convert a kernel to a standard form;

!*K2Q convert a kernel to a standard quotient;

!*P2F convert a standard power to a standard form;

!*P2Q convert a standard power to a standard quotient;

!*Q2F convert a standard quotient to a standard form. If the quo-
tient denominator is not 1, an error results;

!*Q2K convert a standard quotient to a kernel. If this is not possible,
an error results;

!*T2F convert a standard term to a standard form

!*T2Q convert a standard term to a standard quotient.

16.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic mode, the only
thing to do is make sure that the value in symbolic mode is a prefix expression. E.g., one uses
(expt (plus a b) 2) for (a+b)^2, or the format (*sq <standard quotient> t) as described
above. However, if you have been working with parts of a standard form they will probably not
be in this form. In that case, you can do the following:

1. If it is a standard quotient, call PREPSQ on it. This takes a standard quotient as argument,
and returns a prefix expression. Alternatively, you can call MK!*SQ on it, which returns a
prefix form like (*SQ <standard quotient> T) and avoids translation of the expression
into a true prefix form.

2. If it is a standard form, call PREPF on it. This takes a standard form as argument, and
returns the equivalent prefix expression. Alternatively, you can convert it to a standard
quotient and then call MK!*SQ.

3. If it is a part of a standard form, you must usually first build up a standard form out of
it, and then go to step 2. The conversion functions described earlier may be used for this
purpose. For example,

(a) If Z is an expression which is a term, !*T2F Z is a standard form.

(b) If Z is a standard power, !*P2F Z is a standard form.

(c) If Z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of (a+b)^2 back to algebraic mode, one could say:
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y:= mk!*sq !*t2q lt numr z;

where Y has been declared shared as above. If you now go back to algebraic mode, you can
work with Y in the usual way.

16.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will be that the
square of the leading term of (a+ b)2 is calculated.

share x,y; % declare X and Y as shared
x := (a+b)^2; % store (a+b)^2 in X
symbolic; % transfer to symbolic mode
z := cadr x; % store a true standard quotient in Z
lt numr z; % print the leading term of the

% numerator of Z
y := mk!*sq !*t2q numr z; % store the prefix form of this

% leading term in Y
algebraic; % return to algebraic mode
y^2; % evaluate square of the leading term

% of (a+b)^2

16.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in algebraic mode,
it is necessary to declare this fact to the system by using the declaration OPERATOR in symbolic
mode. Thus

symbolic operator leadterm;

would declare the procedure LEADTERM as an algebraic operator. This declaration must be made
in symbolic mode as the effect in algebraic mode is different. The value of such a procedure
must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix form. Therefore if you
want to work with the arguments as standard quotients you must first convert them to that
form by using the function SIMP!*. This function takes a prefix form as argument and returns
the evaluated standard quotient.
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For example, if you want to define a procedure LEADTERM which gives the leading term of an
algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operator LTERM . In the latter case, the
calculation is done with respect to the second argument of the operator. In the example here,
we simply extract the leading term with respect to the system’s choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic mode definition,
the function REVAL can be used. The one argument of REVAL must be the prefix form of an
expression. REVAL returns the evaluated expression as a true Lisp prefix form.

16.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support of REDUCE.
It is fully documented in the book Marti, J.B., “RLISP ’88: An Evolutionary Approach to Pro-
gram Design and Reuse”, World Scientific, Singapore (1993). Rlisp ’88 adds to the traditional
Rlisp the following facilities:

1. more general versions of the looping constructs for, repeat and while;

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.

In addition, “–” is a letter in Rlisp ’88. In other words, A-B is an identifier, not the difference of
the identifiers A and B. If the latter construct is required, it is necessary to put spaces around the
- character. For compatibility between the two versions of Rlisp, we recommend this convention
be used in all symbolic mode programs.

To use Rlisp ’88, type on rlisp88;. This switches to symbolic mode with the Rlisp ’88 syntax
and extensions. While in this environment, it is impossible to switch to algebraic mode, or
prefix expressions by “algebraic”. However, symbolic mode programs written in Rlisp ’88 may
be run in algebraic mode provided the rlisp88 package has been loaded. We also expect that
many of the extensions defined in Rlisp ’88 will migrate to the basic Rlisp over time. To return
to traditional Rlisp or to switch to algebraic mode, say “off rlisp88”.
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16.11 References

There are a number of useful books which can give you further information about LISP. Here
is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.I. Levin, “LISP 1.5 Programmer’s
Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”, Harper & Row, New
York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.
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Chapter 17

Calculations in High Energy Physics

A set of REDUCE commands is provided for users interested in symbolic calculations in high
energy physics. Several extensions to our basic syntax are necessary, however, to allow for the
different data structures encountered.

17.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

17.1.1 . (Cons) Operator

Syntax:

(EXPRN1:vector_expression)
. (EXPRN2:vector_expression):algebraic.

The binary . operator, which is normally used to denote the addition of an element to the front
of a list, can also be used in algebraic mode to denote the scalar product of two Lorentz four-
vectors. For this to happen, the second argument must be recognizable as a vector expression at
the time of evaluation. With this meaning, this operator is often referred to as the dot operator.
In the present system, the index handling routines all assume that Lorentz four-vectors are used,
but these routines could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vectors in the
system. Thus if EO represents the unit vector (1,0,0,0), (p.eo) represents the zeroth com-
ponent of the four-vector P. Our metric and notation follows Bjorken and Drell “Relativistic
Quantum Mechanics” (McGraw-Hill, New York, 1965). Similarly, an arbitrary component P
may be represented by (p.u). If contraction over components of vectors is required, then the
declaration INDEX must be used. Thus

index u;

declares U as an index, and the simplification of

p.u * q.u

169
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would result in

P.Q

The metric tensor gµν may be represented by (u.v). If contraction over U and V is required,
then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can do it with
the declaration REMIND. Thus remind v1...vn; removes the index flags from the variables V1
through Vn. However, these variables remain vectors in the system.

17.1.2 G Operator for Gamma Matrices

Syntax:

G(ID:identifier[,EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a product of γ matrices contracted with Lorentz four-
vectors. Gamma matrices are associated with fermion lines in a Feynman diagram. If more
than one such line occurs, then a different set of γ matrices (operating in independent spin
spaces) is required to represent each line. To facilitate this, the first argument of G is a line
identification identifier (not a number) used to distinguish different lines.

Thus

g(l1,p) * g(l2,q)

denotes the product of γ.p associated with a fermion line identified as L1, and γ.q associated
with another line identified as L2 and where p and q are Lorentz four-vectors. A product of γ
matrices associated with the same line may be written in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vector A is reserved in arguments of G to denote the special γ matrix γ5. Thus

g(l,a) = γ5 associated with the line L

g(l,p,a) = γ.p ×γ5 associated with the line L.

γµ (associated with the line L) may be written as g(l,u), with U flagged as an index if contrac-
tion over U is required.

The notation of Bjorken and Drell is assumed in all operations involving γ matrices.

17.1.3 EPS Operator

Syntax:
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EPS(EXPRN1:vector_expression,...,EXPRN4:vector_exp)
:vector_exp.

The operator EPS has four arguments, and is used only to denote the completely antisymmetric
tensor of order 4 and its contraction with Lorentz four-vectors. Thus

εijkl =


+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if an odd permutation
0 otherwise

A contraction of the form εijµνpµqν may be written as eps(i,j,p,q), with I and J flagged as
indices, and so on.

17.2 Vector Variables

Apart from the line identification identifier in the G operator, all other arguments of the operators
in this section are vectors. Variables used as such must be declared so by the type declaration
VECTOR, for example:

vector p1,p2;

declares P1 and P2 to be vectors. Variables declared as indices or given a mass are automatically
declared vector by these declarations.

17.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

17.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar or numerical
expression and a vector expression is a vector, as are the sum and difference of vector expressions.
If these rules are not followed, error messages are printed. Furthermore, if the system finds an
undeclared variable where it expects a vector variable, it will ask the user in interactive mode
whether to make that variable a vector or not. In batch mode, the declaration will be made
automatically and the user informed of this by a message.

Examples:

Assuming P and Q have been declared vectors, the following are vector expressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereas p*q and p/q are not.
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17.3.2 Dirac Expressions

These denote those expressions which involve γ matrices. A γ matrix is implicitly a 4 × 4 matrix,
and so the product, sum and difference of such expressions, or the product of a scalar and Dirac
expression is again a Dirac expression. There are no Dirac variables in the system, so whenever
a scalar variable appears in a Dirac expression without an associated γ matrix expression, an
implicit unit 4 by 4 matrix is assumed. For example, g(l,p) + m denotes g(l,p) + m*<unit
4 by 4 matrix>. Multiplication of Dirac expressions, as for matrix expressions, is of course
non-commutative.

17.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace of each
γ matrix product in the expansion of the expression. One quarter of each trace is taken in
order to avoid confusion between the trace of the scalar M, say, and M representing M * <unit
4 by 4 matrix>. Contraction over indices occurring in such expressions is also performed. If
an unmatched index is found in such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this system was
produced. For example, in addition to the algorithm developed by Chisholm for contracting
indices in products of traces, REDUCE uses the elegant algorithm of Kahane for contracting
indices in γ matrix products. These algorithms are described in Chisholm, J. S. R., Il Nuovo
Cimento X, 30, 426 (1963) and Kahane, J., Journal Math. Phys. 9, 1732 (1968).

It is possible to prevent the trace calculation over any line identifier by the declaration NOSPUR.
For example,

nospur l1,l2;

will mean that no traces are taken of γ matrix terms involving the line numbers L1 and L2.
However, in some calculations involving more than one line, a catastrophic error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of a γ matrix expression involving a line identifier which has been declared NOSPUR may
be later taken by making the declaration SPUR.

See also the CVIT package for an alternative mechanism (chapter 34).

17.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can, of course,
be accomplished with a LET command such as

let p.p= m^2;
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but an alternative method is provided by two commands MASS and MSHELL. MASS takes a list of
equations of the form:

<vector variable> = <scalar variable>

for example,

mass p1=m, q1=mu;

The only effect of this command is to associate the relevant scalar variable as a mass with the
corresponding vector. If we now say

mshell <vector variable>,...,<vector variable>;

and a mass has been associated with these arguments, a substitution of the form

<vector variable>.<vector variable> = <mass>^2

is set up. An error results if the variable has no preassigned mass.

17.6 Example

We give here as an example of a simple calculation in high energy physics the computation of
the Compton scattering cross-section as given in Bjorken and Drell Eqs. (7.72) through (7.74).
We wish to compute the trace of

α2
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2m

)(
γ.e′γ.eγ.ki

2k.pi
+
γ.eγ.e′γ.kf

2k′.pi

)(
γ.pi +m

2m

)
(
γ.kiγ.eγ.e

′

2k.pi
+
γ.kfγ.e

′γ.e

2k′.pi

)
where ki and kf are the four-momenta of incoming and outgoing photons (with polarization
vectors e and e′ and laboratory energies k and k′ respectively) and pi, pf are incident and final
electron four-momenta.

Omitting therefore an overall factor α2
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we need to find one quarter of the trace of
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)
A straightforward REDUCE program for this, with appropriate substitutions (using P1 for pi,
PF for pf , KI for ki and KF for kf ) is

on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity as
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% the base of natural logarithms.
mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= m^2+ki.kf, p1.ki= m*k,p1.kf=

m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is",ws;

(We use P1 instead of PI in the above to avoid confusion with the reserved variable PI).

This program will print the following result

(-1) (-1) 2
The Compton cxn is 1/2*K*KP + 1/2*K *KP + 2*E.EP - 1

17.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four dimensions of
QED calculations. However, in most cases, the programs will also work in an arbitrary number
of dimensions. The command

vecdim <expression>;

sets the appropriate dimension. The dimension can be symbolic as well as numerical. Users
should note however, that the EPS operator and the γ5 symbol (A) are not properly defined in
other than four dimensions and will lead to an error if used.
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REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of utilities which
have proved useful for program development over the years. The following are supported in
most of the implementations of REDUCE currently available.

18.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically loaded on
demand. You should check your system specific user guide to make sure you have such a com-
piler. To make the compiler active, the switch COMP should be turned on. Any further definitions
input after this will be compiled automatically. If the compiler used is a derivative version of
the original Griss-Hearn compiler, (M. L. Griss and A. C. Hearn, “A Portable LISP Compiler”,
SOFTWARE — Practice and Experience 11 (1981) 541-605), there are other switches that
might also be used in this regard. However, these additional switches are not supported in all
compilers. They are as follows:

PLAP If ON, causes the printing of the portable macros produced
by the compiler;

PGWD If ON, causes the printing of the actual assembly language
instructions generated from the macros;

PWRDS If ON, causes a statistic message of the form
<function> COMPILED, <words> WORDS, <words> LEFT
to be printed. The first number is the number of words of
binary program space the compiled function took, and the
second number the number of words left unused in binary
program space.

18.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or REDUCE commands
and build a fast loading version of them. In Rlisp or REDUCE, one does the following:
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faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the command LOAD, e.g. load foo; or load foo,bah;

This process produces a fast-loading version of the original file. In some implementations, this
means another file is created with the same name but a different extension. For example, in
PSL-based systems, the extension is b (for binary). In CSL-based systems, however, this process
adds the fast-loading code to a single file in which all such code is stored. Particular functions
are provided by CSL for managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such statements, it is
important to remember that some of the commands must be instantiated during the building
process. For example, macros must be expanded, and some property list operations must
happen. The REDUCE sources should be consulted for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of the semicolon.
With LOAD however, the input doesn’t print out regardless of which terminator is used with the
command.

If you subsequently change the source files used in producing a fast loading file, don’t forget to
repeat the above process in order to update the fast loading file correspondingly. Remember
also that the text which is read in during the creation of the fast load file, in the compiling
process described above, is not stored in your REDUCE environment, but only translated and
output. If you want to use the file just created, you must then use LOAD to load the output of
the fast-loading file generation program.

When the file to be loaded contains a complete package for a given application, LOAD PACKAGE
rather than LOAD should be used. The syntax is the same. However, LOAD PACKAGE does some
additional bookkeeping such as recording that this package has now been loaded, that is required
for the correct operation of the system.

18.3 The Standard Lisp Cross Reference Program

CREF is a Standard Lisp program for processing a set of Standard LISP function definitions to
produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are only called by them-
selves);

(c) A list of undefined functions (functions called but not defined in this set of functions);

(d) A list of variables that were used non-locally but not declared GLOBAL or FLUID before
their use;

(e) A list of variables that were declared GLOBAL but not used as FLUIDs, i.e., bound in
a function;

(f) A list of FLUID variables that were not bound in a function so that one might consider
declaring them GLOBALs;
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(g) A list of all GLOBAL variables present;

(h) A list of all FLUID variables present;

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declared FLUID or GLOBAL;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;

(d) Functions in which it is changed by SETQ.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of arguments,
and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.

18.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that algebraic con-
structs will actually appear as calls to symbolic functions, such as AEVAL.

18.3.2 Usage

To invoke the cross reference program, the switch CREF is used. on cref causes the cref
program to load and the cross-referencing process to begin. After all the required definitions
are loaded, off cref will cause the cross-reference listing to be produced. For example, if you
wish to cross-reference all functions in the file tst.red, and produce the cross-reference listing
in the file tst.crf, the following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, more IN statements may be added before the call of off cref,
or the IN statement changed to include a list of files.
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18.3.3 Options

Functions with the flag NOLIST will not be examined or output. Initially, all Standard Lisp
functions are so flagged. (In fact, they are kept on a list NOLIST!*, so if you wish to see
references to all functions, then CREF should be first loaded with the command load cref, and
this variable then set to NIL).

It should also be remembered that any macros with the property list flag EXPAND, or, if the switch
FORCE is on, without the property list flag NOEXPAND, will be expanded before the definition is
seen by the cross-reference program, so this flag can also be used to select those macros you
require expanded and those you do not.

18.4 Prettyprinting Reduce Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format. This module
is activated by the switch PRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the printing program
tries to interpret this as an algebraic expression before printing it. In most cases, this can
be done successfully. However, there will be occasional instances where results are printed
in symbolic mode form that bears little resemblance to the original input, even though it is
formally equivalent.

If you want to prettyprint a whole file, say off output,msg; and (hopefully) only clean output
will result. Unlike DEFN, input is also evaluated with PRET on.

18.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The Standard
Lisp function for this purpose is PRETTYPRINT which takes a Lisp expression and prints the
formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch DEFN. This
is in fact a convenient way to convert REDUCE (or Rlisp) syntax into Lisp. off msg; will
prevent warning messages from being printed.

NOTE: When DEFN is on, input is not evaluated.
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Maintaining REDUCE

REDUCE continues to evolve both in terms of the number of facilities available, and the power
of the individual facilities. Corrections are made as bugs are discovered, and awkward features
simplified. In order to provide users with easy access to such enhancements, a REDUCE network
library has been established from which material can be extracted by anyone with electronic
mail access to the Internet computer network.

In addition to miscellaneous documents, source and utility files, the library includes a bibliogra-
phy of papers referencing REDUCE which contains over 800 entries. Instructions on using this
library are sent to all registered REDUCE users who provide a network address. If you would
like a more complete list of the contents of the library, send to reduce-netlib@rand.org the single
line message send index or help. The current REDUCE information package can be obtained
from the network library by including on a separate line send info-package and a demonstration
file by including the line send demonstration. If you prefer, hard copies of the information
package and the bibliography are available from the REDUCE secretary at RAND, 1700 Main
Street, P.O. Box 2138, Santa Monica, CA 90407-2138 (reduce@rand.org). Copies of the network
library are also maintained at other addresses. At the time of writing, reduce-netlib@can.nl and
reduce-netlib@pi.cc.u-tokyo.ac.jp may also be used instead of reduce-netlib@rand.org.

A World Wide Web REDUCE server with URL

http://www.rrz.uni-koeln.de/REDUCE/

is also supported. In addition to general information about REDUCE, this server has pointers
to the network library, the demonstration versions, examples of REDUCE programming, a set
of manuals, and the REDUCE online help system.

Finally, there is a REDUCE electronic forum accessible from the same networks. This enables
REDUCE users to raise questions and discuss ideas concerning the use and development of
REDUCE with other users. Additions and changes to the network library and new releases of
REDUCE are also announced in this forum. Any user with appropriate electronic mail access
is encouraged to register for membership in this forum. To do so, send a message requesting
inclusion to
reduce-forum-request@rand.org.
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Part II

Additional REDUCE
Documentation
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The documentation in this section was written using to a large part the LATEX files provided
by the authors, and distributed with REDUCE. There has been extensive editing and much
rewriting, so the responsibility for this part of the manual rests with the editor, John Fitch. It is
hoped that this version of the documentation contains sufficient information about the facilities
available that a user may be able to progress. It deliberately avoids discussions of algorithms
or advanced use; for these the package author’s own documentation should be consulted. In
general the package documentation will contain more examples and in some cases additional
facilities such as tracing.
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Chapter 20

ALGINT: Integration of square roots

James Davenport
School of Mathematical Sciences

University of Bath
Bath BA2 7AY

England

e–mail: jhd@maths.bath.ac.uk

The package supplies no new functions, but extends the INT operator for indefinite integration
so it can handle a wider range of expressions involving square roots. When it is loaded the
controlling switch ALGINT is turned on. If it is desired to revert to the standard integrator,
then it may be turned off. The normal integrator can deal with some square roots but in an
unsystematic fashion.

1: load_package algint;

2: int(sqrt(sqrt(a^2+x^2)+x)/x,x);

2 2
sqrt(a)*atan((sqrt(a)*sqrt(sqrt(a + x ) + x)

2 2
*sqrt(a + x )

2 2
- sqrt(a)*sqrt(sqrt(a + x ) + x)*a

2 2
- sqrt(a)*sqrt(sqrt(a + x ) + x)*x)/(2
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2 2 2
*a )) + 2*sqrt(sqrt(a + x ) + x)

2 2
+ sqrt(a)*log(sqrt(sqrt(a + x ) + x) - sqrt(a))

2 2
- sqrt(a)*log(sqrt(sqrt(a + x ) + x) + sqrt(a))

3: off algint;

4: int(sqrt(sqrt(a^2+x^2)+x)/x,x);

2 2
sqrt(sqrt(a + x ) + x)

int(-------------------------,x)
x

There is also a switch TRA, which may be set on to provide detailed tracing of the algorithm
used. This is not recommended for casual use.
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APPLYSYM: Infinitesimal
symmetries of differential equations

Thomas Wolf
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
London E1 4NS, England

e–mail: T.Wolf@maths.qmw.ac.uk

The investigation of infinitesimal symmetries of differential equations (DEs) with computer
algebra programs attracted considerable attention over the last years. The package APPLYSYM
concentrates on the implementation of applying symmetries for calculating similarity variables
to perform a point transformation which lowers the order of an ODE or effectively reduces the
number of explicitly occuring independent variables of a PDE(-system) and for generalising
given special solutions of ODEs/PDEs with new constant parameters.

A prerequisite for applying symmetries is the solution of first order quasilinear PDEs. The
corresponding program QUASILINPDE can as well be used without APPLYSYM for solving first
order PDEs which are linear in their first order derivative and otherwise at most rationally non-
linear. The following two PDEs are equations (2.40) and (3.12) taken from E. Kamke, ”Loe-
sungsmethoden und Loesungen von Differential- gleichungen, Partielle Differentialgleichungen
erster Ordnung”, B.G. Teubner, Stuttgart (1979).
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------------------------ Equation 2.40 ------------------------

2 3 4
The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x

2 2 2
+ 4*x *y*z - 2*y *z .

The equivalent characteristic system:

3 4 2 2 2
0=2*(df(z,y)*y - x + 2*x *y*z - y *z )

2
0=y *(2*df(x,y)*y - x)

for the functions: x(y) z(y) .
The general solution of the PDE is given through

4 2 2
log(y)*x - log(y)*x *y*z - y *z sqrt(y)*x

0 = ff(----------------------------------,-----------)
4 2 y

x - x *y*z

with arbitrary function ff(..).

------------------------ Equation 3.12 ------------------------

The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y

+ df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z.
The equivalent characteristic system:

0=df(w,x)*x

0=df(z,x)*x - c*x - d*y - f*z

0=df(y,x)*x - a*x - b*y

for the functions: z(x) y(x) w(x) .
The general solution of the PDE is given through

a*x + b*y - y
0 = ff(---------------,( - a*d*x + b*c*x + b*f*z - b*z - c*f*x

b b
x *b - x

2 f f f 2 f
- d*f*y + d*y - f *z + f*z)/(x *b*f - x *b - x *f + x *f)

,w)

with arbitrary function ff(..).
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The program DETRAFO can be used to perform point transformations of ODEs/PDEs (and -
systems).

For detailed explanations the user is referred to the paper Programs for Applying Symmetries
of PDEs by Thomas Wolf, supplied as part of the Reduce documentation as applysym.tex and
published in the Proceedings of ISSAC’95 - 7/95 Montreal, Canada, ACM Press (1995).
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Chapter 22

ARNUM: An algebraic number
package

Eberhard Schrüfer
Institute SCAI.Alg

German National Research Center for Information Technology (GMD)
Schloss Birlinghoven

D-53754 Sankt Augustin, Germany

e–mail: schruefer@gmd.de

Algebraic numbers are the solutions of an irreducible polynomial over some ground domain.
The algebraic number i (imaginary unit), for example, would be defined by the polynomial
i2 + 1. The arithmetic of algebraic number s can be viewed as a polynomial arithmetic modulo
the defining polynomial.

The ARNUM package provides a mechanism to define other algebraic numbers, and compute with
them.

22.1 DEFPOLY

DEFPOLY takes as its argument the defining polynomial for an algebraic number, or a number
of defining polynomials for different algebraic numbers, and arranges that arithmetic with the
new symbol(s) is performed relative to these polynomials.

load_package arnum;

defpoly sqrt2**2-2;

1/(sqrt2+1);

SQRT2 - 1

(x**2+2*sqrt2*x+2)/(x+sqrt2);

X + SQRT2
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on gcd;

(x**3+(sqrt2-2)*x**2-(2*sqrt2+3)*x-3*sqrt2)/(x**2-2);

2
X - 2*X - 3

--------------
X - SQRT2

off gcd;

sqrt(x**2-2*sqrt2*x*y+2*y**2);

ABS(X - SQRT2*Y)

The following example introduces both
√

2 and 5
1
3 :

defpoly sqrt2**2-2,cbrt5**3-5;

*** defining polynomial for primitive element:

6 4 3 2
A1 - 6*A1 - 10*A1 + 12*A1 - 60*A1 + 17

sqrt2;

5 4 3 2
48/1187*A1 + 45/1187*A1 - 320/1187*A1 - 780/1187*A1 +

735/1187*A1 - 1820/1187

sqrt2**2;

2

22.2 SPLIT FIELD

The function SPLIT FIELD calculates a primitive element of minimal degree for which a given
polynomial splits into linear factors.

split_field(x**3-3*x+7);

*** Splitting field is generated by:
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6 4 2
A5 - 18*A5 + 81*A5 + 1215

4 2
{1/126*A5 - 5/42*A5 - 1/2*A5 + 2/7,

4 2
- (1/63*A5 - 5/21*A5 + 4/7),

4 2
1/126*A5 - 5/42*A5 + 1/2*A5 + 2/7}

for each j in ws product (x-j);

3
X - 3*X + 7
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Chapter 23

ASSIST: Various Useful Utilities

Hubert Caprasse
Département d’Astronomie et d’Astrophysique

Institut de Physique, B–5, Sart Tilman
B–4000 LIEGE 1, Belgium

e–mail: caprasse@vm1.ulg.ac.be

The ASSIST package provides a number of general purpose functions which adapt REDUCE to
various calculational strategies. All the examples in this section require the ASSIST package to
be loaded.

23.1 Control of Switches

The two functions SWITCHES, SWITCHORG have no argument and are called as if they were mere
identifiers.

SWITCHES displays the current status of the most often used switches when manipulating rational
functions; EXP, DIV, MCD, GCD, ALLFAC, INTSTR, RAT, RATIONAL, FACTOR. The switch DISTRIBUTE
which controls the handling of distributed polynomials is included as well (see section 23.8).

SWITCHORG resets (almost) all switches in the status they have when entering into REDUCE.
(See also RESET, chapter 68). The new switch DISTRIBUTE facilitates changing polynomials to
a distributed form.

23.2 Manipulation of the List Structure

Functions for list manipulation are provided and are generalised to deal with the new structure
BAG.

i. Generation of a list of length n with its elements initialised to 0 and also to append to a
list l sufficient zeros to make it of length n:

MKLIST n; %% n is an INTEGER
MKLIST(l,n); %% l is List-like, n is an INTEGER
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ii. Generation of a list of sublists of length n containing p elements equal to 0 and n − p
elements equal to 1.

SEQUENCES 2; ==> {{0,0},{0,1},{1,0},{1,1}}

The function KERNLIST transforms any prefix of a kernel into the list prefix. The output
list is a copy:

KERNLIST (<kernel>); ==> {<kernel arguments>}

There are four functions to delete elements from lists. The DELETE function deletes the
first occurrence of its first argument from the second, while REMOVE removes a numbered el-
ement. DELETE ALL eliminates from a list all elements equal to its first argument. DELPAIR
acts on list of pairs and eliminates from it the first pair whose first element is equal to its
first argument:

DELETE(x,{a,b,x,f,x}); ==> {a,b,f,x}
REMOVE({a,b,x,f,x},3); ==> {a,b,f,x}
DELETE_ALL(x,{a,b,x,f,x}); ==> {a,b,f}
DELPAIR(a,{{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The function ELMULT returns an integer which is the multiplicity of its first argument in
the list which is its second argument. The function FREQUENCY gives a list of pairs whose
second element indicates the number of times the first element appears inside the original
list:

ELMULT(x,{a,b,x,f,x}) ==> 2
FREQUENCY({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

v. The function INSERT inserts a given object into a list at the wanted position. The functions
INSERT KEEP ORDER and MERGE LIST keep a given ordering when inserting one element
inside a list or when merging two lists. Both have 3 arguments. The last one is the name
of a binary boolean ordering function:

ll:={1,2,3}$
INSERT(x,ll,3); ==> {1,2,x,3}
INSERT_KEEP_ORDER(5,ll,lessp); ==> {1,2,3,5}
MERGE_LIST(ll,ll,lessp); ==> {1,1,2,2,3,3}

vi. Algebraic lists can be read from right to left or left to right. They look symmetrical. It is
sometimes convenient to have functions which reflect this. So, as well as FIRST and REST
this package provides the functions LAST and BELAST. LAST gives the last element of the
list while BELAST gives the list without its last element.
Various additional functions are provided. They are: CONS, (.), POSITION, DEPTH, PAIR,
APPENDN, REPFIRST, REPLAST The token “dot” needs a special comment. It corresponds
to several different operations.

1. If one applies it on the left of a list, it acts as the CONS function. Note however that
blank spaces are required around the dot:

4 . {a,b}; ==> {4,a,b}
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2. If one applies it on the right of a list, it has the same effect as the PART operator:

{a,b,c}.2; ==> b

3. If one applies it on 4–dimensional vectors, it acts as in the HEPHYS package (chap-
ter 17.1

POSITION returns the position of the first occurrence of x in a list or a message if x is not
present in it. DEPTH returns an integer equal to the number of levels where a list is found
if and only if this number is the same for each element of the list otherwise it returns a
message telling the user that list is of unequal depth. PAIR has two arguments which must
be lists. It returns a list whose elements are lists of two elements. The nth sublist contains
the nth element of the first list and the nth element of the second list. These types of
lists are called association lists or ALISTS in the following. APPENDN has any number of
lists as arguments, and appends them all. REPFIRST has two arguments. The first one is
any object, the second one is a list. It replaces the first element of the list by the object.
REPREST has also two arguments. It replaces the rest of the list by its first argument and
returns the new list without destroying the original list.

ll:={{a,b}}$
ll1:=ll.1; ==> {a,b}
ll.0; ==> list
0 . ll; ==> {0,{a,b}}
DEPTH ll; ==> 2
PAIR(ll1,ll1); ==> {{a,a},{b,b}}
REPFIRST{new,ll); ==> {new}
ll3:=APPENDN(ll1,ll1,ll1); ==> {a,b,a,b,a,b}
POSITION(b,ll3); ==> 2
REPREST(new,ll3); ==> {a,new}

vii. The functions ASFIRST, ASLAST, ASREST, ASFLIST, ASSLIST, and RESTASLIST act on AL-
ISTS or on list of lists of well defined depths and have two arguments. The first is the
key object which one seeks to associate in some way to an element of the association list
which is the second argument. ASFIRST returns the pair whose first element is equal to the
first argument. ASLAST returns the pair whose last element is equal to the first argument.
ASREST needs a list as its first argument. The function seeks the first sublist of a list of
lists (which is its second argument) equal to its first argument and returns it. RESTASLIST
has a list of keys as its first arguments. It returns the collection of pairs which meet the
criterion of ASREST. ASFLIST returns a list containing all pairs which satisfy to the criteria
of the function ASFIRST. So the output is also an ALIST or a list of lists. ASSLIST returns
a list which contains all pairs which have their second element equal to the first argument.

lp:={{a,1},{b,2},{c,3}}$
ASFIRST(a,lp); ==> {a,1}
ASLAST(1,lp); ==> {a,1}
ASREST({1},lp); ==> {a,1}
RESTASLIST({a,b},lp); ==> {{1},{2}}
lpp:=APPEND(lp,lp)$
ASFLIST(a,lpp); ==> {{a,1},{a,1}}
ASSLIST(1,lpp); ==> {{a,1},{a,1}}
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23.3 The Bag Structure and its Associated Functions

The LIST structure of REDUCE is very convenient for manipulating groups of objects which
are, a priori, unknown. This structure is endowed with other properties such as “mapping” i.e.
the fact that if OP is an operator one gets, by default,

OP({x,y}); ==> {OP(x),OP(y)}

It is not permitted to submit lists to the operations valid on rings so that lists cannot be indeter-
minates of polynomials. Frequently procedure arguments cannot be lists. At the other extreme,
so to say, one has the KERNEL structure associated to the algebraic declaration operator. This
structure behaves as an “unbreakable” one and, for that reason, behaves like an ordinary iden-
tifier. It may generally be bound to all non-numeric procedure parameters and it may appear
as an ordinary indeterminate inside polynomials.
The BAG structure is intermediate between a list and an operator. From the operator it borrows
the property to be a KERNEL and, therefore, may be an indeterminate of a polynomial. From
the list structure it borrows the property to be a composite object.

Definition:

A bag is an object endowed with the following properties:

1. It is a KERNEL composed of an atomic prefix (its envelope) and its content (miscellaneous
objects).

2. Its content may be changed in an analogous way as the content of a list. During these
manipulations the name of the bag is conserved.

3. Properties may be given to the envelope. For instance, one may declare it NONCOM or
SYMMETRIC etc. . . .

Available Functions:

i. A default bag envelope BAG is defined. It is a reserved identifier. An identifier other than
LIST or one which is already associated with a boolean function may be defined as a bag
envelope through the command PUTBAG. In particular, any operator may also be declared
to be a bag. When and only when the identifier is not an already defined function does
PUTBAG puts on it the property of an OPERATOR PREFIX. The command:

PUTBAG id1,id2,....idn;

declares id1,.....,idn as bag envelopes. Analogously, the command

CLEARBAG id1,...idn;

eliminates the bag property on id1,...,idn.

ii. The boolean function BAGP detects the bag property.

aa:=bag(x,y,z)$
if BAGP aa then "ok"; ==> ok
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iii. Most functions defined above for lists do also work for bags. Moreover functions subse-
quently defined for SETS (see section 23.4) also work. However, because of the conserva-
tion of the envelope, they act somewhat differently.

PUTBAG op; ==> T
aa:=op(x,y,z)$
FIRST op(x,y,z); ==> op(x)
REST op(x,y,z); ==> op(y,z)
BELAST op(x,y,z); ==> op(x,y)
APPEND(aa,aa); ==> op(x,y,z,x,y,z)
LENGTH aa; ==> 3
DEPTH aa; ==> 1

When “appending” two bags with different envelopes, the resulting bag gets the name of
the one bound to the first parameter of APPEND. The function LENGTH gives the actual
number of variables on which the operator (or the function) depends. The NAME of the
ENVELOPE is kept by the functions FIRST, SECOND, LAST and BELAST.

iv. The connection between the list and the bag structures is made easy thanks to KERNLIST
which transforms a bag into a list and thanks to the coercion function LISTBAG. This
function has 2 arguments and is used as follows:

LISTBAG(<list>,<id>); ==> <id>(<arg_list>)

The identifier <id> if allowed is automatically declared as a bag envelope or an error
message is generated.

Finally, two boolean functions which work both for bags and lists are provided. They
are BAGLISTP and ABAGLISTP. They return T or NIL (in a conditional statement) if their
argument is a bag or a list for the first one, if their argument is a list of sublists or a bag
containing bags for the second one.

23.4 Sets and their Manipulation Functions

The ASSIST package makes the Standard LISP set functions available in algebraic mode and
also generalises them so that they can be applied on bag–like objects as well.

i. The constructor MKSET transforms a list or bag into a set by eliminating duplicates.

MKSET({1,a,a1}); ==> {1,a}
MKSET bag(1,a,a1); ==> bag(1,a)

SETP is a boolean function which recognises set–like objects.

ii. The standard functions are UNION, INTERSECT, DIFFSET and SYMDIFF. They have two
arguments which must be sets; otherwise an error message is issued.
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23.5 General Purpose Utility Functions

i. The functions MKIDNEW, DELLASTDIGIT, DETIDNUM, LIST TO IDS handle identifiers. MKIDNEW
is a variant of MKID.

MKIDNEW has either 0 or 1 argument. It generates an identifier which has not yet been
used before.

MKIDNEW(); ==> g0001
MKIDNEW(a); ==> ag0002

DELLASTDIGIT takes an integer as argument, it strips it from its last digit.

DELLASTDIGIT 45; ==> 4

DETIDNUM, determines the trailing integer from an identifier. It is convenient when one
wants to make a do loop starting from a set of indices a1, . . . , an.

DETIDNUM a23; ==> 23

LIST to IDS generalises the function MKID to a list of atoms. It creates and interns an
identifier from the concatenation of the atoms. The first atom cannot be an integer.

LIST_TO_IDS {a,1,id,10}; ==> a1id10

The function ODDP detects odd integers.

The function FOLLOWLINE is convenient when using the function PRIN2 for controlling
layout.

<<prin2 2; prin2 5>>$
25

<<prin2 2; followline(3); prin2 5>>$
2

5

The function RANDOMLIST generates a list of positive random numbers. It takes two
arguments which are both integers. The first one indicates the range inside which the
random numbers are chosen. The second one indicates how many numbers are to be
generated.

RANDOMLIST(10,5); ==> {2,1,3,9,6}

MKRANDTABL generates a table of random numbers. This table is either a one or two
dimensional array. The base of random numbers may be either an integer or a floating
point number. In this latter case the switch rounded must be ON. The function has
three arguments. The first is either a one integer or a two integer list. The second is
the base chosen to generate the random numbers. The third is the chosen name for the
generated array. In the example below a two-dimensional table of integer random numbers
is generated as array elements of the identifier ar.
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MKRANDTABL({3,4},10,ar); ==>
*** array ar redefined

{3,4}

The output is the array dimension.

COMBNUM(n,p) gives the number of combinations of n objects taken p at a time. It has
the two integer arguments n and p.

PERMUTATIONS(n) gives the list of permutations on n objects, each permutation being
represented as a list. CYCLICPERMLIST gives the list of cyclic permutations. For both
functions, the argument may also be a bag.

PERMUTATIONS {1,2} ==> {{1,2},{2,1}}
CYCLICPERMLIST {1,2,3} ==>

{{1,2,3},{2,3,1},{3,1,2}}

COMBINATIONS gives a list of combinations on n objects taken p at a time. The first
argument is a list (or a bag) and the second is the integer p.

COMBINATIONS({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

REMSYM is a command that erases the REDUCE commands symmetric or antisymmetric.

SYMMETRIZE is a powerful function which generate a symmetric expression. It has 3
arguments. The first is a list (or a list of lists) containing the expressions which will
appear as variables for a kernel. The second argument is the kernel-name and the third is
a permutation function which either exist in the algebraic or in the symbolic mode. This
function may have been constructed by the user. Within this package the two functions
PERMUTATIONS and CYCLICPERMLIST may be used.

ll:={a,b,c}$
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)
SYMMETRIZE(list ll,op,cyclicpermlist); ==>

OP({A,B,C}) + OP({B,C,A}) + OP({C,A,B})

Notice that taking for the first argument a list of lists gives rise to an expression where
each kernel has a list as argument. Another peculiarity of this function is that, unless
a pattern matching is made on the operator OP, it needs to be reevaluated. Here is an
illustration:

op(a,b,c):=a*b*c$
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)
for all x let op(x,a,b)=sin(x*a*b);
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(B,C,A) + SIN(A*B*C) + OP(A,B,C)

The functions SORTNUMLIST and SORTLIST are functions which sort lists. They use bub-
blesort and quicksort algorithms.
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SORTNUMLIST takes as argument a list of numbers. It sorts it in increasing order.

SORTLIST is a generalisation of the above function. It sorts the list according to any well
defined ordering. Its first argument is the list and its second argument is the ordering
function. The content of the list is not necessary numbers but must be such that the
ordering function has a meaning.

l:={1,3,4,0}$ SORTNUMLIST l; ==> {0,1,3,4}
ll:={1,a,tt,z}$ SORTLIST(ll,ordp); ==> {a,z,tt,1}

Note: using these functions for kernels or bags may be dangerous since they are destructive.
If it is needed, it is recommended first to apply KERNLIST on them.

The function EXTREMUM is a generalisation of the functions MIN and MAX to include general
orderings. It is a 2 arguments function. The first is the list and the second is the ordering
function. With the list ll defined in the last example, one gets

EXTREMUM(ll,ordp); ==> 1

iii. There are four functions to identify dependencies. FUNCVAR takes any expression as argu-
ment and returns the set of variables on which it depends. Constants are eliminated.

FUNCVAR(e+pi+sin(log(y)); ==> {y}

DEPATOM has an atom as argument. It returns its argument if it is a number or if no
dependency has previously been declared. Otherwise, it returns the list of variables on
which in depends as declared in various DEPEND declarations.

DEPEND a,x,y;
DEPATOM a; ==> {x,y}

The functions EXPLICIT and IMPLICIT make explicit or implicit the dependencies.

depend a,x; depend x,y,z;
EXPLICIT a; ==> a(x(y,z))
IMPLICIT ws; ==> a

These are useful when one does not know the names of the variables and (or) the nature
of the dependencies.

KORDERLIST is a zero argument function which display the actual ordering.

KORDER x,y,z;
KORDERLIST; ==> (x,y,z)

iv. A function SIMPLIFY which takes an arbitrary expression is available which forces down-
to-the-bottom simplification of an expression. It is useful with SYMMETRIZE. It has also
proved useful to simplify some output expressions of the package EXCALC (chapter 39).

l:=op(x,y,z)$
op(x,y,z):=x*y*z$
SYMMETRIZE(l,op,cyclicpermlist); ==>

op(x,y,z)+op(y,z,x)+op(z,x,y)
SIMPLIFY ws; ==> op(y,z,x)+op(z,x,y)+x*y*z
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v. Filtering functions for lists.

CHECKPROLIST is a boolean function which checks if the elements of a list have a definite
property. Its first argument is the list, and its second argument is a boolean function
(FIXP NUMBERP . . .) or an ordering function (as ORDP).

EXTRACTLIST extracts from the list given as its first argument the elements which satisfy
the boolean function given as its second argument.

l:={1,a,b,"st")$
EXTRACTLIST(l,fixp); ==> {1}
EXTRACTLIST(l,stringp); ==> {st}

23.6 Properties and Flags

It may be useful to provide analogous functions in algebraic mode to the properties and flags of
LISP. Just using the symbolic mode functions to alter property lists of objects may easily destroy
the integrity of the system. The functions which are here described do ignore the property list
and flags already defined by the system itself. They generate and track the additional properties
and flags that the user issues using them. They offer the possibility of working on property lists
in an algebraic context.

i. Flags To a given identifier, one may associates another one linked to it “in the background”.
The three functions PUTFLAG, DISPLAYFLAG and CLEARFLAG handle them.

PUTFLAG has 3 arguments. The first is the identifier or a list of identifiers, the second is
the name of the flag, the third is T (true) or 0 (zero). When the third argument is T, it
creates the flag, when it is 0 it destroys it.

PUTFLAG(z1,flag_name,t); ==> flag_name
PUTFLAG({z1,z2},flag1_name,t); ==> t
PUTFLAG(z2,flag1_name,0); ==>

DISPLAYFLAG allows to extract flags. Continuing the example:

DISPLAYFLAG z1; ==> {flag_name,flag1_name}
DISPLAYFLAG z2; ==> {}

CLEARFLAG is a command which clears all flags associated to the identifiers id1, . . . , idn.

ii. Properties PUTPROP has four arguments. The second argument is the indicator of the
property. The third argument may be any valid expression. The fourth one is also T or
0.

PUTPROP(z1,property,x^2,t); ==> z1

In general, one enter

PUTPROP(LIST(idp1,idp2,..),<propname>,<value>,T);
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If the last argument is 0 then the property is removed. To display a specific property, one
uses DISPLAYPROP which takes two arguments. The first is the name of the identifier, the
second is the indicator of the property.

2
DISPLAYPROP(z1,property); ==> {property,x }

Finally, CLEARPROP is a nary commmand which clears all properties of the identifiers which
appear as arguments.

23.7 Control Functions

The ASSIST package also provides additional functions which improve the user control of the
environment.

i. The first set of functions is composed of unary and binary boolean functions. They are:

ALATOMP x; x is anything.
ALKERNP x; x is anything.
DEPVARP(x,v); x is anything.

(v is an atom or a kernel)

ALATOMP has the value T iff x is an integer or an identifier after it has been evaluated
down to the bottom.

ALKERNP has the value T iff x is a kernel after it has been evaluated down to the bottom.

DEPVARP returns T iff the expression x depends on v at any level.

The above functions together with PRECP have been declared operator functions to ease
the verification of their value.

NORDP is essentially equivalent to notORDP when inside a conditional statement. Otherwise,
it can be used while notORDP cannot.

ii. The next functions allow one to analyse and to clean the environment of REDUCE which
is created by the user while working interactively. Two functions are provided:
SHOW allows to get the various identifiers already assigned and to see their type. SUPPRESS
selectively clears the used identifiers or clears them all. It is to be stressed that identifiers
assigned from the input of files are ignored. Both functions have one argument and the
same options for this argument:

SHOW (SUPPRESS) all
SHOW (SUPPRESS) scalars
SHOW (SUPPRESS) lists
SHOW (SUPPRESS) saveids (for saved expressions)
SHOW (SUPPRESS) matrices
SHOW (SUPPRESS) arrays
SHOW (SUPPRESS) vectors

(contains vector, index and tvector)
SHOW (SUPPRESS) forms
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The option all is the most convenient for SHOW but it may takes time to get the answer
after one has worked several hours. When entering REDUCE the option all for SHOW
gives:

SHOW all; ==> scalars are: NIL
arrays are: NIL
lists are: NIL
matrices are: NIL
vectors are: NIL
forms are: NIL

It is a convenient way to remember the various options. Starting from a fresh environment

a:=b:=1$
SHOW scalars; ==> scalars are: (A B)
SUPPRESS scalars; ==> t
SHOW scalars; ==> scalars are: NIL

iii. The CLEAR function of the system does not do a complete cleaning of OPERATORS and
FUNCTIONS. The following two functions do a more complete cleaning and, also automat-
ically takes into account the user flag and properties that the functions PUTFLAG and
PUTPROP may have introduced.

Their names are CLEAROP and CLEARFUNCTIONS. CLEAROP takes one operator as its argu-
ment. CLEARFUNCTIONS is a nary command. If one issues

CLEARFUNCTIONS a1,a2, ... , an $

The functions with names a1,a2, ... ,an are cleared. One should be careful when
using this facility since the only functions which cannot be erased are those which are
protected with the lose flag.

23.8 Handling of Polynomials

The module contains some utility functions to handle standard quotients and several new facil-
ities to manipulate polynomials.

i. Two functions ALG TO SYMB and SYMB TO ALG allow the changing of an expression which
is in the algebraic standard quotient form into a prefix lisp form and vice-versa. This is
made in such a way that the symbol list which appears in the algebraic mode disappear
in the symbolic form (there it becomes a parenthesis “()” ) and it is reintroduced in
the translation from a symbolic prefix lisp expression to an algebraic one. The following
example shows how the well-known lisp function FLATTENS can be trivially transportd
into algebraic mode:

algebraic procedure ecrase x;
lisp symb_to_alg flattens1 alg_to_symb algebraic x;

symbolic procedure flattens1 x;
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% ll; ==> ((A B) ((C D) E))
% flattens1 ll; (A B C D E)

if atom x then list x else
if cdr x then

append(flattens1 car x, flattens1 cdr x)
else flattens1 car x;

gives, for instance,

ll:={a,{b,{c},d,e},{{{z}}}}$
ECRASE ll; ==> {A, B, C, D, E, Z}

ii. LEADTERM and REDEXPR are the algebraic equivalent of the symbolic functions LT and RED.
They give the leading term and the reductum of a polynomial. They also work for rational
functions. Their interest lies in the fact that they do not require to extract the main
variable. They work according to the current ordering of the system:

pol:=x+y+z$
LEADTERM pol; ==> x
korder y,x,z;
LEADTERM pol; ==> y
REDEXPR pol; ==> x + z

By default, the representation of multivariate polynomials is recursive. With such a
representation, the function LEADTERM does not necessarily extract a true monom. It
extracts a monom in the leading indeterminate multiplied by a polynomial in the other
indeterminates. However, very often one needs to handle true monoms separately. In that
case, one needs a polynomial in distributive form. Such a form is provided by the package
GROEBNER (chapter 45). The facility there may be too involved and the need to load
an additional package can be a problem. So, a new switch is created to handle distributed
polynomials. It is called DISTRIBUTE and a new function DISTRIBUTE puts a polynomial
in distributive form. With the switch on, LEADTERM gives true monoms.

MONOM transforms a polynomial into a list of monoms. It works whatever the setting of
the switch DISTRIBUTE.

SPLITTERMS is analoguous to MONOM except that it gives a list of two lists. The first sublist
contains the positive terms while the second sublist contains the negative terms.

SPLITPLUSMINUS gives a list whose first element is an expression of the positive part of
the polynomial and its second element is its negative part.

iii. Two complementary functions LOWESTDEG and DIVPOL are provided. The first takes a
polynomial as its first argument and the name of an indeterminate as its second argu-
ment. It returns the lowest degree in that indeterminate. The second function takes two
polynomials and returns both the quotient and its remainder.

23.9 Handling of Transcendental Functions

The functions TRIGREDUCE and TRIGEXPAND and the equivalent ones for hyperbolic functions
HYPREDUCE and HYPEXPAND make the transformations to multiple arguments and from multiple
arguments to elementary arguments.



23.10. COERCION FROM LISTS TO ARRAYS AND CONVERSE 207

aa:=sin(x+y)$
TRIGEXPAND aa; ==> SIN(X)*COS(Y) + SIN(Y)*COS(X)
TRIGREDUCE ws; ==> SIN(Y + X)

When a trigonometric or hyperbolic expression is symmetric with respect to the interchange of
SIN (SINH) and COS (COSH), the application of TRIG(HYP)REDUCE may often lead to great sim-
plifications. However, if it is highly asymmetric, the repeated application of TRIG(HYP)REDUCE
followed by the use of TRIG(HYP)EXPAND will lead to more complicated but more symmetric
expressions:

aa:=(sin(x)^2+cos(x)^2)^3$
TRIGREDUCE aa; ==> 1
bb:=1+sin(x)^3$
TRIGREDUCE bb; ==>

- SIN(3*X) + 3*SIN(X) + 4
---------------------------

4

TRIGEXPAND ws; ==>
3 2

SIN(X) - 3*SIN(X)*COS(X) + 3*SIN(X) + 4
-------------------------------------------

4

See also the TRIGSIMP package (chapter 85).

23.10 Coercion from lists to arrays and converse

Sometimes when a list is very long and especially if frequent access to its elements are needed it is
advantageous (temporarily) to transform it into an array. LIST TO ARRAY has three arguments.
The first is the list. The second is an integer which indicates the array dimension required. The
third is the name of an identifier which will play the role of the array name generated by it. If
the chosen dimension is not compatible with the list depth and structure an error message is
issued. ARRAY TO LIST does the opposite coercion. It takes the array name as its sole argument.

23.11 Handling of n–dimensional Vectors

Explicit vectors in EUCLIDEAN space may be represented by list-like or bag-like objects of depth
1. The components may be bags but may not be lists. Functions are provided to do the sum,
the difference and the scalar product. When space-dimension is three there are also functions for
the cross and mixed products. SUMVECT, MINVECT, SCALVECT, CROSSVECT have two arguments.
MPVECT has three arguments.

l:={1,2,3}$
ll:=list(a,b,c)$
SUMVECT(l,ll); ==> {A + 1,B + 2,C + 3}
MINVECT(l,ll); ==> { - A + 1, - B + 2, - C + 3}
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SCALVECT(l,ll); ==> A + 2*B + 3*C
CROSSVECT(l,ll); ==> { - 3*B + 2*C,3*A - C, - 2*A + B}
MPVECT(l,ll,l); ==> 0

23.12 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication operation is asso-
ciative, distributive but anticommutative. The basic REDUCE does not provide this. However
implementing it in full generality would almost certainly decrease the overall efficiency of the
system. This small module together with the declaration of antisymmetry for operators is
enough to deal with most calculations. The reason is, that a product of similar anticommuting
kernels can easily be transformed into an antisymmetric operator with as many indices as the
number of these kernels. Moreover, one may also issue pattern matching rules to implement
the anticommutativity of the product. The functions in this module represent the minimum
functionality required to identify them and to handle their specific features.

PUTGRASS is a (nary) command which give identifiers the property to be the names of Grassmann
kernels. REMGRASS removes this property.

GRASSP is a boolean function which detects Grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the monom is a simple
Grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to

(-1)**(GRASSPARITY u * GRASSPARITY v)

Here is an illustration to show how the above functions work:

PUTGRASS eta;
if GRASSP eta(1) then "Grassmann kernel"; ==>

Grassmann kernel
aa:=eta(1)*eta(2)-eta(2)*eta(1); ==>

AA := - ETA(2)*ETA(1) + ETA(1)*ETA(2)
GRASSPARITY eta(1); ==> 1
GRASSPARITY (eta(1)*eta(2)); ==> 0
GHOSTFACTOR(eta(1),eta(2)); ==> -1
grasskernel:=

{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x}$

exp:=eta(1)^2$
exp where grasskernel; ==> 0
aa where grasskernel; ==> - 2*ETA(2)*ETA(1)

23.13 Handling of Matrices

There are additional facilities for matrices.
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i. Often one needs to construct some UNIT matrix of a given dimension. This construction
is performed by the function UNITMAT. It is a nary function. The command is

UNITMAT M1(n1), M2(n2), .....Mi(ni) ;

where M1,...Mi are names of matrices and n1, n2, ..., ni are integers.

MKIDM is a generalisation of MKID. It allows the indexing of matrix names. If u and u1 are
two matrices, one can go from one to the other:

matrix u(2,2);$ unitmat u1(2)$
u1; ==>

[1 0]
[ ]
[0 1]

mkidm(u,1); ==>
[1 0]
[ ]
[0 1]

Note: MKIDM(V,1) will fail even if the matrix V1 exists, unless V is also a matrix.

This function allows to make loops on matrices like the following. If U, U1, U2,.., U5
are matrices:

FOR I:=1:5 DO U:=U-MKIDM(U,I);

ii. The next functions map matrices onto bag-like or list-like objects and conversely they
generate matrices from bags or lists.

COERCEMAT transforms the matrix first argument into a list of lists.

COERCEMAT(U,id)

When id is list the matrix is transformed into a list of lists. Otherwise it transforms it
into a bag of bags whose envelope is equal to id.

BAGLMAT does the inverse. The first argument is the bag-like or list-like object while the
second argument is the matrix identifier.

BAGLMAT(bgl,U)

bgl becomes the matrix U. The transformation is not done if U is already the name of a
previously defined matrix, to avoid accidental redefinition of that matrix.

ii. The functions SUBMAT, MATEXTR, MATEXTC take parts of a given matrix.

SUBMAT has three arguments.

SUBMAT(U,nr,nc)
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The first is the matrix name, and the other two are the row and column numbers. It gives
the submatrix obtained from U deleting the row nr and the column nc. When one of them
is equal to zero only column nc or row nr is deleted.

MATEXTR and MATEXTC extract a row or a column and place it into a list-like or bag-like
object.

MATEXTR(U,VN,nr)
MATEXTC(U,VN,nc)

where U is the matrix, VN is the “vector name”, nr and nc are integers. If VN is equal to
list the vector is given as a list otherwise it is given as a bag.

iii. Functions which manipulate matrices: MATSUBR, MATSUBC, HCONCMAT, VCONCMAT, TPMAT,
HERMAT.

MATSUBR and MATSUBC substitute rows and columns. They have three arguments.

MATSUBR(U,bgl,nr)
MATSUBC(U,bgl,nc)

The meaning of the variables U, nr, nc is the same as above while bgl is a list-like or
bag-like vector. Its length should be compatible with the dimensions of the matrix.

HCONCMAT and VCONCMAT concatenate two matrices.

HCONCMAT(U,V)
VCONCMAT(U,V)

The first function concatenates horizontally, the second one concatenates vertically. The
dimensions must match.

TPMAT makes the tensor product of two matrices. It is also an infix function.

TPMAT(U,V) or U TPMAT V

HERMAT takes the hermitian conjugate of a matrix

HERMAT(U,HU)

where HU is the identifier for the hermitian matrix of U. It should unassigned for this
function to work successfully. This is done on purpose to prevent accidental redefinition
of an already used identifier.

iv. SETELMAT and GETELMAT are functions of two integers. The first one reset the element
(i,j) while the second one extract an element identified by (i,j). They may be useful
when dealing with matrices inside procedures.
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Tensors are classical examples for Objects often used in mathematics and physics. Indexed
objects can have very complicated and intricated properties. For example the Riemann tensor
has symmetry properties with respect to permutation of indices. Moreover it satisfies the cyclic
identity. There are a number of linear identities with many terms in the case of Riemann-
Cartan geometry with torsion. From the user’s point of view, there are three groups of tensor
properties:

• S - symmetry with respect to index permutation;

• I - linear identities;

• D - invariance with respect to renamings of dummy indices;

The problem under investigation can be formulated as whether two tensor expressions are equal
or not by taking into account S-I-D properties.

24.1 Basic tensors and tensor expressions

Under basic tensors we understand the object with finite number of indices which can have such
properties as symmetry and multiterm linear identities (including the symmetry relations).
Under tensor expression we understand any expression which can be obtained from basic tensors
by summation with integer coefficients and multiplication (commutative) of basic tensors.
It is assumed that all terms in the tensor expression have the same number of indices. Some
pairs of them are marked as dummy ones. The set of nondummy names have to be the same
for each term in the tensor expression. The names of dummies can be arbitrary.

211
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24.2 Operators for tensors

Use TENSOR to declare tensors and TCLEAR to remove them. The command TSYM defines symme-
try relations of basic tensors and KBASIS determines the K-Basis, which is the general name for
a “triangle” set of linear independent vectors for a basic tensor considered as a separate tensor
expression. It is possible to build the sum, the difference and the multiplication for tensors. It
is assumed that indices with identical names means the summation over their values.

Example:

1: load atensor;

2: tensor s2,a3;

3: tsym s2(i,j) - s2(j,i), % Symmetric
3: a3(i,j,k) + a3(j,i,k), % Antisymm.
3: a3(i,j,k) - a3(j,k,i);

4: kbasis s2,a3;

s2(j,i) + (-1)*s2(i,j)
1
a3(k,i,j) + a3(j,i,k)
a3(k,j,i) + (-1)*a3(j,i,k)
a3(i,k,j) + (-1)*a3(j,i,k)
a3(i,j,k) + a3(j,i,k)
a3(j,k,i) + a3(j,i,k)
5

24.3 Switches

There are two switches defined. The switch DUMMYPRI prints dummy indices with internal
names and numbers. It’s default value is OFF. The other switch called SHORTEST prints tensor
expressions in shortest form that was produced during evaluation. The default value is OFF.

For further information refer to the documentation which comes with this package.
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AVECTOR: A vector algebra and
calculus package

David Harper
Astronomy Unit, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: adh@star.qmw.ac.uk

This package provides REDUCE with the ability to perform vector algebra using the same
notation as scalar algebra. The basic algebraic operations are supported, as are differentiation
and integration of vectors with respect to scalar variables, cross product and dot product,
component manipulation and application of scalar functions (e.g. cosine) to a vector to yield a
vector result.

25.1 Vector declaration and initialisation

To declare a list of names to be vectors use the VEC command:

VEC A,B,C;

declares the variables A, B and C to be vectors. If they have already been assigned (scalar)
values, these will be lost.

When a vector is declared using the VEC command, it does not have an initial value.

If a vector value is assigned to a scalar variable, then that variable will automatically be declared
as a vector and the user will be notified that this has happened.

A vector may be initialised using the AVEC function which takes three scalar arguments and
returns a vector made up from those scalars. For example

A := AVEC(A1, A2, A3);

sets the components of the vector A to A1, A2 and A3.
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25.2 Vector algebra

(In the examples which follow, V, V1, V2 etc are assumed to be vectors while S, S1, S2 etc are
scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands according to the
rules of vector algebra. Thus multiplication and division of a vector by a scalar are both allowed,
but it is an error to multiply or divide one vector by another.

V := V1 + V2 - V3; Addition and subtraction
V := S1*3*V1; Scalar multiplication
V := V1/S; Scalar division
V := -V1; Negation

Vector multiplication is carried out using the infix operators DOT and CROSS. These are defined
to have higher precedence than scalar multiplication and division.

V := V1 CROSS V2; Cross product
S := V1 DOT V2; Dot product
V := V1 CROSS V2 + V3;
V := (V1 CROSS V2) + V3;

The last two expressions are equivalent due to the precedence of the CROSS operator.

The modulus of a vector may be calculated using the VMOD operator.

S := VMOD V;

A unit vector may be generated from any vector using the VMOD operator.

V1 := V/(VMOD V);

Components may be extracted from any vector using index notation in the same way as an
array.

V := AVEC(AX, AY, AZ);
V(0); yields AX
V(1); yields AY
V(2); yields AZ

It is also possible to set values of individual components. Following from above:

V(1) := B;

The vector V now has components AX, B, AZ.

Vectors may be used as arguments in the differentiation and integration routines in place of the
dependent expression.

V := AVEC(X**2, SIN(X), Y);
DF(V,X); yields (2*X, COS(X), 0)
INT(V,X); yields (X**3/3, -COS(X), Y*X)

Vectors may be given as arguments to monomial functions such as SIN, LOG and TAN. The result
is a vector obtained by applying the function component-wise to the argument vector.
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V := AVEC(A1, A2, A3);
SIN(V); yields (SIN(A1), SIN(A2), SIN(A3))

25.3 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Laplacian operator is also
available and may be applied to scalar and vector arguments.

V := GRAD S; Gradient of a scalar field
S := DIV V; Divergence of a vector field
V := CURL V1; Curl of a vector field
S := DELSQ S1; Laplacian of a scalar field
V := DELSQ V1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate system. The user may
alter the names of the coordinates and the values of the scale factors. Initially the coordinates
are X, Y and Z and the scale factors are all unity.

There are two special vectors : COORDS contains the names of the coordinates in the current
system and HFACTORS contains the values of the scale factors.

The coordinate names may be changed using the COORDINATES operator.

COORDINATES R,THETA,PHI;

This command changes the coordinate names to R, THETA and PHI.

The scale factors may be altered using the SCALEFACTORS operator.

SCALEFACTORS(1,R,R*SIN(THETA));

This command changes the scale factors to 1, R and R SIN(THETA).

Note that the arguments of SCALEFACTORS must be enclosed in parentheses. This is not necessary
with COORDINATES.

When vector differential operators are applied to an expression, the current set of coordinates
are used as the independent variables and the scale factors are employed in the calculation.

Several coordinate systems are pre-defined and may be invoked by name. To see a list of valid
names enter

SYMBOLIC !*CSYSTEMS;

and REDUCE will respond with something like

(CARTESIAN SPHERICAL CYLINDRICAL)

To choose a coordinate system by name, use the command GETCSYSTEM.

To choose the Cartesian coordinate system :

GETCSYSTEM ’CARTESIAN;
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Note the quote which prefixes the name of the coordinate system. This is required because
GETCSYSTEM (and its complement PUTCSYSTEM) is a SYMBOLIC procedure which requires a literal
argument.

REDUCE responds by typing a list of the coordinate names in that coordinate system. The
example above would produce the response

(X Y Z)

whilst

GETCSYSTEM ’SPHERICAL;

would produce

(R THETA PHI)

Note that any attempt to invoke a coordinate system is subject to the same restrictions as the
implied calls to COORDINATES and SCALEFACTORS. In particular, GETCSYSTEM fails if any of the
coordinate names has been assigned a value and the previous coordinate system remains in
effect.

A user-defined coordinate system can be assigned a name using the command PUTCSYSTEM. It
may then be re-invoked at a later stage using GETCSYSTEM.

Example 1

We define a general coordinate system with coordinate names X,Y,Z and scale factors H1,H2,H3 :

COORDINATES X,Y,Z;
SCALEFACTORS(H1,H2,H3);
PUTCSYSTEM ’GENERAL;

This system may later be invoked by entering

GETCSYSTEM ’GENERAL;

25.4 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These operate in any
orthogonal curvilinear coordinate system and make use of the scale factors described in the
previous section.

Definite integrals of scalar and vector expressions may be calculated using the DEFINT function1.

Example 2

To calculate the definite integral of sin(x)2 between 0 and 2π we enter
1Not to be confused with the DEFINT package described in chapter 35
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DEFINT(SIN(X)**2,X,0,2*PI);

This function is a simple extension of the INT function taking two extra arguments, the lower
and upper bounds of integration respectively.

Definite volume integrals may be calculated using the VOLINTEGRAL function whose syntax is
as follows :

VOLINTEGRAL(integrand, vector lower-bound, vector upper-bound);

Example 3

In spherical polar coordinates we may calculate the volume of a sphere by integrating unity
over the range r=0 to RR, θ=0 to PI, φ=0 to 2*π as follows :

VLB := AVEC(0,0,0); Lower bound
VUB := AVEC(RR,PI,2*PI); Upper bound in r, θ, φ respectively
VOLINTORDER := (0,1,2); The order of integration
VOLINTEGRAL(1,VLB,VUB);

Note the use of the special vector VOLINTORDER which controls the order in which the integrations
are carried out. This vector should be set to contain the number 0, 1 and 2 in the required
order. The first component of VOLINTORDER contains the index of the first integration variable,
the second component is the index of the second integration variable and the third component
is the index of the third integration variable.

Example 4

Suppose we wish to calculate the volume of a right circular cone. This is equivalent to integrating
unity over a conical region with the bounds:

z = 0 to H (H = the height of the cone)
r = 0 to pZ (p = ratio of base diameter to height)
phi = 0 to 2*PI

We evaluate the volume by integrating a series of infinitesimally thin circular disks of constant
z-value. The integration is thus performed in the order : d(φ) from 0 to 2π, dr from 0 to p*Z,
dz from 0 to H. The order of the indices is thus 2, 0, 1.

VOLINTORDER := AVEC(2,0,1);
VLB := AVEC(0,0,0);
VUB := AVEC(P*Z,H,2*PI);
VOLINTEGRAL(1,VLB,VUB);

Line integrals may be calculated using the LINEINT and DEFLINEINT functions. Their general
syntax is

LINEINT(vector-fnct, vector-curve, variable);

DEFLINENINT(vector-fnct, vector-curve, variable,
lower-bnd, upper-bnd);

where

vector-fnct is any vector-valued expression;

vector-curve is a vector expression which describes the path of integration in terms of the
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independent variable;

variable is the independent variable;

lower-bnd

upper-bnd are the bounds of integration in terms of the independent variable.

Example 5

In spherical polar coordinates, we may integrate round a line of constant theta (‘latitude’) to
find the length of such a line. The vector function is thus the tangent to the ‘line of latitude’,
(0,0,1) and the path is (0,LAT,PHI) where PHI is the independent variable. We show how to
obtain the definite integral i.e. from φ = 0 to 2π :

DEFLINEINT(AVEC(0,0,1),AVEC(0,LAT,PHI),PHI,0,2*PI);
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Herbert Melenk
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e–mail: melenk@zib.de

The package Boolean supports the computation with boolean expressions in the propositional
calculus. The data objects are composed from algebraic expressions (“atomic parts”, “leafs”)
connected by the infix boolean operators and, or, implies, equiv, and the unary prefix operator
not. Boolean allows simplification of expressions built from these operators, and to test
properties like equivalence, subset property etc. Also the reduction of a boolean expression by
a partial evaluation and combination of its atomic parts is supported.

26.1 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions in the REDUCE
programming language (e.g. in an if statement), each expression must be tagged explicitly
by an operator boolean. Otherwise the boolean operators are not accepted in the REDUCE
algebraic mode input. The first argument of boolean can be any boolean expression, which
may contain references to other boolean values.

load_package boolean;
boolean (a and b or c);
q := boolean(a and b implies c);
boolean(q or not c);

Brackets are used to override the operator precedence as usual. The leafs or atoms of a boolean
expression are those parts which do not contain a leading boolean operator. These are considered
as constants during the boolean evaluation. There are two pre-defined values:

• true, t or 1
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• false, nil or 0

These represent the boolean constants. In a result form they are used only as 1 and 0.

By default, a boolean expression is converted to a disjunctive normal form.

On output, the operators and and or are represented as /\ and \/, respectively.

boolean(true and false); -> 0
boolean(a or not(b and c)); -> boolean(not(b) \/ not(c) \/ a)
boolean(a equiv not c); -> boolean(not(a)/\c \/ a/\not(c))

26.2 Normal forms

The disjunctive normal form is used by default. Alternatively a conjunctive normal form
can be selected as simplification target, which is a form with leading operator and. To produce
that form add the keyword and as an additional argument to a call of boolean.

boolean (a or b implies c);
->

boolean(not(a)/\not(b) \/ c)

boolean (a or b implies c, and);
->

boolean((not(a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form, where all redundant
elements have been eliminated following the rules

a ∧ b ∨ ¬a ∧ b←→ b

a ∨ b ∧ ¬a ∨ b←→ b

Internally the full normal forms are computed as intermediate result; in these forms each term
contains all leaf expressions, each one exactly once. This unreduced form is returned when the
additional keyword full is set:
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boolean (a or b implies c, full);
->

boolean(a/\b/\c \/ a/\not(b)/\c \/ not(a)/\b/\c \/ not(a)/\not(b)/\c

\/ not(a)/\not(b)/\not(c))

The keywords full and and may be combined.

26.3 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may evaluate to logical
values because the environment has changed (e.g. variables have been bound), one can re–
investigate the expression using the operator TESTBOOL with the boolean expression as argument.
This operator tries to evaluate all leaf expressions in REDUCE boolean style. As many terms
as possible are replaced by their boolean values; the others remain unchanged. The resulting
expression is contracted to a minimal form. The result 1 (= true) or 0 (=false) signals that the
complete expression could be evaluated.

In the following example the leafs are built as numeric greater test. For using > in the expres-
sions the greater sign must be declared operator first. The error messages are meaningless.

operator >;
fm:=boolean(x>v or not (u>v));

->
fm := boolean(not(u>v) \/ x>v)

v:=10$ testbool fm;

***** u - 10 invalid as number
***** x - 10 invalid as number

->
boolean(not(u>10) \/ x>10)

x:=3$ testbool fm;

***** u - 10 invalid as number

->
boolean(not(u>10))

x:=17$ testbool fm;

***** u - 10 invalid as number

->
1
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CALI: Computational Commutative
Algebra

Hans-Gert Gräbe
Institut für Informatik, Universität Leipzig
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04109 Leipzig, Germany

e–mail: graebe@informatik.uni-leipzig.de

This package contains algorithms for computations in commutative algebra closely related to
the Gröbner algorithm for ideals and modules. Its heart is a new implementation of the Gröbner
algorithm that also allows for the computation of syzygies. This implementation is also appli-
cable to submodules of free modules with generators represented as rows of a matrix. As main
topics CALI contains facilities for

• defining rings, ideals and modules,

• computing Gröbner bases and local standard bases,

• computing syzygies, resolutions and (graded) Betti numbers,

• computing (now also weighted) Hilbert series, multiplicities, independent sets, and dimen-
sions,

• computing normal forms and representations,

• computing sums, products, intersections, quotients, stable quotients, elimination ideals
etc.,

• primality tests, computation of radicals, unmixed radicals, equidimensional parts, primary
decompositions etc. of ideals and modules,

• advanced applications of Gröbner bases (blowup, associated graded ring, analytic spread,
symmetric algebra, monomial curves etc.),

• applications of linear algebra techniques to zero dimensional ideals, as e.g. the FGLM
change of term orders, border bases and affine and projective ideals of sets of points,

• splitting polynomial systems of equations mixing factorisation and the Gröbner algorithm,
triangular systems, and different versions of the extended Gröbner factoriser.
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There is more extended documentation on this package elsewhere, which includes facilities for
tracing and switches to control its behaviour.
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CAMAL: Calculations in Celestial
Mechanics

J. P. Fitch
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The CAMAL package provides facilities for calculations in Fourier series similar to those in
the specialist Celestial Mechanics system of the 1970s, and the Cambridge Algebra system in
particular.

28.1 Operators for Fourier Series

HARMONIC

The celestial mechanics system distinguish between polynomial variables and angular variables.
All angles must be declared before use with the HARMONIC function.

harmonic theta, phi;

FOURIER

The FOURIER function coerces its argument into the domain of a Fourier Series. The expression
may contain sine and cosine terms of linear sums of harmonic variables.

fourier sin(theta)

Fourier series expressions may be added, subtracted multiplies and differentiated in the usual
REDUCE fashion. Multiplications involve the automatic linearisation of products of angular
functions.

There are three other functions which correspond to the usual restrictive harmonic differentia-
tion and integration, and harmonic substitution.
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HDIFF and HINT

Differentiate or integrate a Fourier expression with respect to an angular variable. Any secular
terms in the integration are disregarded without comment.

load_package camal;
harmonic u;
bige := fourier (sin(u) + cos(2*u));
aa := fourier 1+hdiff(bige,u);
ff := hint(aa*aa*fourier cc,u);

HSUB

The operation of substituting an angle plus a Fourier expression for an angles and expanding
to some degree is called harmonic substitution. The function takes 5 arguments; the basic
expression, the angle being replaced, the angular part of the replacement, the fourier part of
the replacement and a degree to which to expand.

harmonic u,v,w,x,y,z;
xx:=hsub(fourier((1-d*d)*cos(u)),u,u-v+w-x-y+z,yy,n);

28.2 A Short Example

The following program solves Kepler’s Equation as a Fourier series to the degree n.

bige := fourier 0;
for k:=1:n do <<

wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;
write "Kepler Eqn solution:", bige$
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29.1 Introduction

Consider the ideal basis F = {ax, x+ y}. Treating a as a parameter, the calling sequence

torder({x,y},lex)$
groebner{a*x,x+y};

{x,y}

yields {x, y} as reduced Gröbner basis. This is, however, not correct under the specialization
a = 0. The reduced Gröbner basis would then be {x + y}. Taking these results together,
we obtain C = {x + y, ax, ay}, which is correct wrt. all specializations for a including zero
specializations. We call this set C a comprehensive Gröbner basis (cgb).

The notion of a cgb and a corresponding algorithm has been introduced bei Weispfenning [10].
This algorithm works by performing case distinctions wrt. parametric coefficient polynomials in
order to find out what the head monomials are under all possible specializations. It does thus not
only determine a cgb, but even classifies the contained polynomials wrt. the specializations they
are relevant for. If we keep the Gröbner bases for all cases separate and associate information
on the respective specializations with them, we obtain a Gröbner system. For our example, the
Gröbner system is the following; [

a 6= 0 {x+ y, ax, ay}
a = 0 {x+ y}

]
.

A cgb is obtained as the union of the single Gröbner bases in a Gröbner system. It has also
been shown that, on the other hand, a Gröbner system can easily be reconstructed from a given
cgb [10].
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The CGB package provides functions for computing both cgb’s and Gröbner systems, and for
turning Gröbner systems into cgb’s.

29.2 Using the REDLOG Package

For managing the conditions occurring with the cgb computations, the CGB package uses the
package REDLOG implementing first-order formulas, [5, 7], which is also part of the reduce

distribution.

29.3 Term Ordering Mode

The CGB package uses the settings made with the function TORDER of the GROEBNER package.
This includes in particular the choice of the main variables. All variables not mentioned in the
variable list argument of TORDER are parameters. The only term ordering modes recognized by
cgb are LEX and REVGRADLEX.

29.4 CGB: Comprehensive Gröbner Basis

The function CGB expects a list F of expressions. It returns a cgb of F wrt. the current TORDER
setting.

Example:

torder({x,y},lex)$
cgb{a*x+y,x+b*y};

{x + b*y,a*x + y,(a*b - 1)*y}

ws;

{b*y + x,

a*x + y,

y*(a*b - 1)}

Note that the basis returned by the CGB call has not undergone the standard evaluation process:
The returned polynomials are ordered wrt. the chosen term order. Reevaluation changes this
as can be seen with the output of WS.

29.5 GSYS: Gröbner System

The function GSYS follows the same calling conventions as CGB. It returns the complete Gröbner
system represented as a nested list
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{{c1, {g11, . . . , g1n1}}, . . . , {cm, {gm1, . . . , g1nm}}}.

The ci are conditions in the parameters represented as quantifier-free REDLOG formulas. Each
choice of parameters will obey at least one of the ci. Whenever a choice of parameters obeys
some ci, the corresponding {gi1, . . . , gini} is a Gröbner basis for this choice.

Example:

torder({x,y},lex)$
gsys {a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}},

{a <> 0 and a*b - 1 = 0,

{a*x + y,x + b*y}},

{a = 0,{a*x + y,x + b*y}}}

As with the function CGB, the contained polynomials remain unevaluated.

Computing a Gröbner system is not harder than computing a cgb. In fact, CGB also computes
a Gröbner system and then turns it into a cgb.

29.5.1 Switch CGBGEN: Only the Generic Case

If the switch CGBGEN is turned on, both GSYS and CGB will assume all parametric coefficients to
be non-zero ignoring the other cases. For CGB this means that the result equals—up to auto-
reduction—that of GROEBNER. A call to GSYS will return this result as a single case including
the assumptions made during the computation:

Example:

torder({x,y},lex)$
on cgbgen;
gsys{a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}}}

off cgbgen;
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29.6 GSYS2CGB: Gröbner System to CGB

The call GSYS2CGB turns a given Gröbner system into a cgb by constructing the union of the
Gröbner bases of the single cases.

Example:

torder({x,y},lex)$
gsys{a*x+y,x+b*y}$
gsys2cgb ws;

{x + b*y,a*x + y,(a*b - 1)*y}

29.7 Switch CGBREAL: Computing over the Real Numbers

All computations considered so far have taken place over the complex numbers, more precisely,
over algebraically closed fields. Over the real numbers, certain branches of the cgb computation
can become inconsitent though they are not inconsistent over the complex numbers. Consider,
e.g., a condition a2 + 1 = 0.

When turning on the switch CGBREAL, all simplifications of conditions are performed over the
real numbers. The methods used for this are described in [6].

Example:

torder({x,y},lex)$
off cgbreal;
gsys {a*x+y,x-a*y};

2
{{a + 1 <> 0 and a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

2
{a <> 0 and a + 1 = 0,{a*x + y,x - a*y}},

{a = 0,{a*x + y,x - a*y}}}

on cgbreal;
gsys({a*x+y,x-a*y});

{{a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},
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{a = 0,{a*x + y,x - a*y}}}

29.8 Switches

CGBREAL Compute over the real numbers. See Section 29.7 for details.

CGBGS Gröbner simplification of the condition. The switch CGBGS can be turned on for applying
advanced algebraic simplification techniques to the conditions. This will, in general, slow
down the computation, but lead to a simpler Gröbner system.

CGBSTAT Statistics of the CGB run. The switch CGBSTAT toggles the creation and output of
statistical information on the CGB run. The statistical information is printed at the end
of the run.

CGBFULLRED Full reduction. By default, the CGB functions perform full reductions in contrast
to pure top reductions. By turning off the switch CGBFULLRED, reduction can be restricted
to top reductions.
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Chapter 30

CHANGEVR: Change of
Independent Variables in DEs

G. Üçoluk
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Ankara, Turkey

e–mail: ucoluk@trmetu.bitnet

The function CHANGEVAR has (at least) four different arguments.

• FIRST ARGUMENT
is a list of the dependent variables of the differential equation. If there is only one depen-
dent variable it can be given directly, not as a list.

• SECOND ARGUMENT
is a list of the new independent variables, or in the case of only one, the variable.

• THIRD ARGUMENT, FOURTH etc.
are equations is of the form

old variable = a function in new variables

The left hand side cannot be a non-kernel structure. These give the old variables in terms
of the new ones.

• LAST ARGUMENT
is a list of algebraic expressions which evaluates to differential equations in the usual list
notation. Again it is possible to omit the list form if there is only one differential equation.

If the last argument is a list then the result of CHANGEVAR is a list too.

It is possible to display the entries of the inverse Jacobian. To do so, turn ON the flag
DISPJACOBIAN.
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30.1 An example: the 2-D Laplace Equation

The 2-dimensional Laplace equation in Cartesian coordinates is:

∂2u

∂x2 +
∂2u

∂y2 = 0

Now assume we want to obtain the polar coordinate form of Laplace equation. The change of
variables is:

x = r cos θ, y = r sin θ

The solution using CHANGEVAR is

CHANGEVAR({u},{r,theta},{x=r*cos theta,y=r*sin theta},
{df(u(x,y),x,2)+df(u(x,y),y,2)} );

Here we could omit the curly braces in the first and last arguments (because those lists have
only one member) and the curly braces in the third argument (because they are optional), but
not in the second. So one could equivalently write

CHANGEVAR(u,{r,theta},x=r*cos theta,y=r*sin theta,
df(u(x,y),x,2)+df(u(x,y),y,2) );

The u(x,y) operator will be changed to u(r,theta) in the result as one would do with pencil
and paper. u(r,theta) represents the the transformed dependent variable.
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COMPACT is a package of functions for the reduction of a polynomial in the presence of side
relations. The package defines one operator COMPACT whose syntax is:

COMPACT(<expression>, <list>):<expression>

<expression> can be any well-formed algebraic expression, and <list> an expression whose
value is a list of either expressions or equations. For example

compact(x**2+y**3*x-5y,{x+y-z,x-y-z1});
compact(sin(x)**10*cos(x)**3+sin(x)**8*cos(x)**5,

{cos(x)**2+sin(x)**2=1});
let y = {cos(x)**2+sin(x)**2-1};
compact(sin(x)**10*cos(x)**3+sin(x)**8*cos(x)**5,y);

COMPACT applies the relations to the expression so that an equivalent expression results with
as few terms as possible. The method used is briefly as follows:

1. Side relations are applied separately to numerator and denominator, so that the problem is
reduced to the reduction of a polynomial with respect to a set of polynomial side relations.

2. Reduction is performed sequentially, so that the problem is reduced further to the reduc-
tion of a polynomial with respect to a single polynomial relation.

3. The polynomial being reduced is reordered so that the variables (kernels) occurring in the
side relation have least precedence.

4. Each coefficient of the remaining kernels (which now only contain the kernels in the side
relation) is reduced with respect to that side relation.
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5. A polynomial quotient/remainder calculation is performed on the coefficient. The remain-
der is used instead of the original if it has fewer terms.

6. The remaining expression is reduced with respect to the side relation using a “nearest
neighbour” approach.
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The functionality of this package is now superseeded by the RATAPRX chapter 65 package. Please
refer to this package for further information.
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CRACK: Solving overdetermined
systems of PDEs or ODEs

Thomas Wolf
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
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Andreas Brand
Institut für Informatik
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e–mail: maa@hpux.rz.uni-jena.de

The package CRACK aims at solving or at least partially integrating single ordinary differential
equations or partial differential equations (ODEs/PDEs), and systems of them, exactly and in
full generality. Calculations done with input DEs include the

• integration of exact DEs and generalised exact DEs

• determination of monomial integrating factors

• direct and indirect separation of DEs

• systematic application of integrability conditions

• solution of single elementary ODEs by using the REDUCE package ODESOLVE (chap-
ter 59).

Input DEs may be polynomially non-linear in the unknown functions and their derivatives and
may depend arbitrarily on the independent variables.

Suitable applications of CRACK are the solution of

• overdetermined ODE/PDE-systems (overdetermined here just means that the number of
unknown functions of all independent variables is less than the number of given equations
for these functions).
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• simple non-overdetermined DE-systems (such as characteristic ODE-systems of first order
quasilinear PDEs).

The strategy is to have one universal program (CRACK) which is as effective as possible for
solving overdetermined PDE-systems and many application programs (such as LIEPDE) which
merely generate an overdetermined PDE-system depending on what is to be investigated (for
example, symmetries or conservation laws).

Examples are:

• the investigation of infinitesimal symmetries of DEs (LIEPDE),

• the determination of an equivalent Lagrangian for second order ODEs (LAGRAN)

• the investigation of first integrals of ODEs which are polynomial in their highest derivative
(FIRINT)

• the splitting of an nth order ODE into a first order ODE and an (n− 1)th order problem
(DECOMP)

Other applications where non-overdetermined problems are treated are

• the application of infinitesimal symmetries (e.g. calculated by LIEPDE) in the package
APPLYSYM (chapter 21),

• the program QUASILINPDE (also in the package APPLYSYM) for solving single first
order quasilinear PDEs.

The kernel package for solving overdetermined or simple non-overdetermined DE-systems is
accessible through a call to the program CRACK in the package CRACK. All the application
programs (LIEPDE, LAGRAN, FIRINT, DECOMP except APPLYSYM) are contained in the
package CRACKAPP. The programs APPLYSYM and QUASILINPDE are contained in the
package APPLYSYM (described in chapter 21).

Details of the CRACK applications can be found in the example file.

CRACK is called by

CRACK({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e. they represent
equations 0 = equi, which are to be solved for the functions funj as far as possible,
thereby drawing only necessary conclusions and not restricting the general solution.

• The ineqi are expressions which must not vanish identically for any solution to be de-
termined, i.e. only such solutions are computed for which none of the ineqi vanishes
identically in all independent variables.
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• The dependence of the (scalar) functions funj on possibly a number of variables is assumed
to have been defined with DEPEND rather than declaring these functions as operators.
Their arguments may themselves only be independent variables and not expressions.

• The functions funj and their derivatives may only occur polynomially. Other unknown
functions in equi may be represented as operators.

• The vark are further independent variables, which are not already arguments of any of
the funj . If there are none then the third argument is the empty list {}.

• The dependence of the equi on the independent variables and on constants and functions
other than funj is arbitrary.

The result is a list of solutions
{sol1, . . .}

where each solution is a list of 3 lists:

{{con1, con2, . . . , conq},
{funa = exa, funb = ex b, . . . , funp = ex p},
{func, fund, . . . , funr} }

with integer a, b, c, d, p, q, r. If CRACK finds a contradiction as 0 = 1 then there exists no solution
and it returns the empty list {}. The empty list is also returned if no solution exists which does
not violate the inequalities ineqi 6= 0. For example, in the case of a linear system as input, there
is at most one solution sol1.

The expressions coni (if there are any), are the remaining necessary and sufficient conditions
for the functions func, . . . , funr in the third list. Those functions can be original functions
from the equations to be solved (of the second argument of the call of CRACK) or new functions
or constants which arose from integrations. The dependence of new functions on variables is
declared with DEPEND and to visualise this dependence the algebraic mode function FARGS(funi)
can be used. If there are no coni then all equations are solved and the functions in the third
list are unconstrained.

The second list contains equations funi = ex i where each funi is an original function and ex i is
the computed expression for funi.

The exact behaviour of CRACK can be modified by internal variables, and there is a help system
particularly associated with CRACK. Users are referred to the detailed documentation for more
information.
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CVIT: Fast calculation of Dirac
gamma matrix traces

V. Ilyin, A. Kryukov, A. Rodionov and A. Taranov
Institute for Nuclear Physics

Moscow State University
Moscow, 119899 Russia

The package consists of 5 sections, and provides an alternative to the REDUCE high-energy
physics system. Instead of being based on Γ-matrices as a basis for a Clifford algebra, it is
based on treating Γ-matrices as 3-j symbols, as described by Cvitanovic.

The functions it provides are the same as those of the standard package. It does have four
switches which control its behaviour.

CVIT

If it is on then use Kennedy-Cvitanovic algorithm else use standard facilities.

CVITOP

Switches on Fierz optimisation. Default is off;

CVITBTR

Switches on the bubbles and triangles factorisation. The default is on.

CVITRACE

Controls internal tracing of the CVIT package. Default is off.

index j1,j2,j3,;

vecdim n$

g(l,j1,j2,j2,j1);

2
n
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g(l,j1,j2)*g(l1,j3,j1,j2,j3);

2
n

g(l,j1,j2)*g(l1,j3,j1,j3,j2);

n*( - n + 2)
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REDUCE’s definite integration package is able to calculate the definite integrals of many funct-
ions, including several special functions. There are a number of parts of this package, including
contour integration. The innovative integration process is to represent each function as a Mei-
jer G-function, and then calculating the integral by using the following Meijer G integration
formula.

∫ ∞
0

xα−1Gstuv

(
σx

∣∣∣∣∣ (cu)
(dv)

)
Gmnpq

(
ωxl/k

∣∣∣∣∣ (ap)
(bq)

)
dx = kGijkl

(
ξ

∣∣∣∣∣ (gk)
(hl)

)
(1)

The resulting Meijer G-function is then retransformed, either directly or via a hypergeometric
function simplification, to give the answer.

The user interface is via a four argument version of the INT operator, with the lower and upper
limits added.

load_package defint;

int(sin x,x,0,pi/2);

1
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int(log(x),x,1,5);

5*log(5) - 4

int(x*e^(-1/2x),x,0,infinity);

4

int(x^2*cos(x)*e^(-2*x),x,0,infinity);

4
-----
125

int(x^(-1)*besselj(2,sqrt(x)),x,0,infinity);

1

int(si(x),x,0,y);

cos(y) + si(y)*y - 1

int(besselj(2,x^(1/4)),x,0,y);

1/4
4*besselj(3,y )*y
---------------------

1/4
y

The DEFINT package also defines a number of additional transforms, such as the Laplace
transform1, the Hankel transform, the Y-transform, the K-transform, the StruveH transform,
the Fourier sine transform, and the Fourier cosine transform.

laplace_transform(cosh(a*x),x);

- s
---------
2 2

a - s

laplace_transform(Heaviside(x-1),x);

1
------
s

e *s
1See Chapter 49 for an alternative Laplace transform with inverse Laplace transform
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hankel_transform(x,x);

n + 4
gamma(-------)

2
-------------------

n - 2 2
gamma(-------)*s

2

fourier_sin(e^(-x),x);

s
--------

2
s + 1

fourier_cos(x,e^(-1/2*x^2),x);

2
i*s s /2

sqrt( - pi)*erf(---------)*s + e *sqrt(2)
sqrt(2)

----------------------------------------------
2
s /2

e *sqrt(2)

It is possible to the user to extend the pattern-matching process by which the relevant Meijer G
representation for any function is found. Details can be found in the complete documentation.

Acknowledgement: This package depends greatly on the pioneering work of Victor Adamchik,
to whom thanks are due.
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DESIR: Differential linear
homogeneous equation solutions in
the neighbourhood of irregular and
regular singular points

C. Dicrescenzo, F. Richard–Jung, E. Tournier
Groupe de Calcul Formel de Grenoble

laboratoire TIM3
France

e–mail: dicresc@afp.imag.fr

This software enables the basis of formal solutions to be computed for an ordinary homogeneous
differential equation with polynomial coefficients over Q of any order, in the neighbourhood of
zero (regular or irregular singular point, or ordinary point).

This software can be used in two ways, directly via the DELIRE procedure, or interactively with
the DESIR procedure. The basic procedure is the DELIRE procedure which enables the solutions
of a linear homogeneous differential equation to be computed in the neighbourhood of zero.

The DESIR procedure is a procedure without argument whereby DELIRE can be called without
preliminary treatment to the data, that is to say, in an interactive autonomous way. This
procedure also proposes some transformations on the initial equation. This allows one to start
comfortably with an equation which has a non zero singular point, a polynomial right-hand side
and parameters.

delire(x,k,grille,lcoeff,param)

This procedure computes formal solutions of a linear homogeneous differential equation with
polynomial coefficients over Q and of any order, in the neighbourhood of zero, regular or irregular
singular point. x is the variable, k is the number of desired terms (that is for each formal series
in xt appearing in polysol, a0 + a1xt + a2x

2
t + . . . + anx

n
t + . . . we compute the k + 1 first

coefficients a0, a1 to ak. The coefficients of the differential operator as polynomial in xgrille. In
general grille is 1. The argument lcoeff is a list of coefficients of the differential operator (in
increasing order of differentiation) and param is a list of parameters. The procedure returns the
list of general solutions.
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lcoeff:={1,x,x,x**6};

6
lcoeff := {1,x,x,x }

param:={};

param := {}

sol:=delire(x,4,1,lcoeff,param);

4 3 2
xt - 4*xt + 12*xt - 24*xt + 24

sol := {{{{0,1,-----------------------------------,1},{
12

}}},

4 3
{{{0,1,(6*log(xt)*xt - 18*log(xt)*xt

2
+ 36*log(xt)*xt - 36*log(xt)*xt

4 3
- 5*xt + 9*xt - 36*xt + 36)/36,0},{}

}},

1
{{{-------,1,

4
4*xt

4 3 2
361*xt + 4*xt + 12*xt + 24*xt + 24
---------------------------------------,10},

24

{}}}}
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DFPART: Derivatives of generic
functions
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The package DFPART supports computations with total and partial derivatives of formal function
objects. Such computations can be useful in the context of differential equations or power series
expansions.

37.1 Generic Functions

A generic function is a symbol which represents a mathematical function. The minimal infor-
mation about a generic function function is the number of its arguments. In order to facilitate
the programming and for a better readable output this package assumes that the arguments of a
generic function have default names such as f(x, y), q(rho, phi). A generic function is declared
by prototype form in a statement

GENERIC FUNCTION fname(arg1, arg2 · · · argn);

where fname is the (new) name of a function and argi are symbols for its formal arguments.
In the following fname is referred to as “generic function”, arg1, arg2 · · · argn as “generic ar-
guments” and fname(arg1, arg2 · · · argn) as “generic form”.

Examples:

generic_function f(x,y);
generic_function g(z);

After this declaration REDUCE knows that

• there are formal partial derivatives ∂f
∂x , ∂f∂y

∂g
∂z and higher ones, while partial derivatives of
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f and g with respect to other variables are assumed as zero,

• expressions of the type f(), g() are abbreviations for f(x, y), g(z),

• expressions of the type f(u, v) are abbreviations for
sub(x = u, y = v, f(x, y))

• a total derivative df(u,v)
dw has to be computed as ∂f

∂x
du
dw + ∂f

∂y
dv
dw

37.2 Partial Derivatives

The operator DFP represents a partial derivative:

DFP(expr, dfarg1, dfarg2 · · · dfargn);

where expr is a function expression and dfargi are the differentiation variables. Examples:

dfp(f(),{x,y});

means ∂2f
∂x∂y and

dfp(f(u,v),{x,y});

stands for ∂2f
∂x∂y (u, v). For compatibility with the DF operator the differentiation variables need

not be entered in list form; instead the syntax of DF can be used, where the function expression
is followed by the differentiation variables, eventually with repetition numbers. Such forms are
internally converted to the above form with a list as second parameter.

The expression expr can be a generic function with or without arguments, or an arithmetic
expression built from generic functions and other algebraic parts. In the second case the stand-
ard differentiation rules are applied in order to reduce each derivative expressions to a minimal
form.

When the switch NAT is on partial derivatives of generic functions are printed in standard index
notation, that is fxy for ∂2f

∂x∂y and fxy(u, v) for ∂2f
∂x∂y (u, v). Therefore single characters should be

used for the arguments whenever possible. Examples:

generic_function f(x,y);
generic_function g(y);
dfp(f(),x,2);

F
XX

dfp(f()*g(),x,2);

F *G()
XX
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dfp(f()*g(),x,y);

F *G() + F *G
XY X Y

The difference between partial and total derivatives is illustrated by the following example:

generic_function h(x);
dfp(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X))
X

df(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X)) + F (X,H(X))*H (X)*G(H(X))
X Y X

+ G (H(X))*H (X)*F(X,H(X))
Y X

Normally partial differentials are assumed as non-commutative

dfp(f(),x,y)-dfp(f(),y,x);

F - F
XY YX

However, a generic function can be declared to have globally interchangeable partial derivatives
using the declaration DFP COMMUTE which takes the name of a generic function or a generic
function form as argument. For such a function differentiation variables are rearranged corre-
sponding to the sequence of the generic variables.

generic_function q(x,y);
dfp_commute q(x,y);
dfp(q(),{x,y,y}) + dfp(q(),{y,x,y}) + dfp(q(),{y,y,x});

3*Q
XYY

If only a part of the derivatives commute, this has to be declared using the standard REDUCE
rule mechanism. Please note that then the derivative variables must be written as list.
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37.3 Substitutions

When a generic form or a DFP expression takes part in a substitution the following steps are
performed:

1. The substitutions are performed for the arguments. If the argument list is empty the
substitution is applied to the generic arguments of the function; if these change, the
resulting forms are used as new actual arguments. If the generic function itself is not
affected by the substitution, the process stops here.

2. If the function name or the generic function form occurs as a left hand side in the substi-
tution list, it is replaced by the corresponding right hand side.

3. The new form is partially differentiated according to the list of partial derivative variables.

4. The (eventually modified) actual parameters are substituted into the form for their cor-
responding generic variables. This substitution is done by name.

Examples:

generic_function f(x,y);
sub(y=10,f());

F(X,10)

sub(y=10,dfp(f(),x,2));

F (X,10)
XX

sub(y=10,dfp(f(y,y),x,2));

F (10,10)
XX

sub(f=x**3*y**3,dfp(f(),x,2));

3
6*X*Y

generic_function ff(y,z);
sub(f=ff,f(a,b));

FF(B,Z)
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An expression of the type
n∑
a=1

f(a)

for any n is simply written as
f(a)

and a is a dummy index. If the previous expression is written as

n∑
b=1

f(b)

b is also a dummy index and, obviously we should be able to get the equality

f(a)− f(b); → 0

To declare dummy variables, two declarations are available:

i. dummy_base <idp>;

where idp is the name of any unassigned identifier.

ii. dummy_names <d>,<dp>,<dpp> ....;

The first declares idp1,· · ·, idpn as dummy variables i.e. all variables of the form “idxxx”
where xxx is a number will be dummy variables, such as id1, id2, ... , id23. The second
gives special names for dummy variables. All other arguments are assumed to be free.
An example:
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dummy_base dv; ==> dv

% dummy indices are dv1, dv2, dv3, ...

dummy_names i,j,k; ==> t

% dummy names are i,j,k.

When this is done, an expression like

op(dv1)*sin(dv2)*abs(x)*op(i)^3*op(dv2)$

is allowed. Notice that, dummy indices may not be repeated (it is not limited to tensor calculus)
or that they be repeated many times inside the expression.

By default all operators with dummy arguments are assumed to be commutative and without
symmetry properties. This can be varied by declarations NONCOM, SYMMETRIC and ANTISYMME-
TRIC may be used on the operators. They can also be declared anticommutative.

anticom ao1, ao2;

More complex symmetries can be handled with SYMTREE. The corresponding declaration for the
Riemann tensor is

symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

The symbols !*, !+ and !- at the beginning of each list mean that the operator has no symmetry,
is symmetric and is antisymmetric with respect to the indices inside the list. Notice that the
indices are not designated by their names but merely by their natural order of appearance. 1
means the first written argument of r, 2 its second argument etc. In the example above r is
symmetric with respect to interchange of the pairs of indices 1,2 and 3,4 respectively.
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EXCALC: A differential geometry
package

Eberhard Schrüfer
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EXCALC is designed for easy use by all who are familiar with the calculus of Modern Differen-
tial Geometry. Its syntax is kept as close as possible to standard textbook notations. Therefore,
no great experience in writing computer algebra programs is required. It is almost possible to
input to the computer the same as what would have been written down for a hand-calculation.
For example, the statement

f*x^y + u _| (y^z^x)

would be recognized by the program as a formula involving exterior products and an inner
product. The program is currently able to handle scalar-valued exterior forms, vectors and
operations between them, as well as non-scalar valued forms (indexed forms). With this, it
should be an ideal tool for studying differential equations, doing calculations in general relativity
and field theories, or doing such simple things as calculating the Laplacian of a tensor field for
an arbitrary given frame. With the increasing popularity of this calculus, this program should
have an application in almost any field of physics and mathematics.

39.1 Declarations

Geometrical objects like exterior forms or vectors are introduced to the system by declaration
commands. The declarations can appear anywhere in a program, but must, of course, be made
prior to the use of the object. Everything that has no declaration is treated as a constant;
therefore zero-forms must also be declared.

An exterior form is introduced by

PFORM <declaration1>, <declaration2>, . . . ;
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where

<declaration> ::= <name> | <list of names>=<number> | <identifier> |
<expression>
<name> ::= <identifier> | <identifier>(<arguments>)

For example

pform u=k,v=4,f=0,w=dim-1;

declares U to be an exterior form of degree K, V to be a form of degree 4, F to be a form of degree
0 (a function), and W to be a form of degree DIM-1.

The declaration of vectors is similar. The command TVECTOR takes a list of names.

TVECTOR <name1>, <name2>, . . . ;

For example, to declare X as a vector and COMM as a vector with two indices, one would say

tvector x,comm(a,b);

The exterior degree of a symbol or a general expression can be obtained with the function

EXDEGREE <expression>;

Example:

exdegree(u + 3*chris(k,-k));

1

39.2 Exterior Multiplication

Exterior multiplication between exterior forms is carried out with the nary infix operator ˆ
(wedge). Factors are ordered according to the usual ordering in REDUCE using the commuta-
tion rule for exterior products.

pform u=1,v=1,w=k;

u^v;

U^V

v^u;

- U^V

u^u;

0
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w^u^v;

K
( - 1) *U^V^W

(3*u-a*w)^(w+5*v)^u;

A*(5*U^V^W - U^W^W)

It is possible to declare the dimension of the underlying space by

SPACEDIM <number> | <identifier>;

If an exterior product has a degree higher than the dimension of the space, it is replaced by 0:

39.3 Partial Differentiation

Partial differentiation is denoted by the operator @. Its capability is the same as the REDUCE
DF operator.

Example 6

@(sin x,x);

COS(X)

@(f,x);

0

An identifier can be declared to be a function of certain variables. This is done with the
command FDOMAIN. The following would tell the partial differentiation operator that F is a
function of the variables X and Y and that H is a function of X.

fdomain f=f(x,y),h=h(x);

Applying @ to F and H would result in

@(x*f,x);

F + X*@ F
X

@(h,y);

0

The partial derivative symbol can also be an operator with a single argument. It then represents
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a natural base element of a tangent vector.

39.4 Exterior Differentiation

Exterior differentiation of exterior forms is carried out by the operator d. Products are normally
differentiated out,

pform x=0,y=k,z=m;

d(x * y);

X*d Y + d X^Y

This expansion can be suppressed by the command NOXPND D. Expansion is performed again
when the command XPND D is executed.

If an argument of an implicitly defined function has further dependencies the chain rule will be
applied e.g.

fdomain y=y(z);

d f;

@ F*d X + @ F*@ Y*d Z
X Y Z

Expansion into partial derivatives can be inhibited by NOXPND @ and enabled again by XPND @.

39.5 Inner Product

The inner product between a vector and an exterior form is represented by the diphthong |
(underscore or-bar), which is the notation of many textbooks. If the exterior form is an exterior
product, the inner product is carried through any factor.

Example 7

pform x=0,y=k,z=m;

tvector u,v;

u _| (x*y^z);

K
X*(( - 1) *Y^U _| Z + U _| Y^Z)
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39.6 Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or between two vectors.
It is represented by the infix operator | . In the case of Lie differentiating, an exterior form by
a vector, the Lie derivative is expressed through inner products and exterior differentiations,
i.e.

pform z=k;

tvector u;

u |_ z;

U _| d Z + d(U _| Z)

39.7 Hodge-* Duality Operator

The Hodge-* duality operator maps an exterior form of degree K to an exterior form of degree
N-K, where N is the dimension of the space. The double application of the operator must lead
back to the original exterior form up to a factor. The following example shows how the factor
is chosen here

spacedim n;
pform x=k;

# # x;

2
(K + K*N)

( - 1) *X*SGN

The indeterminate SGN in the above example denotes the sign of the determinant of the metric.
It can be assigned a value or will be automatically set if more of the metric structure is specified
(via COFRAME), i.e. it is then set to g/|g|, where g is the determinant of the metric. If the
Hodge-* operator appears in an exterior product of maximal degree as the leftmost factor, the
Hodge-* is shifted to the right according to

pform {x,y}=k;

# x ^ y;

2
(K + K*N)

( - 1) *X^# Y
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39.8 Variational Derivative

The function VARDF returns as its value the variation of a given Lagrangian n-form with respect
to a specified exterior form (a field of the Lagrangian). In the shared variable BNDEQ!*, the
expression is stored that has to yield zero if integrated over the boundary.

Syntax:

VARDF(<Lagrangian n-form>,<exterior form>)

Example 8

spacedim 4;

pform l=4,a=1,j=3;

l:=-1/2*d a ^ # d a - a^# j$ %Lagrangian of the e.m. field

vardf(l,a);

- (# J + d # d A) %Maxwell’s equations

bndeq!*;

- ’A^# d A %Equation at the boundary

For the calculation of the conserved currents induced by symmetry operators (vector fields),
the function NOETHER is provided. It has the syntax:

NOETHER(<Lagrangian n-form>,<field>,<symmetry generator>)

Example 9

pform l=4,a=1,f=2;

spacedim 4;

l:= -1/2*d a^#d a; %Free Maxwell field;

tvector x(k); %An unspecified generator;

noether(l,a,x(-k));

( - 2*d(X _|A)^# d A - (X _|d A)^# d A + d A^(X _|# d A))/2
K K K

39.9 Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are given as arguments of
the object. A positive argument denotes a superscript and a negative argument a subscript.
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On output, the indexed quantity is displayed two dimensionally if NAT is on. Indices may be
identifiers or numbers.

Example 10

pform om(k,l)=m,e(k)=1;
e(k)^e(-l);

K
E ^E

L

om(4,-2);

4
OM

2

In certain cases, one would like to inhibit the summation over specified index names, or at all.
For this the command

NOSUM <indexname1>, . . . ;

and the switch NOSUM are available. The command NOSUM has the effect that summation is not
performed over those indices which had been listed. The command RENOSUM enables summation
again. The switch NOSUM, if on, inhibits any summation.

It is possible to declare symmetry properties for an indexed quantity by the command
INDEX SYMMETRIES. A prototypical example is as follows

index_symmetries u(k,l,m,n): symmetric in {k,l},{m,n}
antisymmetric in {{k,l},{m,n}},

g(k,l),h(k,l): symmetric;

It declares the object u symmetric in the first two and last two indices and antisymmetric
with respect to commutation of the given index pairs. If an object is completely symmetric
or antisymmetric, the indices need not to be given after the corresponding keyword as shown
above for g and h.

39.10 Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-forms (the coframe)
together with the metric.

Syntax:

COFRAME <identifier><(index1)>=<expression1>,
<identifier><(index2)>=<expression2>,
.
.
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.
<identifier><(indexn)>=<expressionn>

WITH METRIC <name>=<expression>;

This statement automatically sets the dimension of the space and the index range. The clause
WITH METRIC can be omitted if the metric is Euclidean and the shorthand WITH SIGNATURE
<diagonal elements> can be used in the case of a pseudo-Euclidean metric. The splitting of
a metric structure in its metric tensor coefficients and basis one-forms is completely arbitrary
including the extremes of an orthonormal frame and a coordinate frame.

Example 11

coframe e r=d r, e(ph)=r*d ph
with metric g=e(r)*e(r)+e(ph)*e(ph); %Polar coframe

The frame dual to the frame defined by the COFRAME command can be introduced by FRAME
command.

FRAME <identifier>;

This command causes the dual property to be recognised, and the tangent vectors of the coor-
dinate functions are replaced by the frame basis vectors.

Example 12

coframe b r=d r,b ph=r*d ph,e z=d z; %Cylindrical coframe;

frame x; on nero;

x(-k) _| b(l);

R
NS := 1
R

PH
NS := 1
PH

Z
NS := 1
Z

x(-k) |_ x(-l); %The commutator of the dual frame;

NS := X /R
PH R PH
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NS := ( - X )/R %i.e. it is not a coordinate base;
R PH PH

As a convenience, the frames can be displayed at any point in a program by the command
DISPLAYFRAME;.

The Hodge-* duality operator returns the explicitly constructed dual element if applied to
coframe base elements. The metric is properly taken into account.

The total antisymmetric Levi-Cevita tensor EPS is also available. The value of EPS with an even
permutation of the indices in a covariant position is taken to be +1.

39.11 Riemannian Connections

The command RIEMANNCONX is provided for calculating the connection 1 forms. The values are
stored on the name given to RIEMANNCONX. This command is far more efficient than calculating
the connection from the differential of the basis one-forms and using inner products.

39.12 Ordering and Structuring

The ordering of an exterior form or vector can be changed by the command FORDER. In an
expression, the first identifier or kernel in the arguments of FORDER is ordered ahead of the
second, and so on, and ordered ahead of all not appearing as arguments. This ordering is done
on the internal level and not only on output. The execution of this statement can therefore
have tremendous effects on computation time and memory requirements. REMFORDER brings
back standard ordering for those elements that are listed as arguments.

An expression can be put in a more structured form by renaming a subexpression. This is done
with the command KEEP which has the syntax

KEEP <name1>=<expression1>,<name2>=<expression2>, . . .

The capabilities of KEEP are currently very limited. Only exterior products should occur as
righthand sides in KEEP.

Note: This is just an introduction to the full power of EXCALC. The reader if referred to the
full documentation.
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FIDE: Finite difference method for
partial differential equations

Richard Liska
Faculty of Nuclear Science and Physical Engineering

Technical University of Prague
Brehova 7, 115 19 Prague 1, Czech Republic

e–mail: tjerl@aci.cvut.cz

The FIDE package performs automation of the process of numerical solving partial differen-
tial equations systems (PDES) by generating finite difference methods. In the process one can
find several stages in which computer algebra can be used for performing routine analytical
calculations, namely: transforming differential equations into different coordinate systems, dis-
cretisation of differential equations, analysis of difference schemes and generation of numerical
programs. The FIDE package consists of the following modules:

EXPRES for transforming PDES into any orthogonal coordinate system.

IIMET for discretisation of PDES by integro-interpolation method.

APPROX for determining the order of approximation of difference scheme.

CHARPOL for calculation of amplification matrix and characteristic polynomial of difference
scheme, which are needed in Fourier stability analysis.

HURWP for polynomial roots locating necessary in verifying the von Neumann stability con-
dition.

LINBAND for generating the block of FORTRAN code, which solves a system of linear alge-
braic equations with band matrix appearing quite often in difference schemes.

For more details on this package are given in the FIDE documentation, and in the examples.
A flavour of its capabilities can be seen from the following simple example.

off exp;

factor diff;
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on rat,eqfu;

% Declare which indexes will be given to coordinates
coordinates x,t into j,m;

% Declares uniform grid in x coordinate
grid uniform,x;

% Declares dependencies of functions on coordinates
dependence eta(t,x),v(t,x),eps(t,x),p(t,x);

% Declares p as known function
given p;

same eta,v,p;

iim a, eta,diff(eta,t)-eta*diff(v,x)=0,
v,diff(v,t)+eta/ro*diff(p,x)=0,
eps,diff(eps,t)+eta*p/ro*diff(v,x)=0;

*****************************
***** Program ***** IIMET Ver 1.1.2
*****************************

Partial Differential Equations
==============================

diff(eta,t) - diff(v,x)*eta = 0

diff(p,x)*eta
--------------- + diff(v,t) = 0

ro

diff(v,x)*eta*p
diff(eps,t) + ----------------- = 0

ro

Backtracking needed in grid optimalization
0 interpolations are needed in x coordinate
Equation for eta variable is integrated in half grid point
Equation for v variable is integrated in half grid point
Equation for eps variable is integrated in half grid point

0 interpolations are needed in t coordinate
Equation for eta variable is integrated in half grid point
Equation for v variable is integrated in half grid point
Equation for eps variable is integrated in half grid point
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Equations after Discretization Using IIM :
==========================================

(4*(eta(j,m + 1) - eta(j,m) - eta(j + 1,m)

+ eta(j + 1,m + 1))*hx - (

(eta(j + 1,m + 1) + eta(j,m + 1))

*(v(j + 1,m + 1) - v(j,m + 1))

+ (eta(j + 1,m) + eta(j,m))*(v(j + 1,m) - v(j,m)))

*(ht(m + 1) + ht(m)))/(4*(ht(m + 1) + ht(m))*hx) = 0

(4*(v(j,m + 1) - v(j,m) - v(j + 1,m) + v(j + 1,m + 1))*hx*ro

+ ((eta(j + 1,m + 1) + eta(j,m + 1))

*(p(j + 1,m + 1) - p(j,m + 1))

+ (eta(j + 1,m) + eta(j,m))*(p(j + 1,m) - p(j,m)))

*(ht(m + 1) + ht(m)))/(4*(ht(m + 1) + ht(m))*hx*ro) = 0

(4*(eps(j,m + 1) - eps(j,m) - eps(j + 1,m)

+ eps(j + 1,m + 1))*hx*ro + ((

eta(j + 1,m + 1)*p(j + 1,m + 1)

+ eta(j,m + 1)*p(j,m + 1))

*(v(j + 1,m + 1) - v(j,m + 1)) +

(eta(j + 1,m)*p(j + 1,m) + eta(j,m)*p(j,m))

*(v(j + 1,m) - v(j,m)))*(ht(m + 1) + ht(m)))/(4

*(ht(m + 1) + ht(m))*hx*ro) = 0

clear a;

clearsame;
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cleargiven;
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This package can expand functions of certain type into their corresponding Laurent-Puiseux
series as a sum of terms of the form

∞∑
k=0

ak(x− x0)k/n+s

where s is the ‘shift number’, n is the ‘Puiseux number’, and x0 is the ‘point of development’.
The following types are supported:

• functions of ‘rational type’, which are either rational or have a rational derivative of
some order;

• functions of ‘hypergeometric type’ where ak+m/ak is a rational function for some
integer m, the ‘symmetry number’;

• functions of ‘exp-like type’ which satisfy a linear homogeneous differential equation
with constant coefficients.

FPS(f,x,x0) tries to find a formal power series expansion for f with respect to the variable
x at the point of development x0. It also works for formal Laurent (negative exponents) and
Puiseux series (fractional exponents). If the third argument is omitted, then x0:=0 is assumed.

Example: FPS(asin(x)^2,x) results in

2*k 2*k 2 2
x *2 *factorial(k) *x

infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)
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If possible, the output is given using factorials. In some cases, the use of the Pochhammer
symbol pochhammer(a,k):= a(a+ 1) · · · (a+ k − 1) is necessary.

SimpleDE(f,x) tries to find a homogeneous linear differential equation with polynomial coef-
ficients for f with respect to x. Make sure that y is not a used variable. The setting factor
df; is recommended to receive a nicer output form.

Examples: SimpleDE(asin(x)^2,x) then results in

2
df(y,x,3)*(x - 1) + 3*df(y,x,2)*x + df(y,x)

The depth for the search of a differential equation for f is controlled by the variable
fps_search_depth; higher values for fps_search_depth will increase the chance to find the so-
lution, but increases the complexity as well. The default value for fps_search_depth is 5. For
FPS(sin(x^(1/3)),x), or SimpleDE(sin(x^(1/3)),x) e.g., a setting fps_search_depth:=6
is necessary.

The output of the FPS package can be influenced by the switch tracefps. Setting on tracefps
causes various prints of intermediate results.
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GENTRAN is an automatic code GENerator and TRANslator which runs under REDUCE. It
constructs complete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be generated through
a series of interactive commands or under the control of a template processing routine. Large
expressions can be automatically segmented into subexpressions of manageable size, and a
special file-handling mechanism maintains stacks of open I/O channels to allow output to be
sent to any number of files simultaneously and to facilitate recursive invocation of the whole
code generation process. GENTRAN provides the flexibility necessary to handle most code
generation applications. It is designed to work with the SCOPE code optimiser.

GENTRAN is a large system with a great many options. This section will only describe the
FORTRAN generation facilities, and in broad outline only. The full manual is available as part
of the REDUCE documentation.

42.1 Simple Use

A substantial subset of all expressions and statements in the REDUCE programming language
can be translated directly into numerical code. The GENTRAN command takes a REDUCE
expression, statement, or procedure definition, and translates it into code in the target language.

Syntax:

GENTRAN stmt [ OUT f1,f2,. . . ,fn ];
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stmt is any REDUCE expression, statement (simple, compound, or group), or procedure defi-
nition that can be translated by GENTRAN into the target language. stmt may contain any
number of calls to the special functions EVAL, DECLARE, and LITERAL. f1,f2,. . . ,fn is
an optional argument list containing one or more f’s, where each f is one of:

an atom = an output file
T = the terminal
NIL = the current output file(s)
ALL!* = all files currently open for output

by GENTRAN (see section 42.6)

If the optional part of the command is not given, generated code is simply written to the current
output file. However, if it is given, then the current output file is temporarily overridden.
Generated code is written to each file represented by f1,f2,. . . ,fn for this command only. Files
which were open prior to the call to GENTRAN will remain open after the call, and files
which did not exist prior to the call will be created, opened, written to, and closed. The output
stack will be exactly the same both before and after the call.

GENTRAN returns the name(s) of the file(s) to which code was written.

1: GENTRANLANG!* := ’FORTRAN$

2: GENTRAN
2: FOR I:=1:N DO
2: V(I) := 0$

DO 25001 I=1,N
V(I)=0.0

25001 CONTINUE

42.2 Precision

By default GENTRAN generates constants and type declarations in single precision form. If
the user requires double precision output then the switch DOUBLE must be set ON.

To ensure the correct number of floating point digits are generated it may be necessary to
use either the PRECISION or PRINT!-PRECISION commands. The former alters the
number of digits REDUCE calculates, the latter only the number of digits REDUCE prints.
Each takes an integer argument. It is not possible to set the printed precision higher than the
actual precision. Calling PRINT!-PRECISION with a negative argument causes the printed
precision to revert to the actual precision.
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42.2.1 The EVAL Function

Syntax:

EVAL exp

Argument:

exp is any REDUCE expression or statement which, after evaluation by REDUCE,
results in an expression that can be translated by GENTRAN into the target lan-
guage.

When EVAL is called on an expression which is to be translated, it tells GENTRAN to
give the expression to REDUCE for evaluation first, and then to translate the result of that
evaluation.

f;

2
2*X - 5*X + 6

We wish to generate an assignment statement for the quotient of F and its derivative.

1: GENTRAN
1: Q := EVAL(F)/EVAL(DF(F,X))$

Q=(2.0*X**2-(5.0*X)+6.0)/(4.0*X-5.0)

42.2.2 The :=: Operator

In many applications, assignments must be generated in which the left-hand side is some known
variable name, but the right-hand side is an expression that must be evaluated. For this reason,
a special operator is provided to indicate that the expression on the right-hand side is to be
evaluated prior to translation. This special operator is :=: (i.e. the usual REDUCE assignment
operator with an extra “:” on the right).

Example 13

1: GENTRAN
1: DERIV :=: DF(X^4-X^3+2*x^2+1,X)$

DERIV=4.0*X**3-(3.0*X**2)+4.0*X

42.2.3 The ::= Operator

When assignments to matrix or array elements must be generated, many times the indices
of the element must be evaluated first. The special operator ::= can be used within a call to
GENTRAN to indicate that the indices of the matrix or array element on the left-hand side of
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the assignment are to be evaluated prior to translation. (This is the usual REDUCE assignment
operator with an extra “:” on the left.)

Example 14

We wish to generate assignments which assign zeros to all elements on the main
diagonal of M, an n x n matrix.

10: FOR j := 1 : 8 DO
10: GENTRAN
10: M(j,j) ::= 0$

M(1,1)=0.0
M(2,2)=0.0
:
:
M(8,8)=0.0

LSETQ may be used interchangeably with ::= on input.

42.2.4 The ::=: Operator

In applications in which evaluated expressions are to be assigned to array elements with evalu-
ated subscripts, the ::=: operator can be used. It is a combination of the ::= and :=: operators
described in sections 42.2.2 and 42.2.3.

Example 15

The following matrix, M, has been derived symbolically:
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( A 0 -1 1)
( )
( 0 B 0 0)
( )
( -1 0 C -1)
( )
( 1 0 -1 D)

We wish to generate assignment statements for those elements on the main diagonal
of the matrix.

10: FOR j := 1 : 4 DO
10: GENTRAN
10: M(j,j) ::=: M(j,j)$

M(1,1)=A
M(2,2)=B
M(3,3)=C
M(4,4)=D

The alternative alphanumeric identifier associated with ::=: is LRSETQ.

42.3 Explicit Type Declarations

Type declarations are automatically generated each time a subprogram heading is generated.
Type declarations are constructed from information stored in the GENTRAN symbol table. The
user can place entries into the symbol table explicitly through calls to the special GENTRAN
function DECLARE.

Syntax:

DECLARE v1,v2,. . . ,vn : type;

or
DECLARE
<<

v11,v12,. . . ,v1n : type1;
v21,v22,. . . ,v2n : type2;
:
:
vn1,vnn,. . . ,vnn : typen;

>>;

Arguments:

Each v1,v2,. . . ,vn is a list of one or more variables (optionally subscripted to indicate
array dimensions), or variable ranges (two letters separated by a “-”). v’s are not
evaluated unless given as arguments to EVAL.



278 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

Each type is a variable type in the target language. Each must be an atom, op-
tionally preceded by the atom IMPLICIT. type’s are not evaluated unless given as
arguments to EVAL.

The DECLARE statement can also be used to declare subprogram types (i.e. SUBROU-
TINE or FUNCTION) for FORTRAN and RATFOR code, and function types for all four
languages.

42.4 Expression Segmentation

Symbolic derivations can easily produce formulas that can be anywhere from a few lines to sev-
eral pages in length. Such formulas can be translated into numerical assignment statements, but
unless they are broken into smaller pieces they may be too long for a compiler to handle. (The
maximum number of continuation lines for one statement allowed by most FORTRAN com-
pilers is only 19.) Therefore GENTRAN contains a segmentation facility which automatically
segments, or breaks down unreasonably large expressions.

The segmentation facility generates a sequence of assignment statements, each of which assigns
a subexpression to an automatically generated temporary variable. This sequence is generated
in such a way that temporary variables are re-used as soon as possible, thereby keeping the
number of automatically generated variables to a minimum. The facility can be turned on or
off by setting the mode switch GENTRANSEG accordingly (i.e. by calling the REDUCE
function ON or OFF on it). The user can control the maximum allowable expression size by
setting the variable MAXEXPPRINTLEN!* to the maximum number of characters allowed
in an expression printed in the target language (excluding spaces automatically printed by the
formatter). The GENTRANSEG switch is on initially, and MAXEXPPRINTLEN!* is
initialised to 800.

42.5 Template Processing

In some code generation applications pieces of the target numerical program are known in
advance. A template file containing a program outline is supplied by the user, and formulas are
derived in REDUCE, converted to numerical code, and inserted in the corresponding places in
the program outline to form a complete numerical program. A template processor is provided
by GENTRAN for use in these applications.

Syntax:

GENTRANIN f1,f2,. . . ,fm [OUT f1,f2,. . . ,fn];

Arguments:

f1,f2,. . . ,fm is an argument list containing one or more f ’s, where each f is one of:

an atom = a template (input) file
T = the terminal

f1,f2,. . . ,fn is an optional argument list containing one or more f ’s, where each f
is one of:
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an atom = an output file
T = the terminal
NIL = the current output file(s)
ALL!* = all files currently open for output

by GENTRAN (see section 42.6)

GENTRANIN processes each template file f1,f2,. . . ,fm sequentially.

A template file may contain any number of parts, each of which is either an active or an inactive
part. All active parts start with the character sequence ;BEGIN; and end with ;END;. The
end of the template file is indicated by an extra ;END; character sequence.

Inactive parts of template files are assumed to contain code in the target language. All inactive
parts are copied to the output.

Active parts may contain any number of REDUCE expressions, statements, and commands.
They are not copied directly to the output. Instead, they are given to REDUCE for evaluation in
algebraic mode. All output generated by each evaluation is sent to the output file(s). Returned
values are only printed on the terminal.

Active parts will most likely contain calls to GENTRAN to generate code. This means that
the result of processing a template file will be the original template file with all active parts
replaced by generated code.

If OUT f1,f2,. . . ,fn is not given, generated code is simply written to the current-output file.

However, if OUT f1,f2,. . . ,fn is given, then the current-output file is temporarily overridden.
Generated code is written to each file represented by f1,f2,. . . ,fn for this command only. Files
which were open prior to the call to GENTRANIN will remain open after the call, and files
which did not exist prior to the call will be created, opened, written to, and closed. The
output-stack will be exactly the same both before and after the call.

GENTRANIN returns the names of all files written to by this command.
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Example 16

Suppose we wish to generate a FORTRAN subprogram to compute the determinant
of a 3 x 3 matrix. We can construct a template file with an outline of the FORTRAN
subprogram and REDUCE and GENTRAN commands to fill it in:

Contents of file det.tem:

REAL FUNCTION DET(M)
REAL M(3,3)

;BEGIN;
OPERATOR M$
MATRIX MM(3,3)$
MM := MAT( (M(1,1),M(1,2),M(1,3)),

(M(2,1),M(2,2),M(2,3)),
(M(3,1),M(3,2),M(3,3)) )$

GENTRAN DET :=: DET(MM)$
;END;

RETURN
END

;END;

Now we can generate a FORTRAN subprogram with the following REDUCE session:

1: GENTRANLANG!* := ’FORTRAN$

2: GENTRANIN
2: "det.tem"
2: OUT "det.f"$

Contents of file det.f:

REAL FUNCTION DET(M)
REAL M(3,3)
DET=M(3,3)*M(2,2)*M(1,1)-(M(3,3)*M(2,1)*M(1,2))-(M(3,2)

. *M(2,3)*M(1,1))+M(3,2)*M(2,1)*M(1,3)+M(3,1)*M(2,3)*M(1

. ,2)-(M(3,1)*M(2,2)*M(1,3))
RETURN
END

42.6 Output Redirection

The GENTRANOUT and GENTRANSHUT commands are identical to the REDUCE
OUT and SHUT commands with the following exceptions:

• GENTRANOUT and GENTRANSHUT redirect only code which is printed as a side
effect of GENTRAN commands.
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• GENTRANOUT allows more than one file name to be given to indicate that generated
code is to be sent to two or more files. (It is particularly convenient to be able to have
generated code sent to the terminal screen and one or more file simultaneously.)

• GENTRANOUT does not automatically erase existing files; it prints a warning message
on the terminal and asks the user whether the existing file should be erased or the whole
command be aborted.
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43.1 Introduction

This package provides tools for formulation and mechanized proofs of geometry statements in
the spirit of the “Chinese Prover” of W.-T. Wu [13] and the fundamental book [3] of S.-C. Chou
who proved 512 geometry theorems with this mechanized method, see also [2], [4], [11], [12].

The general idea behind this approach is an algebraic reformulation of geometric conditions
using generic coordinates. A (mathematically strong) proof of the geometry statement then
may be obtained from appropriate manipulations of these algebraic expressions. A CAS as,
e.g., REDUCE is well suited to mechanize these manipulations.

For a more detailed introduction to the topic see the accompanying file geometry.tex in $RE-
DUCE/packages/geometry/.

43.2 Basic Data Types and Constructors

The basic data types in this package are Scalar, Point, Line, Circle1 and Circle.
The function POINT(a, b) creates a Point in the plane with the (x, y)-coordinates (a, b). A Line
is created with the function LINE(a, b, c) and fulfills the equation ax + by + c = 0. For circles
there are two constructors. You can use CIRCLE(c1, c2, c3, c4) to create a Circle where the
scalar variables solve the equation c1(x2 + y2) + c2x+ c3y+ c4 = 0. Note that lines are a subset
of the circles with c1 = 0. The other way to create a Circle is the function CIRCLE1(M, s).
The variable M here denotes a Point and s the squared radius. Please note that this package
mostly uses the squared distances and radiuses.

There are various functions whose return type is Scalar. Booleans are represented as extended
booleans, i.e. the procedure returns a Scalar that is zero iff the condition is fulfilled. For
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example, the function call POINT ON CIRCLE(P,c) returns zero if the Point P is on the circle,
otherwise P is not on the circle. In some cases also a non zero result has a geometric meaning.
For example, COLLINEAR(A,B,C) returns the signed area of the corresponding parallelogram.

43.3 Procedures

This section contains a short description of all procedures available in Geometry. Per conven-
tion distances and radiuses of circles are squared.

ANGLE SUM(a,b:Scalar):Scalar
Returns tan(α+ β), if a = tan(α), b = tan(β).

ALTITUDE(A,B,C:Point):Line
The altitude from A onto g(BC).

C1 CIRCLE(M:Point,sqr:Scalar):Circle
The circle with given center and sqradius.

CC TANGENT(c1,c2:Circle):Scalar
Zero iff c1 and c2 are tangent.

CHOOSE PC(M:Point,r,u):Point
Chooses a point on the circle around M with radius r
using its rational parametrization with parameter u.

CHOOSE PL(a:Line,u):Point
Chooses a point on a using parameter u.

CIRCLE(c1,c2,c3,c4:Scalar):Circle
The Circle constructor.

CIRCLE1(M:Point,sqr:Scalar):Circle1
The Circle1 constructor.

CIRCLE CENTER(c:Circle):Point
The center of c.

CIRCLE SQRADIUS(c:Circle):Scalar
The sqradius of c.

CL TANGENT(c:Circle,l:Line):Scalar
Zero iff l is tangent to c.

COLLINEAR(A,B,C:Point):Scalar
Zero iff A,B,C are on a common line. In general the
signed area of the parallelogram spanned by ~AB and
~AC.

CONCURRENT(a,b,c:Line):Scalar
Zero iff a, b, c have a common point.

INTERSECTION POINT(a,b:Line):Point
The intersection point of the lines a, b.

L2 ANGLE(a,b:Line):Scalar
Tangens of the angle between a and b.
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LINE(a,b,c:Scalar):Line
The Line constructor.

LOT(P:Point,a:Line):Line
The perpendicular from P onto a.

MEDIAN(A,B,C:Point):Line
The median line from A to BC.

MIDPOINT(A,B:Point):Point
The midpoint of AB.

MP(B,C:Point):Line
The midpoint perpendicular of BC.

ORTHOGONAL(a,b:Line):Scalar
zero iff the lines a, b are orthogonal.

OTHER CC POINT(P:Point,c1,c2:Circle):Point
c1 and c2 intersect at P . The procedure returns the
second intersection point.

OTHER CL POINT(P:Point,c:Circle,l:Line):Point
c and l intersect at P . The procedure returns the
second intersection point.

P3 ANGLE(A,B,C:Point):Scalar
Tangens of the angle between ~BA and ~BC.

P3 CIRCLE(A,B,C:Point):Circle or
P3 CIRCLE1(A,B,C:Point):Circle1

The circle through 3 given points.

P4 CIRCLE(A,B,C,D:Point):Scalar
Zero iff four given points are on a common circle.

PAR(P:Point,a:Line):Line
The line through P parallel to a.

PARALLEL(a,b:Line):Scalar
Zero iff the lines a, b are parallel.

PEDALPOINT(P:Point,a:Line):Point
The pedal point of the perpendicular from P onto a.

POINT(a,b:Scalar):Point
The Point constructor.

POINT ON BISECTOR(P,A,B,C:Point):Scalar
Zero iff P is a point on the (inner or outer) bisector of
the angle 6 ABC.

POINT ON CIRCLE(P:Point,c:Circle):Scalar or
POINT ON CIRCLE1(P:Point,c:Circle1):Scalar

Zero iff P is on the circle c.

POINT ON LINE(P:Point,a:Line):Scalar
Zero iff P is on the line a.

PP LINE(A,B:Point):Line
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The line through A and B.

SQRDIST(A,B:Point):Scalar
Square of the distance between A and B.

SYMPOINT(P:Point,l:Line):Point
The point symmetric to P wrt. the line l.

SYMLINE(a:Line,l:Line):Line
The line symmetric to a wrt. the line l.

VARPOINT(A,B:Point,u):Point
The point D = u ·A+ (1− u) ·B.

Geometry supplies as additional tools the functions

EXTRACTMAT(polys,vars)
Returns the coefficient matrix of the list of equations
polys that are linear in the variables vars.

RED HOM COORDS(u:{Line,Circle})
Returns the reduced homogeneous coordinates of u,
i.e., divides out the content.
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43.4 Examples

Example 17

Create three points as the vertices of a generic triangle.
A:=Point(a1,a2); B:=Point(b1,b2); C:=Point(c1,c2);

The midpoint perpendiculars of ∆ABC pass through a common point since

concurrent(mp(A,B),mp(B,C),mp(C,A));

simplifies to zero.

Example 18

The intersection point of the midpoint perpendiculars

M:=intersection point(mp(A,B),mp(B,C));

is the center of the circumscribed circle since

sqrdist(M,A) - sqrdist(M,B);

simplifies to zero.

Example 19

Euler’s line:

The center M of the circumscribed circle, the orthocenter H and the barycenter S
are collinear and S divides MH with ratio 1:2.

Compute the coordinates of the corresponding points

M:=intersection point(mp(a,b,c),mp(b,c,a));
H:=intersection point(altitude(a,b,c),altitude(b,c,a));
S:=intersection point(median(a,b,c),median(b,c,a));

and then prove that

collinear(M,H,S);
sqrdist(S,varpoint(M,H,2/3));

both simplify to zero.
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Herbert Melenk
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The gnuplot system provides easy to use graphics output for curves or surfaces which are
defined by formulas and/or data sets. The REDUCE GNUPLOT package lets one use the
GNUPLOT graphical output directly from inside REDUCE, either for the interactive display
of curves/surfaces or for the production of pictures on paper.

For a full understanding of use of the REDUCE GNUPLOT package it is best to be familiar
with gnuplot.

The main command is PLOT. It accepts an arbitrary list of arguments which are either an
expression to be plotted, a range expressions or an option.

load_package gnuplot;
plot(w=sin(a),a=(0 .. 10),xlabel="angle",ylabel="sine");

The expression can be in one or two unknowns, or a list of two functions for the x and y values.
It can also be an implicit equation in 2-dimensional space.

plot(x**3+x*y**3-9x=0);

The dependent and independent variables can be limited to a range with the syntax shown in
the first example. If omitted the independent variables range from -10 to 10 and the dependent
variable is limited only by the precision of the IEEE floating point arithmetic.

There are a great deal of options, either as keywords or as variable=string. Options include:

title: assign a heading (default: empty)

xlabel: set label for the x axis

ylabel: set label for the y axis
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zlabel: set label for the z axis

terminal: select an output device

size: rescale the picture

view: set a viewpoint

(no)contour: 3d: add contour lines

(no)surface: 3d: draw surface (default: yes)

(no)hidden3d: 3d: remove hidden lines (default: no)

The command PLOTRESET closes the current GNUPLOT windows. The next call to PLOT will
create a new one.

GNUPLOT is controlled by a number of switches.

Normally all intermediate data sets are deleted after terminating a plot session. If the switch
PLOTKEEP is set on, the data sets are kept for eventual post processing independent of REDUCE.

In general PLOT tries to generate smooth pictures by evaluating the functions at interior points
until the distances are fine enough. This can require a lot of computing time if the single
function evaluation is expensive. The refinement is controlled by the switch PLOTREFINE which
is on by default. When you turn it off the functions will be evaluated only at the basic points.

The integer value of the global variable PLOT XMESH defines the number of initial function
evaluations in x direction for PLOT. For 2d graphs additional points will be used as long as
plotrefine is on. For 3d graphs this number defines also the number of mesh lines orthogonal
to the x axis. PLOT YMESH defines for 3d plots the number of function evaluations in the y
direction and the number of mesh lines orthogonal to the y axis.

The grid for localising an implicitly defined curve in PLOT consists of triangles. These are
computed initially equally distributed over the x-y plane controlled by PLOT XMESH. The grid
is refined adaptively in several levels. The final grid can be visualised by setting on the switch
SHOW GRID.
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package

Herbert Melenk & Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

and

H.M. Möller
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Gröbner bases are a valuable tool for solving problems in connection with multivariate poly-
nomials, such as solving systems of algebraic equations and analysing polynomial ideals.

The GROEBNER package calculates Gröbner bases using the Buchberger algorithm. It can be
used over a variety of different coefficient domains, and for different variable and term orderings.

45.1

45.1.1 Term Ordering

In the theory of Gröbner bases, the terms of polynomials are considered as ordered. Several
order modes are available in the current package, including the basic modes:

LEX, GRADLEX, REVGRADLEX

All orderings are based on an ordering among the variables. For each pair of variables (a, b) an
order relation must be defined, e.g. “a� b”. The greater sign� does not represent a numerical
relation among the variables; it can be interpreted only in terms of formula representation: “a”
will be placed in front of “b” or “a” is more complicated than “b”.

The sequence of variables constitutes this order base. So the notion of

{x1, x2, x3}
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as a list of variables at the same time means

x1� x2� x3

with respect to the term order.

If terms (products of powers of variables) are compared with LEX, that term is chosen which has
a greater variable or a higher degree if the greatest variable is the first in both. With GRADLEX
the sum of all exponents (the total degree) is compared first, and if that does not lead to a
decision, the LEX method is taken for the final decision. The REVGRADLEX method also
compares the total degree first, but afterward it uses the LEX method in the reverse direction;
this is the method originally used by Buchberger. Note that the LEX ordering is identical to
the standard REDUCE kernel ordering, when KORDER is set explicitly to the sequence of
variables.

LEX is the default term order mode in the GROEBNER package.

45.2 The Basic Operators

45.2.1 Term Ordering Mode

TORDER (vl,m,[p1, p2, . . .]);

where vl is a variable list (or the empty list if no variables are declared explicitly), m
is the name of a term ordering mode LEX, GRADLEX, REVGRADLEX (or another
implemented mode) and [p1, p2, . . .] are additional parameters for the term ordering mode
(not needed for the basic modes).

TORDER sets variable set and the term ordering mode. The default mode is LEX. The
previous description is returned as a list with corresponding elements. Such a list can
alternatively passed as sole argument to TORDER.

If the variable list is empty or if the TORDER declaration is omitted, the automatic
variable extraction is activated.

GVARS ({exp1, exp2, . . ., expn});
where {exp1, exp2, . . . , expn} is a list of expressions or equations.

GVARS extracts from the expressions {exp1, exp2, . . . , expn} the kernels, which can play
the role of variables for a Gröbner calculation. This can be used e.g. in a TORDER
declaration.

45.2.2 GROEBNER: Calculation of a Gröbner Basis

GROEBNER {exp1, exp2, . . . , expm};
where {exp1, exp2, . . . , expm} is a list of expressions or equations.

GROEBNER calculates the Gröbner basis of the given set of expressions with respect to
the current TORDER setting.

The Gröbner basis {1} means that the ideal generated by the input polynomials is the
whole polynomial ring, or equivalently, that the input polynomials have no zeros in com-
mon.
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As a side effect, the sequence of variables is stored as a REDUCE list in the shared variable
gvarslast.

Example 20

torder({},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{8*X - 2*Y + 5*Y + 3,

3 2
2*Y - 3*Y - 16*Y + 21}

The operation of GROEBNER can be controlled by the following switches:

GROEBOPT – If set ON, the sequence of variables is optimized with respect to execution
speed; note that the final list of variables is available in gvarslast.

An explicitly declared dependency supersedes the variable optimization. By default
GROEBOPT is off, conserving the original variable sequence.

GROEBFULLREDUCTION – If set off, the reduction steps during the
GROEBNER operation are limited to the pure head term reduction; subsequent terms
are reduced otherwise. By default GROEBFULLREDUCTION is on.

GLTBASIS – If set on, the leading terms of the result basis are extracted. They are collected
in a basis of monomials, which is available as value of the global variable with the name
GLTB.

45.2.3 GZERODIM?: Test of dim = 0

GZERODIM!? bas
where bas is a Gröbner basis in the current setting. The result is NIL, if bas is the basis
of an ideal of polynomials with more than finitely many common zeros. If the ideal is
zero dimensional, i.e. the polynomials of the ideal have only finitely many zeros in
common, the result is an integer k which is the number of these common zeros (counted
with multiplicities).

45.2.4 GDIMENSION, GINDEPENDENT SETS

The following operators can be used to compute the dimension and the independent variable
sets of an ideal which has the Gröbner basis bas with arbitrary term order:

Gdimension bas

Gindependent sets bas Gindependent sets computes the maximal left independent variable
sets of the ideal, that are the variable sets which play the role of free parameters in the
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current ideal basis. Each set is a list which is a subset of the variable list. The result
is a list of these sets. For an ideal with dimension zero the list is empty. GDimension
computes the dimension of the ideal, which is the maximum length of the independent
sets.

45.2.5 GLEXCONVERT: Conversion to a Lexical Base

GLEXCONVERT ({exp, . . . , expm} [, {var1 . . . , varn}]
[,MAXDEG = mx] [, NEWV ARS = {nv1, . . . , nvk}])
where {exp1, . . . , expm} is a Gröbner basis with {var1, . . . , varn} as variables in the
current term order mode, mx is an integer, and {nv1, . . . , nvk} is a subset of the basis
variables. For this operator the source and target variable sets must be specified explicitly.

GLEXCONVERT converts a basis of a zero-dimensional ideal (finite number of isolated solu-
tions) from arbitrary ordering into a basis under lex ordering. During the call of GLEXCON-
VERT the original ordering of the input basis must be still active.

NEWVARS defines the new variable sequence. If omitted, the original variable sequence is
used. If only a subset of variables is specified here, the partial ideal basis is evaluated. For the
calculation of a univariate polynomial, NEWVARS should be a list with one element.

MAXDEG is an upper limit for the degrees. The algorithm stops with an error message, if this
limit is reached.

A warning occurs if the ideal is not zero dimensional.

GLEXCONVERT is an implementation of the FLGM algorithm. Often, the calculation of a
Gröbner basis with a graded ordering and subsequent conversion to lex is faster than a direct
lex calculation. Additionally, GLEXCONVERT can be used to transform a lex basis into one
with different variable sequence, and it supports the calculation of a univariate polynomial. If
the latter exists, the algorithm is even applicable in the non zero-dimensional case, if such a
polynomial exists.

torder({{w,p,z,t,s,b},gradlex)

g := groebner { f1 := 45*p + 35*s -165*b -36,
35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s +30*z -18*t

-165*b**2, -9*w + 15*p*t + 20*z*s,
w*p + 2*z*t - 11*b**3, 99*w - 11*s*b +3*b**2,
b**2 + 33/50*b + 2673/10000};

G := {60000*W + 9500*B + 3969,

1800*P - 3100*B - 1377,

18000*Z + 24500*B + 10287,

750*T - 1850*B + 81,

200*S - 500*B - 9,
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2
10000*B + 6600*B + 2673}

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={w});

2
100000000*W + 2780000*W + 416421

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={p});

2
6000*P - 2360*P + 3051

45.2.6 GROEBNERF: Factorizing Gröbner Bases

If Gröbner bases are computed in order to solve systems of equations or to find the common
roots of systems of polynomials, the factorizing version of the Buchberger algorithm can be
used. The theoretical background is simple: if a polynomial p can be represented as a product
of two (or more) polynomials, e.g. h = f ∗ g, then h vanishes if and only if one of the factors
vanishes. So if during the calculation of a Gröbner basis h of the above form is detected, the
whole problem can be split into two (or more) disjoint branches. Each of the branches is simpler
than the complete problem; this saves computing time and space. The result of this type of
computation is a list of (partial) Gröbner bases; the solution set of the original problem is the
union of the solutions of the partial problems, ignoring the multiplicity of an individual solution.
If a branch results in a basis {1}, then there is no common zero, i.e. no additional solution for
the original problem, contributed by this branch.

GROEBNERF Call

The syntax of GROEBNERF is the same as for GROEBNER.

GROEBNERF({exp1, exp2, . . . , expm}[, {}, {nz1, . . . nzk});

where {exp1, exp2, . . . , expm} is a given list of expressions or equations, and {nz1, . . . nzk} is
an optional list of polynomials known to be non-zero.

GROEBNERF tries to separate polynomials into individual factors and to branch the compu-
tation in a recursive manner (factorisation tree). The result is a list of partial Gröbner bases.
If no factorisation can be found or if all branches but one lead to the trivial basis {1}, the
result has only one basis; nevertheless it is a list of lists of polynomials. If no solution is found,
the result will be {{1}}. Multiplicities (one factor with a higher power, the same partial basis
twice) are deleted as early as possible in order to speed up the calculation. The factorising is
controlled by some switches.

As a side effect, the sequence of variables is stored as a REDUCE list in the shared variable

gvarslast.
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If GLTBASIS is on, a corresponding list of leading term bases is also produced and is available
in the variable GLTB.

The third parameter of GROEBNERF allows one to declare some polynomials nonzero. If any
of these is found in a branch of the calculation the branch is cancelled. This can be used to
save a substantial amount of computing time. The second parameter must be included as an
empty list if the third parameter is to be used.

torder({x,y},lex)$
groebnerf { 3*x**2*y + 2*x*y + y + 9*x**2 + 5*x = 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x = -3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

{{Y - 3,X},

2
{2*Y + 2*X - 1,2*X - 5*X - 5}}

It is obvious here that the solutions of the equations can be read off immediately.

All switches from GROEBNER are valid for GROEBNERF as well:

GROEBOPT
GLTBASIS
GROEBFULLREDUCTION
GROEBSTAT
TRGROEB
TRGROEBS
TRGROEB1

Restriction of the Solution Space

In some applications only a subset of the complete solution set of a given set of equations is
relevant, e.g. only nonnegative values or positive definite values for the variables. A significant
amount of computing time can be saved if nonrelevant computation branches can be terminated
early.

Positivity: If a polynomial has no (strictly) positive zero, then every system containing it has
no nonnegative or strictly positive solution. Therefore, the Buchberger algorithm tests the
coefficients of the polynomials for equal sign if requested. For example, in 13 ∗ x + 15 ∗ y ∗ z
can be zero with real nonnegative values for x, y and z only if x = 0 and y = 0 or z = 0; this is
a sort of “factorization by restriction”. A polynomial 13 ∗ x+ 15 ∗ y ∗ z + 20 never can vanish
with nonnegative real variable values.

Zero point: If any polynomial in an ideal has an absolute term, the ideal cannot have the origin
point as a common solution.

By setting the shared variable

GROEBRESTRICTION
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GROEBNERF is informed of the type of restriction the user wants to impose on the solutions:

GROEBRESTRICTION:=NONEGATIVE;
only nonnegative real solutions are of interest

GROEBRESTRICTION:=POSITIVE;
only nonnegative and nonzero solutions are of interest

GROEBRESTRICTION:=ZEROPOINT;
only solution sets which contain the point {0, 0, . . . , 0} are or interest.

If GROEBNERF detects a polynomial which formally conflicts with the restriction, it either
splits the calculation into separate branches, or, if a violation of the restriction is determined,
it cancels the actual calculation branch.

45.2.7 GREDUCE, PREDUCE: Reduction of Polynomials

Background

Reduction of a polynomial “p” modulo a given sets of polynomials “B” is done by the reduction
algorithm incorporated in the Buchberger algorithm.

Reduction via Gröbner Basis Calculation

GREDUCE(exp, {exp1, exp2, . . . , expm}]);

where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any number of expressions
or equations.

GREDUCE first converts the list of expressions {exp1, . . . , expn} to a Gröbner basis, and then
reduces the given expression modulo that basis. An error results if the list of expressions is
inconsistent. The returned value is an expression representing the reduced polynomial. As a
side effect, GREDUCE sets the variable gvarslast in the same manner as GROEBNER does.

Reduction with Respect to Arbitrary Polynomials

PREDUCE(exp, {exp1, exp2, . . . , expm});

where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any number of expressions
or equations.

PREDUCE reduces the given expression modulo the set {exp1, . . . , expm}. If this set is a
Gröbner basis, the obtained reduced expression is uniquely determined. If not, then it depends
on the subsequence of the single reduction steps (see 45.2.7). PREDUCE does not check whether
{exp1, exp2, . . . , expm} is a Gröbner basis in the actual order. Therefore, if the expressions are
a Gröbner basis calculated earlier with a variable sequence given explicitly or modified by
optimisation, the proper variable sequence and term order must be activated first.

Example 21(PREDUCE called with a Gröbner basis):
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torder({x,y},lex);
gb:=groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2}$

preduce (5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y
+ 8*x**2 + 3/2*x - 9/2, gb);

2
Y

45.3 Ideal Decomposition & Equation System Solving

Based on the elementary Gröbner operations, the GROEBNER package offers additional oper-
ators, which allow the decomposition of an ideal or of a system of equations down to the individ-
ual solutions. Details of the operators GROESOLVE, GROEBNERF and IDEALQUOTIENT
can be found in the full documentation, with associated functions.
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This package implements the basic arithmetic for polynomial ideals by exploiting the Gröbner
bases package of REDUCE. In order to save computing time all intermediate Gröbner bases
are stored internally such that time consuming repetitions are inhibited. A uniform setting
facilitates the access.

46.1 Initialization

Prior to any computation the set of variables has to be declared by calling the operator I setting
. For example in order to initiate computations in the polynomial ring Q[x, y, z] call

I_setting(x,y,z);

A subsequent call to I setting allows one to select another set of variables; at the same time
the internal data structures are cleared in order to free memory resources.

46.2 Bases

An ideal is represented by a basis (set of polynomials) tagged with the symbol I, e.g.

u := I(x*z-y**2, x**3-y*z);

Alternatively a list of polynomials can be used as input basis; however, all arithmetic results
will be presented in the above form. The operator ideal2list allows one to convert an ideal basis
into a conventional REDUCE list.
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46.2.1 Operators

Because of syntactical restrictions in REDUCE, special operators have to be used for ideal
arithmetic:

.+ ideal sum (infix)

.* ideal product (infix)

.: ideal quotient (infix)

./ ideal quotient (infix)

.= ideal equality test (infix)
subset ideal inclusion test (infix)
intersection ideal intersection (prefix,binary)
member test for membership in an ideal

(infix: polynomial and ideal)
gb Groebner basis of an ideal (prefix, unary)
ideal2list convert ideal basis to polynomial list

(prefix,unary)

Example:

I(x+y,x^2) .* I(x-z);

2 2 2
I(X + X*Y - X*Z - Y*Z,X*Y - Y *Z)

Note that ideal equality cannot be tested with the REDUCE equal sign:

I(x,y) = I(y,x) is false
I(x,y) .= I(y,x) is true
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This package supports the operator ineq solve that tries to solves single inequalities and sets
of coupled inequalities. The following types of systems are supported 1:

• only numeric coefficients (no parametric system),

• a linear system of mixed equations and <= – >= inequalities, applying the method of
Fourier and Motzkin,

• a univariate inequality with <=, >=, > or < operator and polynomial or rational left–
hand and right–hand sides, or a system of such inequalities with only one variable.

Syntax:

INEQ SOLVE(<expr> [,<vl>])

where <expr> is an inequality or a list of coupled inequalities and equations, and the optional
argument <vl> is a single variable (kernel) or a list of variables (kernels). If not specified,
they are extracted automatically from <expr>. For multivariate input an explicit variable list
specifies the elimination sequence: the last member is the most specific one.

An error message occurs if the input cannot be processed by the current algorithms.

The result is a list. It is empty if the system has no feasible solution. Otherwise the result
presents the admissible ranges as set of equations where each variable is equated to one expres-
sion or to an interval. The most specific variable is the first one in the result list and each form
contains only preceding variables (resolved form). The interval limits can be formal max or
min expressions. Algebraic numbers are encoded as rounded number approximations.

1For linear optimization problems please use the operator simplex of the linalg package (section 52.5
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Examples:

ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});

{x=(0 .. 0.326583),x=(1 .. 2.56777)}

reg:=
{a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
- a - b - c + k + 2>=0, - 2*b + k>=0,
- 2*c + k>=0, a + b + c - k>=0,

2*b + 2*c - k - 2>=0, a + b + c - k>=0}$

ineq_solve (reg,{k,a,b,c});

{c=(1 .. infinity),

b=(1 .. infinity),

a=(max( - b + c,b - c) .. b + c - 2),

k=a + b + c}
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INVBASE: A package for computing
involutive bases

A.Yu.Zharkov, Yu.A.Blinkov
Saratov University
Astrakhanskaya 83

410071 Saratov, Russia

e–mail: postmaster@scnit.saratov.su

Involutive bases are a new tool for solving problems in connection with multivariate polynomials,
such as solving systems of polynomial equations and analysing polynomial ideals. An involutive
basis of polynomial ideal is a special form of a redundant Gröbner basis. The construction of
involutive bases reduces the problem of solving polynomial systems to simple linear algebra.

The INVBASE package can be seen as an alternative to Buchberger’s algorithm.

48.1 The Basic Operators

48.1.1 Term Ordering

The term order modes available are REVGRADLEX, GRADLEX and LEX. These modes have the same
meaning as for the GROEBNER package.

All orderings are based on an ordering among the variables. For each pair of variables an order
relation � must be defined. The term ordering mode as well as the order of variables are set
by the operator INVTORDER mode,{x1, ..., xn} where mode is one of the term order modes listed
above. The notion of {x1, ..., xn} as a list of variables at the same time means x1 � . . .� xn.

48.1.2 Computing Involutive Bases

To compute the involutive basis of ideal generated by the set of polynomials {p1, ..., pm} one
should type the command

INVBASE {p1, ..., pm}

where pi are polynomials in variables listed in the INVTORDER operator. If some kernels in pi
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were not listed previously in the INVTORDER operator they are considered as parameters, i.e.
they are considered part of the coefficients of polynomials. If INVTORDER was omitted, all the
kernels in pi are considered as variables with the default REDUCE kernel order.

The coefficients of polynomials pi may be integers as well as rational numbers (or, accordingly,
polynomials and rational functions in the parametric case). The computations modulo prime
numbers are also available. For this purpose one should type the REDUCE commands

ON MODULAR; SETMOD p;

where p is a prime number. The value of the INVBASE function is a list of integer polynomials
{g1, ..., gn} representing an involutive basis of a given ideal.

INVTORDER REVGRADLEX, {x,y,z};

g:= INVBASE {4*x**2 + x*y**2 - z + 1/4,
2*x + y**2*z + 1/2,
x**2*z - 1/2*x - y**2};

3 2 3 2
g := {8*x*y*z - 2*x*y*z + 4*y - 4*y*z + 16*x*y + 17*y*z - 4*y,

4 2 2 2
8*y - 8*x*z - 256*y + 2*x*z + 64*z - 96*x + 20*z - 9,

3
2*y *z + 4*x*y + y,

3 2 2 2
8*x*z - 2*x*z + 4*y - 4*z + 16*x + 17*z - 4,

3 3 2
- 4*y*z - 8*y + 6*x*y*z + y*z - 36*x*y - 8*y,

2 2 2
4*x*y + 32*y - 8*z + 12*x - 2*z + 1,

2
2*y *z + 4*x + 1,

3 2 2
- 4*z - 8*y + 6*x*z + z - 36*x - 8,

2 2 2
8*x - 16*y + 4*z - 6*x - z}

To convert it into a lexicographical Gröbner basis one should type

h := INVLEX g;
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6 5 4 3
h := {3976*x + 37104*z - 600*z + 2111*z + 122062*z

2
+ 232833*z - 680336*z + 288814,

2 6 5 4 3
1988*y - 76752*z + 1272*z - 4197*z - 251555*z

2
- 481837*z + 1407741*z - 595666,

7 6 5 4 3 2
16*z - 8*z + z + 52*z + 75*z - 342*z + 266*z

- 60}
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Chapter 49

LAPLACE: Laplace and inverse
Laplace transforms

C. Kazasov, M. Spiridonova, V. Tomov
Sofia, Bulgaria

The LAPLACE package provides both Laplace Transforms and Inverse Laplace Transforms,
with the two operators

LAPLACE(exp, s var, t var)
INVLAP(exp, s var, t var)

The action is to transform the expression from the s var or source variable into the t var
or target variable. If t var is omitted, the package uses an internal variable lp!& or il!&
respectively.

Three switches control the transformations. If lmon is on then sine, cosine, hyperbolic sine and
hyperbolic cosines are converted by LAPLACE into exponentials. If lhyp is on then exponential
functions are converted into hyperbolic form. The last switch ltrig has the same effect except
it uses trigonometric functions.

The system can be extended by adding Laplace transformation rules for single functions by
rules or rule sets. In such a rule the source variable must be free, the target variable must be
il!& for LAPLACE and lp!& for INVLAP, with the third parameter omitted. Also rules for
transforming derivatives are entered in such a form. For example

let {laplace(log(~x),x) => -log(gam * il!&)/il!&,
invlap(log(gam * ~x)/x,x) => -log(lp!&)};

operator f;
let {

laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),

laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -
for i:=n-1 step -1 until 0 sum

sub(x=0, df(f(x),x,n-1-i)) * il!&**i
when fixp n,

laplace(f(~x),x) = f(il!&)
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};

The LAPLACE system knows about the functions DELTA and GAMMA, and used the operator ONE
for the unit step function and INTL stands for the parameterised integral function, for instance
intl(2*y**2,y,0,x) stands for

∫ x
0 2y2dx.

load_package laplace;

laplace(sin(17*x),x,p);

17
----------
2

p + 289

on lmon;

laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p);

1 a*k
- ---*sqrt(pi)*e

4
----------------------
k*p

e *sqrt( - a + p)

invlap(c/((p-a)*(p-b)), p, t);

a*t b*t
c*(e - e )
-----------------

a - b

invlap(p**(-7/3), p, t);

1/3
t *t

------------
7

gamma(---)
3
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LIE: Functions for the classification
of real n-dimensional Lie algebras

Carsten and Franziska Schöbel
The Leipzig University, Computer Science Department

Augustusplatz 10/11,
Leipzig, Germany

e–mail: cschoeb@aix550.informatik.uni-leipzig.de

LIE is a package of functions for the classification of real n-dimensional Lie algebras. It consists
of two modules: liendmc1 and lie1234.

50.1 liendmc1

With the help of the functions in this module real n-dimensional Lie algebras L with a de-
rived algebra L(1) of dimension 1 can be classified. L has to be defined by its structure con-
stants ckij in the basis {X1, . . . , Xn} with [Xi, Xj ] = ckijXk. The user must define an ARRAY
LIENSTRUCIN(n, n, n) with n being the dimension of the Lie algebra L. The structure con-
stants LIENSTRUCIN(i, j, k):=ckij for i < j should be given. Then the procedure LIENDIM-
COM1 can be called. Its syntax is:

LIENDIMCOM1(<number>).

<number> corresponds to the dimension n. The procedure simplifies the structure of L perform-
ing real linear transformations. The returned value is a list of the form

(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii) {HEISENBERG(k),COMMUTATIVE(n-k)}

with 3 ≤ k ≤ n, k odd.

The returned list is also stored asLIE LIST. The matrix LIENTRANS gives the transfor-
mation from the given basis {X1, . . . , Xn} into the standard basis {Y1, . . . , Yn}: Yj =
(LIENTRANS)kjXk.
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50.2 lie1234

This part of the package classifies real low-dimensional Lie algebras L of the dimension n :=
dimL = 1, 2, 3, 4. L is also given by its structure constants ckij in the basis {X1, . . . , Xn} with
[Xi, Xj ] = ckijXk. An ARRAY LIESTRIN(n, n, n) has to be defined and LIESTRIN(i, j, k):=ckij
for i < j should be given. Then the procedure LIECLASS can be performed whose syntax is:

LIECLASS(<number>).

<number> should be the dimension of the Lie algebra L. The procedure stepwise simplifies the
commutator relations of L using properties of invariance like the dimension of the centre, of the
derived algebra, unimodularity etc. The returned value has the form:

{LIEALG(n),COMTAB(m)},

where the value m corresponds to the number of the standard form (basis: {Y1, . . . , Yn}) in an
enumeration scheme.

This returned value is also stored as LIE CLASS. The linear transformation from the basis
{X1, . . . , Xn} into the basis of the standard form {Y1, . . . , Yn} is given by the matrix LIEMAT:
Yj = (LIEMAT)kjXk.



Chapter 51

LIMITS: A package for finding limits

Stanley L. Kameny
Los Angeles, U.S.A.

LIMITS is a fast limit package for REDUCE for functions which are continuous except for
computable poles and singularities, based on some earlier work by Ian Cohen and John P.
Fitch. The Truncated Power Series package is used for non-critical points, at which the value
of the function is the constant term in the expansion around that point. l’Hôpital’s rule is
used in critical cases, with preprocessing of ∞−∞ forms and reformatting of product forms in
order to apply l’Hôpital’s rule. A limited amount of bounded arithmetic is also employed where
applicable.

51.1 Normal entry points

LIMIT(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

This is the standard way of calling limit, applying all of the methods. The result is the limit of
EXPRN as VAR approaches LIMPOINT.

51.2 Direction-dependent limits

LIMIT!+(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic
LIMIT!-(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

If the limit depends upon the direction of approach to the LIMPOINT, the functions LIMIT!+
and LIMIT!- may be used. They are defined by:

LIMIT!+ (EXP,VAR,LIMPOINT) → LIMIT(EXP*,ε,0)
where EXP* = sub(VAR=VAR+ε2,EXP)

and

LIMIT!- (EXP,VAR,LIMPOINT) → LIMIT(EXP*,ε,0)
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where EXP* = sub(VAR=VAR-ε2,EXP)

Examples:

load_package misc;

limit(sin(x)/x,x,0);

1

limit((a^x-b^x)/x,x,0);

log(a) - log(b)

limit(x/(e**x-1), x, 0);

1

limit!-(sin x/cos x,x,pi/2);

infinity

limit!+(sin x/cos x,x,pi/2);

- infinity

limit(x^log(1/x),x,infinity);

0

limit((x^(1/5) + 3*x^(1/4))^2/(7*(sqrt(x + 9) - 3 - x/6))^(1/5),x,0);

3/5
- 6

---------
1/5

7
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LINALG: Linear algebra package

Matt Rebbeck
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

52.1 Introduction

This package provides a selection of functions that are useful in the world of linear algebra.
They can be classified into four sections:

52.1.1 Basic matrix handling

add columns add rows add to columns add to rows
augment columns char poly column dim copy into
diagonal extend find companion get columns
get rows hermitian tp matrix augment matrix stack
minor mult columns mult rows pivot
remove columns remove rows row dim rows pivot
stack rows sub matrix swap columns swap entries
swap rows

52.1.2 Constructors

Functions that create matrices.

band matrix block matrix char matrix coeff matrix
companion hessian hilbert jacobian
jordan block make identity random matrix toeplitz
vandermonde Kronecker Product
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52.1.3 High level algorithms

char poly cholesky gram schmidt lu decom
pseudo inverse simplex svd triang adjoint

There is a separate NORMFORM package (chapter 57) for computing the matrix normal forms
smithex, smithex int, frobenius, ratjordan, jordansymbolic and jordan in REDUCE.

52.1.4 Predicates

matrixp squarep symmetricp

52.2 Explanations

In the examples the matrix A will be

A =

 1 2 3
4 5 6
7 8 9


Throughout I is used to indicate the identity matrix and AT to indicate the transpose of the
matrix A.

Many of the functions have a fairly obvious meaning. Others need a little explanation.

52.3 Basic matrix handling

The functions ADD COLUMNS and ADD ROWS provide basic operations between rows and columns.
The form is

add columns(A,c1,c2,expr);

and it replaces column c2 of the matix by expr ∗ column(A,c1) + column(A,c2).

ADD TO COLUMNS and ADD TO ROWS do a similar task, adding an expression to each of a number
of columns (or rows) specified by a list.

add to columns(A, {1, 2}, 10) =

 11 12 3
14 15 6
17 18 9


The functions MULT COLUMNS and MULT ROW are equivalent to multiply columns and rows.

COLUMN DIM and ROW DIM find the column dimension and row dimension of their argument.

Parts of a matrix can be replaced from another by using COPY INTO; the last two arguments are
row and column counters for to where to copy the matrix.
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G =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



copy into(A,G, 1, 2) =


0 1 2 3
0 4 5 6
0 7 8 9
0 0 0 0


A diagonal matrix can be created with DIAGONAL. The argument is a list of expressions of
matrices which form the diagonal.

An existing matrix can be extended; the call EXTEND(A,r,c,exp) returns the matrix A extended
by r rows and c columns, with the new entries all exp.

The function GET COLUMNS extracts from a matrix a list of the specified columns as matrices.
GET ROWS does the equivalent for rows.

get columns(A, {1, 3}) =


 1

4
7

 ,
 3

6
9




The Hermitian transpose, that is a matrix in which the (i, j) entry is the conjugate of the (j, i)
entry of the input is returned by HERMITIAN TP.

MATRIX AUGMENT({mat1,mat2, . . . ,matn}) produces a new matrix from the list joined as new
columns. MATRIX STACK joins a list of matrices by stacking them.

matrix stack({A,A}) =



1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9


MINOR(A,r,c) calculates the (r,c) minor of A.

PIVOT pivots a matrix about its (r,c) entry. To do this, multiples of the rth row are added to
every other row in the matrix. This means that the cth column will be 0 except for the (r,c)
entry.

A variant on this operation is provided by ROWS PIVOT. It applies the pivot only to the rows
specified as the last argument.

A sub matrix can be extracted, giving a list or the rows and columns to keep.

sub matrix(A, {1, 3}, {2, 3}) =

(
2 3
8 9

)

The basic operation of swapping rows or columns is provided by SWAP ROWS and SWAP COLUMNS.
Individual entries can be swapped with SWAP ENTRIES.
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swap columns(A, 2, 3) =

 1 3 2
4 6 5
7 9 8



swap entries(A, {1, 1}, {3, 3}) =

 9 2 3
4 5 6
7 8 1



52.4 Constructors

AUGMENT COLUMNS allows just specified columns to be selected; STACK ROWS does a similar job
for rows.

stack rows(A, {1, 3}) =

(
1 2 3
7 8 9

)
Rows or columns can be removed with REMOVE COLUMNS and REMOVE ROWS.

remove columns(A, 2) =

 1 3
4 6
7 9


BAND MATRIX creates a square matrix of dimension its second argument. The diagonal consists
of the middle expressions of the first argument, which is an expression list. The expressions to
the left of this fill the required number of sub diagonals and the expressions to the right the
super diagonals.

band matrix({x, y, z}, 6) =



y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y


Related to the band matrix is a block matrix, which can be created by

BLOCK MATRIX(r,c,matrix list).

The resulting matrix consists of r by c matrices filled from the matrix list row wise.

B =

(
1 0
0 1

)
, C =

(
5
5

)
, D =

(
22 33
44 55

)

block matrix(2, 3, {B, C,D,D, C,B}) =


1 0 5 22 33
0 1 5 44 55
22 33 5 1 0
44 55 5 0 1


Characteristic polynomials and characteristic matrices are created by the functions CHAR POLY
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and CHAR MATRIX.

A set of linear equations can be turned into the associated coefficient matrix and vector of
unknowns and the righthandside. COEFF MATRIX returns a list {C,X ,B} such that CX = B.

coeff matrix({x+ y + 4 ∗ z = 10, y + x− z = 20, x+ y + 4}) =


 4 1 1
−1 1 1
0 1 1

 ,
 z
y
x

 ,
 10

20
−4




COMPANION(poly,x) creates the companion matrix C of a polynomial. That is the square matrix
of dimension n, where n is the degree of polynomial with respect to x, and the entries of C are:
C(i,n) = -coeffn(poly,x,i-1) for i = 1 . . . n, C(i,i-1) = 1 for i = 2 . . . n and the rest are 0.

companion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =


0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17


The polynomial associated with a companion matrix can be recovered by calling FIND COMPANION.

HESSIAN(expr, var list) calculates the Hessian matrix of the expressions with respect to the
variables in the list, or the single variable. That is the matrix with the (i, j) element the jth

derivative of the expressions with respect to the ith variable.

hessian(x ∗ y ∗ z + x2, {w, x, y, z}) =


0 0 0 0
0 2 z y
0 z 0 x
0 y x 0


Hilbert’s matrix, that is where the (i, j) element is 1/(i+ j−x) is constructed by HILBERT(n,x).

The Jacobian of an expression list with respect to a variable list is calculated by
JACOBIAN(expr list,variable list). This is a matrix whose (i, j) entry is df(expr list(i),variable list(j)).

The square Jordan block matrix of dimension n is calculated by the function JORDAN BLOCK(exp,n).
The entries of the Jordan block matrix are J (i,i) = expr for i=1 . . . n, J (i,i+1) = 1 for i=1
. . . n-1, and all other entries are 0.

jordan block(x, 5) =


x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x


MAKE IDENTITY(n) generates the n× n identity matrix.

RANDOM MATRIX(r,c,limit) generates and r×c matrix with random values limited by limit. The
type of entries is controlled by a number of switches.
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IMAGINARY If on then matrix entries are x+ i ∗ y where −limit < x, y < limit.

NOT NEGATIVE If on then 0 < entry < limit. In the imaginary case we have 0 < x, y < limit.

ONLY INTEGER If on then each entry is an integer. In the imaginary case x and y are integers.
If off the values are rounded.

SYMMETRIC If on then the matrix is symmetric.

UPPER MATRIX If on then the matrix is upper triangular.

LOWER MATRIX If on then the matrix is lower triangular.

random matrix(3, 3, 10) =

 −4.729721 6.987047 7.521383
−5.224177 5.797709 −4.321952
−9.418455 −9.94318 −0.730980



on only integer, not negative, upper matrix, imaginary;

random matrix(4, 4, 10) =


2 ∗ i+ 5 3 ∗ i+ 7 7 ∗ i+ 3 6

0 2 ∗ i+ 5 5 ∗ i+ 1 2 ∗ i+ 1
0 0 8 i
0 0 0 5 ∗ i+ 9


TOEPLITZ creates the Toeplitz matrix from the given expression list. This is a square symmetric
matrix in which the first expression is placed on the diagonal and the ith expression is placed
on the (i− 1)th sub- and super-diagonals. It has dimension equal to the number of expressions.

toeplitz({w, x, y, z}) =


w x y z
x w x y
y x w x
z y x w


VANDERMONDE creates the Vandermonde matrix from the expression list; the square matrix in
which the (i, j) entry is expr list(i) (j−1).

vandermonde({x, 2 ∗ y, 3 ∗ z}) =

 1 x x2

1 2 ∗ y 4 ∗ y2

1 3 ∗ z 9 ∗ z2


The direct product (or tensor product) is created by the KRONECKER PRODUCT function.

a1 := mat((1,2),(3,4),(5,6))$
a2 := mat((1,1,1),(2,z,2),(3,3,3))$
kronecker_product(a1,a2);
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

1 1 1 2 2 2
2 z 2 4 2 ∗ z 4
3 3 3 6 6 6
3 3 3 4 4 4
6 3 ∗ z 6 8 4 ∗ z 8
9 9 9 12 12 12
5 5 5 6 6 6
10 5 ∗ z 10 12 6 ∗ z 12
15 15 15 18 18 18



52.5 Higher Algorithms

The Cholesky decomposition of a matrix can be calculated with the function CHOLESKY. It
returns {L,U} where L is a lower matrix, U is an upper matrix, and A = LU , and U = LT .

Gram–Schmidt orthonormalisation can be calculated by GRAM SCHMIDT. It accepts a list of lin-
early independent vectors, written as lists, and returns a list of orthogonal normalised vectors.

gram_schmidt({{1,0,0},{1,1,0},{1,1,1}});

{{1,0,0},{0,1,0},{0,0,1}}

gram_schmidt({{1,2},{3,4}});

1 2 2*sqrt(5) - sqrt(5)
{{---------,---------},{-----------,------------}}

sqrt(5) sqrt(5) 5 5

The LU decomposition of a real or imaginary matrix with numeric entries is performed by
LU DECOM(A). It returns {L,U} where L is a lower diagonal matrix, U an upper diagonal
matrix and A = LU .

Note: the algorithm used can swap the rows of A during the calculation. This means that
LU does not equal A but a row equivalent of it. Due to this, lu decom returns {L,U ,vec}.
The call CONVERT(A,vec) will return the matrix that has been decomposed, i.e. LU =
convert(A,vec).

K =

 1 3 5
−4 3 7
8 6 4



lu decom(K) =


 8 0 0
−4 6 0
1 2.25 1.1251

 ,
 1 0.75 0.5

0 1 1.5
0 0 1

 , [ 3 2 3 ]


PSEUDO INVERSE, also known as the Moore–Penrose inverse, computes the pseudo inverse of A.
Given the singular value decomposition of A, i.e. A = U

∑
VT , then the pseudo inverse A−1

is defined by A−1 = VT
∑−1 U .



320 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

Thus A ∗ pseudo inverse(A) = I.

pseudo inverse(A) =


−0.2 0.1
−0.05 0.05

0.1 0
0.25 −0.05


The simplex linear programming algorithm for maximising or minimising a function subject to
lineal inequalities can be used with the function SIMPLEX. It requires three arguments, the first
indicates where the action is to maximising or minimising, the second is the test expressions,
and the last is a list of linear inequalities. It returns {optimal value,{ values of variables at this
optimal}}. The algorithm implies that all the variables are non-negative.

simplex(max, x+ y, {x >= 10, y >= 20, x+ y <= 25});

***** Error in simplex: Problem has no feasible solution.

simplex(max, 10x+ 5y + 5.5z, {5x+ 3z <= 200, x+ 0.1y + 0.5z <= 12,
0.1x+ 0.2y + 0.3z <= 9, 30x+ 10y + 50z <= 1500});

{525.0, {x = 40.0, y = 25.0, z = 0}}

SVD computes the singular value decomposition of A with numeric entries. It returns {U ,
∑
,V}

where A = U
∑
VT and

∑
= diag(σ1, . . . , σn). σi for i = (1 . . . n) are the singular values of A.

The singular values of A are the non-negative square roots of the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = In.

Q =

(
1 3
−4 3

)

svd(Q) =

{(
0.289784 0.957092
−0.957092 0.289784

)
,

(
5.149162 0

0 2.913094

)
,(

−0.687215 0.726453
−0.726453 −0.687215

)}

TRIANG ADJOINT computes the trianglarizing adjoint of the given matrix. The triangularizing
adjoint is a lower triangular matrix. The multiplication of the triangularizing adjoint with the
given matrix results in an upper triangular matrix. The i-th entry in the diagonal of this matrix
is the determinant of the principal i-th minor of the given matrix.

triang adjoint(A) =

 1 0 0
−4 1 0
−3 6 −3


The multiplication of this matrix with A results in an upper triangular matrix. 1 0 0

−4 1 0
−3 6 −3


 1 2 3

4 5 6
7 8 9

 =

 1 2 3
0 −3 −6
0 0 0


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52.6 Fast Linear Algebra

By turning the FAST LA switch on, the speed of the following functions will be increased:

add columns add rows augment columns column dim
copy into make identity matrix augment matrix stack
minor mult column mult row pivot
remove columns remove rows rows pivot squarep
stack rows sub matrix swap columns swap entries
swap rows symmetricp

The increase in speed will be insignificant unless you are making a thousands of calls. When
using this switch, error checking is minimised, and thus illegal input may give strange error
messages.
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Chapter 53

MATHML : MathML Interface for
REDUCE

Luis Alvarez-Sobreviela
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustraße 7
D-14195 Berlin-Dahlem, Germany

MathML is intended to facilitate the use and re-use of mathematical and scientific content on
the Web, and for other applications such as computer algebra systems.
This package contains the MathML-REDUCE interface. This interface provides an easy to use
series of commands, allowing to evaluate and output MathML.

The principal features of this package can be resumed as:

• Evaluation of MathML code. Allows REDUCE to parse MathML expressions and evaluate
them.

• Generation of MathML compliant code. Provides the printing of REDUCE expressions
in MathML source code, to be used directly in web page production.

We assume that the reader is familiar with MathML. If not, the specification1 is available at:
http://www.w3.org/TR/WD-math/

The MathML-REDUCE interface package is loaded by supplying load mathml;.

Switches

There are two switches which can be used alternatively and incrementally. These are MATHML
and BOTH. Their use can be described as follows:

mathml: All output will be printed in MathML.

both: All output will be printed in both MathML and normal REDUCE.
1This specification is subject to change, since it is not yet a final draft. During the two month period in which

this package was developed, the specification changed, forcing a review of the code. This package is based on the
Nov 98 version.
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web: All output will be printed within an HTML <embed> tag. This is for direct use in an
HTML web page. Only works when mathml is on.

MathML has often been said to be too verbose. If BOTH is on, an easy interpretation of the
results is possible, improving MathML readability.

Operators of Package MathML

mml(filename): This function opens and reads the file filename containing the MathML.

parseml(): To introduce a series of valid mathml tokens you can use this function. It takes no
arguments and will prompt you to enter mathml tags stating with <mathml> and ending
with </mathml>. It returns an expression resulting from evaluating the input.

Example

1: load mathml;

3: on both;

3: int(2*x+1,x);;

x*(x + 1)

<mathml>
<apply><plus/>

<apply><power/>
<ci>x</ci>
<cn type="integer">2</cn>

</apply>
<ci>x</ci>

</apply>
</mathml>
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This package supports solve (M SOLVE) and roots (M ROOTS) operators for modular polynomials
and modular polynomial systems. The moduli need not be primes. M SOLVE requires a modulus
to be set. M ROOTS takes the modulus as a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({x^2-y^3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(x^2-1,8); -> {1,3,5,7}
m_roots(x^3-x,7); -> {0,1,6}
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MRVLIMIT: Package for Computing
Limits of ”Exp-Log” Functions
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Using the LIMITS package to compute the limits of functions containing exponential and loga-
rithmic expressions may raise a problem. For the computation of indefinite forms (such as 0/0,or
∞
∞) L’Hospital’s rule may only be applied a finite number of times in a CAS. In REDUCE it
is applied 3 times. This algorithm of Dominik Gruntz of the ETH Zürich solves this particular
problem, and enables the computation of many more limit calculations in REDUCE.

1: load limits;

2: limit(x^7/e^x,x,infinity);

7
x

limit(----,x,infinity)
x
e

3: load mrvlimit;

4: mrv_limit(x^7/e^x,x,infinity);

0

For this example, the MRVLIMIT package is able to compute the correct limit.
MRV LIMIT(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

The result is the limit of EXPRN as VAR approaches LIMPOINT.

A switch TRACELIMIT is available to inform the user about the computed Taylor expansion, all
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recursive calls and the return value of the internally called function MRV.

Examples:

5: b:=e^x*(e^(1/x-e^-x)-e^(1/x));

-1 - x
x + x - e

b:= e *(e - 1)

6: mrv_limit(b,x,infinity);

-1

-1
7: ex:= - log(log(log(log(x))) + log(x)) *log(x)

*(log(log(x)) - log(log(log(x)) + log(x)));

- log(x)*(log(log(x)) - log(log(log(x)) + log(x)))
ex:= -----------------------------------------------------

log(log(log(log(x))) + log(x))

8: off mcd;

9: mrv_limit(ex,x,infinity);

1
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REDUCE supports a very general mechanism for computing with objects under a non–
commutative multiplication, where commutator relations must be introduced explicitly by rule
sets when needed. The package NCPOLY allows the user to set up automatically a con-
sistent environment for computing in an algebra where the non–commutativity is defined by
Lie-bracket commutators. The package uses the REDUCE noncom mechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the Lie brack-
ets. Polynomial arithmetic may be performed directly, including division and factorisation.
Additionally NCPOLY supports computations in a one sided ideal (left or right), especially
one sided Gröbner bases and polynomial reduction.

56.1 Setup, Cleanup

Before the computations can start the environment for a non–commutative computation must
be defined by a call to nc setup:

nc_setup(<vars>[,<comms>][,<dir>]);

where

< vars > is a list of variables; these must include the non–commutative quantities.
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< comms > is a list of equations <u>*<v> - <v>*<u>=<rh> where < u > and < v > are
members of < vars >, and < rh > is a polynomial.

< dir > is either left or right selecting a left or a right one sided ideal. The initial direction is
left.

nc setup generates from < comms > the necessary rules to support an algebra where all
monomials are ordered corresponding to the given variable sequence. All pairs of variables
which are not explicitly covered in the commutator set are considered as commutative and the
corresponding rules are also activated.

The second parameter in nc setup may be omitted if the operator is called for the second time,
e.g. with a reordered variable sequence. In such a case the last commutator set is used again.

Remarks:

• The variables need not be declared noncom - nc setup performs all necessary declara-
tions.

• The variables need not be formal operator expressions; nc setup encapsulates a variable
x internally as nc!*(!_x) expressions anyway where the operator nc!∗ keeps the noncom
property.

• The commands order and korder should be avoided because nc setup sets these such
that the computation results are printed in the correct term order.

Example:

nc_setup({KK,NN,k,n},
{NN*n-n*NN= NN, KK*k-k*KK= KK});

NN*N; -> NN*N
N*NN; -> NN*N - NN
nc_setup({k,n,KK,NN});
NN*N - NN -> N*NN;

Here KK,NN, k, n are non–commutative variables where the commutators are described as
[NN,n] = NN , [KK, k] = KK.

The current term order must be compatible with the commutators: the product < u > ∗ <
v > must precede all terms on the right hand side < rh > under the current term order.
Consequently

• the maximal degree of < u > or < v > in < rh > is 1,

• in a total degree ordering the total degree of < rh > may be not higher than 1,

• in an elimination degree order (e.g. lex) all variables in < rh > must be below the
minimum of < u > and < v >.

• If < rh > does not contain any variables or has at most < u > or < v >, any term order
can be selected.
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To use the non–commutative variables or results from non–commutative computations later in
commutative operations it might be necessary to switch off the non–commutative evaluation
mode because not all operators in REDUCE are prepared for that environment. In such a case
use the command

nc_cleanup;

without parameters. It removes all internal rules and definitions which nc setup had introduced.
To reactive non–commutative call nc setup again.

56.2 Left and right ideals

A (polynomial) left ideal L is defined by the axioms

u ∈ L, v ∈ L =⇒ u+ v ∈ L

u ∈ L =⇒ k ∗ u ∈ L for an arbitrary polynomial k

where “*” is the non–commutative multiplication. Correspondingly, a right ideal R is defined
by

u ∈ R, v ∈ R =⇒ u+ v ∈ R

u ∈ R =⇒ u ∗ k ∈ R for an arbitrary polynomial k

56.3 Gröbner bases

When a non–commutative environment has been set up by nc setup, a basis for a left or right
polynomial ideal can be transformed into a Gröbner basis by the operator nc groebner

nc_groebner(<plist>);

Note that the variable set and variable sequence must be defined before in the nc setup call.
The term order for the Gröbner calculation can be set by using the torder declaration.

For details about torder see the REDUCE GROEBNER manual, or chapter 45.

2: nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},left);

3: p1 := (n-k+1)*NN - (n+1);

p1 := - k*nn + n*nn - n + nn - 1

4: p2 := (k+1)*KK -(n-k);

p2 := k*kk + k - n + kk

5: nc_groebner ({p1,p2});

{k*nn - n*nn + n - nn + 1,
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k*kk + k - n + kk,

n*nn*kk - n*kk - n + nn*kk - kk - 1}

Important: Do not use the operators of the GROEBNER package directly as they would not
consider the non–commutative multiplication.

56.4 Left or right polynomial division

The operator nc divide computes the one sided quotient and remainder of two polynomials:

nc_divide(<p1>,<p2>);

The result is a list with quotient and remainder. The division is performed as a pseudo–division,
multiplying < p1 > by coefficients if necessary. The result {< q >,< r >} is defined by the
relation

< c > ∗ < p1 >=< q > ∗ < p2 > + < r > for direction left and

< c > ∗ < p1 >=< p2 > ∗ < q > + < r > for direction right,

where < c > is an expression that does not contain any of the ideal variables, and the leading
term of < r > is lower than the leading term of < p2 > according to the actual term order.

56.5 Left or right polynomial reduction

For the computation of the one sided remainder of a polynomial modulo a given set of other
polynomials the operator nc preduce may be used:

nc_preduce(<polynomial>,<plist>);

The result of the reduction is unique (canonical) if and only if < plist > is a one sided Gröbner
basis. Then the computation is at the same time an ideal membership test: if the result is zero,
the polynomial is member of the ideal, otherwise not.

56.6 Factorisation

Polynomials in a non–commutative ring cannot be factored using the ordinary factorize com-
mand of REDUCE. Instead one of the operators of this section must be used:

nc_factorize(<polynomial>);

The result is a list of factors of < polynomial >. A list with the input expression is returned if
it is irreducible.
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As non–commutative factorisation is not unique, there is an additional operator which computes
all possible factorisations

nc_factorize_all(<polynomial>);

The result is a list of factor decompositions of < polynomial >. If there are no factors at all
the result list has only one member which is a list containing the input polynomial.

56.7 Output of expressions

It is often desirable to have the commutative parts (coefficients) in a non–commutative operation
condensed by factorisation. The operator

nc_compact(<polynomial>)

collects the coefficients to the powers of the lowest possible non-commutative variable.

load_package ncpoly;

nc_setup({n,NN},{NN*n-n*NN=NN})$
p1 := n**4 + n**2*nn + 4*n**2 + 4*n*nn + 4*nn + 4;

4 2 2
p1 := n + n *nn + 4*n + 4*n*nn + 4*nn + 4

nc_compact p1;

2 2 2
(n + 2) + (n + 2) *nn
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This package contains routines for computing the following normal forms of matrices:

• smithex int

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

By default all calculations are carried out inQ (the rational numbers). For smithex, frobenius,
ratjordan, jordansymbolic, and jordan, this field can be extended to an algebraic number
field using ARNUM (chapter 22). The frobenius, ratjordan, and jordansymbolic normal
forms can also be computed in a modular base.

57.1 Smithex

Smithex(A, x) computes the Smith normal form S of the matrix A.

It returns {S,P,P−1} where S,P, and P−1 are such that PSP−1 = A.

A is a rectangular matrix of univariate polynomials in x where x is the variable name.

load package normform;

A =

(
x x+ 1
0 3 ∗ x2

)
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smithex(A, x) =

{(
1 0
0 x3

)
,

(
1 0

3 ∗ x2 1

)
,

(
x x+ 1
−3 −3

)}

57.2 Smithex int

Given an n by m rectangular matrix A that contains only integer entries, smithex int(A)
computes the Smith normal form S of A.

It returns {S,P,P−1} where S,P, and P−1 are such that PSP−1 = A.

load package normform;

A =

 9 −36 30
−36 192 −180
30 −180 180


smithex int(A) =


 3 0 0

0 12 0
0 0 60

 ,
 −17 −5 −4

64 19 15
−50 −15 −12

 ,
 1 −24 30
−1 25 −30
0 −1 1




57.3 Frobenius

Frobenius(A) computes the Frobenius normal form F of the matrix A.

It returns {F ,P,P−1} where F ,P, and P−1 are such that PFP−1 = A.

A is a square matrix.

load package normform;

A =

 −x2+y2+y
y

−x2+x+y2−y
y

−x2−x+y2+y
y

−x2+x+y2−y
y


frobenius(A) =


 0 x∗(x2−x−y2+y)

y

1 −2∗x2+x+2∗y2

y

 ,
 1 −x2+y2+y

y

0 −x2−x+y2+y
y

 ,( 1 −x2+y2+y
x2+x−y2−y

0 −y
x2+x−y2−y

)
57.4 Ratjordan

Ratjordan(A) computes the rational Jordan normal form R of the matrix A.
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It returns {R,P,P−1} where R,P, and P−1 are such that PRP−1 = A.

A is a square matrix.

load package normform;

A =

(
x+ y 5
y x2

)

ratjordan(A) =

{(
0 −x3 − x2 ∗ y + 5 ∗ y
1 x2 + x+ y

)
,

(
1 x+ y
0 y

)
,

(
1 −(x+y)

y

0 1
y

)}

57.5 Jordansymbolic

Jordansymbolic(A) computes the Jordan normal form J of the matrix A.

It returns {J ,L,P,P−1}, where J ,P, and P−1 are such that PJP−1 = A. L = { ll, ξ },
where ξ is a name and ll is a list of irreducible factors of p(ξ).

A is a square matrix.

load package normform;

A =

(
1 y
y2 3

)

jordansymbolic(A) ={(
ξ11 0
0 ξ12

)
,
{{
−y3 + ξ2 − 4 ∗ ξ + 3

}
, ξ
}
,

(
ξ11 − 3 ξ12 − 3
y2 y2

)
,

 ξ11−2
2∗(y3−1)

ξ11+y3−1
2∗y2∗(y3+1)

ξ12−2
2∗(y3−1)

ξ12+y3−1
2∗y2∗(y3+1)



solve(−y3 + xi2 − 4 ∗ xi + 3, xi);

{ξ =
√
y3 + 1 + 2, ξ = −

√
y3 + 1 + 2}

J = sub({xi(1, 1) = sqrt(y3 + 1) + 2, xi(1, 2) = −sqrt(y3 + 1) + 2},
first jordansymbolic (A));

J =

( √
y3 + 1 + 2 0

0 −
√
y3 + 1 + 2

)
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57.6 Jordan

Jordan(A) computes the Jordan normal form J of the matrix A.

It returns {J ,P,P−1}, where J ,P, and P−1 are such that PJP−1 = A.

A is a square matrix.

load package normform;

A =



−9 −21 −15 4 2 0
−10 21 −14 4 2 0
−8 16 −11 4 2 0
−6 12 −9 3 3 0
−4 8 −6 0 5 0
−2 4 −3 0 1 3


J = first jordan(A);

J =



3 0 0 0 0 0
0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 i+ 2 0
0 0 0 0 0 −i+ 2





Chapter 58

NUMERIC: Solving numerical
problems

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The NUMERIC package implements some numerical (approximative) algorithms for REDUCE
based on the REDUCE rounded mode arithmetic. These algorithms are implemented for stand-
ard cases. They should not be called for ill-conditioned problems; please use standard mathe-
matical libraries for these.

58.1 Syntax

58.1.1 Intervals, Starting Points

Intervals are generally coded as lower bound and upper bound connected by the operator ‘..’,
usually associated to a variable in an equation.

x= (2.5 .. 3.5)

means that the variable x is taken in the range from 2.5 up to 3.5. Note, that the bounds can
be algebraic expressions, which, however, must evaluate to numeric results. In cases where an
interval is returned as the result, the lower and upper bounds can be extracted by the PART
operator as the first and second part respectively. A starting point is specified by an equation
with a numeric righthand side,

x=3.0

If for multivariate applications several coordinates must be specified by intervals or as a starting
point, these specifications can be collected in one parameter (which is then a list) or they can
be given as separate parameters alternatively. The list form is more appropriate when the
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parameters are built from other REDUCE calculations in an automatic style, while the flat
form is more convenient for direct interactive input.

58.1.2 Accuracy Control

The keyword parameters accuracy = a and iterations = i, where a and i must be positive
integer numbers, control the iterative algorithms: the iteration is continued until the local error
is below 10−a; if that is impossible within i steps, the iteration is terminated with an error
message. The values reached so far are then returned as the result.

58.2 Minima

The function to be minimised must have continuous partial derivatives with respect to all
variables. The starting point of the search can be specified; if not, random values are taken
instead. The steepest descent algorithms in general find only local minima.

Syntax:

NUM MIN (exp, var1[= val1][, var2[= val2] . . .]

[, accuracy = a][, iterations = i])

or

NUM MIN (exp, {var1[= val1][, var2[= val2] . . .]}
[, accuracy = a][, iterations = i])

where exp is a function expression,

var1, var2, . . . are the variables in exp and val1, val2, . . . are the (optional) start values.

NUM MIN tries to find the next local minimum along the descending path starting at the
given point. The result is a list with the minimum function value as first element followed
by a list of equations, where the variables are equated to the coordinates of the result
point.

Examples:

num_min(sin(x)+x/5, x);

{4.9489585606,{X=29.643767785}}

num_min(sin(x)+x/5, x=0);

{ - 1.3342267466,{X= - 1.7721582671}}

% Rosenbrock function (well known as hard to minimize).
fktn := 100*(x1**2-x2)**2 + (1-x1)**2;
num_min(fktn, x1=-1.2, x2=1, iterations=200);

{0.00000021870228295,{X1=0.99953284494,X2=0.99906807238}}
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58.3 Roots of Functions/ Solutions of Equations

An adaptively damped Newton iteration is used to find an approximative zero of a function,
a function vector or the solution of an equation or an equation system. The expressions must
have continuous derivatives for all variables. A starting point for the iteration can be given. If
not given, random values are taken instead. If the number of forms is not equal to the number
of variables, the Newton method cannot be applied. Then the minimum of the sum of absolute
squares is located instead.

With ON COMPLEX solutions with imaginary parts can be found, if either the expression(s) or
the starting point contain a nonzero imaginary part.

Syntax:

NUM SOLVE (exp1, var1[= val1][, accuracy = a][, iterations = i])

or

NUM SOLVE ({exp1, . . . , expn}, var1[= val1], . . . , var1[= valn]

[, accuracy = a][, iterations = i])

or

NUM SOLVE ({exp1, . . . , expn}, {var1[= val1], . . . , var1[= valn]}

[, accuracy = a][, iterations = i])

where exp1, . . . , expn are function expressions,

var1, . . . , varn are the variables,

val1, . . . , valn are optional start values.

NUM SOLVE tries to find a zero/solution of the expression(s). Result is a list of equations,
where the variables are equated to the coordinates of the result point.

The Jacobian matrix is stored as a side effect in the shared variable JACOBIAN.

Example:

num_solve({sin x=cos y, x + y = 1},{x=1,y=2});

{X= - 1.8561957251,Y=2.856195584}

jacobian;

[COS(X) SIN(Y)]
[ ]
[ 1 1 ]

58.4 Integrals

Numerical integration uses a polyalgorithm, explained in the full documentation.
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NUM INT (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .]

[, accuracy = a][, iterations = i])

where exp is the function to be integrated,

var1, var2, . . . are the integration variables,

l1, l2, . . . are the lower bounds,

u1, u2, . . . are the upper bounds.

Result is the value of the integral.

Example:

num_int(sin x,x=(0 .. pi));

2.0000010334

58.5 Ordinary Differential Equations

A Runge-Kutta method of order 3 finds an approximate graph for the solution of a ordinary
differential equation real initial value problem.

Syntax:

NUM ODESOLVE (exp,depvar = dv,indepvar=(from..to)

[, accuracy = a][, iterations = i])

where

exp is the differential expression/equation,

depvar is an identifier representing the dependent variable (function to be found),

indepvar is an identifier representing the independent variable,

exp is an equation (or an expression implicitly set to zero) which contains the first deriva-
tive of depvar wrt indepvar,

from is the starting point of integration,

to is the endpoint of integration (allowed to be below from),

dv is the initial value of depvar in the point indepvar = from.

The ODE exp is converted into an explicit form, which then is used for a Runge-Kutta
iteration over the given range. The number of steps is controlled by the value of i (default:
20). If the steps are too coarse to reach the desired accuracy in the neighbourhood of the
starting point, the number is increased automatically.

Result is a list of pairs, each representing a point of the approximate solution of the ODE
problem.

Example:
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num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);

{{0.0,1.0},{0.2,1.2214},{0.4,1.49181796},{0.6,1.8221064563},

{0.8,2.2255208258},{1.0,2.7182511366}}

58.6 Bounds of a Function

Upper and lower bounds of a real valued function over an interval or a rectangular multivariate
domain are computed by the operator BOUNDS. Some knowledge about the behaviour of special
functions like ABS, SIN, COS, EXP, LOG, fractional exponentials etc. is integrated and can be
evaluated if the operator BOUNDS is called with rounded mode on (otherwise only algebraic
evaluation rules are available).

If BOUNDS finds a singularity within an interval, the evaluation is stopped with an error
message indicating the problem part of the expression.
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Syntax:

BOUNDS (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .])

BOUNDS (exp, {var1 = (l1..u1)[, var2 = (l2..u2) . . .]})
where exp is the function to be investigated,

var1, var2, . . . are the variables of exp,

l1, l2, . . . and u1, u2, . . . specify the area (intervals).

BOUNDS computes upper and lower bounds for the expression in the given area. An interval
is returned.

Example:

bounds(sin x,x=(1 .. 2));

{-1,1}

on rounded;
bounds(sin x,x=(1 .. 2));

0.84147098481 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

- 0.25 .. 0.75

58.7 Chebyshev Curve Fitting

The operator family Chebyshev . . . implements approximation and evaluation of functions by
the Chebyshev method.

The operator Chebyshev fit computes this approximation and returns a list, which has as first
element the sum expressed as a polynomial and as second element the sequence of Chebyshev
coefficients ci. Chebyshev df and Chebyshev int transform a Chebyshev coefficient list into the
coefficients of the corresponding derivative or integral respectively. For evaluating a Chebyshev
approximation at a given point in the basic interval the operator Chebyshev eval can be used.
Note that Chebyshev eval is based on a recurrence relation which is in general more stable
than a direct evaluation of the complete polynomial.

CHEBYSHEV FIT (fcn, var = (lo..hi), n)

CHEBYSHEV EVAL (coeffs, var = (lo..hi), var = pt)

CHEBYSHEV DF (coeffs, var = (lo..hi))
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CHEBYSHEV INT (coeffs, var = (lo..hi))

where fcn is an algebraic expression (the function to be fitted), var is the variable of
fcn, lo and hi are numerical real values which describe an interval (lo < hi), n is
the approximation order,an integer > 0, set to 20 if missing, pt is a numerical value
in the interval and coeffs is a series of Chebyshev coefficients, computed by one of
CHEBY SHEV COEFF , DF or INT .

Example:

on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

3 2
w := {0.03824*x - 0.2398*x + 0.06514*x + 0.9778,

{0.8991,-0.4066,-0.005198,0.009464,-0.00009511}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);

0.4111

58.8 General Curve Fitting

The operator NUM FIT finds for a set of points the linear combination of a given set of functions
(function basis) which approximates the points best under the objective of the least squares
criterion (minimum of the sum of the squares of the deviation). The solution is found as zero
of the gradient vector of the sum of squared errors.

Syntax:

NUM FIT (vals, basis, var = pts)

where vals is a list of numeric values,

var is a variable used for the approximation,

pts is a list of coordinate values which correspond to var,

basis is a set of functions varying in var which is used for the approximation.

The result is a list containing as first element the function which approximates the given values,
and as second element a list of coefficients which were used to build this function from the basis.

Example:

% approximate a set of factorials by a polynomial
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pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

2
{14.571428571*X - 61.428571429*X + 54.6,{54.6,

- 61.428571429,14.571428571}}

num_fit(vals,{1,x,x**2,x**3,x**4},x=pts);

4 3
{2.2083333234*X - 20.249999879*X

2
+ 67.791666154*X - 93.749999133*X

+ 44.999999525,

{44.999999525, - 93.749999133,67.791666154,

- 20.249999879,2.2083333234}}

58.9 Function Bases

The following procedures compute sets of functions for example to be used for approximation.
All procedures have two parameters, the expression to be used as variable (an identifier in most
cases) and the order of the desired system. The functions are not scaled to a specific interval,
but the variable can be accompanied by a scale factor and/or a translation in order to map
the generic interval of orthogonality to another (e.g. (x − 1/2) ∗ 2pi). The result is a function
list with ascending order, such that the first element is the function of order zero and (for the
polynomial systems) the function of order n is the n+ 1-th element.

monomial_base(x,n) {1,x,...,x**n}
trigonometric_base(x,n) {1,sin x,cos x,sin(2x),cos(2x)...}
Bernstein_base(x,n) Bernstein polynomials
Legendre_base(x,n) Legendre polynomials
Laguerre_base(x,n) Laguerre polynomials
Hermite_base(x,n) Hermite polynomials
Chebyshev_base_T(x,n) Chebyshev polynomials first kind
Chebyshev_base_U(x,n) Chebyshev polynomials second kind
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Example:

Bernstein_base(x,5);

5 4 3 2
{ - X + 5*X - 10*X + 10*X - 5*X + 1,

4 3 2
5*X*(X - 4*X + 6*X - 4*X + 1),

2 3 2
10*X *( - X + 3*X - 3*X + 1),

3 2
10*X *(X - 2*X + 1),

4
5*X *( - X + 1),

5
X }
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ODESOLVE:
Ordinary differential equations
solver

Malcolm A.H. MacCallum
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: mm@maths.qmw.ac.uk

The ODESOLVE package is a solver for ordinary differential equations. At the present time it
has very limited capabilities,

1. it can handle only a single scalar equation presented as an algebraic expression or equation,
and

2. it can solve only first-order equations of simple types, linear equations with constant
coefficients and Euler equations.

These solvable types are exactly those for which Lie symmetry techniques give no useful infor-
mation.

59.1 Use

The only top-level function the user should normally invoke is:

ODESOLVE(EXPRN:expression, equation,
VAR1:variable,
VAR2:variable):list-algebraic

ODESOLVE returns a list containing an equation (like solve):
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EXPRN is a single scalar expression such that EXPRN = 0 is the ordinary differential equation
(ODE for short) to be solved, or is an equivalent equation.

VAR1 is the name of the dependent variable.

VAR2 is the name of the independent variable

(For simplicity these will be called y and x in the sequel) The returned value is a list containing
the equation giving the general solution of the ODE (for simultaneous equations this will be
a list of equations eventually). It will contain occurrences of the operator ARBCONST for the
arbitrary constants in the general solution. The arguments of ARBCONST should be new, as
with ARBINT etc. in SOLVE. A counter !!ARBCONST is used to arrange this (similar to the way
ARBINT is implemented).

Some other top-level functions may be of use elsewhere, especially:

SORTOUTODE(EXPRN:algebraic, Y:var, X:var): expression

which finds the order and degree of the EXPRN as a differential equation for Y with respect
to Y and sets the linearity and highest derivative occurring in reserved variables ODEORDER,
ODEDEGREE,ODELINEARITY and HIGHESTDERIV. An expression equivalent to the ODE
is returned, or zero if EXPRN (equated to 0) is not an ODE in the given variables.

As a consequence of the internal algorithms the function COFACTOR is is also available.

COFACTOR(ROW:integer,
COLUMN:integer,
MATRIX:matrix):algebraic

The cofactor of the element in row ROW and column COLUMN of matrix MATRIX is returned.
Errors occur if ROW or COLUMN do not simplify to integer expressions or if MATRIX is not
square.

59.2 Commentary

The methods used by this package are described in detail in the full documentation, which
should be inspected together with the examples file.
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James W. Eastwood
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The ORTHOVEC package is a collection of REDUCE procedures and operations which provide
a simple to use environment for the manipulation of scalars and vectors. Operations include
addition, subtraction, dot and cross products, division, modulus, div, grad, curl, laplacian,
differentiation, integration, a · ∇ and Taylor expansion.

60.1 Initialisation

The procedure START initialises ORTHOVEC. VSTART provides a menu of standard coordinate
systems:-

1. cartesian (x, y, z) = (x, y, z)

2. cylindrical (r, θ, z) = (r, th, z)

3. spherical (r, θ, φ) = (r, th, ph)

4. general (u1, u2, u3) = (u1, u2, u3)

5. others

which the user selects by number. Selecting options (1)-(4) automatically sets up the coordinates
and scale factors. Selection option (5) shows the user how to select another coordinate system.
If VSTART is not called, then the default cartesian coordinates are used. ORTHOVEC may
be re-initialised to a new coordinate system at any time during a given REDUCE session by
typing

VSTART $.

351



352 CHAPTER 60. ORTHOVEC: SCALARS AND VECTORS

60.2 Input-Output

ORTHOVEC assumes all quantities are either scalars or 3 component vectors. To define a
vector a with components (c1, c2, c3) use the procedure SVEC:

a := svec(c1, c2, c3);

The procedure VOUT (which returns the value of its argument) can be used to give labelled
output of components in algebraic form:

b := svec (sin(x)**2, y**2, z)$
vout(b)$

The operator can be used to select a particular component (1, 2 or 3) for output e.g.

b_1 ;

60.3 Algebraic Operations

Six infix operators, sum, difference, quotient, times, exponentiation and cross product, and
four prefix operators, plus, minus, reciprocal and modulus are defined in ORTHOVEC. These
operators can take suitable combinations of scalar and vector arguments, and in the case of
scalar arguments reduce to the usual definitions of +,−, ∗, /, etc.

The operators are represented by symbols

+, -, /, *, ^, ><

The composite >< is an attempt to represent the cross product symbol × in ASCII characters.
If we let v be a vector and s be a scalar, then valid combinations of arguments of the procedures
and operators and the type of the result are as summarised below. The notation used is
result :=procedure(left argument, right argument) or
result :=(left operand) operator (right operand) .

Vector Addition
v := VECTORPLUS(v) or v := + v
s := VECTORPLUS(s) or s := + s
v := VECTORADD(v,v) or v := v + v
s := VECTORADD(s,s) or s := s + s

Vector Subtraction
v := VECTORMINUS(v) or v := - v
s := VECTORMINUS(s) or s := - s
v := VECTORDIFFERENCE(v,v) or v := v - v
s := VECTORDIFFERENCE(s,s) or s := s - s

Vector Division
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v := VECTORRECIP(v) or v := / v
s := VECTORRECIP(s) or s := / s
v := VECTORQUOTIENT(v,v) or v := v / v
v := VECTORQUOTIENT(v, s ) or v := v / s
v := VECTORQUOTIENT( s ,v) or v := s / v
s := VECTORQUOTIENT(s,s) or s := s / s

Vector Multiplication
v := VECTORTIMES( s ,v) or v := s * v
v := VECTORTIMES(v, s ) or v := v * s
s := VECTORTIMES(v,v) or s := v * v
s := VECTORTIMES( s , s ) or s := s * s

Vector Cross Product
v := VECTORCROSS(v,v) or v := v × v

Vector Exponentiation
s := VECTOREXPT (v, s ) or s := v ˆ s
s := VECTOREXPT ( s , s ) or s := s ˆ s

Vector Modulus
s := VMOD (s)
s := VMOD (v)

All other combinations of operands for these operators lead to error messages being issued. The
first two instances of vector multiplication are scalar multiplication of vectors, the third is the
product of two scalars and the last is the inner (dot) product. The prefix operators +, -, / can
take either scalar or vector arguments and return results of the same type as their arguments.
VMOD returns a scalar.

In compound expressions, parentheses may be used to specify the order of combination. If
parentheses are omitted the ordering of the operators, in increasing order of precedence is

+ | - | dotgrad | * | >< | ^ | _

and these are placed in the precedence list defined in REDUCE after <.

Vector divisions are defined as follows: If a and b are vectors and c is a scalar, then

a/b =
a · b
| b |2

c/a =
ca
| a |2

Both scalar multiplication and dot products are given by the same symbol, braces are advisable
to ensure the correct precedences in expressions such as (a · b)(c · d).

Vector exponentiation is defined as the power of the modulus:
an ≡ VMOD(a)n =| a |n
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s := div (v)
v := grad(s)
v := curl(v)
v := delsq(v)
s := delsq(s)
v := v dotgrad v
s := v dotgrad s

Table 60.1: ORTHOVEC valid combinations of operator and argument

60.4 Differential Operations

Differential operators provided are div, grad, curl, delsq, and dotgrad. All but the last
of these are prefix operators having a single vector or scalar argument as appropriate. Valid
combinations of operator and argument, and the type of the result are shown in table 60.1.

All other combinations of operator and argument type cause error messages to be issued. The
differential operators have their usual meanings. The coordinate system used by these operators
is set by invoking VSTART (cf. Sec. 60.1). The names h1, h2 and h3 are reserved for the scale
factors, and u1, u2 and u3 are used for the coordinates.

A vector extension, VDF, of the REDUCE procedure DF allows the differentiation of a vector
(scalar) with respect to a scalar to be performed. Allowed forms are VDF(v, s)→ v and VDF(s,
s) → s , where, for example

vdf(B, x) ≡ ∂B
∂x

The standard REDUCE procedures DEPEND and NODEPEND have been redefined to allow
dependences of vectors to be compactly defined. For example

a := svec(a1,a2,a3)$;
depend a,x,y;

causes all three components a1,a2 and a3 of a to be treated as functions of x and y. Individual
component dependences can still be defined if desired.

depend a3,z;

The procedure VTAYLOR gives truncated Taylor series expansions of scalar or vector functions:-

vtaylor(vex,vx,vpt,vorder);

returns the series expansion of the expression VEX with respect to variable VX about point
VPT to order VORDER. Valid combinations of argument types are shown in table 60.2.

Any other combinations cause error messages to be issued. Elements of VORDER must be
non-negative integers, otherwise error messages are issued. If scalar VORDER is given for a
vector expansion, expansions in each component are truncated at the same order, VORDER.
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VEX VX VPT VORDER

v v v v
v v v s
v s s s
s v v v
s v v s
s s s s

Table 60.2: ORTHOVEC valid combination of argument types.

The new version of Taylor expansion applies l’Hôpital’s rule in evaluating coefficients, so handle
cases such as sin(x)/(x) , etc. which the original version of ORTHOVEC could not. The
procedure used for this is LIMIT, which can be used directly to find the limit of a scalar
function ex of variable x at point pt:-

ans := limit(ex,x,pt);

60.5 Integral Operations

Definite and indefinite vector, volume and scalar line integration procedures are included in
ORTHOVEC. They are defined as follows:

VINT(v, x) =
∫

v(x)dx

DVINT(v, x, a, b) =
∫ b

a
v(x)dx

VOLINT(v) =
∫

vh1h2h3du1du2du3

DVOLINT(v, l,u, n) =
∫ u

l
vh1h2h3du1du2du3

LINEINT(v, ω, t) =
∫

v · dr ≡
∫
vihi

∂ωi
∂t

dt

DLINEINT(v, ωt, a, b) =
∫ b

a
vihi

∂ωi
∂t

dt

In the vector and volume integrals, v are vector or scalar, a, b, x and n are scalar. Vectors l and
u contain expressions for lower and upper bounds to the integrals. The integer index n defines
the order in which the integrals over u1, u2 and u3 are performed in order to allow for functional
dependencies in the integral bounds:
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n order
1 u1 u2 u3
2 u3 u1 u2
3 u2 u3 u1
4 u1 u3 u2
5 u2 u1 u3
otherwise u3 u2 u1

The vector ω in the line integral’s arguments contain explicit parameterisation of the coordinates
u1, u2, u3 of the line u(t) along which the integral is taken.
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The package PHYSOP has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quantum theory
with expressions containing operators. These operations consist mainly in the calculation of
commutators between operator expressions and in the evaluations of operator matrix elements
in some abstract space.

61.1 The NONCOM2 Package

The package NONCOM2 redefines some standard REDUCE routines in order to modify the
way noncommutative operators are handled by the system. It redefines the NONCOM statement
in a way more suitable for calculations in physics. Operators have now to be declared noncom-
mutative pairwise, i.e. coding:

NONCOM A,B;

declares the operators A and B to be noncommutative but allows them to commute with any
other (noncommutative or not) operator present in the expression. In a similar way if one wants
e.g. A(X) and A(Y) not to commute, one has now to code:

NONCOM A,A;

A final example should make the use of the redefined NONCOM statement clear:

NONCOM A,B,C;
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declares A to be noncommutative with B and C, B to be noncommutative with A and C and C to
be noncommutative with A and B. Note that after these declaration e.g. A(X) and A(Y) are still
commuting kernels.

Finally to keep the compatibility with standard REDUCE declaring a single identifier using
the NONCOM statement has the same effect as in standard REDUCE.

From the user’s point of view there are no other new commands implemented by the package.

61.2 The PHYSOP package

The package PHYSOP implements a new REDUCE data type to perform calculations with
physical operators. The noncommutativity of operators is implemented using the NONCOM2
package so this file should be loaded prior to the use of PHYSOP.

61.2.1 Type declaration commands

The new REDUCE data type PHYSOP implemented by the package allows the definition of a
new kind of operators (i.e. kernels carrying an arbitrary number of arguments). Throughout
this manual, the name “operator” will refer, unless explicitly stated otherwise, to this new data
type. This data type is in turn divided into 5 subtypes. For each of this subtype, a declaration
command has been defined:

SCALOP A; declares A to be a scalar operator. This operator may carry an arbitrary number
of arguments; after the declaration: SCALOP A; all kernels of the form A(J), A(1,N),
A(N,L,M) are recognised by the system as being scalar operators.

VECOP V; declares V to be a vector operator. As for scalar operators, the vector operators
may carry an arbitrary number of arguments. For example V(3) can be used to represent
the vector operator ~V3. Note that the dimension of space in which this operator lives is
arbitrary. One can however address a specific component of the vector operator by using
a special index declared as PHYSINDEX (see below). This index must then be the first in
the argument list of the vector operator.

TENSOP C(3); declares C to be a tensor operator of rank 3. Tensor operators of any fixed
integer rank larger than 1 can be declared. Again this operator may carry an arbitrary
number of arguments and the space dimension is not fixed. The tensor components can
be addressed by using special PHYSINDEX indices (see below) which have to be placed in
front of all other arguments in the argument list.

STATE U; declares U to be a state, i.e. an object on which operators have a certain action.
The state U can also carry an arbitrary number of arguments.

PHYSINDEX X; declares X to be a special index which will be used to address components of
vector and tensor operators.

A command CLEARPHYSOP removes the PHYSOP type from an identifier in order to use it for
subsequent calculations. However it should be remembered that no substitution rule is cleared
by this function. It is therefore left to the user’s responsibility to clear previously all substitution
rules involving the identifier from which the PHYSOP type is removed.
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61.2.2 Ordering of operators in an expression

The ordering of kernels in an expression is performed according to the following rules:
1. Scalars are always ordered ahead of PHYSOP operators in an expression. The REDUCE
statement KORDER can be used to control the ordering of scalars but has no effect on the ordering
of operators.

2. The default ordering of operators follows the order in which they have been declared (not
the alphabetical one). This ordering scheme can be changed using the command OPORDER.
Its syntax is similar to the KORDER statement, i.e. coding: OPORDER A,V,F; means that all
occurrences of the operator A are ordered ahead of those of V etc. It is also possible to include
operators carrying indices (both normal and special ones) in the argument list of OPORDER.
However including objects not defined as operators (i.e. scalars or indices) in the argument list
of the OPORDER command leads to an error.

3. Adjoint operators are placed by the declaration commands just after the original operators
on the OPORDER list. Changing the place of an operator on this list means not that the adjoint
operator is moved accordingly. This adjoint operator can be moved freely by including it in the
argument list of the OPORDER command.

61.2.3 Arithmetic operations on operators

The following arithmetic operations are possible with operator expressions:

1. Multiplication or division of an operator by a scalar.

2. Addition and subtraction of operators of the same type.

3. Multiplication of operators is only defined between two scalar operators.

4. The scalar product of two VECTOR operators is implemented with a new function DOT. The
system expands the product of two vector operators into an ordinary product of the components
of these operators by inserting a special index generated by the program. To give an example,
if one codes:

VECOP V,W;
V DOT W;

the system will transform the product into:

V(IDX1) * W(IDX1)

where IDX1 is a PHYSINDEX generated by the system (called a DUMMY INDEX in the following)
to express the summation over the components. The identifiers IDXn (n is a nonzero integer)
are reserved variables for this purpose and should not be used for other applications. The
arithmetic operator DOT can be used both in infix and prefix form with two arguments.

5. Operators (but not states) can only be raised to an integer power. The system expands
this power expression into a product of the corresponding number of terms inserting dummy
indices if necessary. The following examples explain the transformations occurring on power
expressions (system output is indicated with an -->):



360 CHAPTER 61. PHYSOP: OPERATOR CALCULUS

SCALOP A; A**2;
--> A*A

VECOP V; V**4;
--> V(IDX1)*V(IDX1)*V(IDX2)*V(IDX2)

TENSOP C(2); C**2;
--> C(IDX3,IDX4)*C(IDX3,IDX4)

Note in particular the way how the system interprets powers of tensor operators which is different
from the notation used in matrix algebra.

6. Quotients of operators are only defined between scalar operator expressions. The system
transforms the quotient of 2 scalar operators into the product of the first operator times the
inverse of the second one.

SCALOP A,B; A / B;
-1

A *( B )

7. Combining the last 2 rules explains the way how the system handles negative powers of
operators:

SCALOP B;
B**(-3);

-1 -1 -1
--> (B )*(B )*(B )

The method of inserting dummy indices and expanding powers of operators has been chosen
to facilitate the handling of complicated operator expressions and particularly their application
on states. However it may be useful to get rid of these dummy indices in order to enhance
the readability of the system’s final output. For this purpose the switch CONTRACT has to be
turned on (CONTRACT is normally set to OFF). The system in this case contracts over dummy
indices reinserting the DOT operator and reassembling the expanded powers. However due to
the predefined operator ordering the system may not remove all the dummy indices introduced
previously.

61.2.4 Special functions

Commutation relations

If two PHYSOPs have been declared noncommutative using the (redefined) NONCOM statement,
it is possible to introduce in the environment elementary (anti-) commutation relations between
them. For this purpose, two scalar operators COMM and ANTICOMM are available. These operators
are used in conjunction with LET statements. Example:

SCALOP A,B,C,D;
LET COMM(A,B)=C;
FOR ALL N,M LET ANTICOMM(A(N),B(M))=D;
VECOP U,V,W; PHYSINDEX X,Y,Z;
FOR ALL X,Y LET COMM(V(X),W(Y))=U(Z);
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Note that if special indices are used as dummy variables in FOR ALL ... LET constructs then
these indices should have been declared previously using the PHYSINDEX command.

Every time the system encounters a product term involving two noncommutative operators
which have to be reordered on account of the given operator ordering, the list of available
(anti-) commutators is checked in the following way: First the system looks for a commutation
relation which matches the product term. If it fails then the defined anticommutation relations
are checked. If there is no successful match the product term A*B is replaced by:

A*B;
--> COMM(A,B) + B*A

so that the user may introduce the commutation relation later on.

The user may want to force the system to look for anticommutators only; for this purpose a
switch ANTICOM is defined which has to be turned on ( ANTICOM is normally set to OFF). In this
case, the above example is replaced by:

ON ANTICOM;
A*B;
--> ANTICOMM(A,B) - B*A

For the calculation of (anti-) commutators between complex operator expressions, the functions
COMMUTE and ANTICOMMUTE have been defined.

VECOP P,A,K;
PHYSINDEX X,Y;
FOR ALL X,Y LET COMM(P(X),A(Y))=K(X)*A(Y);
COMMUTE(P**2,P DOT A);

Adjoint expressions

As has been already mentioned, for each operator and state defined using the declaration com-
mands, the system generates automatically the corresponding adjoint operator. For the calcu-
lation of the adjoint representation of a complicated operator expression, a function ADJ has
been defined.

SCALOP A,B;
ADJ(A*B);

+ +
--> (A )*(B )

Application of operators on states

A function OPAPPLY has been defined for the application of operators to states. It has two
arguments and is used in the following combinations:
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(i) LET OPAPPLY(operator, state) = state; This is to define a elementary action of an operator
on a state in analogy to the way elementary commutation relations are introduced to the system.

SCALOP A; STATE U;
FOR ALL N,P LET OPAPPLY((A(N),U(P))= EXP(I*N*P)*U(P);

(ii) LET OPAPPLY(state, state) = scalar exp.; This form is to define scalar products between
states and normalisation conditions.

STATE U;
FOR ALL N,M LET OPAPPLY(U(N),U(M)) = IF N=M THEN 1 ELSE 0;

(iii) state := OPAPPLY(operator expression, state); In this way, the action of an operator ex-
pression on a given state is calculated using elementary relations defined as explained in (i).
The result may be assigned to a different state vector.

(iv) OPAPPLY(state, OPAPPLY(operator expression, state)); This is the way how to calculate
matrix elements of operator expressions. The system proceeds in the following way: first the
rightmost operator is applied on the right state, which means that the system tries to find
an elementary relation which match the application of the operator on the state. If it fails
the system tries to apply the leftmost operator of the expression on the left state using the
adjoint representations. If this fails also, the system prints out a warning message and stops
the evaluation. Otherwise the next operator occuring in the expression is taken and so on
until the complete expression is applied. Then the system looks for a relation expressing the
scalar product of the two resulting states and prints out the final result. An example of such a
calculation is given in the test file.

The infix version of the OPAPPLY function is the vertical bar |. It is right associative and placed
in the precedence list just above the minus (−) operator.
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PM is a general pattern matcher similar in style to those found in systems such as SMP and
Mathematica.

A template is any expression composed of literal elements (e.g. 5, a or a+1) and specially denoted
pattern variables (e.g. ?a or ??b). Atoms beginning with ‘?’ are called generic variables and
match any expression. Atoms beginning with ‘??’ are called multi-generic variables and match
any expression or any sequence of expressions including the null or empty sequence. A sequence
is an expression of the form ‘[a1, a2,...]’. When placed in a function argument list the brackets
are removed, i.e. f([a,1]) → f(a,1) and f(a,[1,2],b) → f(a,1,2,b).

A template is said to match an expression if the template is literally equal to the expression
or if by replacing any of the generic or multi-generic symbols occurring in the template, the
template can be made to be literally equal to the expression. These replacements are called the
bindings for the generic variables. A replacement is an expression of the form exp1 -> exp2,
which means exp1 is replaced by exp2, or exp1 --> exp2, which is the same except exp2 is
not simplified until after the substitution for exp1 is made. If the expression has any of the
properties; associativity, commutativity, or an identity element, they are used to determine if
the expressions match. If an attempt to match the template to the expression fails the matcher
backtracks, unbinding generic variables, until it reached a place were it can make a different
choice.

The matcher also supports semantic matching. Briefly, if a subtemplate does not match the
corresponding subexpression because they have different structures then the two are equated
and the matcher continues matching the rest of the expression until all the generic variables in
the subexpression are bound. The equality is then checked. This is controlled by the switch
semantic. By default it is on.

62.1 The Match Function

M(exp,template)

363
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The template is matched against the expression. If the template is literally equal to the ex-
pression T is returned. If the template is literally equal to the expression after replacing the
generic variables by their bindings then the set of bindings is returned as a set of replacements.
Otherwise NIL is returned.

OPERATOR F;

M(F(A),F(A));

T

M(F(A,B),F(A,?A));

{?A->B}

M(F(A,B),F(??A));

{??A->[A,B]}

m(a+b+c,c+?a+?b);

{?a->a,?b->b}

m(a+b+c,b+?a);

{?a->a + c}

This example shows the effects of semantic matching, using the associativity and commutativity
of +.

62.2 Qualified Matching

A template may be qualified by the use of the conditional operator =’, standing for such that.
When a such-that condition is encountered in a template it is held until all generic variables
appearing in logical-exp are bound. On the binding of the last generic variable logical-exp
is simplified and if the result is not T the condition fails and the pattern matcher backtracks.
When the template has been fully parsed any remaining held such-that conditions are evaluated
and compared to T.

load_package pm;

operator f;

if (m(f(a,b),f(?a,?b_=(?a=?b)))) then write "yes" else write"no";

no
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m(f(a,a),f(?a,?b_=(?a=?b)));

{?B->A,?A->A}

62.3 Substituting for replacements

The operator S substitutes the replacements in an expression.

S(exp,temp1->sub1,temp2->sub2,...,rept, depth);

will do the substitutions for a maximum of rept and to a depth of depth, using a breadth-first
search and replace. rept and depth may be omitted when they default to 1 and infinity.

SI(exp,temp1->sub1,temp2->sub2,..., depth)

will substitute infinitely many times until expression stops changing.

SD(exp,temp1->sub1,temp2->sub2,...,rept, depth)

is a depth-first version of S.

s(f(a,b),f(a,?b)->?b^2);

2
b

s(a+b,a+b->a*b);

a*b

operator nfac;

s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});

3*nfac(2)

s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},2);

6*nfac(1)

si(nfac(4),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});

24

s(a+b+f(a+b),a+b->a*b,inf,0);

f(a + b) + a*b
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62.4 Programming with Patterns

There are also facilities to use this pattern-matcher as a programming language. The operator
:- can be used to declare that while simplifying all matches of a template should be replaced by
some expression. The operator ::- is the same except that the left hand side is not simplified.

operator fac, gamma;

fac(?x_=Natp(?x)) ::- ?x*fac(?x-1);

HOLD(FAC(?X-1)*?X)

fac(0) :- 1;

1

fac(?x) :- Gamma(?x+1);

GAMMA(?X + 1)

fac(3);

6

fac(3/2);

GAMMA(5/2)
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This package is an implementation of the q-analogues of Gosper’s and Zeilberger’s 1 algorithm
for indefinite and definite summation of q-hypergeometric terms, respectively.

An expression ak is called a q-hypergeometric term, if ak/ak−1 is a rational function with
respect to qk. Most q-terms are based on the q-shifted factorial or qpochhammer. Other typical
q-hypergeometric terms are ratios of products of powers, q-factorials, q-binomial coefficients,
and q-shifted factorials that are integer-linear in their arguments.
The package is loaded with load package qsum.

63.1 Elementary q-Functions

The package supports the input of the following elementary q-functions:

• qpochhammer(a,q,infinity)

(a; q)∞ :=
∞∏
j=0

(
1− a qj

)

• qpochhammer(a,q,k)

(a; q)k :=


∏k−1
j=0

(
1− a qj

)
if k > 0

1 if k = 0∏k
j=1

(
1− a q−j

)−1 if k < 0

1The ZEILBERG package (Chap. 89 p. 453, see also [8]) contains the hypergeometric versions.
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• qbrackets(k,q)

[q, k] :=
qk − 1
q − 1

• qfactorial(k,q)

[k]q! :=
(q; q)k

(1− q)k

• qbinomial(n,k,q) (
n

k

)
q

:=
(q; q)n

(q; q)k · (q; q)n−k

• qphihyperterm({a1,a2,...,ar},{b1,b2,...,bs},q,z,k)

∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk

(q; q)k

[
(−1)k q(

k
2)
]1+s−r

• qpsihyperterm({a1,a2,...,ar},{b1,b2,...,bs},q,z,k)

∞∑
k=−∞

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk
[
(−1)k q(

k
2)
]s−r

where (a1, a2, . . . , ar; q)k stands for the product
∏r
j=1 (aj ; q)k.

63.2 The QGOSPER operator

The qgosper operator is an implementation of the q-Gosper algorithm [9].

• qgosper(a,q,k) determines a q-hypergeometric antidifference. (By default it returns a
downward antidifference, which may be changed by the switch qgosper_down.) If it does
not return a q-hypergeometric antidifference, then such an antidifference does not exist.

• qgosper(a,q,k,m,n) determines a closed formula for the definite sum

n∑
k=m

ak

using the q-analogue of Gosper’s algorithm. This is only successful if q-Gosper’s algorithm
applies.

Example:

1: qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);

k
(q *a - 1)*qpochhammer(a,q,k)
-------------------------------
(a - 1)*qpochhammer(q,q,k)
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63.3 The QSUMRECURSION operator

The QSUMRECURSION operator is an implementation of the q-Zeilberger algorithm [9]. It tries to
determine a homogeneous recurrence equation for summ(n) wrt. n with polynomial coefficients
(in n), where

summ(n) :=
∞∑

k=−∞
f(n, k).

There are three different ways to pass a summand f(n, k) to qsumrecursion:

• qsumrecursion(f,q,k,n), where f is a q-hypergeometric term wrt. k and n, k is the
summation variable and n the recursion variable, q is a symbol.

• qsumrecursion(upper,lower,q,z,n) is a shortcut for
qsumrecursion(qphihyperterm(upper,lower,q,z,k),q,k,n)

• qsumrecursion(f,upper,lower,q,z,n) is a similar shortcut for
qsumrecursion(f*qphihyperterm(upper,lower,q,z,k),q,k,n),

i. e. upper and lower are lists of upper and lower parameters of the generalized q-hypergeometric
function. The third form is handy if you have any additional factors.

For all three instances it is possible to pass the order, if known in advance, as additional
argument at the end of the parameter sequence. You can also specifiy a range by a list of two
positive integers, the first one specifying the lowest and the second one the highest order. By
default QSUMRECURSION will search for recurrences of order from 1 to 5. Usually it uses summ
as name for the summ-function. If you want to change this behaviour then use the following
syntax: QSUMRECURSION(f,q,k,s(n)).

2: qsumrecursion(qpochhammer(q^(-n),q,k)*z^k /
qpochhammer(q,q,k),q,k,n);

n n
- ((q - z)*summ(n - 1) - q *summ(n))

63.4 Global Variables and Switches

There are several switches defined in the QSUM package. Please take a look in the accompanying
documentation file qsum.tex in $REDUCE/packages/qsum.

The most important switches are:

• qgosper_down, default setting is on. It determines whether qgosper returns a downward
or an upward antidifference gk for the input term ak, . e. ak = gk− gk−1 or ak = gk+1− gk
respectively.
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• qsumrecursion_certificate, default off. As Zeilberger’s algorithm delivers a recurrence
equation for a q-hypergeometric term f(n, k) this switch is used to get all necessary infor-
mations for proving this recurrence equation.

If it is set on, instead of simply returning the resulting recurrence equation (for the sum)—
if one exists—qsumrecursion returns a list {rec,cert,f,k,dir} with five items: The
first entry contains the recurrence equation, while the other items enable you to prove the
recurrence a posteriori by rational arithmetic.

If we denote by r the recurrence rec where we substituted the summ-function by the input
term f (with the corresponding shifts in n) then the following equation is valid:

r = cert*f - sub(k=k-1,cert*f)

or
r = sub(k=k+1,cert*f) - cert*f

if dir=downward_antidifference or dir=upward_antidifference respectively.

There is one global variable:

• qsumrecursion_recrange!* controls for which recursion orders the procedure qsumrecursion
looks. It has to be a list with two entries, the first one representing the lowest and the
second one the highest order of a recursion to search for. By default it is set to {1,5}.
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The operator RANDPOLY requires at least one argument corresponding to the polynomial variable
or variables, which must be either a single expression or a list of expressions. In effect, RANDPOLY
replaces each input expression by an internal variable and then substitutes the input expression
for the internal variable in the generated polynomial (and by default expands the result as usual).
The rest of this document uses the term “variable” to refer to a general input expression or
the internal variable used to represent it, and all references to the polynomial structure, such
as its degree, are with respect to these internal variables. The actual degree of a generated
polynomial might be different from its degree in the internal variables.

By default, the polynomial generated has degree 5 and contains 6 terms. Therefore, if it is
univariate it is dense whereas if it is multivariate it is sparse.

64.1 Optional arguments

Other arguments can optionally be specified, in any order, after the first compulsory variable
argument. All arguments receive full algebraic evaluation, subject to the current switch settings
etc. The arguments are processed in the order given, so that if more than one argument relates
to the same property then the last one specified takes effect. Optional arguments are either
keywords or equations with keywords on the left.

In general, the polynomial is sparse by default, unless the keyword dense is specified as an
optional argument. (The keyword sparse is also accepted, but is the default.) The default
degree can be changed by specifying an optional argument of the form

degree = natural number.
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In the multivariate case this is the total degree, i.e. the sum of the degrees with respect to
the individual variables. More complicated monomial degree bounds can be constructed by
using the coefficient function described below to return a monomial or polynomial coefficient
expression. Moreover, randpoly respects internally the REDUCE “asymptotic” commands let,
weight etc. described in section 10.4, which can be used to exercise additional control over the
polynomial generated.

In the sparse case (only), the default maximum number of terms generated can be changed by
specifying an optional argument of the form

terms = natural number.

The actual number of terms generated will be the minimum of the value of terms and the
number of terms in a dense polynomial of the specified degree, number of variables, etc.

64.2 Advanced use of RANDPOLY

The default order (or minimum or trailing degree) can be changed by specifying an optional
argument of the form

ord = natural number.

The order normally defaults to 0.

The input expressions to randpoly can also be equations, in which case the order defaults to
1 rather than 0. Input equations are converted to the difference of their two sides before being
substituted into the generated polynomial. This makes it easy to generate polynomials with a
specified zero – for example

randpoly(x = a);

generates a polynomial that is guaranteed to vanish at x = a, but is otherwise random.

The operator randpoly accepts two further optional arguments in the form of equations with
the keywords coeffs and expons on the left. The right sides of each of these equations must
evaluate to objects that can be applied as functions of no variables. These functions should be
normal algebraic procedures; the coeffs procedure may return any algebraic expression, but
the expons procedure must return an integer. The values returned by the functions should
normally be random, because it is the randomness of the coefficients and, in the sparse case, of
the exponents that makes the constructed polynomial random.

A convenient special case is to use the function rand on the right of one or both of these
equations; when called with a single argument rand returns an anonymous function of no
variables that generates a random integer. The single argument of rand should normally be
an integer range in the form a .. b, where a, b are integers such that a < b. For example, the
expons argument might take the form

expons = rand(0 .. n)
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where n will be the maximum degree with respect to each variable independently. In the case of
coeffs the lower limit will often be the negative of the upper limit to give a balanced coefficient
range, so that the coeffs argument might take the form

coeffs = rand(-n .. n)

which will generate random integer coefficients in the range [−n, n].

Further information on the the auxiliary functions of RANDPOLY can be found in the extended
documentation and examples.

64.3 Examples

randpoly(x);

5 4 3 2
- 54*x - 92*x - 30*x + 73*x - 69*x - 67

randpoly({x, y}, terms = 20);

5 4 4 3 2 3 3
31*x - 17*x *y - 48*x - 15*x *y + 80*x *y + 92*x

2 3 2 2 4 3 2
+ 86*x *y + 2*x *y - 44*x + 83*x*y + 85*x*y + 55*x*y

5 4 3 2
- 27*x*y + 33*x - 98*y + 51*y - 2*y + 70*y - 60*y - 10

randpoly({x, sin(x), cos(x)});

4 3 3
sin(x)*( - 4*cos(x) - 85*cos(x) *x + 50*sin(x)

2
- 20*sin(x) *x + 76*sin(x)*x + 96*sin(x))
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This package provides functions to

• convert rational numbers in their periodic representation and vice versa,

• to compute continued fractions and

• to compute the Padé approximant of a function.

The package can be loaded using load package rataprx; it supersedes the contfr package.

65.1 Periodic Representation

The function rational2periodic(n) converts a rational number n in its periodic representa-
tion. For example 59/70 is converted to 0.8428571.
Depending on the print function of your REDUCE system, calling the function rational2periodic
might result in an expression of the form periodic({a,b},{c1,...,cn}). a and b is the non-
periodic part of the rational number n and c1,...,cn are the digits of the periodic part. In
this case 59/70 would result in periodic({8,10},{4,2,8,5,7,1}).
The function periodic2rational(periodic({a,b},{c1,...,cn})) is the inverse function
and computes the rational expression for a periodic one. Note that b is 1,-1 or a integer mul-
tiple of 10. If a is zero, then the input number b indicates how many places after the decimal
point the period occurs.

rational2periodic(6/17);

periodic({0,1},{3,5,2,9,4,1,1,7,6,4,7,0,5,8,8,2})
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periodic2rational(ws);

6
----
17

65.2 Continued Fractions

A continued fraction (see [1] §4.2) has the general form

b0 +
a1

b1 + a2
b2+ a3

b3+...

.

A more compact way of writing this is as

b0 +
a1|
|b1

+
a2|
|b2

+
a3|
|b3

+ . . . .

This is represented in REDUCE as

contfrac(Rational approximant, {b0, {a1, b1}, {a2, b2}, .....}).

There are four different functions to determine the continued fractions for real numbers and
functions f in the variable var:

cfrac(number); cfrac(number,length);
cfrac(f, var); cfrac(f, var, length);

The length argument is optional and specifies the number of ordered pairs {ai, bi} to be re-
turned. It’s default value is five.

cfrac pi;

1146408
contfrac(---------),

364913

{3,{1,7},{1,15},{1,1},{1,292},{1,1},{1,1},{1,1},
{1,2},{1,1}})
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cfrac((x+2/3)^2/(6*x-5),x);

2
9*x + 12*x + 4 6*x + 13 24*x - 20

contfrac(-----------------,{----------,{1,-----------}})
54*x - 45 36 9

cfrac(e^x,x);

3 2
x + 9*x + 36*x + 60

contfrac(-----------------------,
2

3*x - 24*x + 60

{1,{x,1},{ - x,2},{x,3},{ - x,2},{x,5}})

65.3 Padé Approximation

The Padé approximant represents a function by the ratio of two polynomials. The coefficients
of the powers occuring in the polynomials are determined by the coefficients in the Taylor series
expansion of the function (see [1]). Given a power series

f(x) = c0 + c1(x− h) + c2(x− h)2 . . .

and the degree of numerator, n, and of the denominator, d, the pade function finds the unique
coefficients ai, bi in the Padé approximant

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bdxd
.

The function pade(f, x, h ,n ,d) takes as input the function f in the variable x to be ap-
proximated , where h is the point at which the approximation is evaluated. n and d are the
(specified) degrees of the numerator and the denominator. It returns the Padé Approximant,
ie. a rational function.

Error Messages may occur in the following different cases:

• The Taylor series expansion for the function f has not yet been implemented in the
REDUCE Taylor Package.

• A Padé Approximant of this function does not exist.

• A Padé Approximant of this order (ie. the specified numerator and denominator orders)
does not exist. Please note, there might exist an approximant of a different order.
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pade(sin(x),x,0,3,3);

2
x*( - 7*x + 60)
------------------

2
3*(x + 20)

pade(tanh(x),x,0,5,5);

4 2
x*(x + 105*x + 945)
-----------------------

4 2
15*(x + 28*x + 63)

pade(exp(1/x),x,0,5,5);

***** no Pade Approximation exists

pade(factorial(x),x,1,3,3);

***** not yet implemented

30: pade(sin(x)/x^2,x,0,10,0);

***** Pade Approximation of this order does not exist

31: pade(sin(x)/x^2,x,0,10,2);

10 8 6 4 2
- x + 110*x - 7920*x + 332640*x - 6652800*x + 39916800

--------------------------------------------------------------
39916800*x
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The REDUCE package REACTEQN allows one to transform chemical reaction systems into
ordinary differential equation systems corresponding to the laws of pure mass action.

It provides the single function

reac2ode { <reaction> [,<rate> [,<rate>]]
[,<reaction> [,<rate> [,<rate>]]]

....
};

A rate is any REDUCE expression, and two rates are applicable only for forward and backward
reactions. A reaction is coded as a linear sum of the series variables, with the operator − > for
forward reactions and <> for two-way reactions.

The result is a system of explicit ordinary differential equations with polynomial righthand
sides. As side effect the following variables are set:
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rates A list of the rates in the system.

species A list of the species in the system.

inputmat A matrix of the input coefficients.

outputmat A matrix of the output coefficients.

In the matrices the row number corresponds to the input reaction number, while the column
number corresponds to the species index.

If the rates are numerical values, it will be in most cases appropriate to select a REDUCE
evaluation mode for floating point numbers.

Inputmat and outputmat can be used for linear algebra type investigations of the reaction
system. The classical reaction matrix is the difference of these matrices; however, the two
matrices contain more information than their differences because the appearance of a species
on both sides is not reflected by the reaction matrix.
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67.1 Introduction

This package extends REDUCE to a computer logic system implementing symbolic algorithms
on first-order formulas wrt. temporarily fixed first-order languages and theories.

67.1.1 Contexts

REDLOG is designed for working with several languages and theories in the sense of first-order
logic. Both a language and a theory make up a context. There are the following contexts
available:

OFSF OF stands for ordered fields, which is a little imprecise. The quantifier elimination
actually requires the more restricted class of real closed fields, while most of the tool-like
algorithms are generally correct for ordered fields. One usually has in mind real numbers
with ordering when using OFSF.

DVFSF Discretely valued fields. This is for computing with formulas over classes of p-adic
valued extension fields of the rationals, usually the fields of p-adic numbers for some
prime p.

ACFSF Algebraically closed fields such as the complex numbers.

67.1.2 Overview

REDLOG origins from the implementation of quantifier elimination procedures. Successfully
applying such methods to both academic and real-world problems, the authors have developed
over the time a large set of formula-manipulating tools, many of which are meanwhile interesting
in their own right:
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• Numerous tools for comfortably inputing, decomposing, and analyzing formulas.

• Several techniques for the simplification of formulas.

• Various normal form computations. The CNF/ DNF computation includes both Boolean
and algebraic simplification strategies. The prenex normal form computation minimizes
the number of quantifier changes.

• Quantifier elimination computes quantifier-free equivalents for given first-order formulas.
For OFSF and DVFSF the formulas have to obey certain degree restrictions.

• The context OFSF allows a variant of quantifier elimination called generic quantifier
elimination: There are certain non-degeneracy assumptions made on the parameters,
which considerably speeds up the elimination.

• The contexts OFSF and DVFSF provide variants of (generic) quantifier elimination that
additionally compute answers such as satisfying sample points for existentially quantified
formulas.

• OFSF includes linear optimization techniques based on quantifier elimination.

To avoid ambiguities with other packages, all REDLOG functions and switches are prefixed by
“RL”.

The package is loaded by typing: load package redlog;

It is recommended to read the documentation which comes with this package. This manual
chapter gives an overview on the features of REDLOG, which is by no means complete.

67.2 Context Selection

The context to be used has to be selected explicitly. One way to do this is using the command
RLSET. As argument it takes one of the valid choices ACFSF (algebraically closed fields standard
form), OFSF (ordered fields standard form), and DVFSF (discretely valued fields standard form).
By default, DVFSF computes uniformly over the class of all p-adic valued fields. For the sake of
efficiency, this can be restricted by means of an extra RLSET argument. RLSET returns the old
setting as a list.

67.3 Format and Handling of Formulas

67.3.1 First-order Operators

REDLOG knows the following operators for constructing Boolean combinations and quantifi-
cations of atomic formulas:

NOT: Unary AND: N-ary Infix OR: N-ary Infix IMPL: Binary Infix
REPL: Binary Infix EQUIV: Binary Infix EX: Binary
ALL: Binary TRUE: Variable FALSE: Variable
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The EX and the ALL operators are the quantifiers. Their first argument is the quantified variable,
the second one a matrix formula.

There are operators MKAND and MKOR for the construction of large systematic conjunc-
tions/disjunctions via for loops available. They are used in the style of SUM and COLLECT.

Example:

1: load_package redlog;

2: rlset ofsf;

{}

3: g := for i:=1:3 mkand

for j:=1:3 mkor

if j<>i then mkid(x,i) + mkid(x,j)=0;

true and (false or false or x1 + x2 = 0 or x1 + x3 = 0)

and (false or x1 + x2 = 0 or false or x2 + x3 = 0)

and (false or x1 + x3 = 0 or x2 + x3 = 0 or false)

67.3.2 OFSF Operators

The OFSF context implements ordered fields over the language of ordered rings. There are the
following binary operators available:

EQUAL NEQ LEQ GEQ LESSP GREATERP

They can also be written as =, <>, <=, >=, <, and >. For OFSF there is specified that all right
hand sides must be zero. Non-zero right hand sides are immediately subtracted.

67.3.3 DVFSF Operators

Discretely valued fields are implemented as a one-sorted language using in addition to = and
<> the binary operators |, ||, ~, and /~, which encode ≤, <, =, and 6= in the value group,
respectively.

EQUAL NEQ DIV SDIV ASSOC NASSOC

67.3.4 ACFSF Operators

For algebraically closed fields there are only equations and inequalities allowed:
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EQUAL NEQ

As in OFSF, they can be conveniently written as = and <>, respectively. All right hand sides
are zero.

67.3.5 Extended Built-in Commands

The operators SUB, PART, and LENGTH work on formulas in a reasonable way.

67.3.6 Global Switches

The switch RLSIMPL causes the function RLSIMPL to be automatically applied at the expression
evaluation stage.

The switch RLREALTIME protocols the wall clock time needed for REDLOG commands in
seconds.

The switch RLVERBOSE toggles verbosity output with some REDLOG procedures.

67.4 Simplification

REDLOG knows three types of simplifiers to reduce the size of a given first-order formula: the
standard simplifier, tableau simplifiers, and Gröbner simplifiers.

67.4.1 Standard Simplifier

The standard simplifier RLSIMPL returns a simplified equivalent of its argument formula. It is
much faster though less powerful than the other simplifiers.

As an optional argument there can be a theory passed. This is a list of atomic formulas assumed
to hold. Simplification is then performed on the basis of these assumptions.

Example:

4: rlsimpl g;

(x1 + x2 = 0 or x1 + x3 = 0) and (x1 + x2 = 0 or x2 + x3 = 0)

and (x1 + x3 = 0 or x2 + x3 = 0)

67.4.2 Tableau Simplifier

The standard simplifier preserves the basic Boolean structure of a formula. The tableau meth-
ods, in contrast, provide a technique for changing the Boolean structure of a formula by con-
structing case distinctions.
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The function RLATAB automatically finds a suitable case distinction. Based on RLATAB, the
function RLITAB iterates this process until no further simplification can be detected. There is a
more fundamental entry point RLTAB for manually entering case distinctions.

67.4.3 Gröbner Simplifier

The Gröbner simplifier considers algebraic simplification rules between the atomic formulas of
the input formula. The usual procedure called for Gröbner simplification is RLGSN. Similar to
the standard simplifier, there is an optional theory argument.

Example:

5: rlgsn(x*y+1<>0 or y*z+1<>0 or x-z=0);

true

67.5 Normal Forms

67.5.1 Boolean Normal Forms

RLCNF and RLDNF compute conjunctive resp. disjunctive normal forms of their formula argu-
ments. Subsumption and cut strategies are applied to decrease the number of clauses.

67.5.2 Miscellaneous Normal Forms

RLNNF computes a negation normal form. This is an and-or-combination of atomic formulas.

RLPNF computes a prenex normal form of its argument. That is, all quantifiers are moved
outside such that they form a block in front of a quantifier-free matrix formula.

67.6 Quantifier Elimination and Variants

Quantifier elimination computes quantifier-free equivalents for given first-order formulas. For
OFSF and DVFSF, REDLOG uses a technique based on elimination set ideas. The OFSF

implementation is restricted to at most quadratic occurrences of the quantified variables, but
includes numerous heuristic strategies for coping with higher degrees. The DVFSF implementa-
tion is restricted to formulas that are linear in the quantified variables. The ACFSF quantifier
elimination is based on comprehensive Gröbner basis computation; there are no degree restric-
tions for this context

67.6.1 Quantifier Elimination

RLQE performs quantifier elimination on its argument formula. There is an optional theory
argument in the style of RLSIMPL supported.
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Example:

6: rlqe(ex(x,a*x**2+b*x+c>0),{a<0});

2
4*a*c - b < 0

For OFSF and DVFSF there is a variant RLQEA available. It returns instead of a quantifier-
free equivalent, a list of condition-solution pairs containing, e.g., satisfying sample points for
outermost existential quantifier blocks.

Example:

7: rlqea(ex(x,a*x**2+b*x+c>0),{a<0});

2
{{4*a*c - b < 0,

2
- sqrt( - 4*a*c + b ) - 2*a*epsilon1 - b

{x = -------------------------------------------}}}
2*a

67.6.2 Generic Quantifier Elimination

OFSF allows generic quantifier elimination RLGQE, which enlarges the theory by disequations,
i.e. <>-atomic formulas, wherever this supports the quantifier elimination. There is also generic
quantifier elimination with answer available: RLGQEA.

Example:

8: rlgqe ex(x,a*x**2+b*x+c>0);

{{a <> 0},

2
4*a*c - b < 0 or a >= 0}

67.6.3 Linear Optimization

RLOPT uses quantifier elimination for linear optimization. It takes as arguments a list of con-
straints and the target function. The target function is minimized subject to the constraints.
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RESET: Reset REDUCE to its
initial state
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This package defines a command RESETREDUCE that works through the history of previous
commands, and clears any values which have been assigned, plus any rules, arrays and the like.
It also sets the various switches to their initial values. It is not complete, but does work for
most things that cause a gradual loss of space.

387



388 CHAPTER 68. RESET: RESET REDUCE TO ITS INITIAL STATE



Chapter 69

RESIDUE: A residue package
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This package supports the calculation of residues. The residue Res
z=a

f(z) of a function f(z) at
the point a ∈ C is defined as

Res
z=a

f(z) =
1

2πi

∮
f(z) dz ,

with integration along a closed curve around z = a with winding number 1.

It contains two REDUCE operators:

• residue(f,z,a) determines the residue of f at the point z = a if f is meromorphic at
z = a. The calculation of residues at essential singularities of f is not supported.

• poleorder(f,z,a) determines the pole order of f at the point z = a if f is meromorphic
at z = a.

Note that both functions use the TAYLOR package (chapter 82).

load_package residue;

residue(x/(x^2-2),x,sqrt(2));

1
---
2

poleorder(x/(x^2-2),x,sqrt(2));

1

residue(sin(x)/(x^2-2),x,sqrt(2));
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sqrt(2)*sin(sqrt(2))
----------------------

4

poleorder(sin(x)/(x^2-2),x,sqrt(2));

1

residue((x^n-y^n)/(x-y)^2,x,y);

n
y *n
------
y

poleorder((x^n-y^n)/(x-y)^2,x,y);

1
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RLFI: REDUCE LaTeX formula
interface
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The RLFI package provides the printing of REDUCE expressions in LATEX format, so it can
be used directly for document production. Various mathematical constructions are supported
by the interface including subscripts, superscripts, font changing, Greek letters, divide-bars,
integral and sum signs, derivatives etc.

The interface is connected to REDUCE by three new switches and several statements. To
activate the LATEX output mode the switch latex must be set on. This switch causes all
outputs to be written in the LATEX syntax of formulas. The switch VERBATIM is used for input
printing control. If it is on input to REDUCE system is typeset in LATEX verbatim environment
after the line containing the string REDUCE Input:.

The switch lasimp controls the algebraic evaluation of input formulas. If it is on every formula
is evaluated, simplified and written in the form given by ordinary REDUCE statements and
switches such as factor, order, rat etc. In the case when the lasimp switch is off evaluation,
simplification or reordering of formulas is not performed and REDUCE acts only as a formula
parser and the form of the formula output is exactly the same as that of the input, the only
difference remains in the syntax. The mode off lasimp is designed especially for typesetting
of formulas for which the user needs preservation of their structure. This switch has no meaning
if the switch Latex is off and thus is working only for LATEX output.

For every identifier used in the typeset REDUCE formula the following properties can be defined
by the statement defid:

• its printing symbol (Greek letters can be used).

• the font in which the symbol will be typeset.

• accent which will be typeset above the symbol.
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Symbols with indexes are treated in REDUCE as operators. Each index corresponds to an
argument of the operator. The meaning of operator arguments (where one wants to typeset
them) is declared by the statement defindex. This statement causes the arguments to be
typeset as subscripts or superscripts (on left or right-hand side of the operator) or as arguments
of the operator.

The statement mathstyle defines the style of formula typesetting. The variable laline!*
defines the length of output lines.

The fractions with horizontal divide bars are typeset by using the new REDUCE infix operator
\. This operator is not algebraically simplified. During typesetting of powers the checking on
the form of the power base and exponent is performed to determine the form of the typeset
expression (e.g. sqrt symbol, using parentheses).

Some special forms can be typeset by using REDUCE prefix operators. These are as follows:

• int - integral of an expression.

• dint - definite integral of an expression.

• df - derivative of an expression.

• pdf - partial derivative of an expression.

• sum - sum of expressions.

• product - product of expressions.

• sqrt - square root of expression.

There are still some problems unsolved in the present version of the interface as follows:

• breaking the formulas which do not fit on one line.

• automatic decision where to use divide bars in fractions.

• distinction of two- or more-character identifiers from the product of one-character symbols.

• typesetting of matrices.
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ROOTS: A REDUCE root finding
package

Stanley L. Kameny
Los Angeles, U.S.A.

The root finding package is designed so that it can be used as an independent package, or it
can be integrated with and called by SOLVE.

71.1 Top Level Functions

The top level functions can be called either as symbolic operators from algebraic mode, or
they can be called directly from symbolic mode with symbolic mode arguments. Outputs are
expressed in forms that print out correctly in algebraic mode.

71.1.1 Functions that refer to real roots only

The three functions REALROOTS, ISOLATER and RLROOTNO can receive 1, 2 or 3 arguments.

The first argument is the polynomial p, that can be complex and can have multiple or zero
roots. If arg2 and arg3 are not present, all real roots are found. If the additional arguments are
present, they restrict the region of consideration.

• If there are two arguments the second is either POSITIVE or NEGATIVE. The function
will only find positive or negative roots

• If arguments are (p,arg2,arg3) then Arg2 and Arg3 must be r (a real number) or EX-
CLUDE r, or a member of the list POSITIVE, NEGATIVE, INFINITY, -INFINITY.
EXCLUDE r causes the value r to be excluded from the region. The order of the sequence
arg2, arg3 is unimportant. Assuming that arg2 ≤ arg3 when both are numeric, then

{-INFINITY,INFINITY} (or {}) all roots;
{arg2,NEGATIVE} represents −∞ < r < arg2;
{arg2,POSITIVE} represents arg2 < r <∞;
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In each of the following, replacing an arg with EXCLUDE arg converts the corresponding
inclusive ≤ to the exclusive <
{arg2,-INFINITY} represents −∞ < r ≤ arg2;
{arg2,INFINITY} represents arg2 ≤ r <∞;
{arg2,arg3} represents arg2 ≤ r ≤ arg3;

• If zero is in the interval the zero root is included.

REALROOTS finds the real roots of the polynomial p. Precision of computation is guaran-
teed to be sufficient to separate all real roots in the specified region. (cf. MULTIROOT
for treatment of multiple roots.)

ISOLATER produces a list of rational intervals, each containing a single real root of the
polynomial p, within the specified region, but does not find the roots.

RLROOTNO computes the number of real roots of p in the specified region, but does not
find the roots.

71.1.2 Functions that return both real and complex roots

ROOTS p; This is the main top level function of the roots package. It will find all roots,
real and complex, of the polynomial p to an accuracy that is sufficient to separate them
and which is a minimum of 6 decimal places. The value returned by ROOTS is a list of
equations for all roots. In addition, ROOTS stores separate lists of real roots and complex
roots in the global variables ROOTSREAL and ROOTSCOMPLEX.

The output of ROOTS is normally sorted into a standard order: a root with smaller real
part precedes a root with larger real part; roots with identical real parts are sorted so
that larger imaginary part precedes smaller imaginary part.

However, when a polynomial has been factored algebraically then the root sorting is
applied to each factor separately. This makes the final resulting order less obvious.

ROOTS AT PREC p; Same as ROOTS except that roots values are returned to a minimum
of the number of decimal places equal to the current system precision.

ROOT VAL p; Same as ROOTS AT PREC, except that instead of returning a list of equat-
ions for the roots, a list of the root value is returned. This is the function that SOLVE
calls.

NEARESTROOT(p,s); This top level function finds the root to which the method converges
given the initial starting origin s, which can be complex. If there are several roots in the
vicinity of s and s is not significantly closer to one root than it is to all others, the
convergence could arrive at a root that is not truly the nearest root. This function should
therefore be used only when the user is certain that there is only one root in the immediate
vicinity of the starting point s.

FIRSTROOT p; ROOTS is called, but only a single root is computed.
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71.1.3 Other top level functions

GETROOT(n,rr); If rr has the form of the output of ROOTS, REALROOTS, or NEARE-
STROOTS; GETROOT returns the rational, real, or complex value of the root equation.
An error occurs if n < 1 or n > the number of roots in rr.

MKPOLY rr; This function can be used to reconstruct a polynomial whose root equation
list is rr and whose denominator is 1. Thus one can verify that if rr := ROOTS p, and
rr1 := ROOTS MKPOLY rr, then rr1 = rr. (This will be true if MULTIROOT and
RATROOT are ON, and ROUNDED is off.) However, MKPOLY rr − NUM p = 0 will be
true if and only if all roots of p have been computed exactly.

71.2 Switches Used in Input

The input of polynomials in algebraic mode is sensitive to the switches COMPLEX, ROUNDED, and
ADJPREC. The correct choice of input method is important since incorrect choices will result in
undesirable truncation or rounding of the input coefficients.

Truncation or rounding may occur if ROUNDED is on and one of the following is true:

1. a coefficient is entered in floating point form or rational form.

2. COMPLEX is on and a coefficient is imaginary or complex.

Therefore, to avoid undesirable truncation or rounding, then:

1. ROUNDED should be off and input should be in integer or rational form; or

2. ROUNDED can be on if it is acceptable to truncate or round input to the current value of
system precision; or both ROUNDED and ADJPREC can be on, in which case system precision
will be adjusted to accommodate the largest coefficient which is input; or

3. if the input contains complex coefficients with very different magnitude for the real and
imaginary parts, then all three switches ROUNDED, ADJPREC and COMPLEX must be on.

integer and complex modes (off ROUNDED) any real polynomial can be input using integer
coefficients of any size; integer or rational coefficients can be used to input any real or
complex polynomial, independent of the setting of the switch COMPLEX. These are the most
versatile input modes, since any real or complex polynomial can be input exactly.

modes rounded and complex-rounded (on ROUNDED) polynomials can be input using inte-
ger coefficients of any size. Floating point coefficients will be truncated or rounded, to a
size dependent upon the system. If complex is on, real coefficients can be input to any
precision using integer form, but coefficients of imaginary parts of complex coefficients
will be rounded or truncated.
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71.3 Root Package Switches

RATROOT (Default OFF) If RATROOT is on all root equations are output in rational form.
Assuming that the mode is COMPLEX (i.e. ROUNDED is off,) the root equations are guar-
anteed to be able to be input into REDUCE without truncation or rounding errors. (Cf.
the function MKPOLY described above.)

MULTIROOT (Default ON) Whenever the polynomial has complex coefficients or has real co-
efficients and has multiple roots, as determined by the Sturm function, the function SQFRF
is called automatically to factor the polynomial into square-free factors. If MULTIROOT is
on, the multiplicity of the roots will be indicated in the output of ROOTS or REALROOTS
by printing the root output repeatedly, according to its multiplicity. If MULTIROOT is off,
each root will be printed once, and all roots should be normally be distinct. (Two iden-
tical roots should not appear. If the initial precision of the computation or the accuracy
of the output was insufficient to separate two closely-spaced roots, the program attempts
to increase accuracy and/or precision if it detects equal roots. If, however, the initial
accuracy specified was too low, and it was not possible to separate the roots, the program
will abort.)
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RSOLVE:
Rational/integer polynomial solvers
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The exact rational zeros of a single univariate polynomial using fast modular methods can
be calculated. The operator r_solve computes all rational zeros and the operator i_solve
computes only integer zeros in a way that is slightly more efficient than extracting them from
the rational zeros.

The first argument is either a univariate polynomial expression or equation with integer, rational
or rounded coefficients. Symbolic coefficients are not allowed. The argument is simplified to a
quotient of integer polynomials and the denominator is silently ignored.

Subsequent arguments are optional. If the polynomial variable is to be specified then it must
be the first optional argument. However, since the variable in a non-constant univariate poly-
nomial can be deduced from the polynomial it is unnecessary to specify it separately, except
in the degenerate case that the first argument simplifies to either 0 or 0 = 0. In this case the
result is returned by i_solve in terms of the operator arbint and by r_solve in terms of the
(new) analogous operator arbrat. The operator i_solve will generally run slightly faster than
r_solve.

The (rational or integer) zeros of the first argument are returned as a list and the default
output format is the same as that used by solve. Each distinct zero is returned in the form of
an equation with the variable on the left and the multiplicities of the zeros are assigned to the
variable root_multiplicities as a list. However, if the switch multiplicities is turned on
then each zero is explicitly included in the solution list the appropriate number of times (and
root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output formats. They have
the following meanings:

separate: assign the multiplicity list to the global variable root_multiplicities (the de-

397



398 CHAPTER 72. RSOLVE: RATIONAL POLYNOMIAL SOLVER

fault);

expand or multiplicities: expand the solution list to include multiple zeros multiple times
(the default if the multiplicities switch is on);

together: return each solution as a list whose second element is the multiplicity;

nomul: do not compute multiplicities (thereby saving some time);

noeqs: do not return univariate zeros as equations but just as values.

72.1 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);

{
x =

−4
3
, x = 3, x = −3, x =

4
3

}
i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}
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SCOPE: REDUCE source code
optimisation package

J.A. van Hulzen
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P.O. Box 217, 7500 AE Enschede
The Netherlands
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SCOPE is a package to produce optimised versions of algebraic expressions. It can be used in
two distinct fashions, as an adjunct to numerical code generation (using GENTRAN, described
in chapter 42) or as a stand alone way of investigating structure in an expression.

When used with GENTRAN it is sufficient to set the switch GENTRANOPT on, and GENTRAN
will then use SCOPE internally. This is described in its internal detail in the GENTRAN
manual and the SCOPE documentation.

As a stand-alone package SCOPE provides the operator OPTIMIZE.

A SCOPE application is easily performed and based on the use of the following syntax:

<SCOPE application> ⇒ OPTIMIZE <object seq> [INAME <cse prefix>]
<object seq> ⇒ <object>[,<object seq>]
<object> ⇒ <stat> | <alglist> | <alglist production>
<stat> ⇒ <name> <assignment operator> <expression>
<assignment operator> ⇒ := | ::= | ::=: | :=:
<alglist> ⇒ {<eq seq>}
<eq seq> ⇒ <name> = <expression>[,<eq seq>]
<alglist production> ⇒ <name> | <function application>
<name> ⇒ <id> | <id> (<a subscript seq>)
<a subscript seq> ⇒ <a subscript>[,<a subscript seq>]
<a subscript> ⇒ <integer> | <integer infix expression>
<cse prefix> ⇒ <id>

A SCOPE action can be applied on one assignment statement, or to a sequence of such state-
ments, separated by commas, or a list of expressions.

The optional use of the INAME extension in an OPTIMIZE command is introduced to allow the
user to influence the generation of cse-names. The cse prefix is an identifier, used to generate
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cse-names, by extending it with an integer part. If the cse prefix consists of letters only, the
initially selected integer part is 0. If the user-supplied cse prefix ends with an integer its value
functions as initial integer part.

z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2;

2 2 2 6 2 2 4 2 6 2 2
z := a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m

OPTIMIZE z:=:z ;

G0 := b*a
G4 := m*m
G1 := G4*b*b
G2 := G4*a*a
G3 := G4*G4
z := G1 + G2 + G0*(2*G3 + G0) + G3*(2*G1 + 10*G2)

it can be desirable to rerun an optimisation request with a restriction on the minimal size of
the righthandsides. The command

SETLENGTH <integer>$

can be used to produce rhs’s with a minimal arithmetic complexity, dictated by the value of
its integer argument. Statements, used to rename function applications, are not affected by the
SETLENGTH command. The default setting is restored with the command

RESETLENGTH$

Example:

SETLENGTH 2$

OPTIMIZE z:=:z INAME s$

2 2
s1 := b *m

2 2
s2 := a *m

4 4
z := (a*b + 2*m )*a*b + 2*(s1 + 5*s2)*m + s1 + s2

Details of the algorithm used is given in the Scope User’s Manual.
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SETS: A basic set theory package

Francis J. Wright
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: F.J.Wright@QMW.ac.uk

The SETS package provides set theoretic operations on lists and represents the results as normal
algebraic-mode lists, so that all other REDUCE facilities that apply to lists can still be applied
to lists that have been constructed by explicit set operations.

74.1 Infix operator precedence

The set operators are currently inserted into the standard REDUCE precedence list (see sec-
tion 2.7) as follows:

or and not member memq = set_eq neq eq >= > <= < subset_eq
subset freeof + - setdiff union intersection * / ^ .

74.2 Explicit set representation and MKSET

Explicit sets are represented by lists, and there is a need to convert standard REDUCE lists into
a set by removing duplicates. The package also orders the members of the set so the standard
= predicate will provide set equality.

mkset {1,2,y,x*y,x+y};

{x + y,x*y,y,1,2}

The empty set is represented by the empty list {}.
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74.3 Union and intersection

The intersection operator has the name intersect, and set union is denotes byunion. These
operators will probably most commonly be used as binary infix operators applied to explicit
sets,

{1,2,3} union {2,3,4};

{1,2,3,4}

{1,2,3} intersect {2,3,4};

{2,3}

74.4 Symbolic set expressions

If one or more of the arguments evaluates to an unbound identifier then it is regarded as
representing a symbolic implicit set, and the union or intersection will evaluate to an expression
that still contains the union or intersection operator. These two operators are symmetric, and
so if they remain symbolic their arguments will be sorted as for any symmetric operator. Such
symbolic set expressions are simplified, but the simplification may not be complete in non-trivial
cases. For example:

a union b union {} union b union {7,3};

{3,7} union a union b

a intersect {};

{}

Intersection distributes over union, which is not applied by default but is implemented as a rule
list assigned to the variable set distribution rule, e.g.

a intersect (b union c);

(b union c) intersection a

a intersect (b union c) where set_distribution_rule;

a intersection b union a intersection c

74.5 Set difference

The set difference operator is represented by the symbol \ and is always output using this
symbol, although it can also be input using setdiff. It is a binary operator.
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{1,2,3} \ {2,4};

{1,3}

a \ {1,2};

a\{1,2}

a \ a;

{}

74.6 Predicates on sets

Set membership, inclusion or equality are all binary infix operators. They can only be used
within conditional statements or within the argument of the evalb operator provided by this
package, and they cannot remain symbolic – a predicate that cannot be evaluated to a Boolean
value causes a normal REDUCE error.

The evalb operator provides a convenient shorthand for an if statement designed purely to
display the value of any Boolean expression (not only predicates defined in this package).

if a = a then true else false;

true

evalb(a = a);

true

if a = b then true else false;

false

74.6.1 Set membership

Set membership is tested by the predicate member. Its left operand is regarded as a potential
set element and its right operand must evaluate to an explicit set. There is currently no sense
in which the right operand could be an implicit set.

evalb(1 member {1,2,3});

true

evalb(2 member {1,2} intersect {2,3});

true
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evalb(a member b);

***** b invalid as list

74.6.2 Set inclusion

Set inclusion is tested by the predicate subset eq where a subset eq b is true if the set a is
either a subset of or equal to the set b; strict inclusion is tested by the predicate subset where
a subset b is true if the set a is strictly a subset of the set b and is false is a is equal to b.
These predicates provide some support for symbolic set expressions, but is incomplete.

evalb({1,2} subset_eq {1,2,3});

true

evalb({1,2} subset_eq {1,2});

true

evalb({1,2} subset {1,2});

false

evalb(a subset a union b);

true

evalb(a\b subset a);

true

An undecidable predicate causes a normal REDUCE error, e.g.

evalb(a subset_eq {b});

***** Cannot evaluate a subset_eq {b} as Boolean-valued set
expression

74.6.3 Set equality

As explained above, equality of two sets in canonical form can be reliably tested by the standard
REDUCE equality predicate (=).
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SPARSE: Sparse Matrices

Stephen Scowcroft
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustraße 7
D-14195 Berlin-Dahlem, Germany

75.1 Introduction

This package extends the available matrix feature to enable calculations with sparse matrices.
It also provides a selection of functions that are useful in the world of linear algebra with respect
to sparse matrices.
The package is loaded by: load package sparse;

75.2 Sparse Matrix Calculations

To extend the syntax of this class of calculations an expression type sparse is added. An
identifier may be declared a sparse variable by the declaration sparse. The size of the sparse
matrix must be declared explicitly in the matrix declaration. This declaration SPARSE is similar
to the declaration MATRIX. Once a matrix has been declared a sparse matrix all elements of the
matrix are treated as if they were initialized to 0. When printing out a sparse matrix only the
non-zero elements are printed due to the fact that only the non-zero elements of the matrix are
stored. To assign values to the elements of the declared sparse matrix we use the same syntax
as for matrices.

sparse aa(10,1),bb(200,200);
aa(1,1):=10;
bb(100,150):=a;

75.3 Linear Algebra Package for Sparse Matrices

Most of the functions of this package are related to the functions of the linear algebra package
LINALG. For further explanation and examples of the various functions please refer to the LINALG
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package.

75.3.1 Basic matrix handling

spadd columns spadd rows spadd to columns spadd to rows
spaugment columns spchar poly spcol dim spcopy into
spdiagonal spextend spfind companion spget columns
spget rows sphermitian tp spmatrix augment spmatrix stack
spminor spmult columns spmult rows sppivot
spremove columns spremove rows sprow dim sprows pivot
spstack rows spsub matrix spswap columns spswap entries
spswap rows

75.3.2 Constructors

Functions that create sparse matrices.

spband matrix spblock matrix spchar matrix spcoeff matrix
spcompanion sphessian spjacobian spjordan block
spmake identity

75.3.3 High level algorithms

spchar poly spcholesky spgram schmidt splu decom
sppseudo inverse svd

75.3.4 Predicates

matrixp sparsematp squarep symmetricp
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SPDE: A package for finding
symmetry groups of PDE’s

Fritz Schwarz
GMD, Institut F1

Postfach 1240
5205 St. Augustin, Germany

e–mail: fritz.schwarz@gmd.de

The package SPDE provides a set of functions which may be applied to determine the symmetry
group of Lie- or point-symmetries of a given system of partial differential equations. Preferably
it is used interactively on a computer terminal. In many cases the determining system is solved
completely automatically. In some other cases the user has to provide some additional input
information for the solution algorithm to terminate.

76.1 System Functions and Variables

The symmetry analysis of partial differential equations logically falls into three parts. Accord-
ingly the most important functions provided by the package are:

Some other useful functions for obtaining various kinds of output are:

SPDE expects a system of differential equations to be defined as the values of the operator deq
and other operators. A simple example follows.

load_package spde;

Function name Operation
CRESYS(<arguments>) Constructs determining system

SIMPSYS() Solves determining system
RESULT() Prints infinitesimal generators

and commutator table

Table 76.1: SPDE Functions
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Function name Operation
PRSYS() Prints determining system
PRGEN() Prints infinitesimal generators

COMM(U,V) Prints commutator of generators U and V

Table 76.2: SPDE Useful Output Functions

deq 1:=u(1,1)+u(1,2,2);

deq(1) := u(1,2,2) + u(1,1)

CRESYS deq 1;

PRSYS();

GL(1):=2*df(eta(1),u(1),x(2)) - df(xi(2),x(2),2) - df(xi(2),x(1))

GL(2):=df(eta(1),u(1),2) - 2*df(xi(2),u(1),x(2))

GL(3):=df(eta(1),x(2),2) + df(eta(1),x(1))

GL(4):=df(xi(2),u(1),2)

GL(5):=df(xi(2),u(1)) - df(xi(1),u(1),x(2))

GL(6):=2*df(xi(2),x(2)) - df(xi(1),x(2),2) - df(xi(1),x(1))

GL(7):=df(xi(1),u(1),2)

GL(8):=df(xi(1),u(1))

GL(9):=df(xi(1),x(2))

The remaining dependencies

xi(2) depends on u(1),x(2),x(1)

xi(1) depends on u(1),x(2),x(1)

eta(1) depends on u(1),x(2),x(1)

A detailed description can be found in the SPDE documentation and examples.
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SPECFN: Package for special
functions

Chris Cannam & Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: neun@zib.de

This package is designed to provide algebraic and numeric manipulations of several common
special functions, namely:

• Bernoulli Numbers and Polynomials;

• Euler numbers and Polynomials;

• Fibonacci numbers and Polynomials;

• Stirling Numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The Psi function and its derivatives;

• The Riemann Zeta function;

• The Bessel functions J and Y of the first and second kinds;

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy functions;
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• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• The Polylogarithm and Lerch Phi function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;

• Associated Legendre Functions (Spherical and Solid Harmonics);

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Lambert’s ω function;

• Jacobi Elliptic Functions and Integrals;

• 3j symbols, 6j symbols and Clebsch Gordan coefficients;

• and some well-known constants.

77.1 Simplification and Approximation

All of the operators supported by this package have certain algebraic simplification rules to
handle special cases, poles, derivatives and so on. Such rules are applied whenever they are
appropriate. However, if the ROUNDED switch is on, numeric evaluation is also carried out.
Unless otherwise stated below, the result of an application of a special function operator to real
or complex numeric arguments in rounded mode will be approximated numerically whenever it
is possible to do so. All approximations are to the current precision.

77.2 Constants

Some well-known constants are defined in the special function package. Important properties
of these constants which can be used to define them are also known. Numerical values are
computed at arbitrary precision if the switch ROUNDED is on.

• Euler Gamma : Euler’s constants, also available as -ψ(1);

• Catalan : Catalan’s constant;

• Khinchin : Khinchin’s constant;

• Golden Ratio : 1+
√

5
2
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77.3 Functions

The functions provided by this package are given in the following tables.

Function Operator

( n
m

)
Binomial(n,m)

Motzkin(n) Motzkin(n)
Bernoulli(n) or Bn Bernoulli(n)

Euler(n) or En Euler(n)
Fibonacci(n) or Fn Fibonacci(n)

S
(m)
n Stirling1(n,m)

S(m)
n Stirling2(n,m)

B(z, w) Beta(z,w)
Γ(z) Gamma(z)

incomplete Beta Bx(a, b) iBeta(a,b,x)
incomplete Gamma Γ(a, z) iGamma(a,z)

(a)k Pochhammer(a,k)
ψ(z) Psi(z)

ψ(n)(z) Polygamma(n,z)
Riemann’s ζ(z) Zeta(z)

Jν(z) BesselJ(nu,z)
Yν(z) BesselY(nu,z)
Iν(z) BesselI(nu,z)
Kν(z) BesselK(nu,z)

H
(1)
ν (z) Hankel1(nu,z)

H
(2)
ν (z) Hankel2(nu,z)

B(z, w) Beta(z,w)
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Function Operator

Hν(z) StruveH(nu,z)
Lν(z) StruveL(nu,z)
sa,b(z) Lommel1(a,b,z)
Sa,b(z) Lommel2(a,b,z)
Ai(z) Airy Ai(z)
Bi(z) Airy Bi(z)
Ai′(z) Airy Aiprime(z)
Bi′(z) Airy Biprime(z)

M(a, b, z) or 1F1(a, b; z) or Φ(a, b; z) KummerM(a,b,z)
U(a, b, z) or z−a2F0(a, b; z) or Ψ(a, b; z) KummerU(a,b,z)

Mκ,µ(z) WhittakerM(kappa,mu,z)
Wκ,µ(z) WhittakerW(kappa,mu,z)
Bn(x) BernoulliP(n,x)
En(x) EulerP(n,x)

Fibonacci Polynomials Fn(x) FibonacciP(n,x)

C
(α)
n (x) GegenbauerP(n,alpha,x)
Hn(x) HermiteP(n,x)
Ln(x) LaguerreP(n,x)

L
(m)
n (x) LaguerreP(n,m,x)
Pn(x) LegendreP(n,x)

P
(m)
n (x) LegendreP(n,m,x)

P
(α,β)
n (x) JacobiP(n,alpha,beta,x)
Un(x) ChebyshevU(n,x)
Tn(x) ChebyshevT(n,x)

Function Operator

Y m
n (x, y, z, r2) SolidHarmonicY(n,m,x,y,z,r2)

Y m
n (θ, φ) SphericalHarmonicY(n,m,theta,phi)(

j1
m1

j2
m2

j3
m3

)
ThreeJSymbol({j1,m1},{j2,m2},{j3,m3})

(j1m1j2m2|j1j2j3 −m3) Clebsch Gordan({j1,m1},{j2,m2},{j3,m3}){
j1
l1
j2
l2
j3
l3

}
SixJSymbol({j1,j2,j3},{l1,l2,l3})
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Function Operator

Si(z) Si(z)
si(z) s i(z)
Ci(z) Ci(z)
Shi(z) Shi(z)
Chi(z) Chi(z)
erf(z) erf(z)
erfc(z) erfc(z)
Ei(z) Ei(z)
li(z) li(z)
C(x) Fresnel C(x)
S(x) Fresnel S(x)

dilog(z) dilog(z)
Lin(z) Polylog(n,z)

Lerch Φ(z, s, a) Lerch Phi(z,s,a)

sn(u|m) Jacobisn(u,m)
dn(u|m) Jacobidn(u,m)
cn(u|m) Jacobicn(u,m)
cd(u|m) Jacobicd(u,m)
sd(u|m) Jacobisd(u,m)
nd(u|m) Jacobind(u,m)
dc(u|m) Jacobidc(u,m)
nc(u|m) Jacobinc(u,m)
sc(u|m) Jacobisc(u,m)
ns(u|m) Jacobins(u,m)
ds(u|m) Jacobids(u,m)
cs(u|m) Jacobics(u,m)
F (φ|m) EllipticF(phi,m)
K(m) EllipticK(m)

E(φ|m)orE(m) EllipticE(phi,m) or
EllipticE(m)

H(u|m),H1(u|m),Θ1(u|m),Θ(u|m) EllipticTheta(a,u,m)
θ1(u|m), θ2(u|m), θ3(u|m), θ4(u|m) EllipticTheta(a,u,m)

Z(u|m) Zeta function(u,m)

Lambert ω(z) Lambert W(z)
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SPECFN2: Special special functions

Victor S. Adamchik
Byelorussian University

Minsk, Belorus

and

Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: neun@zib.de

The (generalised) hypergeometric functions

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣z
)

are defined in textbooks on special functions.

78.1 REDUCE operator HYPERGEOMETRIC

The operator hypergeometric expects 3 arguments, namely the list of upper parameters (which
may be empty), the list of lower parameters (which may be empty too), and the argument, e.g:

hypergeometric ({},{},z);

Z
E

hypergeometric ({1/2,1},{3/2},-x^2);

ATAN(X)
---------

X
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78.2 Enlarging the HYPERGEOMETRIC operator

Since hundreds of particular cases for the generalised hypergeometric functions can be found
in the literature, one cannot expect that all cases are known to the hypergeometric operator.
Nevertheless the set of special cases can be augmented by adding rules to the REDUCE system,
e.g.

let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x};
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SUM: A package for series
summation

Fujio Kako
Department of Mathematics, Faculty of Science

Hiroshima University
Hiroshima 730, JAPAN

e–mail: kako@ics.nara-wu.ac.jp

This package implements the Gosper algorithm for the summation of series. It defines operators
SUM and PROD. The operator SUM returns the indefinite or definite summation of a given
expression, and the operator PROD returns the product of the given expression. These are used
with the syntax:

SUM(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])
PROD(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])

If there is no closed form solution, these operators return the input unchanged. UPLIM and
LOLIM are optional parameters specifying the lower limit and upper limit of the summation (or
product), respectively. If UPLIM is not supplied, the upper limit is taken as K (the summation
variable itself).

For example:

sum(n**3,n);

sum(a+k*r,k,0,n-1);

sum(1/((p+(k-1)*q)*(p+k*q)),k,1,n+1);

prod(k/(k-2),k);

Gosper’s algorithm succeeds whenever the ratio

∑n
k=n0

f(k)∑n−1
k=n0

f(k)
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is a rational function of n. The function SUM!-SQ handles basic functions such as polynomials,
rational functions and exponentials.

The trigonometric functions sin, cos, etc. are converted to exponentials and then Gosper’s
algorithm is applied. The result is converted back into sin, cos, sinh and cosh.

Summations of logarithms or products of exponentials are treated by the formula:

n∑
k=n0

log f(k) = log
n∏

k=n0

f(k)

n∏
k=n0

exp f(k) = exp
n∑

k=n0

f(k)

Other functions can be summed by providing LET rules which must relate the functions eval-
uated at k and k − 1 (k being the summation variable).

operator f,gg; % gg used to avoid possible conflict with high energy
% physics operator.

for all n,m such that fixp m let
f(n+m)=if m > 0 then f(n+m-1)*(b*(n+m)**2+c*(n+m)+d)

else f(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+d);

for all n,m such that fixp m let
gg(n+m)=if m > 0 then gg(n+m-1)*(b*(n+m)**2+c*(n+m)+e)

else gg(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+e);

sum(f(n-1)/gg(n),n);

f(n)
---------------
gg(n)*(d - e)
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SUSY2: Super Symmetry

Ziemowit Popowicz
Institute of Theoretical Physics, University of Wroclaw

pl. M. Borna 9 50-205 Wroclaw, Poland
e-mail: ziemek@ift.uni.wroc.pl

This package deals with supersymmetric functions and with algebra of supersymmetric operators
in the extended N=2 as well as in the nonextended N=1 supersymmetry. It allows us to make
the realization of SuSy algebra of differential operators, compute the gradients of given SuSy
Hamiltonians and to obtain SuSy version of soliton equations using the SuSy Lax approach.
There are also many additional procedures encountered in the SuSy soliton approach, as for
example: conjugation of a given SuSy operator, computation of general form of SuSy Hamil-
tonians (up to SuSy-divergence equivalence), checking of the validity of the Jacobi identity for
some SuSy Hamiltonian operators.

To load the package, type load susy2;

For full explanation and further examples, please refer to the detailed documentation and the
susy2.tst which comes with this package.

80.1 Operators

80.1.1 Operators for constructing Objects

The superfunctions are represented in this package by BOS(f,n,m) for superbosons and FER(f,n,m)
for superfermions. The first index denotes the name of the given superobject, the second denotes
the value of SuSy derivatives, and the last gives the value of usual derivative.
In addition to the definitions of the superfunctions, also the inverse and the exponential of
superbosons can be defined (where the inverse is defined as BOS(f,n,m,-1) with the property
bos(f,n,m,-1)*bos(f,n,m,1)=1). The exponential of the superboson function is AXP(BOS(f,0,0)).
The operator FUN and GRAS denote the classical and the Grassmann function.
Three different realizations of supersymmetric derivatives are implemented. To select traditional
realization declare LET TRAD. In order to select chiral or chiral1 algebra declare LET CHIRAL or
LET CHIRAL1. For usual differentiation the operator D(1) stands for right and D(2) for left
differentiation. SuSy derivatives are denoted as der and del. DER and DEL are one component
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argument operations and represent the left and right operators. The action of these operators
on the superfunctions depends on the choice of the supersymmetry algebra.

BOS(f,n,m) BOS(f,n,m,k) FER(f,n,m) AXP(f) FUN(f,n) FUN(f,n,m)
GRAS(f,n) AXX(f) D(1) D(2) D(3) D(-1)
D(-2) D(-3) D(-4) DR(-n) DER(1) DER(2)
DEL(1) DEL(2)

Example:

1: load susy2;

2: bos(f,0,2,-2)*axp(fer(k,1,2))*del(1); %first susy derivative

2*fer(f,1,2)*bos(f,0,2,-3)*axp(fer(k,1,2))

- bos(k,0,3)*bos(f,0,2,-2)*axp(fer(k,1,2))

+ del(1)*bos(f,0,2,-2)*axp(fer(k,1,2))

3: sub(del=der,ws);

bos(f,0,2,-2)*axp(fer(k,1,2))*der(1)

80.1.2 Commands

There are plenty of operators on superfunction objects. Some of them are introduced here
briefly.

• By using the operators FPART, BPART, BFPART and BF PART it is possible to compute the
coordinates of the arbitrary SuSy expressions.

• With W COMB, FCOMB and PSE ELE there are three operators to be able to construct
different possible combinations of superfunctions and super-pseudo-differential elements
with the given conformal dimensions .

• The three operators S PART, D PART and SD PART are implemented to obtain the
components of the (pseudo)-SuSy element.

• RZUT is used to obtain the projection onto the invariant subspace (with respect to
commutator) of algebra of pseudo-SuSy-differential algebra.

• To obtain the list of the same combinations of some superfunctions and (SuSy)
derivatives from some given operator-valued expression, the operators LYST, LYST1 and
LYST2 are constructed.
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FPART(expression) BPART(expression)
BF PART(expression,n) B PART(expression,n)
PR(n,expression) PG(n,expression)
W COMB({{f,n,x},...},m,z,y) FCOMB({{f,n,x},...},m,z,y)
PSE ELE(n,{{f,n},...},z)
S PART(expression,n) D PART(expression,n)
SD PART(expression,n,m) CP(expression)
RZUT(expression,n) LYST(expression)
LYST1(expression) LYST2(expression)
CHAN(expression) ODWA(expression)
GRA(expression,f) DYW(expression,f)
WAR(expression,f) DOT HAM(equations,expression)
N GAT(operator,list) FJACOB(operator,list)
JACOB(operator,list,{α, β, γ}) MACIERZ(expression,x,y)
S INT(number,expression,list)

Example:

4: xxx:=fer(f,2,3);

xxx := fer(f,2,3)

5: fpart(xxx); % all components

- fun(f0,4) + 2*fun(f1,3) gras(ff2,4)
{gras(ff2,3), ----------------------------,0, -------------}

2 2
6: bpart(xxx); % bosonic sector

- fun(f0,4) + 2*fun(f1,3)
{0,----------------------------,0,0}

2

9: b_part(xxx,1); %the given component in the bosonic sector

- fun(f0,4) + 2*fun(f1,3)
----------------------------

2

80.2 Options

The are several options defined in this package. Please note that they are activated by typing
let <option>. See also above.
The TRAD, CHIRAL and CHIRAL1 select the different realizations of the supersymmetric
derivatives. By default traditional algebra is selected.
If the command LET INVERSE is used, then three indices bos objects are transformed onto four
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indices objects.

TRAD CHIRAL CHIRAL1 INVERSE DRR NODRR

Example:

10: let inverse;

11: bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2);

bos(k,3,1,40)*bos(f,0,3,1);

12: clearrules inverse;

13: xxx:=fer(f,1,2)*bos(k,0,2,-2);

xxx := fer(f,1,2)*bos(k,0,2,-2)

14: pr(1,xxx); % first susy derivative

- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3) + bos(k,0,2,-2)*bos(f,0,3)

15: pr(2,xxx); %second susy derivative

- 2*fer(k,2,2)*fer(f,1,2)*bos(k,0,2,-3) - bos(k,0,2,-2)*bos(f,3,2)

16: clearrules trad;

17: let chiral; % changing to chiral algebra

18: pr(1,xxx);

- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3)
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SYMMETRY: Symmetric matrices
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The SYMMETRY package provides procedures that compute symmetry-adapted bases and
block diagonal forms of matrices which have the symmetry of a group.

81.1 Operators for linear representations

The data structure for a linear representation, a representation, is a list consisting of the
group identifier and equations which assign matrices to the generators of the group.

Example:

rr:=mat((0,1,0,0),
(0,0,1,0),
(0,0,0,1),
(1,0,0,0));

sp:=mat((0,1,0,0),
(1,0,0,0),
(0,0,0,1),
(0,0,1,0));

representation:={D4,rD4=rr,sD4=sp};

For orthogonal (unitarian) representations the following operators are available.

canonicaldecomposition(representation);

returns an equation giving the canonical decomposition of the linear representation.

character(representation);
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computes the character of the linear representation. The result is a list of the group identifier
and of lists consisting of a list of group elements in one equivalence class and a real or complex
number.

symmetrybasis(representation,nr);

computes the basis of the isotypic component corresponding to the irreducible representation
of type nr. If the nr-th irreducible representation is multidimensional, the basis is symmetry
adapted. The output is a matrix.

symmetrybasispart(representation,nr);

is similar as symmetrybasis, but for multidimensional irreducible representations only the
first part of the symmetry adapted basis is computed.

allsymmetrybases(representation);

is similar as symmetrybasis and symmetrybasispart, but the bases of all isotypic
components are computed and thus a complete coordinate transformation is returned.

diagonalize(matrix,representation);

returns the block diagonal form of matrix which has the symmetry of the given linear
representation. Otherwise an error message occurs.

81.2 Display Operators

Access is provided to the information for a group, and for adding knowledge for other groups.
This is explained in detail in the Symmetry on-line documentation.
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TAYLOR: Manipulation of Taylor
series
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The TAYLOR package of REDUCE allow Taylor expansion in one or several variables, and
efficient manipulation of the resulting Taylor series. Capabilities include basic operations
(addition, subtraction, multiplication and division), and also application of certain algebraic
and transcendental functions. To a certain extent, Laurent and Puiseux expansions can be
performed as well. In many cases, separable singularities are detected and factored out.

TAYLOR(EXP:exprn[,VAR:kernel, VAR0:exprn,ORDER:integer]. . . ):exprn

where EXP is the expression to be expanded. It can be any REDUCE object, even an
expression containing other Taylor kernels. VAR is the kernel with respect to which EXP is to
be expanded. VAR0 denotes the point about which and ORDER the order up to which
expansion is to take place. If more than one (VAR, VAR0, ORDER) triple is specified TAYLOR
will expand its first argument independently with respect to each variable in turn. For
example,

taylor(e^(x^2+y^2),x,0,2,y,0,2);

will calculate the Taylor expansion up to order X2 ∗ Y 2. Note that once the expansion has
been done it is not possible to calculate higher orders. Instead of a kernel, VAR may also be a
list of kernels. In this case expansion will take place in a way so that the sum of the degrees of
the kernels does not exceed ORDER. If VAR0 evaluates to the special identifier INFINITY
TAYLOR tries to expand EXP in a series in 1/VAR.

The expansion is performed variable per variable, i.e. in the example above by first expanding
exp(x2 + y2) with respect to x and then expanding every coefficient with respect to y.

There are two extra operators to compute the Taylor expansions of implicit and inverse
functions:

425



426 CHAPTER 82. TAYLOR: MANIPULATION OF TAYLOR SERIES

IMPLICIT TAYLOR(F:exprn,VAR1,VAR2:kernel,

VAR10,VAR20:exprn, ORDER:integer):exprn

takes a function F depending on two variables VAR1 and VAR2 and computes the Taylor
series of the implicit function VAR2(VAR1) given by the equation F(VAR1,VAR2) = 0. For
example,

implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);

INVERSE TAYLOR(F:exprn,VAR1,VAR2:kernel,

VAR10:exprn, ORDER:integer):exprn

takes a function F depending on VAR1 and computes the Taylor series of the inverse of F with
respect to VAR2. For example,

inverse_taylor(exp(x)-1,x,y,0,8);

When a Taylor kernel is printed, only a certain number of (non-zero) coefficients are shown. If
there are more, an expression of the form (n terms) is printed to indicate how many non-zero
terms have been suppressed. The number of terms printed is given by the value of the shared
algebraic variable TAYLORPRINTTERMS. Allowed values are integers and the special identifier
ALL. The latter setting specifies that all terms are to be printed. The default setting is 5.

If the switch TAYLORKEEPORIGINAL is set to ON the original expression EXP is kept for later
reference. It can be recovered by means of the operator

TAYLORORIGINAL(EXP:exprn):exprn

An error is signalled if EXP is not a Taylor kernel or if the original expression was not kept,
i.e. if TAYLORKEEPORIGINAL was OFF during expansion. The template of a Taylor kernel, i.e.
the list of all variables with respect to which expansion took place together with expansion
point and order can be extracted using

TAYLORTEMPLATE(EXP:exprn):list

This returns a list of lists with the three elements (VAR,VAR0,ORDER). As with
TAYLORORIGINAL, an error is signalled if EXP is not a Taylor kernel.

TAYLORTOSTANDARD(EXP:exprn):exprn

converts all Taylor kernels in EXP into standard form and resimplifies the result.

TAYLORSERIESP(EXP:exprn):boolean

may be used to determine if EXP is a Taylor kernel. Note that this operator is subject to the
same restrictions as, e.g., ORDP or NUMBERP, i.e. it may only be used in boolean
expressions in IF or LET statements. Finally there is

TAYLORCOMBINE(EXP:exprn):exprn

which tries to combine all Taylor kernels found in EXP into one. Operations currently
possible are:

• Addition, subtraction, multiplication, and division.
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• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Application of unary operators like LOG and ATAN will nearly always succeed. For binary
operations their arguments have to be Taylor kernels with the same template. This means
that the expansion variable and the expansion point must match. Expansion order is not so
important, different order usually means that one of them is truncated before doing the
operation.

If TAYLORKEEPORIGINAL is set to ON and if all Taylor kernels in exp have their original
expressions kept TAYLORCOMBINE will also combine these and store the result as the original
expression of the resulting Taylor kernel. There is also the switch TAYLORAUTOEXPAND (see
below).

There are a few restrictions to avoid mathematically undefined expressions: it is not possible
to take the logarithm of a Taylor kernel which has no terms (i.e. is zero), or to divide by such
a beast. There are some provisions made to detect singularities during expansion: poles that
arise because the denominator has zeros at the expansion point are detected and properly
treated, i.e. the Taylor kernel will start with a negative power. (This is accomplished by
expanding numerator and denominator separately and combining the results.) Essential
singularities of the known functions (see above) are handled correctly.

Differentiation of a Taylor expression is possible. Differentiating with respect to one of the
Taylor variables will decrease the order by one.

Substitution is a bit restricted: Taylor variables can only be replaced by other kernels. There
is one exception to this rule: one can always substitute a Taylor variable by an expression that
evaluates to a constant. Note that REDUCE will not always be able to determine that an
expression is constant.

Only simple Taylor kernels can be integrated. More complicated expressions that contain
Taylor kernels as parts of themselves are automatically converted into a standard
representation by means of the TAYLORTOSTANDARD operator. In this case a suitable
warning is printed.

It is possible to revert a Taylor series of a function f , i.e., to compute the first terms of the
expansion of the inverse of f from the expansion of f . This is done by the operator

TAYLORREVERT(EXP:exprn,OLDVAR:kernel, NEWVAR:kernel):exprn

EXP must evaluate to a Taylor kernel with OLDVAR being one of its expansion variables.
Example:

taylor (u - u**2, u, 0, 5);
taylorrevert (ws, u, x);

This package introduces a number of new switches:

• If TAYLORAUTOCOMBINE is set to ON REDUCE automatically combines Taylor expressions
during the simplification process. This is equivalent to applying TAYLORCOMBINE to every
expression that contains Taylor kernels. Default is ON.

• TAYLORAUTOEXPAND makes Taylor expressions “contagious” in the sense that
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TAYLORCOMBINE tries to Taylor expand all non-Taylor subexpressions and to combine the
result with the rest. Default is OFF.

• TAYLORKEEPORIGINAL, if set to ON, forces the package to keep the original expression, i.e.
the expression that was Taylor expanded. All operations performed on the Taylor
kernels are also applied to this expression which can be recovered using the operator
TAYLORORIGINAL. Default is OFF.

• TAYLORPRINTORDER, if set to ON, causes the remainder to be printed in big-O notation.
Otherwise, three dots are printed. Default is ON.
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TPS: A truncated power series
package
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This package implements formal Laurent series expansions in one variable using the domain
mechanism of REDUCE. This means that power series objects can be added, multiplied,
differentiated etc. like other first class objects in the system. A lazy evaluation scheme is used
in the package and thus terms of the series are not evaluated until they are required for
printing or for use in calculating terms in other power series. The series are extendible giving
the user the impression that the full infinite series is being manipulated. The errors that can
sometimes occur using series that are truncated at some fixed depth (for example when a term
in the required series depends on terms of an intermediate series beyond the truncation depth)
are thus avoided.
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83.1 Basic Truncated Power Series

83.1.1 PS Operator

Syntax:

PS(EXPRN:algebraic,DEPVAR:kernel,ABOUT:algebraic):ps object

The PS operator returns a power series object representing the univariate formal power series
expansion of EXPRN with respect to the dependent variable DEPVAR about the expansion
point ABOUT. EXPRN may itself contain power series objects.

The algebraic expression ABOUT should simplify to an expression which is independent of the
dependent variable DEPVAR, otherwise an error will result. If ABOUT is the identifier
INFINITY then the power series expansion about DEPVAR = ∞ is obtained in ascending
powers of 1/DEPVAR.

The power series object representing EXPRN is compiled and then a number of terms of the
power series expansion are evaluated. The expansion is carried out as far as the value specified
by PSEXPLIM. If, subsequently, the value of PSEXPLIM is increased, sufficient information is
stored in the power series object to enable the additional terms to be calculated without
recalculating the terms already obtained.

If the function has a pole at the expansion point then the correct Laurent series expansion will
be produced.

The following examples are valid uses of PS:

psexplim 6;
ps(log x,x,1);
ps(e**(sin x),x,0);
ps(x/(1+x),x,infinity);
ps(sin x/(1-cos x),x,0);

New user-defined functions may be expanded provided the user provides LET rules giving

1. the value of the function at the expansion point

2. a differentiation rule for the new function.

For example

operator sech;
forall x let df(sech x,x)= - sech x * tanh x;
let sech 0 = 1;
ps(sech(x**2),x,0);

The power series expansion of an integral may also be obtained (even if REDUCE cannot
evaluate the integral in closed form). An example of this is

ps(int(e**x/x,x),x,1);
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Note that if the integration variable is the same as the expansion variable then REDUCE’s
integration package is not called; if on the other hand the two variables are different then the
integrator is called to integrate each of the coefficients in the power series expansion of the
integrand. The constant of integration is zero by default. If another value is desired, then the
shared variable PSINTCONST should be set to required value.

83.1.2 PSORDLIM Operator

Syntax:

PSORDLIM(UPTO:integer):integer

or

PSORDLIM():integer

An internal variable is set to the value of UPTO (which should evaluate to an integer). The
value returned is the previous value of the variable. The default value is 15.

If PSORDLIM is called with no argument, the current value is returned.

The significance of this control is that the system attempts to find the order of the power
series required, that is the order is the degree of the first non-zero term in the power series. If
the order is greater than the value of this variable an error message is given and the
computation aborts. This prevents infinite loops in examples such as

ps(1 - (sin x)**2 - (cos x)**2,x,0);

where the expression being expanded is identically zero, but is not recognised as such by
REDUCE.

83.2 Controlling Power Series

83.2.1 PSTERM Operator

Syntax:

PSTERM(TPS:power series object,NTH:integer):algebraic

The operator PSTERM returns the NTH term of the existing power series object TPS. If NTH
does not evaluate to an integer or TPS to a power series object an error results. It should be
noted that an integer is treated as a power series.

83.2.2 PSORDER Operator

Syntax:

PSORDER(TPS:power series object):integer

The operator PSORDER returns the order, that is the degree of the first non-zero term, of the
power series object TPS. TPS should evaluate to a power series object or an error results. If
TPS is zero, the identifier UNDEFINED is returned.
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83.2.3 PSSETORDER Operator

Syntax:

PSSETORDER(TPS:power series object, ORD:integer):integer

The operator PSSETORDER sets the order of the power series TPS to the value ORD, which
should evaluate to an integer. If TPS does not evaluate to a power series object, then an error
occurs. The value returned by this operator is the previous order of TPS, or 0 if the order of
TPS was undefined. This operator is useful for setting the order of the power series of a
function defined by a differential equation in cases where the power series package is
inadequate to determine the order automatically.

83.2.4 PSDEPVAR Operator

Syntax:

PSDEPVAR(TPS:power series object):identifier

The operator PSDEPVAR returns the expansion variable of the power series object TPS. TPS
should evaluate to a power series object or an integer, otherwise an error results. If TPS is an
integer, the identifier UNDEFINED is returned.

83.2.5 PSEXPANSIONPT operator

Syntax:

PSEXPANSIONPT(TPS:power series object):algebraic

The operator PSEXPANSIONPT returns the expansion point of the power series object TPS.
TPS should evaluate to a power series object or an integer, otherwise an error results. If TPS
is integer, the identifier UNDEFINED is returned. If the expansion is about infinity, the identifier
INFINITY is returned.

83.2.6 PSFUNCTION Operator

Syntax:

PSFUNCTION(TPS:power series object):algebraic

The operator PSFUNCTION returns the function whose expansion gave rise to the power series
object TPS. TPS should evaluate to a power series object or an integer, otherwise an error
results.

83.2.7 PSCHANGEVAR Operator

Syntax:

PSCHANGEVAR(TPS:power series object, X:kernel):power series object

The operator PSCHANGEVAR changes the dependent variable of the power series object TPS to
the variable X. TPS should evaluate to a power series object and X to a kernel, otherwise an
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error results. Also X should not appear as a parameter in TPS. The power series with the new
dependent variable is returned.

83.2.8 PSREVERSE Operator

Syntax:

PSREVERSE(TPS:power series object):power series

Power series reversion. The power series TPS is functionally inverted. Four cases arise:

1. If the order of the series is 1, then the expansion point of the inverted series is 0.

2. If the order is 0 and if the first order term in TPS is non-zero, then the expansion point
of the inverted series is taken to be the coefficient of the zeroth order term in TPS.

3. If the order is -1 the expansion point of the inverted series is the point at infinity. In all
other cases a REDUCE error is reported because the series cannot be inverted as a
power series. Puiseux expansion would be required to handle these cases.

4. If the expansion point of TPS is finite it becomes the zeroth order term in the inverted
series. For expansion about 0 or the point at infinity the order of the inverted series is
one.

If TPS is not a power series object after evaluation an error results.

Here are some examples:

ps(sin x,x,0);
psreverse(ws); % produces series for asin x about x=0.
ps(exp x,x,0);
psreverse ws; % produces series for log x about x=1.
ps(sin(1/x),x,infinity);
psreverse(ws); % produces series for 1/asin(x) about x=0.

83.2.9 PSCOMPOSE Operator

Syntax:

PSCOMPOSE(TPS1:power series, TPS2:power series):power series

PSCOMPOSE performs power series composition. The power series TPS1 and TPS2 are
functionally composed. That is to say that TPS2 is substituted for the expansion variable in
TPS1 and the result expressed as a power series. The dependent variable and expansion point
of the result coincide with those of TPS2. The following conditions apply to power series
composition:

1. If the expansion point of TPS1 is 0 then the order of the TPS2 must be at least 1.

2. If the expansion point of TPS1 is finite, it should coincide with the coefficient of the
zeroth order term in TPS2. The order of TPS2 should also be non-negative in this case.
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3. If the expansion point of TPS1 is the point at infinity then the order of TPS2 must be
less than or equal to -1.

If these conditions do not hold the series cannot be composed (with the current algorithm
terms of the inverted series would involve infinite sums) and a REDUCE error occurs.

Examples of power series composition include the following.

a:=ps(exp y,y,0); b:=ps(sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(sin x)
% about x=0.

a:=ps(exp z,z,1); b:=ps(cos x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(cos x)
% about x=0.

a:=ps(cos(1/x),x,infinity); b:=ps(1/sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of cos(sin x)
% about x=0.

83.2.10 PSSUM Operator

Syntax:

PSSUM(J:kernel = LOWLIM:integer, COEFF:algebraic, X:kernel,
ABOUT:algebraic, POWER:algebraic):power series

The formal power series sum for J from LOWLIM to INFINITY of

COEFF*(X-ABOUT)**POWER

or if ABOUT is given as INFINITY

COEFF*(1/X)**POWER

is constructed and returned. This enables power series whose general term is known to be
constructed and manipulated using the other procedures of the power series package.

J and X should be distinct simple kernels. The algebraics ABOUT, COEFF and POWER
should not depend on the expansion variable X, similarly the algebraic ABOUT should not
depend on the summation variable J. The algebraic POWER should be a strictly increasing
integer valued function of J for J in the range LOWLIM to INFINITY.

pssum(n=0,1,x,0,n*n);
% Produces the power series summation for n=0 to
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% infinity of x**(n*n).

pssum(m=1,(-1)**(m-1)/(2m-1),y,1,2m-1);
% Produces the power series expansion of atan(y-1)
% about y=1.

pssum(j=1,-1/j,x,infinity,j);
% Produces the power series expansion of log(1-1/x)
% about the point at infinity.

pssum(n=0,1,x,0,2n**2+3n) + pssum(n=1,1,x,0,2n**2-3n);
% Produces the power series summation for n=-infinity
% to +infinity of x**(2n**2+3n).

83.2.11 Arithmetic Operations

As power series objects are domain elements they may be combined together in algebraic
expressions in algebraic mode of REDUCE in the normal way.

For example if A and B are power series objects then the commands such as:

a*b;
a**2+b**2;

will produce power series objects representing the product and the sum of the squares of the
power series objects A and B respectively.

83.2.12 Differentiation

If A is a power series object depending on X then the input df(a,x); will produce the power
series expansion of the derivative of A with respect to X.

83.3 Restrictions and Known Bugs

If A and B are power series objects and X is a variable which evaluates to itself then currently
expressions such as a/b and a*x do not evaluate to a single power series object (although the
results are in each case formally valid). Instead use ps(a/b,x,0) and ps(a*x,x,0) etc..
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TRI: TeX REDUCE interface
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The REDUCE-TEX-Interface incorporates three levels of TEX output: without line breaking,
with line breaking, and with line breaking plus indentation.

During loading the package some default initialisations are performed. The default page width
is set to 15 centimetres, the tolerance for page breaking is set to 20 by default. Moreover, TRI
is enabled to translate Greek names, e.g. TAU or PSI, into equivalent TEX symbols, e.g. τ or
ψ, respectively. Letters are printed lowercase as defined through assertion of the set
LOWERCASE.

84.1 Switches for TRI

The three TRI modes can be selected by switches, which can be used alternatively and
incrementally. Switching TEX on gives standard TEX-output; switching TEXBREAK gives broken
TEX-output, and TEXINDENT to give broken TEX-output plus indentation. Thus the three
levels of TRI are enabled or disabled according to:

On TeX; % switch TeX is on
On TeXBreak; % switches TeX and TeXBreak are on
On TeXIndent; % switches TeX, TeXBreak and TeXIndent are on
Off TeXIndent; % switch TeXIndent is off
Off TeXBreak; % switches TeXBreak and TeXIndent are off
Off TeX; % all three switches are off

How TRI breaks multiple lines of TEX-code may be controlled by setting values for page width
and tolerance

TeXsetbreak(page_width, tolerance);
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Page width is measured in millimetres, and tolerance is a positive integer in the closed interval
[0 . . . 10000]. The higher the tolerance, the more breakpoints become feasible. A tolerance of 0
means that actually no breakpoint will be considered feasible, while a value of 10000 allows
any breakpoint to be considered feasible. For line-breaking without indentation, suitable
values for the tolerance lie between 10 and 100. As a rule of thumb, use higher values the
deeper the term is nested. If using indentation, use much higher tolerance values; reasonable
values for tolerance here lie between 700 and 1500.

84.1.1 Adding Translations

Sometimes it is desirable to add special REDUCE-symbol-to-TEX-item translations. For such
a task TRI provides a function TeXlet which binds any REDUCE-symbol to one of the
predefined TEX-items. A call to this function has the following syntax:

TeXlet(REDUCE-symbol, TEX-item);

For example

TeXlet(’velocity,’!v);
TeXlet(’gamma,\verb|’!\!G!a!m!m!a! |);
TeXlet(’acceleration,\verb|’!\!v!a!r!t!h!e!t!a! |);

Besides this method of single assertions one can assert one of (currently) two standard sets
providing substitutions for lowercase and Greek letters. These sets are loaded by default.
These sets can be switched on or off using the functions

TeXassertset setname;
TeXretractset setname;

where the setnames currently defined are ’GREEK and ’LOWERCASE.

There are facilities for creating other sets of substitutions, using the function TeXitem.

84.2 Examples of Use

Some representative examples demonstrate the capabilities of TRI.

load_package tri;
% TeX-REDUCE-Interface 0.50
% set greek asserted
% set lowercase asserted
% \tolerance 10
% \hsize=150mm

TeXsetbreak(150,250);
% \tolerance 250
% \hsize=150mm

on TeXindent;
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(x+y)^16/(v-w)^16;
$$\displaylines{\qdd
\(x^{16}

+16\cdot x^{15}\cdot y
+120\cdot x^{14}\cdot y^{2}
+560\cdot x^{13}\cdot y^{3}
+1820\cdot x^{12}\cdot y^{4}
+4368\cdot x^{11}\cdot y^{5}\nl
\off{327680}
+8008\cdot x^{10}\cdot y^{6}
+11440\cdot x^{9}\cdot y^{7}
+12870\cdot x^{8}\cdot y^{8}
+11440\cdot x^{7}\cdot y^{9}
+8008\cdot x^{6}\cdot y^{10}\nl
\off{327680}
+4368\cdot x^{5}\cdot y^{11}
+1820\cdot x^{4}\cdot y^{12}
+560\cdot x^{3}\cdot y^{13}
+120\cdot x^{2}\cdot y^{14}
+16\cdot x\cdot y^{15}
+y^{16}

\)
/\nl
\(v^{16}

-16\cdot v^{15}\cdot w
+120\cdot v^{14}\cdot w^{2}
-560\cdot v^{13}\cdot w^{3}
+1820\cdot v^{12}\cdot w^{4}
-4368\cdot v^{11}\cdot w^{5}\nl
\off{327680}
+8008\cdot v^{10}\cdot w^{6}
-11440\cdot v^{9}\cdot w^{7}
+12870\cdot v^{8}\cdot w^{8}
-11440\cdot v^{7}\cdot w^{9}
+8008\cdot v^{6}\cdot w^{10}
-4368\cdot v^{5}\cdot w^{11}\nl
\off{327680}
+1820\cdot v^{4}\cdot w^{12}
-560\cdot v^{3}\cdot w^{13}
+120\cdot v^{2}\cdot w^{14}
-16\cdot v\cdot w^{15}
+w^{16}

\)
\Nl}$$

A simple example using matrices:

load_package ri;
% TeX-REDUCE-Interface 0.50
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% set greek asserted
% set lowercase asserted
% \tolerance 10
% \hsize=150mm

on Tex;

mat((1,a-b,1/(c-d)),(a^2-b^2,1,sqrt(c)),((a+b)/(c-d),sqrt(d),1));
$$
\pmatrix{1&a

-b&
\frac{1}{

c
-d}\cr

a^{2}
-b^{2}&1&
\sqrt{c}\cr
\frac{a

+b}{
c
-d}&

\sqrt{d}&1\cr
}

$$

Note that the resulting output uses a number of TEX macros which are defined in the file
tridefs.tex which is distributed with the example file.
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factorisation of trigonometric and
hyperbolic functions

Wolfram Koepf, Andreas Bernig and Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

There are three procedures included in TRIGSIMP: trigsimp, trigfactorize and triggcd. The
first is for finding simplifications of trigonometric or hyperbolic expressions with many
options, the second for factorising them and the third for finding the greatest common divisor
of two trigonometric or hyperbolic polynomials.

85.1 Simplifiying trigonometric expressions

As there is no normal form for trigonometric and hyperbolic functions, the same function can
convert in many different directions, e.g. sin(2x)↔ 2 sin(x) cos(x). The user has the
possibility to give several parameters to the procedure trigsimp in order to influence the
direction of transformations. The decision whether a rational expression in trigonometric and
hyperbolic functions vanishes or not is possible.

To simplify a function f, one uses trigsimp(f[,options]). Example:

2: trigsimp(sin(x)^2+cos(x)^2);

1

Possible options are (* denotes the default):

1. sin (*) or cos

2. sinh (*) or cosh
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3. expand (*) or combine or compact

4. hyp or trig or expon

5. keepalltrig

From each group one can use at most one option, otherwise an error message will occur. The
first group fixes the preference used while transforming a trigonometric expression. The
second group is the equivalent for the hyperbolic functions. The third group determines the
type of transformations. With the default expand, an expression is written in a form only
using single arguments and no sums of arguments. With combine, products of trigonometric
functions are transformed to trigonometric functions involving sums of arguments.

trigsimp(sin(x)^2,cos);

2
- cos(x) + 1

trigsimp(sin(x)*cos(y),combine);

sin(x - y) + sin(x + y)
-------------------------

2

With compact, the REDUCE operator compact (see chapter 31) is applied to f. This leads
often to a simple form, but in contrast to expand one doesn’t get a normal form.

trigsimp((1-sin(x)**2)**20*(1-cos(x)**2)**20,compact);

40 40
cos(x) *sin(x)

With the fourth group each expression is transformed to a trigonometric, hyperbolic or
exponential form:

trigsimp(sin(x),hyp);

- sinh(i*x)*i

trigsimp(e^x,trig);

x x
cos(---) + sin(---)*i

i i

Usually, tan, cot, sec, csc are expressed in terms of sin and cos. It can be sometimes useful
to avoid this, which is handled by the option keepalltrig:
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trigsimp(tan(x+y),keepalltrig);

- (tan(x) + tan(y))
----------------------

tan(x)*tan(y) - 1

It is possible to use the options of different groups simultaneously.

85.2 Factorising trigonometric expressions

With trigfactorize(p,x) one can factorise the trigonometric or hyperbolic polynomial p
with respect to the argument x. Example:

trigfactorize(sin(x),x/2);

x x
{2,cos(---),sin(---)}

2 2

If the polynomial is not coordinated or balanced the output will equal the input. In this case,
changing the value for x can help to find a factorisation:

trigfactorize(1+cos(x),x);

{cos(x) + 1}

trigfactorize(1+cos(x),x/2);

x x
{2,cos(---),cos(---)}

2 2

85.3 GCDs of trigonometric expressions

The operator triggcd is an application of trigfactorize. With its help the user can find the
greatest common divisor of two trigonometric or hyperbolic polynomials. The syntax is:
triggcd(p,q,x), where p and q are the polynomials and x is the smallest unit to use.
Example:

triggcd(sin(x),1+cos(x),x/2);

x
cos(---)

2

triggcd(sin(x),1+cos(x),x);
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1

See also the ASSIST package (chapter 23).
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WU: Wu algorithm for poly systems

Russell Bradford
School of Mathematical Sciences, University of Bath,

Bath, BA2 7AY, England

e–mail: rjb@maths.bath.ac.uk

The interface:

wu( {x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1}, {x,y,z});

calls wu with the named polynomials, and with the variable ordering x > y > z. In this
example, r is a parameter.

The result is

2 3 2
{{{r + z - z - 1,

2 2 2 2 4 2 2 2
r *y + r *z + r - y - y *z + z - z - 2,

2
x*y + z - 1},

y},

6 4 6 2 6 4 7 4 6 4 5 4 4
{{r *z - 2*r *z + r + 3*r *z - 3*r *z - 6*r *z + 3*r *z + 3*

4 3 4 2 4 2 10 2 9 2 8 2 7
r *z + 3*r *z - 3*r + 3*r *z - 6*r *z - 3*r *z + 6*r *z +

2 6 2 5 2 4 2 3 2 13 12 11
3*r *z + 6*r *z - 6*r *z - 6*r *z + 3*r + z - 3*z + z
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10 9 8 7 6 4 3 2
+ 2*z + z + 2*z - 6*z - z + 2*z + 3*z - z - 1,

2 2 3 2
y *(r + z - z - 1),

2
x*y + z - 1},

2 3 2
y*(r + z - z - 1)}}

namely, a list of pairs of characteristic sets and initials for the characteristic sets.

Thus, the first pair above has the characteristic set

r2 + z3 − z2 − 1, r2y2 + r2z + r2 − y4 − y2z2 + z2 − z − 2, xy + z2 − 1

and initial y.

According to Wu’s theorem, the set of roots of the original polynomials is the union of the sets
of roots of the characteristic sets, with the additional constraints that the corresponding initial
is non-zero. Thus, for the first pair above, we find the roots of {r2 + z3 − z2 − 1, . . . } under
the constraint that y 6= 0. These roots, together with the roots of the other characteristic set
(under the constraint of y(r2 + z3 − z2 − 1) 6= 0), comprise all the roots of the original set.
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XCOLOR: Calculation of the color
factor in non-abelian gauge field
theories

A. Kryukov
Institute for Nuclear Physics, Moscow State University

119899, Moscow, Russia

e–mail: kryukov@npi.msu.su

XCOLOR calculates the colour factor in non-abelian gauge field theories. It provides two
commands and two operators.

SUdim integer

Sets the order of the SU group. The default value is 3.

SpTT expression

Sets the normalisation coefficient A in the equation Sp(TiTj) = A∆(i, j). The default value is
1/2.

QG(inQuark, outQuark, Gluon)

Describes the quark-gluon vertex. The parameters may be any identifiers. The first and
second of then must be in- and out- quarks correspondingly. Third one is a gluon.

G3(Gluon1, Gluon2, Gluon3)

Describes the three-gluon vertex. The parameters may be any identifiers. The order of gluons
must be clockwise.

In terms of QG and G3 operators one can input a diagram in “color” space as a product of
these operators. For example
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e1
---->---

/ \
/ \

| e2 |
v1*............*v2

| |
\ /
\ e3 /
----<---

where --->--- is a quark and ....... is a gluon.

The related REDUCE expression is QG(e3,e1,e2)*QG(e1,e3,e2).
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XIDEAL: Gröbner for exterior
algebra

David Hartley
GMD, Institute I1, Schloss Birlinghoven

D–53757 St. Augustin, Germany

e–mail: David.Hartley@gmd.de

and
Philip A. Tuckey

Max Planck Institute for Physics
Foehringer Ring 6

D–80805 Munich, Germany

e–mail: pht@iws170.mppmu.mpg.de

XIDEAL extends the Gröbner base method to exterior algebras.

XIDEAL constructs Gröbner bases for solving the left ideal membership problem: Gröbner
left ideal bases or GLIBs. For graded ideals, where each form is homogeneous in degree, the
distinction between left and right ideals vanishes. Furthermore, if the generating forms are all
homogeneous, then the Gröbner bases for the non-graded and graded ideals are identical. In
this case, XIDEAL is able to save time by truncating the Gröbner basis at some maximum
degree if desired. XIDEAL uses the EXCALC package (chapter 39).

88.1 Operators

XIDEAL

XIDEAL calculates a Gröbner left ideal basis in an exterior algebra. The syntax is

XIDEAL(S:list of forms[,R:integer]):list of forms.

XIDEAL calculates the Gröbner left ideal basis for the left ideal generated by S using graded
lexicographical ordering based on the current kernel ordering. The resulting list can be used
for subsequent reductions with XMODULOP as long as the kernel ordering is not changed. If the
set of generators S is graded, an optional parameter R can be given, and XIDEAL produces a
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truncated basis suitable for reducing exterior forms of degree less than or equal to R in the left
ideal. This can save time and space with large expressions, but the result cannot be used for
exterior forms of degree greater than R. See also the switches XSTATS and XFULLREDUCTION.

XMODULO

XMODULO reduces exterior forms to their (unique) normal forms modulo a left ideal. The
syntax is

XMODULO(F:form, S:list of forms):form

or

XMODULO(F:list of forms, S:list of forms):list of forms.

An alternative infix syntax is also available:

F XMODULO S.

XMODULO(F,S) first calculates a Gröbner basis for the left ideal generated by S, and then
reduces F. F may be either a single exterior form, or a list of forms, and S is a list of forms. If
F is a list of forms, each element is reduced, and any which vanish are deleted from the result.
If this operator is used more than once, and S does not change between calls, then the
Gröbner basis is not recalculated. If the set of generators S is graded, then a truncated
Gröbner basis is calculated using the degree of F (or the maximal degree in F).

XMODULOP

XMODULOP reduces exterior forms to their (not necessarily unique) normal forms modulo a set
of exterior polynomials. The syntax is

XMODULOP(F:form, S:list of forms):form

or

XMODULOP(F:list of forms, S:list of forms):list of forms.

An alternative infix syntax is also available:

F XMODULOP S.

XMODULOP(F,S) reduces F with respect to the set of exterior polynomials S, which is not
necessarily a Gröbner basis. F may be either a single exterior form, or a list of forms, and S is
a list of forms. This operator can be used in conjunction with XIDEAL to produce the same
effect as XMODULO: for a single form F in an ideal generated by the graded set S, F XMODULO S
is equivalent to F XMODULOP XIDEAL(S,EXDEGREE F).
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88.2 Switches

XFULLREDUCE

ON XFULLREDUCE allows XIDEAL and XMODULO to calculate reduced (but not necessarily
normed) Gröbner bases, which speeds up subsequent reductions, and guarantees a unique
form (up to scaling) for the Gröbner basis. OFF XFULLREDUCE turns of this feature, which may
speed up calculation of the Gröbner basis. XFULLREDUCE is ON by default.

XSTATS

ON XSTATS produces counting and timing information. As XIDEAL is running, a hash mark (#)
is printed for each form taken from the input list, followed by a sequences of carets (^) and
dollar signs ($). Each caret represents a new basis element obtained by a simple wedge
product, and each dollar sign represents a new basis element obtained from an S-polynomial.
At the end, a table is printed summarising the calculation. XSTATS is OFF by default.

88.3 Examples

Suppose EXCALC and XIDEAL have been loaded, the switches are at their default settings,
and the following exterior variables have been declared:

pform x=0,y=0,z=0,t=0,f(i)=1,h=0,hx=0,ht=0;

In a commutative polynomial ring, a single polynomial is its own Gröbner basis. This is no
longer true for exterior algebras because of the presence of zero divisors, and can lead to some
surprising reductions:

xideal {d x^d y - d z^d t};

{d T^d Z + d X^d Y,

d X^d Y^d Z,

d T^d X^d Y}

f(3)^f(4)^f(5)^f(6)
xmodulo {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};

0

The heat equation, hxx = ht can be represented by the following exterior differential system.

S := {d h - ht*d t - hx*d x,
d ht^d t + d hx^d x,
d hx^d t - ht*d x^d t};
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XMODULO can be used to check that the exterior differential system is closed under exterior
differentiation.

d S xmodulo S;

{}

Non-graded left and right ideals are no longer the same:

d t^(d z+d x^d y) xmodulo {d z+d x^d y};

0

(d z+d x^d y)^d t xmodulo {d z+d x^d y};

- 2*d t^d z

Higher order forms can now reduce lower order ones:

d x xmodulo {d y^d z + d x,d x^d y + d z};

0

Any form containing a 0-form term generates the whole ideal:

xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4)};

{1}
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ZEILBERG: A package for indefinite
and definite summation

Wolfram Koepf and Gregor Stölting
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustraße 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

The ZEILBERG package provides an implementation of the Gosper and Zeilberger algorithms
for indefinite, and definite summation of hypergeometric terms, respectively, with extensions
for ratios of products of powers, factorials, Γ function terms, binomial coefficients, and shifted
factorials that are rational-linear in their arguments.

89.1 The GOSPER summation operator

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not return a closed form
solution, then a closed form solution does not exist.

• gosper(a,k,m,n) determines
n∑

k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s algorithm applies.

Example:

gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
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- ( - 1) *factorial(2*k)
------------------------------------
2*k

2 *factorial(k + 1)*factorial(k)

gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)
-----------------------

n + 1

89.2 EXTENDED GOSPER operator

The extended gosper operator is an implementation of an extended version of Gosper’s
algorithm.

• extended gosper(a,k) determines an antidifference gk of ak whenever there is a
number m such that hk − hk−m = ak, and hk is an m-fold hypergeometric term, i. e.

hk/hk−m is a rational function with respect to k.

If it does not return a solution, then such a solution does not exist.

• extended gosper(a,k,m) determines an m-fold antidifference hk of ak, i. e.
hk − hk−m = ak, if it is an m-fold hypergeometric term.

Examples:

extended_gosper(binomial(k/2,n),k);

k k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)

2 2
-------------------------------------------------------

2*(n + 1)

extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)

7

89.3 SUMRECURSION operator

The sumrecursion operator is an implementation of the (fast) Zeilberger algorithm.
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• sumrecursion(f,k,n) determines a holonomic recurrence equation for

sum(n) =
∞∑

k=−∞
f(n, k)

with respect to n. The resulting expression equals zero.

• sumrecursion(f,k,n,j) searches for a holonomic recurrence equation of order j.Note
that if j is too large, the recurrence equation may not be unique, and only one particular
solution is returned.

sumrecursion(binomial(n,k),k,n);

2*sum(n - 1) - sum(n)

89.4 HYPERRECURSION operator

If a recursion for a generalised hypergeometric function is to be established, one can use

• hyperrecursion(upper,lower,x,n) determines a holonomic recurrence equation with
respect to n for

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣x
)
,

where upper= {a1, a2, . . . , ap} is the list of upper parameters, and
lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.

• hyperrecursion(upper,lower,x,n,j) (j ∈ IN) searches only for a holonomic recurrence
equation of order j. This operator does not automatically use extended sumrecursion.

hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*sum(n - 1) + (c + n - 1)*sum(n)

If a hypergeometric expression is given in hypergeometric notation, then the use of
hyperrecursion is more natural than the use of sumrecursion.

Moreover the REDUCE operator

• hyperterm(upper,lower,x,k) yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k
(b1)k · (b2)k · · · (bq)k k!

xk

with upper parameters upper= {a1, a2, . . . , ap}, and lower parameters
lower= {b1, b2, . . . , bq}

in connection with hypergeometric terms.
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89.5 HYPERSUM operator

With the operator hypersum, hypergeometric sums are directly evaluated in closed form
whenever the extended Zeilberger algorithm leads to a recurrence equation containing only
two terms:

• hypersum(upper,lower,x,n) determines a closed form representation for

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣x
)

, where upper= {a1, a2, . . . , ap} is the list of upper

parameters, and lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.
The result is given as a hypergeometric term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which is to be interpreted
as follows: Its jth part is the solution valid for all n of the form
n = mk + j − 1 (k ∈ IN0). In particular, if the resulting list contains two terms, then the
first part is the solution for even n, and the second part is the solution for odd n.

hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);

pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)
-------------------------------------------------
pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)

hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)
-------------------------
pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in
factorial-Γ-binomial-Pochhammer notation into a pure Γ function representation:

togamma(hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n));

gamma(a - d + 1)*gamma(a + n + 1)
-----------------------------------
gamma(a - d + n + 1)*gamma(a + 1)

89.6 SUMTOHYPER operator

With the operator sumtohyper, sums given in factorial-Γ-binomial-Pochhammer notation are
converted into hypergeometric notation.

• sumtohyper(f,k) determines the hypergeometric representation of
∞∑

k=−∞
fk, i.e. its output is c*hypergeometric(upper,lower,x), corresponding to the
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representation
∞∑

k=−∞
fk = c · pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

∣∣∣∣∣x
)
,

where upper= {a1, a2, . . . , ap} and lower= {b1, b2, . . . , bq} are the lists of upper and
lower parameters.

Examples:

sumtohyper(binomial(n,k)^3,k);

hypergeometric({ - n, - n, - n},{1,1},-1)

89.7 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is necessary to find out
whether or not ak/ak−1 is a rational function with respect to k. For the purpose to decide
whether or not an expression involving powers, factorials, Γ function terms, binomial
coefficients, and Pochhammer symbols is a hypergeometric term, the following simplification
operators can be used:

• simplify gamma(f) simplifies an expression f involving only rational, powers and Γ
function terms.

• simplify combinatorial(f) simplifies an expression f involving powers, factorials, Γ
function terms, binomial coefficients, and Pochhammer symbols by converting factorials,
binomial coefficients, and Pochhammer symbols into Γ function terms, and applying
simplify gamma to its result. If the output is not rational, it is given in terms of Γ
functions. If factorials are preferred use

• gammatofactorial (rule) converting Γ function terms into factorials using
Γ (x)→ (x− 1)!.

• simplify gamma2(f) uses the duplication formula of the Γ function to simplify f .

• simplify gamman(f,n) uses the multiplication formula of the Γ function to simplify f .

The use of simplify combinatorial(f) is a safe way to decide the rationality for any ratio of
products of powers, factorials, Γ function terms, binomial coefficients, and Pochhammer
symbols.

Example:

simplify_gamma2(gamma(2*n)/gamma(n));

2*n 2*n + 1
2 *gamma(---------)

2
-----------------------

2*sqrt(pi)
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The Z-Transform of a sequence {fn} is the discrete analogue of the Laplace Transform, and

Z{fn} = F (z) =
∞∑
n=0

fnz
−n .

This series converges in the region outside the circle |z| = |z0| = lim sup
n→∞

n
√
|fn| . In the same

way that a Laplace Transform can be used to solve differential equations, so Z-Transforms can
be used to solve difference equations.

SYNTAX: ztrans(fn, n, z) where fn is an expression, and n,z
are identifiers.

This package can compute the Z-Transforms of the following list of fn, and
certain combinations thereof.

1 eαn 1
(n+k)

1
n!

1
(2n)!

1
(2n+1)!

sin(βn)
n! sin(αn+ φ) eαn sin(βn)

cos(βn)
n! cos(αn+ φ) eαn cos(βn)

sin(β(n+1))
n+1 sinh(αn+ φ) cos(β(n+1))

n+1

cosh(αn+ φ)
(n+k
m

)
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Other Combinations

Linearity Z{afn + bgn} = aZ{fn}+ bZ{gn}

Multiplication by n Z{nk · fn} = −z d
dz

(
Z{nk−1 · fn, n, z}

)
Multiplication by λn Z{λn · fn} = F

(
z
λ

)
Shift Equation Z{fn+k} = zk

(
F (z)−

k−1∑
j=0

fjz
−j
)

Symbolic Sums Z
{

n∑
k=0

fk

}
= z

z−1 · Z{fn}

Z
{
n+q∑
k=p

fk

}
combination of the above

where k,λ ∈ N−{0}; and a,b are variables or fractions; and p,q ∈ Z or
are functions of n; and α, β and φ are angles in radians.

The calculation of the Laurent coefficients of a regular function results in the following inverse
formula for the Z-Transform:

If F (z) is a regular function in the region |z| > ρ then ∃ a sequence {fn} with Z{fn} = F (z)
given by

fn =
1

2πi

∮
F (z)zn−1dz

SYNTAX: invztrans(F (z), z, n) where F (z) is an expression,
and z,n are identifiers.

This package can compute the Inverse Z-Transforms of any rational function,
whose denominator can be factored over Q, in addition to the following list
of F (z).

sin
(

sin(β)
z

)
e
( cos(β)

z

)
cos

(
sin(β)
z

)
e
( cos(β)

z

)
√

z
A sin

(√
z
A

)
cos

(√
z
A

)
√

z
A sinh

(√
z
A

)
cosh

(√
z
A

)
z log

(
z√

z2−Az+B

)
z log

(√
z2+Az+B

z

)
arctan

(
sin(β)

z+cos(β)

)
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here k,λ ∈ N−{0} and A,B are fractions or variables (B > 0) and α,β, & φ are angles in
radians.

Examples:

ztrans(sum(1/factorial(k),k,0,n),n,z);

1/z
e *z

--------
z - 1

invztrans(z/((z-a)*(z-b)),z,n);

n n
a - b

---------
a - b
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Part III

Appendix
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Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names of
commands, operators and switches initially in the system. Excluded are words that are
reserved in specific implementations of the system.

Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT CONT DECOMPOSE DEFINE DEPEND DISPLAY ED
EDITDEF END EVEN FACTOR FOR FORALL FOREACH GO GOTO IF IN INDEX
INFIX INPUT INTEGER KORDER LET LINEAR LISP LISTARGP LOAD
LOAD PACKAGE MASS MATCH MATRIX MSHELL NODEPEND NONCOM NONZERO
NOSPUR ODD OFF ON OPERATOR ORDER OUT PAUSE PRECEDENCE
PRINT PRECISION PROCEDURE QUIT REAL REMFAC REMIND RETRY RETURN
SAVEAS SCALAR SETMOD SHARE SHOWTIME SHUT SPUR SYMBOLIC
SYMMETRIC VECDIM VECTOR WEIGHT WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

Infix Operators := = >= > <= < => + * / ^ ** . WHERE SETQ OR AND MEMBER MEMQ EQUAL
NEQ EQ GEQ GREATERP LEQ LESSP PLUS DIFFERENCE MINUS TIMES
QUOTIENT EXPT CONS

Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH ATAN
ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP FACTORIAL FIX FLOOR
HYPOT LN LOG LOGB LOG10 NEXTPRIME ROUND SEC SECH SIN SINH SQRT
TAN TANH

Prefix Operators APPEND ARGLENGTH CEILING COEFF COEFFN COFACTOR CONJ DEG DEN DET
DF DILOG EI EPS ERF FACTORIZE FIRST GCD G IMPART INT INTERPOL
LCM LCOF LENGTH LHS LINELENGTH LTERM MAINVAR MAT MATEIGEN MAX
MIN MKID NULLSPACE NUM PART PF PRECISION RANDOM RANDOM NEW SEED
RANK REDERR REDUCT REMAINDER REPART REST RESULTANT REVERSE RHS
SECOND SET SHOWRULES SIGN SOLVE STRUCTR SUB SUM THIRD TP TRACE
VARNAME

Reserved Variables CARD NO E EVAL MODE FORT WIDTH HIGH POW I INFINITY K!* LOW POW
NIL PI ROOT MULTIPLICITY T
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Switches ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE COMBINEEXPT
COMBINELOGS COMP COMPLEX CRAMER CREF DEFN DEMO DIV ECHO ERRCONT
EVALLHSEQP EXP EXPANDLOGS EZGCD FACTOR FORT FULLROOTS GCD
IFACTOR INT INTSTR LCM LIST LISTARGS MCD MODULAR MSG
MULTIPLICITIES NAT NERO NOSPLIT OUTPUT PERIOD PRECISE PRET PRI
RAT RATARG RATIONAL RATIONALIZE RATPRI REVPRI RLISP88 ROUNDALL
ROUNDBF ROUNDED SAVESTRUCTR SOLVESINGULAR TIME TRA TRFAC
TRIGFORM TRINT

Other Reserved Ids BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO PRODUCT REPEAT
SMACRO SUM UNTIL WHEN WHILE WS
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Theory. Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.

[2] S.-C. Chou. Proving elementary geometry theorems using Wu’s algorithm. In Contemp.
Math., volume 19, pages 243 – 286. AMS, Providence, Rhode Island, 1984.

[3] S.-C. Chou. Mechanical geometry theorem proving. Reidel, Dortrecht, 1988.

[4] S.-C. Chou. Automated reasoning in geometries using the characteristic set method and
Gröbner basis method. In Proc. ISSAC-90, pages 255–260. ACM Press, 1990.

[5] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets computer logic.
ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

[6] Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free formulae over
ordered fields. Journal of Symbolic Computation, 24(2):209–231, August 1997.

[7] Andreas Dolzmann and Thomas Sturm. Redlog User Manual. FMI, Universität Passau,
D-94030 Passau, Germany, April 1999. Edition 2.0 for Version 2.0.

[8] Wolfram Koepf. REDUCE package for the indefinite and definite summation. SIGSAM
Bulletin, 29(1):14–30, January 1995.

[9] T. H. Koornwinder. On Zeilberger’s algorithm and its q-analogue: a rigorous description.
J. of Comput. and Appl. Math., 48:91–111, 1993.
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!*CSYSTEMS global (AVECTOR), 215
><

3-D vector, 352
diphthong, 352

| operator, 261
*

3-D vector, 352
power series, 435
vector, 214

**
power series, 435

+
3-D vector, 352
power series, 435
vector, 214

-
3-D vector, 352
power series, 435
vector, 214

., 196

. (CONS), 48
/

3-D vector, 352
power series, 435
vector, 214

:-, 366
::=, 275
::=:, 276
:=:, 275
;BEGIN; marker, 279
;END; marker, 279
@ operator, 259
#

Hodge-* operator, 261
ˆ

3-D vector, 352
exterior multiplication, 258

| operator, 260
=, 364

3j and 6j symbols, 412

ABAGLISTP, 199
ABS, 65
ACFSF, 382, 383
ACOS, 69, 71
ACOSH, 69, 71
ACOT, 69, 71
ACOTH, 69, 71
ACSC, 69, 71
ACSCH, 69, 71
ADD COLUMNS, 313, 314
ADD ROWS, 313
ADD TO COLUMNS, 313, 314
ADD TO ROWS, 313, 314
ADJ, 361
ADJPREC, 119
Airy functions, 412
Airy Ai, 412
Airy Aiprime, 412
Airy Bi, 412
Airy Biprime, 412
ALATOMP, 204
ALG TO SYMB, 205
ALGEBRAIC, 157
Algebraic mode, 157, 161, 162
ALGINT, 153, 185
ALKERNP, 204
ALL, 382
ALL!*, 274
ALLBRANCH, 82
ALLFAC, 95, 97
allsymmetrybases, 424
ALTITUDE, 284
AND, 382
ANGLE SUM, 284
ANTICOM, 256, 361
ANTICOMM, 360
ANTICOMMUTE, 361
ANTISYMMETRIC, 87, 256
APPEND, 48
APPENDN, 196
APPLYSYM, 153, 187
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ARBCONST operator, 350
ARBVARS, 82
ARGLENGTH, 106
ARNUM, 153, 191
ARRAY, 61
ARRAY TO LIST, 207
ASEC, 69, 71
ASECH, 69, 71
ASFIRST, 197
ASFLIST, 197
ASIN, 69, 71
ASINH, 69, 71
ASLAST, 197
ASREST, 197
Assignment, 51, 52, 54, 58, 160, 162
ASSIST, 153, 195
ASSLIST, 197
ASSOC, 383
assumptions, 83
Asymptotic command, 123, 133
ATAN, 69, 71, 73
ATAN2, 69, 71
ATANH, 69, 71
ATENSOR, 153, 211
AUGMENT COLUMNS, 313, 316
AVEC function, 213
AVECTOR, 153, 213
AVECTOR package

example, 216–218
AXP, 420
AXX, 420

B PART, 421
BAG, 198
BAGLISTP, 199
BAGLMAT, 209
BAGP, 198
BALANCED MOD, 119
BAND MATRIX, 313, 316
BEGIN ...END, 57–59
BELAST, 196
Bernoulli, 411
Bernoulli numbers, 411
Bernoulli polynomials, 412
BernoulliP, 412
Bernstein base, 346
Bessel functions, 411
BesselI, 411
BesselJ, 411

BesselK, 411
BesselY, 411
Beta, 411
Beta function, 411
Bezout, 112
BF PART, 421
BFSPACE, 118
Binomial, 411
Binomial coefficients, 411
Block, 57, 59
BLOCK MATRIX, 313, 316
BNDEQ!*, 262
BOOLEAN, 153, 219
Boolean, 44
BOS, 420
BOTH, 323
BOUNDS, 339, 344
BPART, 421
Buchberger’s Algorithm, 291
BYE, 63

C1 CIRCLE, 284
CALI, 153, 223
Call by value, 148, 150
CAMAL, 225
CAMAL, 153, 225
Canonical form, 91
canonicaldecomposition, 423
CARD NO, 100
cartesian coordinates, 351
Catalan, 410
CC TANGENT, 284
CEILING, 66
Celestial Mechanics, 225
CFRAC, 376
CGB, 154, 228
CGBFULLRED, 231
CGBGEN, 229
CGBGS, 231
CGBREAL, 230
CGBSTAT, 231
chain rule, 260
CHAN, 421
CHANGEVAR, 233
CHANGEVR, 154, 233
CHAR MATRIX, 313, 317
CHAR POLY, 313, 314, 316
character, 423
Character set, 35
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Chebyshev fit, 339
Chebyshev polynomials, 412
Chebyshev base T, 346
Chebyshev base U, 346
Chebyshev df, 344
Chebyshev eval, 344
Chebyshev fit, 344
Chebyshev int, 344
ChebyshevT, 412
ChebyshevU, 412
CHECKPROLIST, 203
Chi, 413
CHIRAL, 422
CHIRAL1, 422
CHOLESKY, 314
CHOOSE PC, 284
CHOOSE PL, 284
Ci, 413
CIRCLE, 284
CIRCLE1, 284
CIRCLE CENTER, 284
CIRCLE SQRADIUS, 284
CL TANGENT, 284
CLEAR, 125, 128, 205
CLEARBAG, 198
CLEARFLAG, 203
CLEARFUNCTIONS, 205
CLEAROP, 205
CLEARPHYSOP, 358
CLEARRULES, 129
Clebsch Gordan coefficients, 412
Clebsch Gordan, 412
code templates, 278
COEFF, 104
COEFF MATRIX, 313
Coefficient, 117–119
COEFFN, 105
COERCEMAT, 209
COFACTOR, 144, 350
coframe, 261, 263
COFRAME

WITH METRIC, 264
WITH SIGNATURE, 264

COLLECT, 54
COLLINEAR, 284
COLUMN DIM, 313, 314
COMBINATIONS, 201
COMBINEEXPT, 70
COMBINELOGS, 70

COMBNUM, 201
COMM, 360, 408
Command, 61
Command terminator, 135
COMMENT, 38
COMMUTE, 361
COMP, 175
COMPACT, 154, 235
COMPACT operator, 235
COMPACT package, 235
COMPANION, 313
Compiler, 175
COMPLEX, 120
Complex coefficient, 119
Compound statement, 57, 58
CONCURRENT, 284
Conditional statement, 53
CONJ, 66
CONS, 196
Constructor, 162
CONT, 139
CONTFR, 154, 237
CONTFRAC, 376
continuation lines, 278
contour, 290
CONTRACT, 360
CONVERT, 319
COORDINATES operator, 215
COORDS vector, 215
COPY INTO, 313, 314
COS, 69, 71
COSH, 69, 71
COT, 69, 71
COTH, 69, 71
CP, 421
CRACK, 154, 239
CRAMER, 77, 142
CREF, 176, 177
CRESYS, 407
CROSS

vector, 214
cross product, 214, 353
Cross reference, 176
CROSSVECT, 207
CSC, 69, 71
CSCH, 69, 71
CURL

operator, 215
curl
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vector field, 215
curl operator, 354
CVIT, 154, 243
CVITBTR, 243
CVITOP, 243
CVITRACE, 243
CYCLICPERMLIST, 201
cylindrical coordinates, 351

D, 420
D PART, 421
Declaration, 61
DECLARE function, 277
DECOMPOSE, 113
default

term order, 292
defid, 391
defindex, 392
DEFINE, 63
definite integration (simple), 216
DEFINT, 154, 245
DEFINT function, 216
DEFLINEINT function, 217
DEFN, 161, 178
DEFPOLY, 191
DEG, 114
Degree, 114
DEL, 420
DELETE, 196
DELETE ALL, 196
DELLASTDIGIT, 200
DELPAIR, 196
DELSQ

operator, 215
delsq operator, 354
DEMO, 62
DEN, 107, 115
DEPATOM, 202
DEPEND, 88
depend, 84
DEPEND statement, 354
DEPTH, 196
DEPVARP, 204
DER, 420
derivative

variational, 262
derivatives, 251
DESIR, 154, 249
DET, 91, 143

DETIDNUM, 200
DETRAFO, 189
DF, 71, 72
DFP, 252
DFP COMMUTE, 253
DFPART, 154, 251
DIAGONAL, 313, 315
diagonalize, 424
Differentiation, 71, 72, 88
differentiation

partial, 259
vector, 214

DIFFSET, 199
DILOG, 69, 73
dilog, 413
Dilogarithm function, 413
dimension, 259
Dirac γ matrix, 170
direct product, 318
DISPJACOBIAN, 233
DISPLAY, 138
Display, 91
DISPLAYFLAG, 203
DISPLAYFRAME command, 265
Displaying structure, 102
DISTRIBUTE, 206
DIV, 95, 117, 383
DIV

operator, 215
div operator, 354
divergence

vector field, 215
DIVPOL, 206
DLINEINT, 355
DO, 54, 55
Dollar sign, 51
DOT, 359
DOT

vector, 214
Dot product, 169, 214
dot product, 353
DOT HAM, 421
dotgrad operator, 354
DOUBLE switch, 274
DR, 420
DRR, 422
DUMMY, 154, 255
DUMMY BASE, 255
dummy names, 255
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DUMMYPRI, 212
DVFSF, 382, 383
DVINT, 355
DVOLINT, 355
DYW, 421

E, 37
ECHO, 135
ED, 137, 138
EDITDEF, 138
Ei, 69, 413
EllipticE, 413
EllipticF, 413
EllipticK, 413
EllipticTheta, 413
ELMULT, 196
END, 62
EPS, 170, 265
EQUAL, 383, 384
Equation, 46
EQUIV, 382
ERF, 73
erf, 413
erfc, 413
ERRCONT, 137
Euclidean metric, 264
Euler, 411
Euler polynomials, 411
Euler Gamma, 410
EulerP, 412
EVAL, 275
EVAL MODE, 157
evalb, 403
EVALLHSEQP, 46
EVEN, 85
Even operator, 85
EVENP, 45
EX, 382
EXCALC, 154, 257
EXCALC package

example, 259, 260, 262–264
Exclamation mark, 35
EXCLUDE, 393
EXDEGREE command, 258
EXP, 69, 71, 73, 107, 110
EXPAND CASES, 79
EXPANDLOGS, 70
EXPLICIT, 202
EXPR, 161

Expression, 43
EXTEND, 313, 315
extended gosper, 454
exterior calculus, 257
exterior differentiation, 260
exterior form

declaration, 257
vector, 258
with indices, 262

exterior product, 258, 265
EXTRACTLIST, 203
EXTRACTMAT, 286
EXTREMUM, 202
EZGCD, 110

FACTOR, 94, 108, 109
FACTORIAL, 66, 151
Factorization, 108
FACTORIZE, 108, 109
FALSE, 382
Fast loading of code, 175
FAST LA, 321
FCOMB, 421
FDOMAIN command, 259
FER, 420
FEXPR, 161
Fibonacci, 411
Fibonacci, 411
Fibonacci polynomials, 412
FibonacciP, 412
FIDE, 154, 267
File handling, 135
FIND COMPANION, 313, 317
FIRST, 48
FIRSTROOT, 394
FIX, 66
FIXP, 45
FJACOB, 421
FLOOR, 66
FOLLOWLINE, 200
FOR, 59
FOR ALL, 124
FOR EACH, 54, 55, 160
FORDER command, 265
FORT, 100
FORT WIDTH, 101
FORTRAN, 100, 101
FORTUPPER, 102
FOURIER, 225
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Fourier cosine transform, 246
Fourier Series, 225
Fourier sine transform, 246
FPART, 421
FPS, 154, 271
fps search depth, 272
FRAME command, 264
FREEOF, 45
FREQUENCY, 196
Fresnel C, 413
Fresnel S, 413
frobenius, 336
FULLROOTS, 80
FUN, 420
FUNCTION, 278
Function, 152
FUNCVAR, 202

G, 170
G3, 447
Gamma, 411
Gamma function, 411
gammatofactorial, 457
GCD, 110
GDIMENSION, 293
Gegenbauer polynomials, 412
GegenbauerP, 412
Generalised Hypergeometric functions, 415
generic function, 251
GENERIC FUNCTION, 251
GENTRAN, 154, 273, 399
GENTRAN

file output, 280
preevaluation, 275, 279
templates, 278

GENTRAN package
example, 274

GENTRANIN command, 278
GENTRANOPT, 399
GENTRANOUT command, 280
GENTRANSEG switch, 278
GENTRANSHUT command, 280
GEOMETRY, 154, 283
GEQ, 383
GET COLUMNS, 313, 315
GET ROWS, 313, 315
GETCSYSTEM command, 215
GETROOT, 395
GHOSTFACTOR, 208

GINDEPENDENT SETS, 293
GLEXCONVERT, 294
GLTBASIS, 293, 296
GNUPLOT, 154, 289
GO TO, 58
Golden Ratio, 410
gosper, 453
Gosper’s Algorithm, 417
GRA, 421
GRAD

operator, 215
grad operator, 354
gradient

vector field, 215
GRADLEX, 303
GRADLEX

term order, 291
GRAM SCHMIDT, 314, 319
GRAS, 420
Grassmann Operators, 208
GRASSP, 208
GRASSPARITY, 208
GREATERP, 383
GREDUCE, 297
GROEBFULLREDUCTION, 293, 296
GROEBNER, 154, 291, 292
Groebner, 77
Groebner Bases, 329
GROEBNER package, 291
GROEBNER package

example, 293
GROEBNERF, 295, 298
GROEBOPT, 293, 296
GROEBRESTRICTION, 296
GROEBSTAT, 296
GROESOLVE, 298
Group statement, 52, 53, 57
GSYS, 228
GSYS2CGB, 230
GVARS, 292
gvarslast, 293
GZERODIM?, 293

Hankel functions, 411
Hankel transform, 246
Hankel1, 411
Hankel2, 411
HARMONIC, 225
HCONCMAT, 210
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HDIFF, 226
HERMAT, 210
Hermite polynomials, 412
Hermite base, 346
HermiteP, 412
HERMITIAN TP, 313, 315
HESSIAN, 313, 317
HFACTORS scale factors, 215
hidden3d, 290
High energy trace, 172
High energy vector expression, 169, 171
HIGH POW, 105
HIGHESTDERIV, 350
HILBERT, 313, 317
HINT, 226
History, 137
Hodge-* duality operator, 261, 265
HSUB, 226
hyperrecursion, 455
hypersum, 456
hyperterm, 455
HYPEXPAND, 206
HYPOT, 69, 71
HYPREDUCE, 206

I, 37
i, 191
I SOLVE, 397
iBeta, 411
ideal dimension, 293
IDEALQUOTIENT, 298
IDEALS, 154, 299
Identifier, 36
IF, 53
IFACTOR, 108
iGamma, 411
IMAGINARY, 317
imaginary unit, 191
IMPART, 66–68
IMPL, 382
IMPLICIT, 202
IMPLICIT option, 278
IMPLICIT TAYLOR operator, 425
IN, 135
incomplete Beta function, 411
incomplete Gamma function, 411
Indefinite integration, 72
independent sets, 293
INDEX, 169

INDEXSYMMETRIES command, 263
INEQ, 154, 301
INFINITY, 38, 393
INFIX, 88
Infix operator, 39–41
inner product, 353
inner product

exterior form, 260
INPUT, 137
Input, 135
INSERT, 196
INSERT KEEP ORDER, 196
Instant evaluation, 61, 106, 123, 142, 143
INT, 72, 139, 185, 245
INTEGER, 57
Integer, 44
Integration, 72, 86
integration

definite (simple), 216
line, 217
volume, 217

Interactive use, 137, 139
INTERPOL, 114
INTERSECT, 199
intersect, 402
INTERSECTION POINT, 284
Interval, 339
Introduction, 31
INTSTR, 92
INVBASE, 154, 303
INVERSE, 422
INVERSE TAYLOR, 425
INVLAP, 307
INVTORDER, 303
invztrans, 460
ISOLATER, 394

JACOB, 421
Jacobi Elliptic Functions and Integrals, 413
Jacobi’s polynomials, 412
JACOBIAN, 313, 317, 341
Jacobicd, 413
Jacobicn, 413
Jacobics, 413
Jacobidc, 413
Jacobidn, 413
Jacobids, 413
Jacobinc, 413
Jacobind, 413
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Jacobins, 413
JacobiP, 412
Jacobisc, 413
Jacobisd, 413
Jacobisn, 413
JOIN, 54
jordan, 338
JORDAN BLOCK, 313, 317
jordansymbolic, 337

K-transform, 246
KBASIS, 212
KEEP command, 265
Kernel, 91, 94, 104
kernel form, 92
KERNLIST, 196
Khinchin, 410
KORDER, 104, 359
KORDERLIST, 202
KRONECKER PRODUCT, 313, 318
Kummer functions, 412
KummerM, 412
KummerU, 412

l’Hôpital’s rule, 311, 355
L2 ANGLE, 284
Label, 58
Laguerre polynomials, 412
Laguerre base, 346
LaguerreP, 412
laline!*, 392
LAMBDA, 159
Lambert ω function, 413
Lambert’s W, 77
Lambert W, 413
LAPLACE, 154, 307
Laplace transform, 246
Laplacian

vector field, 215
lasimp, 391
LAST, 196
latex, 391
Laurent series, 425
Laurent series expansions, 429
LCM, 111
LCOF, 115
Leading coefficient, 115
LEADTERM, 206
Legendre polynomials, 149, 412
Legendre base, 346

LegendreP, 412
LENGTH, 47, 61, 74, 107, 108, 143, 384
LEQ, 383
Lerch Phi function, 413
Lerch Phi, 413
LESSP, 383
LET, 70, 72, 82, 87, 88, 122, 129, 150, 151
Levi-Cevita tensor, 265
LEX, 303
LEX

term order, 291
LHS, 46
li, 413
LIE, 154, 309
Lie Derivative, 261
LIE LIST, 309
LIECLASS, 310
LIENDIMCOM1, 309
LIMIT, 311, 355
LIMIT+, 311
LIMIT-, 311
LIMITS, 154, 311
LINALG, 154, 313
LINE, 285
line integrals, 217
LINEAR, 86
Linear operator, 85, 86, 88
LINEINT, 355
LINEINT function, 217
LINELENGTH, 93
LISP, 157
Lisp, 157
LIST, 95
List, 47
list, 76
List operation, 47, 48
LIST TO ARRAY, 207
LIST TO IDS, 200
LISTARGP, 49
LISTARGS, 49
LISTBAG, 199
LN, 69, 71
LOAD, 176
LOAD PACKAGE, 153, 176
LOG, 69, 71, 73
LOG10, 69, 71
LOGB, 69, 71
Lommel functions, 412
Lommel1, 412
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Lommel2, 412
Loop, 54
LOT, 285
LOW POW, 105
LOWER MATRIX, 318
LOWESTDEG, 206
lpon, 307
LPOWER, 116
LRSETQ, 277
lrsetq operator, 276
LSETQ, 276
lsetq operator, 275
LTERM, 116, 166
ltrig, 307
LU DECOM, 314, 319
LYST, 421
LYST1, 421
LYST2, 421

M, 363
M ROOTS, 325
M SOLVE, 325
MACIERZ, 421
MACRO, 161
MAINVAR, 116
MAKE IDENTITY, 313, 317
MAP, 74
map, 76
MASS, 171, 172
MAT, 141, 142
MATCH, 127
MATEIGEN, 143
MATEXTC, 209
MATEXTR, 209
Mathematical function, 68
MATHML, 154, 323
mathstyle, 392
matrices

in GENTRAN, 275, 276, 280
MATRIX, 141
Matrix assignment, 146
Matrix calculations, 141
MATRIX, see also SPARSE, 405
MATRIX AUGMENT, 313, 315
MATRIX STACK, 313, 315
MATRIXP, 314, 406
MATSUBC, 210
MATSUBR, 210
MAX, 67

MAXEXPPRINTLEN!*, 278
MCD, 110, 111
MEDIAN, 285
Meijer’s G function, 415
member, 403
MERGE LIST, 196
metric structure, 263
MIDPOINT, 285
MIN, 67
Minimum, 339
MINOR, 313, 315
MINVECT, 207
MKAND, 383
MKID, 75, 209
MKIDM, 209
MKIDNEW, 200
MKLIST, 195
MKOR, 383
MKPOLY, 395
MKRANDTABL, 200
MKSET, 199, 401
MML, 324
Mode, 62
Mode communication, 161
MODSR, 154, 325
MODULAR, 119
Modular coefficient, 119
MONOM, 206
monomial base, 346
Moore–Penrose inverse, 319
Motzkin, 411
Motzkin, 411
MP, 285
MPVECT, 207
MRV LIMIT, 327
MRVLIMIT, 154, 327
MSG, 178
MSHELL, 173
MULT COLUMNS, 313, 314
MULT ROW, 314
MULT ROWS, 313
Multiple assignment statement, 52
MULTIPLICITIES, 78
MULTIROOT, 396

N GAT, 421
NASSOC, 383
NAT, 102
NAT flag, 263



INDEX 481

nc cleanup, 331
nc compact, 333
nc divide, 332
nc factorize, 332
nc factorize all, 333
nc groebner, 331
nc preduce, 332
nc setup, 329
NCPOLY, 154, 329
NEARESTROOT, 394
NEARESTROOTS, 395
NEGATIVE, 393
NEQ, 383, 384
NERO, 99
Newton’s method, 339
NEXTPRIME, 67
NOCONVERT, 118
NODEPEND, 89
NODEPEND statement, 354
NODRR, 422
NOETHER function, 262
Non-commuting operator, 86
NONCOM, 86, 256, 357, 360
NONZERO, 85
NORDP, 204
NORMFORM, 154, 335
NOSPLIT, 95
NOSPUR, 172
NOSUM command, 263
NOSUM switch, 263
NOT, 382
NOT NEGATIVE, 318
NOXPND

@, 260
D, 260

NULLSPACE, 145
NUM, 117
NUM FIT, 345
NUM INT, 339, 341
NUM MIN, 339, 340
NUM ODESOLVE, 339, 342
NUM SOLVE, 339, 341
Number, 35, 36
NUMBERP, 45
NUMERIC, 155, 339
Numerical operator, 65
Numerical precision, 37

ODD, 85

Odd operator, 85
ODDP, 200
ODEDEGREE, 350
ODELINEARITY, 350
ODEORDER, 350
ODESOLVE, 155, 349
ODWA, 421
OFF, 62
OFSF, 382, 383
ON, 62
ONE OF, 79
ONLY INTEGER, 318
OPAPPLY, 361
OPERATOR, 165
Operator, 39, 41
Operator precedence, 40, 41
OPORDER, 359
OPTIMIZE, 399
OR, 382
ORDER, 94, 104
ordering

exterior form, 265
ordinary differential equations, 349
ORDP, 45, 87
ORTHOGONAL, 285
Orthogonal polynomials, 409
ORTHOVEC, 155, 351
OTHER CC POINT, 285
OTHER CL POINT, 285
OUT, 135
OUTPUT, 93
Output, 97, 101
Output declaration, 93

P3 ANGLE, 285
P3 CIRCLE, 285
P3 CIRCLE1, 285
P4 CIRCLE, 285
PADÉ, 377
PAIR, 196
PAR, 285
PARALLEL, 285
PARSEML, 324
PART, 47, 103, 105, 384
partial derivatives, 251
partial differentiation, 259
PAUSE, 139
PEDALPOINT, 285
Percent sign, 39
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PERIOD, 101
PERIODIC, 375
PERIODIC2RATIONAL, 375
PERMUTATIONS, 201
PF, 76
PFORM statement, 257
PG, 421
PHYSINDEX, 358, 361
PHYSOP, 155, 357
PI, 38
PIVOT, 313, 315
PLOT, 154, 289
PLOT XMESH, 290
PLOT YMESH, 290
PLOTKEEP, 290
PLOTREFINE, 290
plotrefine, 290
PLOTRESET, 290
PM, 155, 363
Pochhammer, 411
Pochhammer’s symbol, 411
POINT, 285
POINT ON BISECTOR, 285
POINT ON CIRCLE, 285
POINT ON CIRCLE1, 285
POINT ON LINE, 285
poleorder, 389
Polygamma, 411
Polygamma functions, 411
Polylog, 413
Polylogarithm function, 413
Polynomial, 107
POSITION, 196
POSITIVE, 393
power series, 429
power series

arithmetic, 435
composition, 433
differentiation, 435
of integral, 430
of user defined function, 430

PP LINE, 285
PR, 421
PRECEDENCE, 88
PRECISE, 71
PRECISION, 118
precision, 274
PRECISION command, 274
PRECP, 204

PREDUCE, 297
Prefix, 65, 87, 88
Prefix operator, 39, 40
PRET, 178
PRETTYPRINT, 178
Prettyprinting, 178
PRGEN, 408
PRI, 93
PRIMEP, 45
PRINT!-PRECISION command, 274
PRINT PRECISION, 118
PROCEDURE, 147
Procedure body, 148, 150
Procedure heading, 148
PROD operator, 417
PRODUCT, 54
Program, 38
Program structure, 35
Proper statement, 46, 51
PRSYS, 408
PS, 155, 429
PS operator, 430
PSCHANGEVAR operator, 432
PSCOMPOSE operator, 433
PSDEPVAR operator, 432
PSE ELE, 421
PSEUDO DIVIDE, 112
PSEUDO INVERSE, 314, 319
PSEUDO REMAINDER, 112
PSEXPANSIONPT operator, 432
PSEXPLIM operator, 430
PSFUNCTION operator, 432
Psi, 411
Psi function, 411
PSINTCONST (shared), 431
PSORDER operator, 431
PSORDLIM operator, 431
PSREVERSE operator, 433
PSSETORDER operator, 432
PSSUM operator, 434
PSTERM operator, 431
Puiseux expansion, 433
PUTBAG, 198
PUTCSYSTEM command, 216
PUTFLAG, 203
PUTGRASS, 208
PUTPROP, 203

QBINOMIAL, 368
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QBRACKETS, 368
QFACTORIAL, 368
QG, 447
QPHIHYPERTERM, 368
QPOCHHAMMER, 367
QPSIHYPERTERM, 368
QSUM, 155, 367
QSUMRECURSION, 369
Quadrature, 339
QUASILINPDE, 187
QUIT, 63
QUOTE, 159

R SOLVE, 397
RANDOM, 67
RANDOM MATRIX, 313, 317
RANDOM NEW SEED, 68
RANDOMLIST, 200
RANDPOLY, 155, 371
randpoly

coeffs, 372
degree, 371
dense, 371
expons, 372
ord, 372
sparse, 371
terms, 372

RANK, 146
RAT, 96
RATAPRX, 155, 237, 375
RATARG, 104, 114
RATIONAL, 118
Rational coefficient, 118
Rational function, 107
RATIONAL2PERIODIC, 375
RATIONALIZE, 120
ratjordan, 336
RATPRI, 97
RATROOT, 396
REACTEQN, 155, 379
reacteqn

inputmat, 380
outputmat, 380
rates, 380
species, 380

REAL, 57
Real, 36, 37
Real coefficient, 117, 118
REALROOTS, 394, 395

RED HOM COORDS, 286
REDERR, 150
REDEXPR, 206
REDLOG, 155, 227, 381
REDUCT, 117
relations

side, 235
REMAINDER, 111
REMFAC, 94
REMFORDER command, 265
REMGRASS, 208
REMIND, 170
REMOVE, 196
REMOVE COLUMNS, 313, 316
REMOVE ROWS, 313, 316
REMSYM, 201
RENOSUM command, 263
REPART, 66–68
REPEAT, 56–59
REPL, 382
REPLAST, 196
requirements, 83
Reserved variable, 37, 38
RESET, 155, 195, 387
RESETREDUCE, 387
RESIDUE, 155, 389
residue, 389
REST, 48
RESTASLIST, 197
RESULT, 407
RESULTANT, 112
RETRY, 137
RETURN, 57–59
REVERSE, 48
REVGRADLEX, 303
REVGRADLEX

term order, 291
REVPRI, 97
RHS, 46
RIEMANNCONX command, 265
Riemannian Connections, 265
RLATAB, 385
RLCNF, 385
RLDNF, 385
RLFI, 155, 391
RLGQE, 386
RLGQEA, 386
RLGSN, 385
Rlisp, 175
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RLISP88, 166
RLITAB, 385
RLNNF, 385
RLOPT, 386
RLPNF, 385
RLQE, 385
RLQEA, 386
RLREALTIME, 384
RLROOTNO, 394
RLSET, 382
RLSIMPL, 384
RLTAB, 385
RLVERBOSE, 384
ROOT OF, 78
ROOT VAL, 394
ROOTS, 155, 393–395
ROOTS AT PREC, 394
ROOTSCOMPLEX, 394
ROOTSREAL, 394
ROUND, 68
ROUNDALL, 119
ROUNDBF, 118
ROUNDED, 37, 44, 71, 100, 118
ROW DIM, 313, 314
ROWS PIVOT, 313, 315
rsetq operator, 275
RSOLVE, 155, 397
Rule lists, 128
RZUT, 421

S, 365
s i, 413
S INT, 421
S PART, 421
SAVEAS, 92
SAVESTRUCTR, 103
Saving an expression, 102
SCALAR, 57
Scalar, 43
SCALEFACTORS operator, 215
SCALOP, 358
SCALVECT, 207
SCIENTIFIC NOTATION, 36
SCOPE, 155
SCOPE function

RESETLENGTH, 400
SETLENGTH, 400

SCOPE option
INAME, 399

SD, 365
SD PART, 421
SDIV, 383
SEC, 69, 71
SECH, 69, 71
SECOND, 48
segmenting expressions, 278
SELECT, 76
Selector, 162
SEMANTIC, 363
Semicolon, 51
SET, 52, 75
setdiff, 402
SETMOD, 119
SETP, 199
SETS, 155, 401
SGN

indeterminate sign, 261
SHARE, 162
Shi, 413
SHORTEST, 212
SHOW, 204
SHOW GRID, 290
SHOWRULES, 132
SHOWTIME, 63
SHUT, 135, 136
SI, 365
Si, 413
Side effect, 46
side relations, 235
SIGN, 68
SIMPLEX, 314, 320
Simplex Algorithm, 320
Simplification, 43, 44, 91
SIMPLIFY, 202
simplify combinatorial, 457
simplify gamma, 457
simplify gamma2, 457
simplify gamman, 457
SIMPSYS, 407
SIN, 69, 71
SINH, 69, 71
SixJSymbol, 412
size, 290
SMACRO, 161
smithex, 335
smithex int, 336
SolidHarmonicY, 412
SOLVE, 77, 78, 82
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SOLVE package
with ROOTS package, 393

SOLVESINGULAR, 82
SORTLIST, 201
SORTNUMLIST, 201
SORTOUTODE, 350
SPACEDIM command, 259
SPADD COLUMNS, 406
SPADD ROWS, 406
SPADD TO COLUMNS, 406
SPADD TO ROWS, 406
SPARSE, 405
SPARSE MATRICES, 155
SPARSE, Sparse matrices, 405
SPARSEMATP, 406
SPAUGMENT COLUMNS, 406
SPBAND MATRIX, 406
SPBLOCK MATRIX, 406
SPCHAR MATRIX, 406
SPCHAR POLY, 406
SPCHOLESKY, 406
SPCOEFF MATRIX, 406
SPCOL DIM, 406
SPCOMPANION, 406
SPCOPY INTO, 406
SPDE, 155, 407
SPDIAGONAL, 406
SPECFN, 70, 155, 409
SPECFN2, 155, 415
SPEXTEND, 406
SPFIND COMPANION, 406
SPGET COLUMNS, 406
SPGET ROWS, 406
SPGRAM SCHMIDT, 406
spherical coordinates, 351
SphericalHarmonicY, 412
SPHERMITIAN TP, 406
SPHESSIAN, 406
SPJACOBIAN, 406
SPJORDAN BLOCK, 406
SPLIT FIELD, 192
SPLITPLUSMINUS, 206
SPLITTERMS, 206
SPLU DECOM, 406
SPMAKE IDENTITY, 406
SPMATRIX AUGMENT, 406
SPMATRIX STACK, 406
SPMINOR, 406
SPMULT COLUMNS, 406

SPMULT ROWS, 406
SPPIVOT, 406
SPPSEUDO INVERSE, 406
SPREMOVE COLUMNS, 406
SPREMOVE ROWS, 406
SPROW DIM, 406
SPROWS PIVOT, 406
SPSTACK ROWS, 406
SPSUB MATRIX, 406
SPSWAP COLUMNS, 406
SPSWAP ENTRIES, 406
SPSWAP ROWS, 406
SpTT, 447
SPUR, 172
SQFRF, 396
SQRDIST, 286
SQRT, 69, 71
SQUAREP, 314, 406
STACK ROWS, 313, 316
Standard form, 162
Standard quotient, 162
STATE, 358
Statement, 51
Stirling numbers, 411
Stirling1, 411
Stirling2, 411
String, 38
STRUCTR, 102, 103
Structuring, 91
Struve functions, 412
StruveH, 412
StruveH transform, 246
StruveL, 412
SUB, 46, 121, 384
SUB MATRIX, 313
SUBMAT, 209
SUBROUTINE, 278
subset, 404
subset eq, 404
Substitution, 121
SUCH THAT, 124
SUdim, 447
SUM, 54, 155, 417
SUM operator, 417
SUM-SQ, 418
sumrecursion, 454
sumtohyper, 456
SUMVECT, 207
SUPPRESS, 204
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surface, 290
SUSY2, 155, 419
SVD, 314, 320, 406
SVEC, 352
SWAP COLUMNS, 313, 315
SWAP ENTRIES, 313, 315
SWAP ROWS, 313, 315
Switch, 62
SWITCHES, 195
SWITCHORG, 195
SYMB TO ALG, 205
SYMBOLIC, 157
Symbolic mode, 157, 158, 161, 162
Symbolic procedure, 161
SYMDIFF, 199
SYMLINE, 286
SYMMETRIC, 87, 256, 318
SYMMETRICP, 314, 406
SYMMETRIZE, 201
SYMMETRY, 155, 423
symmetrybasis, 424
symmetrybasispart, 424
SYMPOINT, 286
SYMTREE, 256

T, 38
TAN, 69, 71, 73
tangent vector, 259
TANH, 69, 71
TAYLOR, 155, 425
TAYLOR package, 425
Taylor Series, 425
Taylor series

arithmetic, 426
differentiation, 427
integration, 427
reversion, 427
substitution, 427

TAYLORAUTOCOMBINE switch, 427
TAYLORAUTOEXPAND switch, 427
TAYLORCOMBINE, 426, 427
TAYLORKEEPORIGINAL, 427
TAYLORKEEPORIGINAL switch, 426,

428
TAYLORPRINTORDER switch, 428
TAYLORPRINTTERMS variable, 426
TAYLORSERIESP, 426
TAYLORTEMPLATE, 426
TAYLORTOSTANDARD, 426

TCLEAR, 212
templates, 278
TENSOP, 358
TENSOR, 212
tensor product, 318
terminal, 290
Terminator, 51
TESTBOOL, 221
TEX, 437
TEXBREAK, 437
TEXINDENT, 437
TeXitem, 438
TeXlet, 438
TeXsetbreak, 437
THIRD, 48
ThreeJSymbol, 412
TIME, 62
title, 289
TOEPLITZ, 313, 318
togamma, 456
TORDER, 292
TP, 144
TPMAT, 210
TPS, 155, 429
TRA, 186
TRACE, 144
TRACEFPS, 272
tracing

EXCALC, 265
TRAD, 422
TRFAC, 109
TRGROEB, 296
TRGROEB1, 296
TRGROEBS, 296
TRI, 155, 437
TRI

page-width, 438
tolerance, 438

TRIANG ADJOINT, 314, 320
TRIGEXPAND, 206
trigfactorize, 443
TRIGFORM, 80
triggcd, 443
trigonometric base, 346
TRIGREDUCE, 206
TRIGSIMP, 70, 155, 441
trigsimp, 441
trigsimp

combine, 442
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compact, 442
cos, 441
cosh, 441
expand, 442
expon, 442
hyp, 442
keepalltrig, 442
sin, 441
sinh, 441
trig, 442

TRUE, 382
truncated power series, 429
TSYM, 212
TVECTOR command, 258

UNION, 199
union, 402
UNITMAT, 209
UNTIL, 54
UPPER MATRIX, 318
User packages, 153

VANDERMONDE, 313, 318
VARDF, 262
Variable, 37
variational derivative, 262
VARNAME, 102
varopt, 84
VARPOINT, 286
VCONCMAT, 210
VDF, 354
VEC command, 213
VECDIM, 174
VECOP, 358
VECTOR, 171
vector

addition, 352
cross product, 353
differentiation, 214
division, 353
dot product, 353
exponentiation, 353
inner product, 353
integration, 214
modulus, 353
multiplication, 353
subtraction, 352

VECTORADD, 352
VECTORCROSS, 353
VECTORDIFFERENCE, 352

VECTOREXPT, 353
VECTORMINUS, 352
VECTORPLUS, 352
VECTORQUOTIENT, 353
VECTORRECIP, 353
VECTORTIMES, 353
VERBATIM, 391
view, 290
VINT, 355
VMOD, 353
VMOD operator, 214
VOLINT, 355
VOLINTEGRAL function, 217
VOLINTORDER vector, 217
VORDER, 354
VOUT, 352
VSTART, 351
VTAYLOR, 354

W COMB, 421
WAR, 421
WEB, 324
WEIGHT, 133
WHEN, 128
WHERE, 129
WHILE, 55, 57–59
Whittaker functions, 412
WhittakerM, 412
WhittakerW, 412
Workspace, 92
WRITE, 97
WS, 32, 137
WTLEVEL, 134
WU, 155, 445

XCOLOR, 156, 447
XFULLREDUCE, 451
XIDEAL, 156, 449
xlabel, 289
XMODULO, 450
XMODULOP, 450
XPND

@, 260
D, 260

XSTATS, 451

Y-transform, 246
ylabel, 289

ZEILBERG, 156, 453
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Zeta, 411
Zeta function (Riemann’s), 411
Zeta function, 413
zlabel, 290
ZTRANS, 156, 459
ztrans, 459
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