
The perpage package

Version 2.0

David Kastrup∗

2014/10/25

1 Description

The perpage package adds the ability to reset counters per page and/or keep their
occurences sorted in order of appearance on the page.

It works by attaching itself to the code for \stepcounter and will then modify
the given counter according to information written to the .aux file, which means
that multiple passes may be needed. Since it uses the internals of the \label

mechanism, the need for additional passes will get announced by LATEX as “labels
may have changed”.

\MakePerPage

\MakePerPage[2]{footnote}

will start footnote numbers with 2 on each page (the optional argument defaults
to 1). 2 might be a strange number, unless you have used something like

\renewcommand\thefootnote{\fnsymbol{footnote}}

and want to start off with a dagger. The starting value must not be less than 1
so that the counter logic can detect the reset of a counter reliably.1 It could be a
good idea to redefine \@cnterr if you use a format with limited range: at the first
pass, footnotes are not reset across pages and things like \fnsymbol will quickly
run out of characters to use.

If you want to label things also on a per page base, for example with\theperpage

\renewcommand{\thefigure}{\thepage-\arabic{figure}}

you’ll have the problem that \thepage is updated asynchronously with the real
page, since TEX does not know which page the figure will end up. If you have used
the perpage package for modifying the figure counter, however, at the point where

∗dak@gnu.org
1This unfortunately means that you can’t just use \alph in order to get figures on page 10

numbered as “10”, “10a”, “10b”.

1



the counter is incremented, the macro \theperpage will be set to the correct value
corresponding to the actual page location. Note that this macro is shared between
all counters, so advancing a different counter under control of perpage will render
\thefigure incorrect.

\MakeSorted

\MakeSorted{figure}

will make the figure counter get ‘sorted’: this means that counter values will be
assigned in order of appearance in the output, not in order of appearance in the
source code. For example, the order of interspersed one- and two-column figures
might get mixed up by LATEX in the output. Making the counter sorted will fix
the order to match the order of appearance. A similar problem is when ordinary
footnotes are present in floating material (this does not work in standard LATEX,
but might do so when using manyfoot.sty or bigfoot.sty): this might jumble
their order in the output, and making their counter sorted will make things appear
fine again.

While this would not fix the order in the table of figures, fortunately the
respective entries actually get written out in order of appearance in the output
anyway, so this indeed fixes the problem.

Manually setting the counter does not lead to reliable results in general; as
a special case, however, resetting it to zero is recognized (this can also happen
automatically when the counter is dependent on some other counter). The point
where it is reset in the source code separates ‘count groups’: everything in the
source before that point is assigned sorted numbers separately from everything
appearing behind it, and the sequence numbers start again with 1 with the first
item appearing in the output (not the source) from the new count group.

\MakeSortedPerPage

\MakeSortedPerPage[2]{table}

will make the table numbers restart at 2 on each page and will keep them sorted,
to boot. Introducing new count groups by resetting the counter to 0 manually will
not work, as it is not clear how to handle count groups scattered between pages.
You will usually want to use something like

\renewcommand{\thefigure}{\theperpage-\arabic{figure}}

to go along with a page-wise figure number.1 Note that it would be quite silly to
start the ranges with 2: this is just an example for the optional argument in case
that you ever need it.

\AddAbsoluteCounter

\AddAbsoluteCounter{equation}

will create a counter absequation that will advance together with the counter
equation but will not get reset along with it. This is not sorted into output

1Note the use of \theperpage here, see above.

2



order, but just runs along with the sequence in the source file. As a special case,
the counter abspage is created in this manner and \theabspage is defined as an
arabic number that works in the same contexts as \page (namely, gets properly
deferred by \protected@write).

2 The documentation driver

This is the default driver for typesetting the docs. Running it through as a separate
file will include the code section. Running the original .dtx file through will omit
the code.

1 〈∗driver〉
2 \documentclass{ltxdoc}

3 \usepackage{perpage}

4 \MakePerPage{footnote}

5 \begin{document}

6 \OnlyDescription

7 〈driver〉 \AlsoImplementation

8 \DocInput{perpage.dtx}

9 \end{document}

10 〈/driver〉

3 The package interfaces

First identification.

11 〈∗style〉
12 \NeedsTeXFormat{LaTeX2e}

13 \ProvidesPackage{perpage}[2014/10/25 2.0 Reset/sort counters per page]

\pp@cl@begin

\pp@cl@end

These macros are considerable tricky. They are called as artificial ‘dependent’
counters when the counter they are hooked into is advanced. The way in which
those counters are called are one of the following:

\def\@stpelt#1{\global\csname c@#1\endcsname \z@}

which is the default way of resetting a subordinate counter used in LATEX, or

\def\@stpelt#1{\global\csname c@#1\endcsname \m@ne\stepcounter{#1}}

which is a little present from fixltx2e.sty as of 2014/05/01, quite complicating
this feat.

The startup code swallows either \global \advance or \global.

14 \def\pp@cl@begin{\z@\z@ \begingroup}

The command used for ending our fake counters checks for the \m@ne condition.
We don’t want to bump our auxiliary counters twice, so we remove the following
\stepcounter command. Things will go haywire if there is none, of course.

3



15 \def\pp@cl@end{\afterassignment\pp@cl@end@ii \count@}

16 \def\pp@cl@end@ii{%

17 \relax

18 \expandafter\endgroup

19 \ifnum\count@<\z@

20 \expandafter\pp@cl@end@iii

21 \fi}

22 \def\pp@cl@end@iii\stepcounter#1{}

\AddAbsoluteCounter adds a counter with prefix abs to a given counter. It typesets as an arabic number
and never gets reset. And it is advanced whenever the unprefixed counter gets
advanced.

23 \newcommand\AddAbsoluteCounter[1]

24 {\@ifundefined{c@abs#1}{%

25 \expandafter\newcount\csname c@abs#1\endcsname

26 \global\value{abs#1}\@ne

27 \global\expandafter\let\csname cl@abs#1\endcsname\@empty

28 \expandafter\xdef\csname theabs#1\endcsname{%

29 \noexpand\number \csname c@abs#1\endcsname}%

30 \global\@namedef{c@pabs@#1}{\pp@cl@begin

31 \stepcounter{abs#1}%

32 \pp@cl@end}%

33 \@addtoreset{pabs@#1}{#1}}{}}

\c@perpage We now create the absolute counter perpage:

34 \AddAbsoluteCounter{page}

\theabspage This has to be specially defined so that it will expand as late as \thepage does.
Several commands set the latter temporarily to \relax in order to inhibit ex-
pansion, and we will more or less imitate its behavior when found set in that
manner.

35 \def\theabspage{\ifx\thepage\relax

36 \noexpand\theabspage

37 \else

38 \number\c@abspage

39 \fi}

Here follow the three commands for defining counters per page:

\MakePerPage This creates a counter reset per page. An optional second argument specifies the
starting point of the sequence.

40 \newcommand*\MakePerPage[2][\@ne]{%

41 \pp@makeperpage{#2}\c@pchk@{#1}}

\MakeSorted This will create a counter sorted in appearance on the page. No optional argument
is given: set the counter to a desired starting value manually if you need to.
Resetting it to zero will start a new count group, setting it to other values is
probably not reliable.

4



42 \newcommand*\MakeSorted[1]{%

43 \setcounter{#1}{\z@}%

44 \pp@makeperpage{#1}\c@schk@{\@ne}}

\MakeSortedPerPage This will create output in sorted order, reset on each page. Use an optional
argument to specify the starting value per page. This must not be 0, unfortunately.

45 \newcommand*\MakeSortedPerPage[2][\@ne]{%

46 \pp@makeperpage{#2}\c@spchk@{#1}}

All of those must only occur in the preamble since we can’t do the initialization
of the counter values otherwise.

47 \@onlypreamble\MakePerPage

48 \@onlypreamble\MakeSorted

49 \@onlypreamble\MakeSortedPerPage

4 Internals

It works in the following manner: The basic work is done through attaching help
code to the counter’s reset list. Each counter has an associated absolute id that
is counted through continuously and is never reset, thus providing a unique frame
of reference. Sorted and perpage counters work by writing out information to the
.aux file.

The information we maintain for each counter while processing the source file
are:

• The absolute counter id.

• The last counter value so that we can check whether the sequence has been
interrupted.

• The current scope id.

• Its starting value.

The information written to the file consists of:

• The absolute counter id.

• The current scope id.

• The scope’s starting value.

• The absolute counter id of a superior counter.

Sorted counters work by writing out the current absolute id and range id
into the .aux file each time the counter gets incremented. Whenever the counter
is changed in a manner different from being incremented, a new counter scope
gets started. Each counter scope has its own independently assigned counter
numbers and is associated with its absolute id starting value. So as each counter

5



is incremented, we write out the triple of current absolute id, counter scope and
initial value for the scope. Scope changes when a value assigned from the file
differs from the ‘natural’ value. When the file is read in, counter movements are
tracked. Each counter that does not have its ‘natural’ value, is having a counter
setting recorded.

The stuff works by adding a pseudo-reset counter to the counter’s dependent
counter list.

\pp@makeperpage This does the relevant things for modifying a counter. It defines its reset value, it
defines the correspoding absolute counter. The absolute counter serves a double
function: it is also used for assigning numbers while reading the .aux file. For
this purpose it is assigned the initialized values here and in the enddocument hook
(which is called before rereading the .aux file and checking for changed labels),
while the counter is reset to zero at the start of the document.

50 \def\pp@makeperpage#1#2#3{%

51 \global\expandafter\mathchardef\csname c@pp@r@#1\endcsname=#3\relax

52 \global\@namedef{c@pchk@#1}{#2{#1}}%

53 \newcounter{pp@a@#1}%

54 \setcounter{pp@a@#1}{#3}%

55 \addtocounter{pp@a@#1}\m@ne

56 \@addtoreset{pchk@#1}{#1}%

57 \AtBeginDocument{\setcounter{pp@a@#1}\z@}%

58 \edef\next{\noexpand\AtEndDocument

59 {\noexpand\setcounter{pp@a@#1}{%

60 \number\value{pp@a@#1}}}}\next}

61 \@onlypreamble\pp@makeperpage

\pp@chkvlist Check for an empty vertical list. If we have one, that is worth warning about.

62 \def\pp@chkvlist{%

63 \ifcase

64 \ifvmode

65 \ifx\lastnodetype\@undefined

66 \ifdim-\@m\p@=\prevdepth\ifdim\lastskip=\z@\ifnum\lastpenalty=\z@

67 \@ne

68 \fi\fi\fi

69 \else

70 \ifnum\lastnodetype=\m@ne \@ne \fi

71 \fi

72 \fi \z@

73 \or

74 \PackageWarning{perpage}{\string\stepcounter\space probably at start of

75 vertical list:^^JYou might need to use \string\leavevmode\space

76 before it to avoid vertical shifts}%

77 \fi}

\pp@fetchctr

\theperpage

This fetches the counter information and puts it into \pp@label, \pp@page and
(globally) into \theperpage.

78 \def\pp@fetchctr#1{\expandafter\expandafter\expandafter\pp@fetchctrii

6



79 \csname pp@r@#1@\number\value{pp@a@#1}\endcsname

80 {}{}}

81

82 \global\let\theperpage\@empty

83

84 \def\pp@fetchctrii#1#2#3{\def\pp@label{#1}%

85 \def\pp@page{#2}%

86 \gdef\theperpage{#3}}

Ok, let’s put together all the stuff for the simplest case, counters numbered per
page without sorting:

\c@pchk@ This is the code buried into to the reset list. When the reset list is executed in
the context of advancing a counter, we call something like

\global\c@pchk@{countername}\z@

since the reset list expected a counter here instead of some generic command. That
is the reason we start off this command by giving \global something to chew on.

87 \def\c@pchk@#1{\pp@cl@begin

Now we fetch the page value corresponding to the not yet adjusted value of the
absolute counter to see whether the previous counter advance happened on the
same page.

88 \pp@fetchctr{#1}\let\next\pp@page

89 \addtocounter{pp@a@#1}\@ne

90 \pp@fetchctr{#1}%

We compare the pages for current and last advance of the counter. If they differ,
we reset the counter to its starting value. We do the same if the counter has been
reset to zero manually, likely by being in the reset list of some other counter.

91 \ifcase\ifx\next\pp@page\else\@ne\fi

92 \ifnum\value{#1}=\z@\@ne\fi\z@

93 \else

94 \setcounter{#1}{\value{pp@r@#1}}%

95 \fi

96 \pp@writectr\pp@pagectr{#1}{\noexpand\theabspage}}

\pp@writectr This is the common ending of all pseudo reset counters. It writes out an appropri-
ate command to the .aux file with all required information. We try to replicate
any sentinel kerns or penalties.

97 \def\pp@writectr#1#2#3{\edef\next{%

98 \string#1{#2}{\number\value{pp@a@#2}}{#3}{\noexpand\thepage}}%

99 \pp@chkvlist

100 \dimen@=\lastkern

101 \ifdim\dimen@=\z@ \else \unkern\fi

102 \count@=\lastpenalty

103 \protected@write\@auxout{}{\next}%

104 \ifdim\dimen@=\z@

7



105 \penalty \ifnum\count@<\@M \@M \else \count@ \fi

106 \else \kern\dimen@\fi

107 \pp@cl@end}

\pp@labeldef This is a helper macro.

108 \def\pp@labeldef#1#2#3#4#5{\@newl@bel{pp@r@#2}{#3}{{#1}{#4}{#5}}}

\pp@pagectr This is the workhorse for normal per page counters. It is called whenever the
.aux file is read in and establishes the appropriate information for each counter
advancement in a pseudolabel.

109 \def\pp@pagectr#1#2#3#4{\@ifundefined{c@pp@a@#1}{}{%

110 \addtocounter{pp@a@#1}\@ne

111 \expandafter\pp@labeldef\expandafter

112 {\number\value{pp@a@#1}}{#1}{#2}{#3}{#4}}}

\c@schk@ This is called for implementing sorted counters. Sorted counters maintain a “count
group”, and the values in each count group are numbered independently from that
of other count groups. Whenever a counter is found to have been reset, it will
start a new count group. At the end of document, the count group counters need
to get reset, too, so that the check for changed .aux files will still work.

113 \def\c@schk@#1{\pp@cl@begin

114 \addtocounter{pp@a@#1}\@ne

115 \ifnum\value{#1}=\@ne

116 \expandafter\xdef\csname pp@g@#1\endcsname{\number\value{pp@a@#1}}%

117 \edef\next{\noexpand\AtEndDocument{\global\let

118 \expandafter\noexpand\csname pp@g@#1@\number\value{pp@a@#1}\endcsname

119 \relax}}\next

120 \fi

121 \pp@fetchctr{#1}%

122 \ifx\pp@page\@empty

123 \else \setcounter{#1}{\pp@label}\fi

124 \pp@writectr\pp@spagectr{#1}{\csname pp@g@#1\endcsname}}%

\pp@spagectr This is the code advancing the respective value of the appropriate count group
and assigning the label.

125 \def\pp@spagectr#1#2#3#4{\@ifundefined{c@pp@a@#1}{}{%

126 \count@0\csname pp@g@#1@#3\endcsname

127 \advance\count@\@ne

128 \expandafter\xdef\csname pp@g@#1@#3\endcsname{\number\count@}%

129 \expandafter\pp@labeldef\expandafter

130 {\number\count@}{#1}{#2}{#3}{#4}}}

\c@spchk@ And this finally is the counter advance code for sorted counters per page. Basically,
we just use one count group per page. Resetting a counter manually will not
introduce a new count group, and it would be hard to decide what to do in case
count groups and page positions overlap.

131 \def\c@spchk@#1{\pp@cl@begin

132 \addtocounter{pp@a@#1}\@ne

8



133 \pp@fetchctr{#1}%

134 \ifx\pp@page\@empty

135 \else \setcounter{#1}{\pp@label}\fi

136 \pp@writectr\pp@ppagectr{#1}{\noexpand\theabspage}}

\pp@ppagectr

137 \def\pp@ppagectr#1#2#3#4{\@ifundefined{c@pp@a@#1}{}{%

138 \def\next{#3}%

139 \expandafter\ifx\csname pp@page@#1\endcsname\next

140 \addtocounter{pp@a@#1}\@ne

141 \else

142 \setcounter{pp@a@#1}{\value{pp@r@#1}}%

143 \fi

144 \global\expandafter\let\csname pp@page@#1\endcsname\next

145 \expandafter\pp@labeldef\expandafter

146 {\number\value{pp@a@#1}}{#1}{#2}{#3}{#4}}}

\@testdef LATEX’s current (2007) definition of this macro causes save stack overflow. We fix
this by an additional grouping. Delay to the beginning of document to keep Babel
happy.

147 \AtBeginDocument{%

148 \begingroup

149 \@testdef{}{undefined}{}%

150 \expandafter

151 \endgroup

152 \ifx\@undefined\relax

153 \let\pp@@testdef\@testdef

154 \def\@testdef#1#2#3{{\pp@@testdef{#1}{#2}{#3}%

155 \if@tempswa\aftergroup\@tempswatrue\fi}}%

156 \fi}

157 〈/style〉

9


