GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 3.2.4
July 2007

John W. Eaton
David Bateman
Sgren Hauberg

Copyright (©) 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 3.2.4 of
Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements. 1
How You Can Contribute to Octave. e 3
DistribUutiono e 4

1 A Brief Introduction to Octave............................... 5
1.1 Running OCEavEttt e e et 5
1.2 Simple Exampleso 5

1.2.1 Elementary Calculations.o 5
1.2.2 Creating a Matrix 5
1.2.3 Matrix Arithmetic. 6
1.2.4 Solving Systems of Linear Equations........ i .. 6
1.2.5 Integrating Differential Equations........ i i 7
1.2.6 Producing Graphical Output. ... 7
1.2.7 Editing What You Have Typed e 8
1.2.8 Help and Documentation i 8
1.3 CONVENTIONS . . .ottt ettt et e e e e e 8
13,1 BOmES . o e 8
1.3.2 Evaluation Notation e 8
1.3.3 Printing Notation. e 9
1.3.4 Error MeSSAZESo vttt ettt 9
1.3.5 Format of Descriptions.oou 9
1.3.5.1 A Sample Function Description i 9
1.3.5.2 A Sample Command Description.............o .. 10
1.3.5.3 A Sample Variable Description........... i i 10

2 Getting Started......... ... 13

2.1 Invoking Octave from the Command Line............... 13
2.1.1 Command Line Optionsuueiii e 13
2.1.2 Startup Files 16

2.2 QUItting OCtaveo 16

2.3 Commands for Getting Help. ... i 17

2.4 Command Line Editing.o 19
2.4.1 Cursor MoOtION . « ... u et 19
2.4.2 Killing and YanKing 20
2.4.3 Commands For Changing Text........ ..o 20
2.4.4 Letting Readline Type For You........ .o i 21
2.4.5 Commands For Manipulating The Historyo ... 21
2.4.6 Customizing readlile.ouuiitiimt i 23
2.4.7 Customizing the Prompt. 23
2.4.8 Diary and Echo Commands.t 24

2.5 How Octave Reports Errors ... e 25

2.6 Executable Octave Programs i 26

2.7 Comments in Octave Programso 27
2.7.1 Single Line Commentso.. i 27
2.7.2 Block Commentst 27

2.7.3 Comments and the Help System i, 28

ii GNU Octave
3 Data Types 29
3.1 Built-in Data Types . ..o 29
3.1.1 Numeric ObJects ...t 30

3.1.2 Missing Data 30

3.1.3 String ObJects. . ..o 30

3.1.4 Data Structure ODJectSttt 31

3.1.5 Cell Array ODJectS .. uv it e e 31

3.2 User-defined Data TYPESottt 31
3.3 ODJECt SIZES. . o ettt e 31

4 Numeric Data Types. ..., 33
A1 MatTiCeS « v vttt 34
4.1.1 Empty Matriceso e 36

4.2 RAIIZES . o ottt ettt 37
4.3 Single Precision Data Types. ... 37
4.4 Integer Data Types. ... 38
4.4.1 Integer Arithmetic.o 40

4.5 Bit Manipulations e 41
4.6 Logical Values. ... 43
4.7 Promotion and Demotion of Data Types........ ..o, 44
4.8 Predicates for Numeric Objects. e 44

D S IS ... 47
5.1 Escape Sequences in string constants i 47
5.2 CRharacter ATTAYSttt ettt et e e e e e et e e 48
5.3 Creating Strings.t e 48
5.3.1 Concatenating Stringso.utte e 49

5.3.2 Conversion of Numerical Data to Strings.......... ... i, 52

5.4 Comparing STIINGS « . ..o ettt 53
5.5 Manipulating SEringso 55
5.6 String CONVEISIONS v vttt ettt et e e e e e 61
5.7 Character Class FUNCEIONSt iieeeeeieeeee 65

6 Data Containers................. ... i 67
6.1 Data StrUChUTes . .« oot et e 67
6.1.1 Basic Usage and Examples. i 67

6.1.2 SEruCtUre ATTAYS ..ottt ettt et e e 69

6.1.3 Creating Structures.t 71

6.1.4 Manipulating Structures.o 72

6.1.5 Processing Data in Structures. 73

6.2 Cell ATTayS . ..ttt t e 74
6.2.1 Basic Usage of Cell ATrays.ot e 74

6.2.2 Creating Cell ArTayt e 75

6.2.3 Indexing Cell ATTays.t e 7

6.2.4 Cell Arrays of Strings.o 78

6.2.5 Processing Data in Cell ATTaysooinii e 79

6.3 Comma Separated Lists 81
6.3.1 Comma Separated Lists Generated from Cell Arrays......................... 82

6.3.2 Comma Separated Lists Generated from Structure Arrays.................... 82

7 Variables....... ... 85
7.1 Global Variables. 86
7.2 Persistent Variables 87
7.3 Status of Variables 89

8 EXpressions................ 95
8.1 Index EXPressionsooouoiiii 95
8.2 Calling Functions. 97

8.2.1 Call by Value. . ..o 97
8.2.2 RECUISION . . oo 98
8.3 Arithmetic Operators.ttt e 99
8.4 CompariSon OPEratorsttt et et e e e 100
8.5 Boolean EXpPressions. e 101
8.5.1 Element-by-element Boolean Operators.............. ..o, 101
8.5.2 Short-circuit Boolean Operators, 101
8.6 Assignment EXpressionsooeiii i 102
8.7 Increment OPeratorsttt 104
8.8 Operator Precedence 105

9 Evaluation........... 107
9.1 Calling a Function by its Name........ ... i 107
9.2 Evaluation in a Different Context.......... ..., 108

10 Statements.......... 111
10.1 The if Statement e 111
10.2 The switch Statemento i 112

10.2.1 Notes for the C programmer.t 114
10.3 The while Statement e 114
10.4 The do—until Statement.t e 115
10.5 The for Statement. o 115

10.5.1 Looping Over Structure Elements............. i ... 116
10.6 The break Statement e 117
10.7 The continue Statement......... ... 118
10.8 The unwind_protect Statement......... ...t 119
10.9 The try Statement........ 119
10.10 Continuation Lines. e e 119

11 Functions and Scripts 121
11.1 Defining Functions e 121
11.2 Multiple Return Values e 123
11.3 Variable-length Argument Lists........... i 125
11.4 Variable-length Return Lists i i 126
11.5 Returning From a Function i i 127
11.6 Default Arguments. e 127
11.7 Function Files. 128

11.7.1 Manipulating the load path....... 130

11.7.2 Subfunctions 132

11.7.3 Private Functions i e 132

11.7.4 Overloading and Autoloading., 133

11.7.5 Function Locking. 134

11.7.6 Function Precedencec.cooiiiiii 135

11.8 Script Files . oo 135

iv GNU Octave

11.9 Function Handles, Inline Functions, and Anonymous Functions.................. 137
11.9.1 Function Handles. 137
11.9.2 Anonymous Functions. 137
11.9.3 Inline Functions. e 138

11,10 CommAandsottt et et 138

11.11 Organization of Functions Distributed with Octave 139

12 Errors and Warnings, 141

12.1 Handling Errors. 141
12.1.1 Raising Errors. 141
12.1.2 Catching Errors 143

12.2 Handling Warnings.ot 145
12.2.1 Issuing Warningsooout it 145
12.2.2 Enabling and Disabling Warnings............. i .. 146

13 Debugging...... 151

13.1 Entering Debug Mode. 151

13.2 Leavinging Debug Mode. i 151

13.3 Breakpoints. 152

13.4 Debug Mode. 153

13.5 Call Stack ... 154

14 Input and Output................. 155

14.1 Basic Input and Output........ . 155

14.1.1 Terminal Outpubo e e 155
14.1.1.1 Paging Screen OULPULttt e 157
14.1.2 Terminal Input. ... e 158
14.1.3 Simple File I/O ..o 159
14.1.3.1 Saving Data on Unexpected Exits.......... ... oL, 164
14.1.4 Rational Approximationsoiiiiiiiiiiiii 165

14.2 C-Style I/O FUunctions.o.iuinin it 166
14.2.1 Opening and Closing Files..........co i 166
14.2.2 Simple Outputo e 167
14.2.3 Line-Oriented Inputco i 168
14.2.4 Formatted OUutputt 168
14.2.5 Output Conversion for Matrices, 169
14.2.6 Output Conversion SYNAXouiu ittt 170
14.2.7 Table of Output Conversionsoiuuiiiiieinie i, 171
14.2.8 Integer CONVETSIONSttt e e 171
14.2.9 Floating-Point Conversionsouuiiiuiitiie i, 172
14.2.10 Other Output Conversionsuuuuitaiiee i, 172
14.2.11 Formatted Inputo 173
14.2.12 Input Conversion SYNTaxottt 174
14.2.13 Table of Input Conversionsouuii i, 175
14.2.14 Numeric Input Conversions.uuutt i, 175
14.2.15 String Input Conversionsottt 175
14.2.16 Binary I/O. . oo 176
14.2.17 Temporary Files 178
14.2.18 End of File and Errors 179

14.2.19 File Positioningo i 180

15 Plotting. ... 181
15.1 Plotting Basics. 181
15.1.1 Two-Dimensional Plots........... 181
15.1.1.1 Two-dimensional Function Plotting............ 197
15.1.2 Three-Dimensional Plottingo i i 199
15.1.2.1 Three-dimensional Function Plotting............. 205
15.1.2.2 Three-dimensional Geometric Shapes 207
15.1.3 Plot Annotations.oo i 208
15.1.4 Multiple Plots on One Page i 211
15.1.5 Multiple Plot Windows.ooiiii e 211
15.1.6 Printing Plots. 211
15.1.7 Interacting with plots 214
15.1.8 Test Plotting Functions ... 214
15.2 Advanced Plottingot 215
15.2.1 Graphics ObJects. 215
15.2.2 Graphics Object Properties.o 220
15.2.2.1 Root Figure Properties.......... ... 220
15.2.2.2 Figure Properties.o 220
15.2.2.3 Axes Properties 220
15.2.2.4 Line Properties. 222
15.2.2.5 Text Properties. 223
15.2.2.6 Tmage Propertieso 225
15.2.2.7 Patch Propertieso 225
15.2.2.8 Surface Properties.o e 226
15.2.2.9 Searching Properties. 226
15.2.3 Managing Default Properties......... ... i 226
1524 C0lOTS . vt 227
15.2.5 Line Styles. . ..o 227
15.2.6 Marker Styles 228
15.2.7 Callbacks 228
15.2.8 ODJECt GIOUPS « «« ettt ettt et et e e e e 229
15.2.8.1 Data sources in object groups.o.ueiiiiiiiiiiiiiii .. 232
15.2.8.2 ATEA SETIES . oottt et 233
15.2.8.3 Bar SeTies ..o oii ittt 233
15.2.8.4 CONLOUL GIOUDPS .+« t vttt ettt e et et e et e et e e 234
15.2.8.5 EITOT DAl SETieS.ttt e 235
15.2.8.6 LINE SETIES. oottt 235
15.2.8.7 QUIVET BIOUD « ot ve ettt e e e e e e e e e 236
15.2.8.8 Scatter GroUD. ... oottt 237
15.2.8.9 StAIl GrOUD .« .ttt 237
15.2.8.10 Stem SeTiesttt 238
15.2.8.11 Surface groupo 238
15.2.9 Graphics backends 239
15.2.9.1 Interaction with gnuplot.......... i 239

16 Matrix Manipulation...................................... 241
16.1 Finding Elements and Checking Conditions...............c.coiiiiiiiiiiia . 241
16.2 Rearranging MatriCest e 243
16.3 Applying a Function to an Arrayt 249
16.4 Special Utility Matricesot e 250

16.5 Famous MatriCesot 255

vi GNU Octave

17 Arithmetic 259
17.1 Exponents and Logarithms.......... .. 259
17.2 Complex Arithmetic 260
17.3 TriONOIMETY . ..o 261
17.4 Sums and Products 264
17.5 Utility Functions. 266
17.6 Special Functions e 271
17.7 Coordinate Transformations.......... ... i i 275
17.8 Mathematical Constants i 275

18 Linear Algebra....... 279
18.1 Techniques used for Linear Algebra....... i i 279
18.2 Basic Matrix Functions.coo i 279
18.3 Matrix Factorizations ... e 283
18.4 Functions of a Matrix 291
18.5 Specialized SOLVETrS e 291

19 Nonlinear Equations....................................... 293

20 Diagonal and Permutation Matrices 297
20.1 Creating and Manipulating Diagonal and Permutation Matrices................. 297

20.1.1 Creating Diagonal Matrices.t 297
20.1.2 Creating Permutation Matrices.......... ..o, 297
20.1.3 Explicit and Implicit Conversions.oouiiieiiiieenieennnn... 299
20.2 Linear Algebra with Diagonal and Permutation Matrices........................ 299
20.2.1 Expressions Involving Diagonal Matrices.................o o .. 299
20.2.2 Expressions Involving Permutation Matrices, 300
20.3 Functions That Are Aware of These Matrices. 301
20.3.1 Diagonal Matrix Functions o i i 301
20.3.2 Permutation Matrix Functions.o i 301
20.4 Some Examples of USage 301
20.5 The Differences in Treatment of Zero Elements 302

21 Sparse Matrices. 305

21.1 The Creation and Manipulation of Sparse Matricesccoviuuo... 305
21.1.1 Storage of Sparse Matricest e 305
21.1.2 Creating Sparse Matriceso.uuiin i 306
21.1.3 Finding out Information about Sparse Matrices............................ 310
21.1.4 Basic Operators and Functions on Sparse Matrices......................... 314

21.1.4.1 Sparse FUnctionsoiiii 314
21.1.4.2 The Return Types of Operators and Functions........................ 314
21.1.4.3 Mathematical Considerationscooiiiiiiiiiiieiiiinann. 315

21.2 Linear Algebra on Sparse Matricesottt 322

21.3 TIterative Techniques applied to sparse matrices 329

21.4 Real Life Example of the use of Sparse Matricescooiiiiia... 333

22 Numerical Integration..................................... 337
22.1 Functions of One Variable. e 337
22.2 Orthogonal ColloCation. e 340

22.3 Functions of Multiple Variables.............. i i 341

23 Differential Equations 343
23.1 Ordinary Differential Equations i 343
23.2 Differential-Algebraic Equations 345

24 Optimization........... 353
24.1 Linear Programmingoouuioii i e 353
24.2 Quadratic Programming.t e 358
24.3 Nonlinear Programming..............oiiiiiiiiii e 359
24.4 Linear Least SQUATES 360

25 Statistics 363
25.1 Descriptive Statistics.o 363
25.2 Basic Statistical Functions 367
25.3 Statistical Plots 369
25 LSS .o e 370
25.5 MoOdelS. . o 376
25.6 Distributions. 377
25.7 Random Number Generationouuiiiiee i, 383

26 SetS ... 389
26.1 Set Operations 389

27 Polynomial Manipulations, 393
27.1 Evaluating Polynomials 393
27.2 Finding ROOtS. 393
27.3 Products of Polynomials 394
27.4 Derivatives and Integrals...... ... i 397
27.5 Polynomial Interpolation i 397
27.6 Miscellaneous Functions. e 399

28 Interpolation.............. 401
28.1 Omne-dimensional Interpolation........... i, 401
28.2 Multi-dimensional Interpolation i 405

29 Geometry. 409
29.1 Delaunay Triangulation 409

29.1.1 Plotting the Triangulation.......... ... 410
29.1.2 Identifying points in Triangulation.............. ..o, 411
29.2 Voronoi DIagramst 413
29.3 Convex Hull 416
29.4 Interpolation on Scattered Data......... ... i 417

30 Signal Processing i 419

31 Image Processing, 429
31.1 Loading and Saving Imagesouuutiii e 429
31.2 Displaying Images. 431
31.3 Representing Images 432
31.4 Plotting on top of Images 436

31.5 Color COonVEISIONottt ettt e e e e 436

viii GNU Octave

32 Audio Processing i 439
33 Object Oriented Programming 441
33. 1 Creating a Classttt 441
33.2 Manipulating Classes.t 443
33.3 Indexing ObJectS.t 446
33.4 Overloading ObjJectsttt e 450
33.4.1 Function Overloadingo 450
33.4.2 Operator Overloadingo e 451
33.4.3 Precedence of ODbJectso 451

33.5 Inheritance and Aggregationo 452
34 System Utilities.................. 457
34.1 Timing Utilities. 457
34.2 Filesystem Utilities. e 465
34.3 File Archiving Utilitiesot e e 470
34.4 Networking Utilities. e 471
34.5 Controlling SUDPTOCESSES . .« .ttt 472
34.6 Process, Group, and User IDs 478
34.7 Environment Variables 478
34.8 Current Working Directory 478
34.9 Password Database Functions i 479
34.10 Group Database FUnctions 480
34.11 System Information 481
34.12 Hashing Functions e 483
35 Packages........ ... 485
35.1 Installing and Removing Packages......... i i 485
35.2 Using Packages. 488
35.3 Administrating Packages 488
35.4 Creating Packages. 488
35.4.1 The DESCRIPTION File.o e 489
35.4.2 The INDEX file oot 491
35.4.3 PKG_ADD and PKG_DEL directives............ooiiiiiiiiiii ... 492
Appendix A Dynamically Linked Functions................ 493
AT OCt-Files . ..o 493
A.1.1 Getting Started with Oct-Files....... 493

A.1.2 Matrices and Arrays in Oct-Files......... ... i i 495

A.1.3 Character Strings in Oct-Files....... ... 498

A1.4 Cell Arrays in Oct-Files.o 499

A.1.5 Structures in Oct-Files.o i 500

A.1.6 Sparse Matrices in Oct-Files 501
A.1.6.1 The Differences between the Array and Sparse Classes................. 502

A.1.6.2 Creating Sparse Matrices in Oct-Fileso i .. 503

A.1.6.3 Using Sparse Matrices in Oct-Files oo oot 505

A.1.7 Accessing Global Variables in Oct-Files 506

A.1.8 Calling Octave Functions from Oct-Files 506

A.1.9 Calling External Code from Oct-Files......... 508
A.1.10 Allocating Local Memory in Oct-Files..........o i, 510
A.1.11 Input Parameter Checking in Oct-Files........ ... o iiiiiiii.. 510

A.1.12 Exception and Error Handling in Oct-Files............ 511

A.1.13 Documentation and Test of Oct-Files 512

A2 Mex-Files. . .o 513
A.2.1 Getting Started with Mex-Filesoo i 513

A.2.2 Working with Matrices and Arrays in Mex-Files............................ 515

A.2.3 Character Strings in Mex-Files....... i 517

A.2.4 Cell Arrays with Mex-Files.o e 517

A.2.5 Structures with Mex-Files. e 518

A.2.6 Sparse Matrices with Mex-Files i, 520

A.2.7 Calling Other Functions in Mex-Files.......... i, 523

A.3 Standalone Programs........ 524
Appendix B Test and Demo Functions 527
Bl Test FUNCtIONS oo 527
B.2 Demonstration Functions i i 531
Appendix C Tips and Standards............................ 535
C.1 Writing Clean Octave Programs. ... 535
C.2 Tips for Making Code Run Faster. o i i 535
C.3 Tips on Writing COMIMENTS oottt 537
C.4 Conventional Headers for Octave Functions 537
C.5 Tips for Documentation Strings...............uuiiiieeiiii e 539
Appendix D Contributing Guidelines....................... 545
D.1 How to Contribute. e 545
D.2 General GUIdelines 546
D.3 Octave Sources (m-files) 547
D4 G SOUTCES . vttt et e e e e e e 547
D5 Other SOUTCESo 548
Appendix E Known Causes of Trouble..................... 549
E.1 Actual Bugs We Haven’t Fixed Yet i 549
E.2 Reporting Bugs. 549
E.3 Have You Found a Bug? 549
E.4 Where to Report Bugs. ... 550
E.5 How to Report Bugs e 550
E.6 Sending Patches for Octave i 551
E.7 How To Get Help with Octave e 552
Appendix F Installing Octave............................... 553
F.1 Installation Problems e e 556
Appendix G Emacs Octave Support 559
G.1 Imstalling EOS. 559
G.2 Using Octave Mode.oo i e 559
G.3 Running Octave From Within Emacs oo i 562
G.4 Using the Emacs Info Reader for Octave 564
Appendix H GNU GENERAL PUBLIC LICENSE........ 565

Concept Index 575

X GNU Octave
Function IndexX 579

Operator Index 591

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level textbook
on chemical reactor design being written by James B. Rawlings of the University of Wisconsin-
Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited utility
beyond the classroom. Although our initial goals were somewhat vague, we knew that we wanted
to create something that would enable students to solve realistic problems, and that they could
use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes and
not enough time learning about chemical engineering. With Octave, most students pick up the
basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department at
the University of Texas, and the math department at the University of Texas has been using it
for teaching differential equations and linear algebra as well. If you find it useful, please let us
know. We are always interested to find out how Octave is being used in other places.

Virtually everyone thinks that the name Octave has something to do with music, but it is
actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to do
more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU General
Public License (see Appendix H [Copying|, page 565). You are also encouraged to help make
Octave more useful by writing and contributing additional functions for it, and by reporting any
problems you may have.

Acknowledgements

Many people have already contributed to Octave’s development. The following people have
helped code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Andy Adler Joel Andersson
Muthiah Annamalai Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Karl Berry David Billinghurst

Don Bindner

Richard Bovey

Marco Caliari
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
Martin Costabel
Martin Dalecki
Thomas D. Dean
David M. Doolin

Dirk Eddelbuettel
Peter Ekberg

Ramon Garcia Fernandez
Castor Fu

Jakub Bogusz
Marcus Brinkmann
Daniel Calvelo
Joao Cardoso
Vincent Cautaerts
Carsten Clark
Michael Creel
Jorge Barros de Abreu
Philippe Defert
Pascal A. Dupuis
Paul Eggert

Rolf Fabian
Torsten Finke
Eduardo Gallestey

Moritz Borgmann
Remy Bruno
John C. Campbell
Larrie Carr
Clinton Chee

J. D. Cole

Jeff Cunningham
Carlo de Falco
Bill Denney

John W. Eaton
Stephen Eglen
Stephen Fegan
Jose Daniel Munoz Frias
Walter Gautschi

Klaus Gebhardt
Michael Goffioul
Keith Goodman
Etienne Grossmann

William P. Y. Hadisoeseno

Kim Hansen
Daniel Heiserer
Yozo Hida

A. Scottedward Hodel
David Hoover
Cyril Humbert
Geoff Jacobsen
Steven G. Johnson
Jarkko Kaleva
Thomas Kasper
Paul Kienzle
Geoffrey Knauth
Oyvind Kristiansen
Tetsuro Kurita

Kai Labusch

Bill Lash

Friedrich Leisch
Ross Lippert
Massimo Lorenzin
James Macnicol
Orestes Mas
Laurent Mazet
Christoph Mayer
Stefan Monnier
Victor Munoz

Al Niessner

Kai Noda

Michael O’Brien
Arno Onken
Gabriele Pannocchia
Primozz Peterlin
Nicholas Piper
Tom Poage

Jef Poskanzer

Eric S. Raymond
Jason Riedy
Andrew Ross

Ryan Rusaw
Juhani Saastamoinen
Aleksej Saushev
Julian Schnidder
Ludwig Schwardt
Dmitri A. Sergatskov
John Smith

Joerg Specht
Richard Stallman
Jonathan Stickel

Driss Ghaddab
Glenn Golden
Brian Gough
Peter Gustafson
Jaroslav Hajek
Soren Hauberg
Martin Helm
Ryan Hinton

Richard Allan Holcombe

Kurt Hornik
Teemu Tkonen
Mats Jansson
Heikki Junes
Mohamed Kamoun
Joel Keay

Aaron A. King
Heine Kolltveit
Piotr Krzyzanowski
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie

Timo Lindfors
David Livings

Emil Lucretiu
Jens-Uwe Mager
Makoto Matsumoto
G. D. McBain
Thorsten Meyer
Antoine Moreau
Carmen Navarrete
Rick Niles

Eric Norum

Peter O’Gorman
Luis F. Ortiz
Sylvain Pelissier
Jim Peterson
Robert Platt

Orion Poplawski
Francesco Potorti
Balint Reczey
Petter Risholm
Mark van Rossum
Olli Saarela

Radek Salac

Alois Schloegl
Nicol N. Schraudolph
Thomas L. Scofield
Baylis Shanks
Julius Smith
Quentin H. Spencer
Russell Standish
Thomas Stuart

GNU Octave

Nicolo Giorgetti
Tomislav Goles
Steffen Groot

Kai Habel
Benjamin Hall

Dave Hawthorne
Stefan Hepp

Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Atsushi Kajita

Lute Kamstra
Mumit Khan

Arno J. Klaassen
Ken Kouno

Volker Kuhlmann
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Benjamin Lindner
Erik de Castro Lopo
Hoxide Ma

Ricardo Marranita
Tatsuro Matsuoka
Alexander Mamonov
Petr Mikulik

Kai P. Mueller
Todd Neal

Takuji Nishimura
Krzesimir Nowak
Thorsten Ohl

Scott Pakin

Per Persson

Danilo Piazzalunga
Hans Ekkehard Plesser
Ondrej Popp

James B. Rawlings
Michael Reifenberger
Matthew W. Roberts
Kevin Ruland

Toni Saarela

Ben Sapp

Michel D. Schmid
Sebastian Schubert
Daniel J. Sebald
Joseph P. Skudlarek
Shan G. Smith
Christoph Spiel
Doug Stewart

Ivan Sutoris

Preface 3

John Swensen Ariel Tankus Georg Thimm
Duncan Temple Lang Kris Thielemans Olaf Till

Thomas Treichl Frederick Umminger Utkarsh Upadhyay
Stefan van der Walt Peter Van Wieren James R. Van Zandt
Gregory Vanuxem Ivana Varekova Thomas Walter
Olaf Weber Thomas Weber Rik Wehbring

Bob Weigel Andreas Weingessel Michael Weitzel
Fook Fah Yap Michael Zeising Federico Zenith

Alex Zvoleff

Special thanks to the following people and organizations for supporting the development of

Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of Wisconsin-
Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Research
Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to the
University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this soft-
ware.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology Program
under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National Lab-
oratory, for registering the octave.org domain name.

James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chemical
and Biological Engineering.

Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to produce

Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use. See Appendix D [Contributing
Guidelines], page 545, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its development.

Even a modest amount of additional funding could make a significant difference in the amount
of time that is available for development and support.

http://www.che.utexas.edu/twmcc
octave.org

4 GNU Octave

If you cannot provide funding or contribute code, you can still help make Octave better and
more reliable by reporting any bugs you find and by offering suggestions for ways to improve
Octave. See Appendix E [Trouble], page 549, for tips on how to write useful bug reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute it on
certain conditions. Octave is not, however, in the public domain. It is copyrighted and there
are restrictions on its distribution, but the restrictions are designed to ensure that others will
have the same freedom to use and redistribute Octave that you have. The precise conditions
can be found in the GNU General Public License that comes with Octave and that also appears
in Appendix H [Copying], page 565.

Octave is available on CD-ROM, with various collections of other free software, from the Free
Software Foundation. Ordering a copy of Octave from the Free Software Foundation helps to
fund the development of more free software. For more information, write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave can also be downloaded from http://www.octave.org, where additional information
is available.

http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It pro-
vides a convenient interactive command line interface for solving linear and nonlinear problems
numerically, and for performing other numerical experiments. It may also be used as a batch-
oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free Software Foundation.
The GPL is included in this manual in Appendix H [Copying], page 565.

This manual provides comprehensive documentation on how to install, run, use, and extend
GNU Octave. Additional chapters describe how to report bugs and help contribute code.

This document corresponds to Octave version 3.2.4.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an initial
message and then a prompt indicating it is ready to accept input. You can begin typing Octave
commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written C-c
for short). C-c gets its name from the fact that you type it by holding down CTRL and then
pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP signal,
usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it might
be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning Octave
by using it. Lines marked with ‘octave: 13>’ are lines you type, ending each with a carriage
return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic opera-
tions (+,-,%,/), exponentiation ("), natural logarithms/exponents (log, exp), and the trigonomet-
ric functions (sin, cos, . ..). Moreover, Octave calculations work on real or imaginary numbers
(i,j). In addition, some mathematical constants such as the base of the natural logarithm (e)
and the ratio of a circle’s circumference to its diameter (pi) are pre-defined.

For example, to verify FKuler’s Identity,

6171’ — _1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp(i*pi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

6 GNU Octave

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of the
command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero and
one.

To display the value of a variable, simply type the name of the variable at the prompt. For
example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example, to
multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\Db
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical equations.
Consider the burning of hydrogen and oxygen to produce water.

H2+OQ —>HQO

The equation above is not accurate. The Law of Conservation of Mass requires that the number
of molecules of each type balance on the left- and right-hand sides of the equation. Writing the
variable overall reaction with individual equations for hydrogen and oxygen one finds:

l'ng + 1'202 — HQO
H: 22, +0xy, — 2
O: 0xy+2x9—1

The solution in Octave is found in just three steps.

octave:1> A = [2, 0; 0, 2 1;
octave:2> b = [2; 1 1;
octave:3> x = A\ b

Chapter 1: A Brief Introduction to Octave 7

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t =tg) = xg

For Octave to integrate equations of this form, you must first provide a definition of the function
f(x,t). This is straightforward, and may be accomplished by entering the function body directly
on the command line. For example, the following commands define the right-hand side function
for an interesting pair of nonlinear differential equations. Note that while you are entering a
function, Octave responds with a different prompt, to indicate that it is waiting for you to
complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k 1.4;

> a = 1.5

> b =0.16;

> ¢ = 0.9;

> d = 0.8;

>

> xdot(1) = r*x(L)*x(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = ckxaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);
>

> endfunction
Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds to
the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function lsode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

1.2.6 Producing Graphical Output
To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate window
to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For example,
print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsulated
PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

3 GNU Octave

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Fmacs- or vi-
style editing commands. The default keybindings use Emacs-style commands. For example, to
recall the previous command, press Control-p (written C-p for short). Doing this will normally
bring back the previous line of input. C-n will bring up the next line of input, C-b will move
the cursor backward on the line, C-f will move the cursor forward on the line, etc.

A complete description of the command line editing capability is given in this manual in
Section 2.4 [Command Line Editing], page 19.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed form
is also available from the Octave prompt, because both forms of the documentation are created
from the same input file.

In order to get good help you first need to know the name of the command that you want to
use. This name of the function may not always be obvious, but a good place to start is to just
type help. This will show you all the operators, reserved words, functions, built-in variables,
and function files. An alternative is to search the documentation using the lookfor function.
This function is described in Section 2.3 [Getting Help|, page 17.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or more.
Type a RET to advance one line, a SPC to advance one page, and Q to exit the pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual. Help
for using Info is provided in this manual in Section 2.3 [Getting Help|, page 17.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent variables
or function arguments appear in this font or form: first-number. Commands that you type at
the shell prompt appear in this font or form: ‘octave --no-init-file’. Commands that you
type at the Octave prompt sometimes appear in this font or form: foo --bar --baz. Specific
keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated with
‘=", For example,

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

Chapter 1: A Brief Introduction to Octave 9

(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]

and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces iden-
tical results. The exact equivalence of expressions is indicated with ‘=’. For example,

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ¢ 4’. The value that is returned by
evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on a separate
line.

printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal. Error
messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any. The
category—function, variable, or whatever—is printed next to the right margin. The description
follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in
the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result. If y
is not supplied, then the number 19 is used by default.

foo (1, [3, 5], 3, 9)
= [14, 16]
foo (5)
= 14

10 GNU Octave

More generally,
foo (w, x, y, ...)

X—W+y+...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is expected
to be of that type. Parameters named object may be of any type. Parameters with other sorts
of names (e.g., new_file) are discussed specifically in the description of the function. In some
sections, features common to parameters of several functions are described at the beginning.

Functions in Octave may be defined in several different ways. The category name for functions
may include another name that indicates the way that the function is defined. These additional
tags include

Function File
The function described is defined using Octave commands stored in a text file. See
Section 11.7 [Function Files], page 128.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is part
of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On systems
that support dynamic linking of user-supplied functions, it may be automatically
linked while Octave is running, but only if it is needed. See Appendix A [Dynami-
cally Linked Functions], page 493.

Mapping Function
The function described works element-by-element for matrix and vector arguments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called without
surrounding their arguments in parentheses. For example, here is the description for Octave’s
cd command:

cd dir [Command|

chdir dir [Command]
Change the current working directory to dir. For example, cd ~/octave changes the current
working directory to ‘“/octave’. If the directory does not exist, an error message is printed
and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user,
built-in variables typically exist specifically so that users can change them to alter the way
Octave behaves (built-in variables are also sometimes called user options). Ordinary variables
and built-in variables are described using a format like that for functions except that there are
no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.
do_what_i_mean_not_what_i_say [Built-in Variable]

If the value of this variable is nonzero, Octave will do what you actually wanted, even if you
have typed a completely different and meaningless list of commands.

Chapter 1: A Brief Introduction to Octave 11

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot be
changed.

Chapter 2: Getting Started 13

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave session,
get help at the command prompt, edit the command line, and write Octave programs that can
be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any arguments.
Once started, Octave reads commands from the terminal until you tell it to exit.

You can also specify the name of a file on the command line, and Octave will read and execute
the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’ is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to print
a lot of information about the commands it reads, and is probably only useful if you
are actually trying to debug the parser.

-—doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified on
the command line will override any value of OCTAVE_DOC_CACHE_FILE found in the
environment, but not any commands in the system or user startup files that use the
doc_cache_file function.

-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless --persist is also specified.

—--exec-path path
Specify the path to search for programs to run. The value of path specified on the
command line will override any value of OCTAVE_EXEC_PATH found in the environ-
ment, but not any commands in the system or user startup files that set the built-in
variable EXEC_PATH.

--help
-h
-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in the
environment, but not any commands in the system or user startup files that set the
built-in variable IMAGE_PATH.

--info-file filename
Specify the name of the info file to use. The value of filename specified on the com-
mand line will override any value of OCTAVE_INFO_FILE found in the environment,

14 GNU Octave

but not any commands in the system or user startup files that use the info_file
function.

--info-program program
Specify the name of the info program to use. The value of program specified on
the command line will override any value of OCTAVE_INFO_PROGRAM found in the
environment, but not any commands in the system or user startup files that use the
info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote shell
command or inside an Emacs shell buffer. For another way to run Octave within
Emacs, see Appendix G [Emacs Octave Support], page 559.

--line-editing
Force readline use for command-line editing.

--no-history
-H Disable recording of command-line history.

--no-init-file
Don’t read the initialization files ‘~/.octaverc’ and ‘.octaverc’.

--no-init-path
Don’t initialize the search path for function files to include default locations.

--no-line-editing
Disable command-line editing.

--no-site-file
Don’t read the site-wide ‘octaverc’ initialization files.

--norc

-f Don’t read any of the system or user initialization files at startup. This is equivalent
to using both of the options -—-no-init-file and --no-site-file.

--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found in the
environment, but not any commands in the system or user startup files that set the
internal load path through one of the path functions.

-—persist
Go to interactive mode after —-—eval or reading from a file named on the command
line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

-—traditional

—-—braindead

For compatibility with MATLAB, set initial values for user preferences to the following
values

Chapter 2: Getting Started 15

PS1 = Ny "
PS2 = nun
beep_on_error = true

confirm_recursive_rmdir = false
crash_dumps_octave_core = false
default_save_options "-mat-binary"
fixed_point_format = true
history_timestamp_format_string

"%h== WD KL:%M %p —=%%"
false

false

page_screen_output
print_empty_dimensions

and disable the following warnings

Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked Octave
using the command
octave —--no-line-editing --silent
argv would return a cell array of strings with the elements --no-line-editing and --

silent.

If you write an executable Octave script, argv will return the list of arguments passed to
the script. See Section 2.6 [Executable Octave Programs]|, page 26, for an example of how to
create an executable Octave script.

program_name () [Built-in Function]
Return the last component of the value returned by program_invocation_name.
See also: [program_invocation_name]|, page 15.

program_invocation_name () [Built-in Function]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an executable
Octave script, the program name is set to the name of the script. See Section 2.6 [Executable
Octave Programs], page 26, for an example of how to create an executable Octave script.

See also: [program_name]|, page 15.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

16 GNU Octave

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" Y%s", arg_list{il});

endfor

printf ("\n");
See Section 6.2.3 [Indexing Cell Arrays|, page 77, for an explanation of how to retrieve objects
from cell arrays, and Section 11.1 [Defining Functions], page 121, for information about the
variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list. These
files may contain any valid Octave commands, including function definitions.

octave-home /share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’). This file is provided so that changes to the default Octave envi-
ronment can be made globally for all users at your site for all versions of Octave
you have installed. Care should be taken when making changes to this file since all
users of Octave at your site will be affected. The default file may be overridden by
the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is provided so
that changes to the default Octave environment can be made globally for all users
of a particular version of Octave. Care should be taken when making changes to
this file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file will
affect the directory where Octave searches for ‘.octaverc’.

If you start Octave in your home directory, commands from the file **/.octaverc’
will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with the
--verbose option but without the -—-silent option.

2.2 Quitting Octave

exit (status) [Built-in Function]

quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass that
value to the operating system as the Octave’s exit status. The default value is zero.

atexit (fcn) [Built-in Function]
atexit (fcn, flag) [Built-in Function]
Register a function to be called when Octave exits. For example,

Chapter 2: Getting Started 17

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.
The additional argument flag will register or unregister fcn from the list of functions to be
called when Octave exits. If flag is true, the function is registered, and if flag is false, it is
unregistered. For example, after registering the function last_words above,

atexit ("last_words", false);
will remove the function from the list and Octave will not call last_words when it exits.
Note that atexit only removes the first occurrence of a function from the list, so if a function

was placed in the list multiple times with atexit, it must also be removed from the list
multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc. In
addition, the documentation for individual user-written functions and variables is also available
via the help command. This section describes the commands used for reading the manual and
the documentation strings for user-supplied functions and variables. See Section 11.7 [Function
Files|, page 128, for more information about how to document the functions you write.

help name [Command|
Display the help text for name. If invoked without any arguments, help prints a list of all
the available operators and functions.
For example, the command help help prints a short message describing the help command.
The help command can give you information about operators, but not the comma and semi-
colons that are used as command separators. To get help for those, you must type help
comma or help semicolon.

See also: [doc|, page 17, [lookfor], page 17, [which], page 93.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line version of the
printed manual, using the GNU Info browser. If invoked without any arguments, the manual
is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node in the
on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the command C-h.

See also: [help], page 17.

lookfor str [Command]|
lookfor -all str [Command]|
[func, helpstring] = lookfor (str) [Function]

}

[func, helpstring] lookfor (™-all’, str) [Function
Search for the string str in all functions found in the current function search path. By default,
lookfor searches for str in the first sentence of the help string of each function found. The
entire help text of each function can be searched if the ’-all’ argument is supplied. All searches
are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the ter-

minal. Otherwise, the output arguments func and helpstring define the matching functions
and the first sentence of each of their help strings.

18 GNU Octave

The ability of 1lookfor to correctly identify the first sentence of the help text is dependent on
the format of the function’s help. All Octave core functions are correctly formatted, but the
same can not be guaranteed for external packages and user-supplied functions. Therefore,
the use of the ’-all’ argument may be necessary to find related functions that are not a part
of Octave.

See also: [help], page 17, [doc|, page 17, [which], page 93.
To see what is new in the current release of Octave, use the news function.

news () [Function File]
Display the current NEWS file for Octave.

info () [Function File]
Display contact information for the GNU Octave community.

warranty () [Built-in Function]
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying the
documentation, and where the documentation can be found.

val = info_file () [Built-in Function]

old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file. The default
value is ‘octave-home/info/octave.info’, in which octave-home is the root directory of
the Octave installation. The default value may be overridden by the environment variable
OCTAVE_INFO_FILE, or the command line argument ‘--info-file NAME’.

See also: [info_program]|, page 18, [doc], page 17, [help], page 17, [makeinfo_program], page 18.

val = info_program () [Built-in Function]

old_val = info_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the info program to run. The de-
fault value is ‘octave-home/libexec/octave/version/exec/arch/info’ in which octave-
home is the root directory of the Octave installation, version is the Octave version number,
and arch is the system type (for example, 1686-pc-1linux-gnu). The default value may be
overridden by the environment variable OCTAVE_INFO_PROGRAM, or the command line argu-
ment ‘--info-program NAME’.

See also: [info_file|, page 18, [doc], page 17, [help], page 17, [makeinfo_program|, page 18.

val = makeinfo_program () [Built-in Function]

old_val = makeinfo_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the program that Octave runs
to format help text containing Texinfo markup commands. The default value is makeinfo.

See also: [info_file], page 18, [info_program]|, page 18, [doc|, page 17, [help], page 17.

val = doc_cache_file () [Built-in Function]

old_val = doc_cache_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave documentation cache
file. A cache file significantly improves the performance of the lookfor command. The default
value is ‘octave-home/share/octave/version/etc/doc-cache’, in which octave-home is
the root directory of the Octave installation, and version is the Octave version number. The
default value may be overridden by the environment variable OCTAVE_DOC_CACHE_FILE, or
the command line argument ‘--doc-cache-file NAME’.

See also: [lookfor], page 17, [info_program|, page 18, [doc], page 17, [help], page 17,
[makeinfo_program]|, page 18.

Chapter 2: Getting Started 19

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will add additional help
information to the end of the output from the help command and usage messages for built-
in commands.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing and
history features. Only the most common features are described in this manual. In addition,
all of the editing functions can be bound to different key strokes at the user’s discretion. This
manual assumes no changes from the default Emacs bindings. See the GNU Readline Library
manual for more information on customizing Readline and for a complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character. Octave
will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For example,
the character Control-a moves the cursor to the beginning of the line. To type C-a, hold down
CTRL and then press A. In the following sections, control characters such as Control-a are
written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold down
the META key and press U. Depending on the keyboard, the META key may be labeled ALT
or even WINDOWS. If your terminal does not have a META key, you can still type Meta
characters using two-character sequences starting with ESC. Thus, to enter M-u, you would type
ESC U. The ESC character sequences are also allowed on terminals with real Meta keys. In the
following sections, Meta characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

Cc-f Move forward one character.

DEL Delete the character to the left of the cursor.

c-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

C-_

c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command enough

times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to do
editing of the input line. On most terminals, you can also use the left and right arrow keys in
place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on words.

The function clc will allow you to clear the screen from within Octave programs.

20 GNU Octave

clc () [Built-in Function]
home () [Built-in Function]
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually by
yanking it back into the line. If the description for a command says that it ‘kills’ text, then you
can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to the
start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL because
the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one clean
sweep. The kill ring is not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a special
meaning (e.g., TAB, C-gq, etc.), or for quickly correcting typing mistakes.

C-q

Cc-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor, also
moving the cursor forward. If the cursor is at the end of the line, then transpose
the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word if

the cursor is between words), moving the cursor to the end of the word.

Chapter 2: Getting Started 21

2.4.4 Letting Readline Type For You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete the
names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]
Query or set the internal character variable that is appended to successful command-line
completion attempts. The default value is " " (a single space).

completion_matches (hint) [Built-in Function]

Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be controlling
Octave and handling user input. The current command number is not incremented when this
function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous commands
to edit or execute them again. When you exit Octave, the most recent commands you have typed,
up to the number specified by the variable history_size, are saved in a file. When Octave
starts, it loads an initial list of commands from the file named by the variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-empty,
add it to the history list. If the line was a history line, then restore the history line
to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the history
as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the history

as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and C-n to
move through the history list.

In addition to the keyboard commands for moving through the history list, Octave provides
three functions for viewing, editing, and re-running chunks of commands from the history list.

history options [Command]
If invoked with no arguments, history displays a list of commands that you have executed.
Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the default
history file (normally ‘~/.octave_hist’).

-r file Read the file file, replacing the current history list with its contents. If the name
is omitted, use the default history file (normally ‘*/.octave_hist’).

22 GNU Octave

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and pasting
commands using the X Window System.

For example, to display the five most recent commands that you have typed without display-
ing line numbers, use the command history -q 5.

edit_history [first] [last] [Command|
If invoked with no arguments, edit_history allows you to edit the history list using the
editor named by the variable EDITOR. The commands to be edited are first copied to a
temporary file. When you exit the editor, Octave executes the commands that remain in
the file. It is often more convenient to use edit_history to define functions rather than
attempting to enter them directly on the command line. By default, the block of commands
is executed as soon as you exit the editor. To avoid executing any commands, simply delete
all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history numbers
of first and last commands to edit. For example, the command

edit_history 13
extracts all the commands from the 13th through the last in the history list. The command
edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first command
than the last command reverses the list of commands before placing them in the buffer to be
edited. If both arguments are omitted, the previous command in the history list is used.

See also: [run_history], page 22.

run_history [first] [last] [Command]
Similar to edit_history, except that the editor is not invoked, and the commands are simply
executed as they appear in the history list.

See also: [edit_history], page 22.
Octave also allows you customize the details of when, where, and how history is saved.

val = saving_history () [Built-in Function]

old_val = saving_history (new_val) [Built-in Function]
Query or set the internal variable that controls whether commands entered on the command
line are saved in the history file.

See also: |history_file], page 22, [history_size], page 22, [history_timestamp_format_string],
page 23.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store command
history. The default value is ‘*/.octave_hist’, but may be overridden by the environment
variable OCTAVE_HISTFILE.

See also: [history_size|, page 22, [saving_history], page 22, [history_timestamp_format_string],
page 23.

val = history_size () [Built-in Function]

old_val = history_size (new_val) [Built-in Function]
Query or set the internal variable that specifies how many entries to store in the his-
tory file. The default value is 1024, but may be overridden by the environment variable
OCTAVE_HISTSIZE.

Chapter 2: Getting Started 23

See also: |history_file], page 22, [history_timestamp_format_string], page 23, [saving_history],
page 22.

val = history_timestamp_format_string () [Built-in Function]

old_val = history_timestamp_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string for the comment line that
is written to the history file when Octave exits. The format string is passed to strftime.
The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

See also: [strftime], page 459, [history_file], page 22, [history_size], page 22, [saving_history],
page 22.

val = EDITOR () [Built-in Function]

old_val = EDITOR (new_val) [Built-in Function]
Query or set the internal variable that specifies the editor to use with the edit_history
command. The default value is taken from the environment variable EDITOR when Octave
starts. If the environment variable is not initialized, EDITOR will be set to "emacs".

See also: [edit_history], page 22.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Readline
is very flexible and can be modified through a configuration file of commands (See the GNU
Readline library for the exact command syntax). The default configuration file is normally
‘~/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the command
line behavior.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default initialization
file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library, for details.

re_read_readline_init_file () [Built-in Function]
Re-read the last readline library initialization file that was read. See Section “Readline Init
File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-escaped
special characters that are decoded as follows:

At’ The time.

‘\d’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage return followed by a line
feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

“\u’ The username of the current user.

24 GNU Octave

‘\h’ The hostname, up to the first “.’.

\H’ The hostname.

\# The command number of this command, counting from when Octave starts.

A The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

val = PS1 () [Built-in Function]

old_val = PS1 (new_val) [Built-in Function]

Query or set the primary prompt string. When executing interactively, Octave displays the
primary prompt when it is ready to read a command.

The default value of the primary prompt string is "\s:\#> ". To change it, use a command
like
octave:13> PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in on the
host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a backslash into a
double-quoted character string. See Chapter 5 [Strings], page 47.

See also: [PS2], page 24, [PS4], page 24.

val = PS2 () [Built-in Function]

old_val = PS2 (new_val) [Built-in Function]
Query or set the secondary prompt string. The secondary prompt is printed when Octave
is expecting additional input to complete a command. For example, if you are typing a for
loop that spans several lines, Octave will print the secondary prompt at the beginning of each
line after the first. The default value of the secondary prompt string is "> ".

See also: [PS1], page 24, [PS4], page 24.

val = PS4 () [Built-in Function]

old_val = PS4 (new_val) [Built-in Function]
Query or set the character string used to prefix output produced when echoing commands is
enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo Commands], page 24,
for a description of echoing commands.

See also: [echo], page 25, [echo_executing_commands], page 25, [PS1], page 24, [PS2], page 24.
2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by recording
the input you type and the output that Octave produces in a separate file.

diary options [Command|
Record a list of all commands and the output they produce, mixed together just as you see
them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working di-
rectory.

off Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Chapter 2: Getting Started 25

Sometimes it is useful to see the commands in a function or script as they are being evaluated.