patch-2.4.1 linux/fs/reiserfs/objectid.c

Next file: linux/fs/reiserfs/prints.c
Previous file: linux/fs/reiserfs/namei.c
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.4.0/linux/fs/reiserfs/objectid.c linux/fs/reiserfs/objectid.c
@@ -0,0 +1,211 @@
+/*
+ * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
+ */
+#ifdef __KERNEL__
+
+#include <linux/config.h>
+#include <linux/string.h>
+#include <linux/locks.h>
+#include <linux/sched.h>
+#include <linux/reiserfs_fs.h>
+
+#else
+
+#include "nokernel.h"
+
+#endif
+
+
+// find where objectid map starts
+#define objectid_map(s,rs) (old_format_only (s) ? \
+                         (__u32 *)((struct reiserfs_super_block_v1 *)rs + 1) :\
+			 (__u32 *)(rs + 1))
+
+
+#ifdef CONFIG_REISERFS_CHECK
+
+static void check_objectid_map (struct super_block * s, __u32 * map)
+{
+    if (le32_to_cpu (map[0]) != 1)
+	reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted");
+
+    // FIXME: add something else here
+}
+
+#endif
+
+
+/* When we allocate objectids we allocate the first unused objectid.
+   Each sequence of objectids in use (the odd sequences) is followed
+   by a sequence of objectids not in use (the even sequences).  We
+   only need to record the last objectid in each of these sequences
+   (both the odd and even sequences) in order to fully define the
+   boundaries of the sequences.  A consequence of allocating the first
+   objectid not in use is that under most conditions this scheme is
+   extremely compact.  The exception is immediately after a sequence
+   of operations which deletes a large number of objects of
+   non-sequential objectids, and even then it will become compact
+   again as soon as more objects are created.  Note that many
+   interesting optimizations of layout could result from complicating
+   objectid assignment, but we have deferred making them for now. */
+
+
+/* get unique object identifier */
+__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th)
+{
+    struct super_block * s = th->t_super;
+    struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
+    __u32 * map = objectid_map (s, rs);
+    __u32 unused_objectid;
+
+
+#ifdef CONFIG_REISERFS_CHECK
+    check_objectid_map (s, map);
+#endif
+
+    reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
+                                /* comment needed -Hans */
+    unused_objectid = le32_to_cpu (map[1]);
+    if (unused_objectid == U32_MAX) {
+	printk ("REISERFS: get_objectid: no more object ids\n");
+	reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ;
+	return 0;
+    }
+
+    /* This incrementation allocates the first unused objectid. That
+       is to say, the first entry on the objectid map is the first
+       unused objectid, and by incrementing it we use it.  See below
+       where we check to see if we eliminated a sequence of unused
+       objectids.... */
+    map[1] = cpu_to_le32 (unused_objectid + 1);
+
+    /* Now we check to see if we eliminated the last remaining member of
+       the first even sequence (and can eliminate the sequence by
+       eliminating its last objectid from oids), and can collapse the
+       first two odd sequences into one sequence.  If so, then the net
+       result is to eliminate a pair of objectids from oids.  We do this
+       by shifting the entire map to the left. */
+    if (le16_to_cpu (rs->s_oid_cursize) > 2 && map[1] == map[2]) {
+	memmove (map + 1, map + 3, (le16_to_cpu (rs->s_oid_cursize) - 3) * sizeof(__u32));
+	//rs->s_oid_cursize -= 2;
+	rs->s_oid_cursize = cpu_to_le16 (le16_to_cpu (rs->s_oid_cursize) - 2);
+    }
+
+    journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s));
+    s->s_dirt = 1;
+    return unused_objectid;
+}
+
+
+/* makes object identifier unused */
+void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, 
+				__u32 objectid_to_release)
+{
+    struct super_block * s = th->t_super;
+    struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
+    __u32 * map = objectid_map (s, rs);
+    int i = 0;
+
+    //return;
+#ifdef CONFIG_REISERFS_CHECK
+    check_objectid_map (s, map);
+#endif
+
+    reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
+    journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); 
+    s->s_dirt = 1;
+
+
+    /* start at the beginning of the objectid map (i = 0) and go to
+       the end of it (i = disk_sb->s_oid_cursize).  Linear search is
+       what we use, though it is possible that binary search would be
+       more efficient after performing lots of deletions (which is
+       when oids is large.)  We only check even i's. */
+    while (i < le16_to_cpu (rs->s_oid_cursize)) {
+	if (objectid_to_release == le32_to_cpu (map[i])) {
+	    /* This incrementation unallocates the objectid. */
+	    //map[i]++;
+	    map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1);
+
+	    /* Did we unallocate the last member of an odd sequence, and can shrink oids? */
+	    if (map[i] == map[i+1]) {
+		/* shrink objectid map */
+		memmove (map + i, map + i + 2, 
+			 (le16_to_cpu (rs->s_oid_cursize) - i - 2) * sizeof (__u32));
+		//disk_sb->s_oid_cursize -= 2;
+		rs->s_oid_cursize = cpu_to_le16 (le16_to_cpu (rs->s_oid_cursize) - 2);
+
+#ifdef CONFIG_REISERFS_CHECK
+		if (le16_to_cpu (rs->s_oid_cursize) < 2 || 
+		    le16_to_cpu (rs->s_oid_cursize) > le16_to_cpu (rs->s_oid_maxsize))
+		    reiserfs_panic (s, "vs-15005: reiserfs_release_objectid: "
+				    "objectid map corrupted cur_size == %d (max == %d)",
+				    le16_to_cpu (rs->s_oid_cursize), le16_to_cpu (rs->s_oid_maxsize));
+#endif
+	    }
+	    return;
+	}
+
+	if (objectid_to_release > le32_to_cpu (map[i]) && 
+	    objectid_to_release < le32_to_cpu (map[i + 1])) {
+	    /* size of objectid map is not changed */
+	    if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) {
+		//objectid_map[i+1]--;
+		map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1);
+		return;
+	    }
+
+	    if (rs->s_oid_cursize == rs->s_oid_maxsize)
+		/* objectid map must be expanded, but there is no space */
+		return;
+
+	    /* expand the objectid map*/
+	    memmove (map + i + 3, map + i + 1, 
+		     (le16_to_cpu (rs->s_oid_cursize) - i - 1) * sizeof(__u32));
+	    map[i + 1] = cpu_to_le32 (objectid_to_release);
+	    map[i + 2] = cpu_to_le32 (objectid_to_release + 1);
+	    rs->s_oid_cursize = cpu_to_le16 (le16_to_cpu (rs->s_oid_cursize) + 2);
+	    return;
+	}
+	i += 2;
+    }
+
+    reiserfs_warning ("vs-15010: reiserfs_release_objectid: tried to free free object id (%lu)", 
+		      objectid_to_release);
+}
+
+
+int reiserfs_convert_objectid_map_v1(struct super_block *s) {
+    struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s);
+    int cur_size = le16_to_cpu(disk_sb->s_oid_cursize) ;
+    int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ;
+    int old_max = le16_to_cpu(disk_sb->s_oid_maxsize) ;
+    struct reiserfs_super_block_v1 *disk_sb_v1 ;
+    __u32 *objectid_map, *new_objectid_map ;
+    int i ;
+
+    disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
+    objectid_map = (__u32 *)(disk_sb_v1 + 1) ;
+    new_objectid_map = (__u32 *)(disk_sb + 1) ;
+
+    if (cur_size > new_size) {
+	/* mark everyone used that was listed as free at the end of the objectid
+	** map 
+	*/
+	objectid_map[new_size - 1] = objectid_map[cur_size - 1] ;
+	disk_sb->s_oid_cursize = cpu_to_le16(new_size) ;
+    }
+    /* move the smaller objectid map past the end of the new super */
+    for (i = new_size - 1 ; i >= 0 ; i--) {
+        objectid_map[i + (old_max - new_size)] = objectid_map[i] ; 
+    }
+
+
+    /* set the max size so we don't overflow later */
+    disk_sb->s_oid_maxsize = cpu_to_le16(new_size) ;
+
+    /* finally, zero out the unused chunk of the new super */
+    memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ;
+    return 0 ;
+}
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)