render

Thread 4.3.0

Anthony Williams

Vicente J. Botet Escriba

Copyright © 2007 -11 Anthony Williams
Copyright © 2011 -14 Vicente J. Botet Escriba

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

L@ 4T T PPN 3
Using and BUITAING TNE TTDIArYcoouu ettt e et e et et e e et e e e e raa s 4
1600011108 = (] o o IO PSPPSR 5
[T 11 = 4o = P 13
[11 0 YT PP PPPTTR 15
[U1 PP UPTUPPPRN 27
THIEad MBNAGEMENT ... ettt e et e e ettt oo e et e e et et e e et e b e e et e b e e et e b e e e et et e e et et e e e e era s 28
Y116 0= 1 TSP SPPPTTRN 28
JLILY (o= PP PTTPRN 28
(01 =S B o[- o PP 35
NaAMESPACE T NI S_E NI B ...iiii ittt e e et et e e e et e e e et e e 47
Classt hread_group EXTENSION ...ttt e e e e e e e et e e et e e ean e ean e aennaaeanaes 52
S wloTols o I I 0= PP PP PRSPPI 55
1Y Ko 11 o] o PP 55
JLILY (o= PPN 55
FIree THIEaO FUNCLONS ... ittt ettt et e e e et oot e ettt e e et e e ea e e et e e ean e e ean e eeetaaennaaeens 55
(O -SR] o I o] T oT o] o =Y I O L Y- Yo PP 56
(O =SSRy oTo] o LYo [B 4 G- Uo [PPN 58
Non-member function swap(scoped_t hr ead&, Scoped_t hr ad&)cceuiiiuuiiiiiiiiiii e 61
Y4 (e 00l g 2 L] o E PO PRSPPI 62
JLILY (o= PPN 62
[T (= O 4o o S PP PP 75
(o To: Q@ 01100 ST TSSO PP PPPPTTRUPPIN 89
(oo Q€10 = o PP 90
WIth LOCK GUAIT ...t ettt et et e et e et e et e et te e e e et e e et e e et e e e an e eeen e eeanaaennnns 1
(o To: Q00 0= o TSP SPPPTTR 92
(oo gl Y/ o= PP PP PPPPT 93
Other Lock TYPES - EXTENSION ...ttt ettt ettt ettt e e ettt e ettt e e et et e e e e et n e e e eate e e eentaaaeeees 105
[0 g 11 Tox o] PPN 118
LOCK FaCtories - EXTENSION ...ttt e ettt et e e e et e e et e e et e e e et e eea e aetn e eeenaaeanaenen 120
T 0= Y] o= PP PP 121
CoNAItION VATADIESttt e e et et e et e e et e e et e e et e e e an e e e e aeans 128
ONE-tIME TNITIAIIZELIONeee et et e et et et e et e e e et e et e e e e tn e e e et e aea e aetn e eanaaeenss 139
Barriers -- EXTENSION ...ttt et e et et ettt e e et ettt e e e e et te e e e ea e eea e eetn e aean e aetn e eeennaaenns 141
LatChes -- EXPERIMENTAL ...ttt oottt e et e ettt e e et e e et e e e tn e e e e e ean e eetnaaeanaaeens 142
Executors and Schedulers -- EXPERIMENTALLuu ittt e et e e et e a e e e e eaeens 146
[U1 LU = U 159
THIEAO LOCEI SLOTGTE eeeiti ittt ettt ettt e ettt oo ettt e e et bt e et e b e e et et e e et et e e e e et neeeeba s 198
O =] oY Vo Y oL ot I o o B G PSP 199
SYNCIIONIZEA DELA SIIUCIUIESeeeeie ettt ettt e et et e e et et e e et e b e e et et e e et et e e e enaa s 201
Synchronized Values - EXPERIMENTAL ...ttt ettt e et e et e e et e e e ene s 201
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Synchronized QUEUES -- EXPERIMENTAL ...uuuiiiiiii et e e e e e e e e et e et e e aa e e eeaes 209
LY e (0T = 101 £ PPN 222
()= (=0 = o P 222
00101 =00 LSOOI 224
S T =Y =S = 1201 = o) o P 224
IVIOVE SEIMIBILICS ... oottt e ettt e ettt e e ettt e e e ettt e e ettt e e e ettt e e e e ettt e e e et e e e e e et e e e e e ta e e e e e bt e e e e e te e e e e tt e e e e e st e eeenen s 224
[2T0To I="q o] TTor) el V== Ko o P 229
w0010 = 00 1N 229
o 0T =" Lo 0=) P 231
CoNfOrmManCE N0 EXTENSIONuiiiiii ettt ettt e et e et e e e et s e et et s e et et e e e e et s e e e eba e e e e st e eeestnaeeesenn s 232
(00 NS 0T = o B I 0= o T = P 232
C++14 standard Thread library - acCepted ChaNGEScvvuiiii e e e e e e e e 235
C++1y TS Concurrency - ON gOiNG PrOPOSAIS ... cvuuiiiueiii et ee et e e ete e st e e et e e et e e et e eet e et eeateeetaeeteertnaeraneeenns 236
2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Overview

Boost.Thread enablesthe use of multiple threads of execution with shared datain portable C++ code. It provides classes and functions
for managing the threads themselves, along with others for synchronizing data between the threads or providing separate copies of
data specific to individual threads.

The Boost.Thread library was originally written and designed by William E. Kempf (version 1).

Anthony Williams version (version 2) was a mgjor rewrite designed to closely follow the proposals presented to the C++ Standards
Committee, in particular N2497, N2320, N2184, N2139, and N2094

Vicente J. Botet Escriba started (version 3) the adaptation to comply with the accepted Thread C++11 library (Make use of
Boost.Chrono and Boost.Move) and the Shared L ocking Howard Hinnant proposal except for the upward conversions. Some minor
non-standard features have been added also as thread attributes, reverse lock, shared_lock_guard.

In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:

#i ncl ude <boost/thread. hpp>

which includes all the other headersin turn.

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Using and building the library

Boost. Thread is configured following the conventions used to build librarieswith separate source code. Boost. Thread will import/export
the code only if the user has specifically asked for it, by defining either BOOST_ALL_DYN_LINK if they want al boost libraries
to be dynamically linked, or BOOST_THREAD_DYN_LINK if they want just this one to be dynamically liked.

The definition of these macros determines whether BOOST _THREAD_USE DLL isdefined. If BOOST THREAD _USE DLL is
not defined, the library will define BOOST _THREAD USE DLL or BOOST THREAD_USE LIB depending on whether the
platform. On non windows platforms BOOST _THREAD_USE LIB is defined if is not defined. In windows platforms,
BOOST_THREAD USE LIB is defined if BOOST _THREAD_USE DLL and the compiler supports auto-tss cleanup with
Boost. Threads (for the time been Msvc and Intel)

The source code compiled when building the library defines amacros BOOST_THREAD_SOURCE that is used to import or export
it. The user must not define this macro in any case.

Boost.Thread depends on some non header-only libraries.
» Boost.System: This dependency is mandatory and you will need to link with the library.

» Boost.Chrono: This dependency is optional (see below how to configure) and you will need to link with the library if you use
some of the time related interfaces.

» Boost.DateTime: This dependency is mandatory, but even if Boost.DateTime isanon header-only library Boost. Thread uses only
parts that are header-only, so in principle you should not need to link with the library.

It seemsthat there are some IDE (ase.g. Visual Studio) that deducethe librariesthat aprogram needsto link to inspecting the sources.
Such IDE could force to link to Boost.DateTime and/or Boost.Chrono.

As the single mandatory dependency isto Boost.System, the following

bj am t ool set =msvc-11. 0 --buil d-type=conplete --w th-thread

will install only boost_thread and boost_system.

Users of such IDE should force the Boost.Chrono and Boost.DateTime build using
bj am t ool set =nsvc-11.0 --build-type=conplete --with-thread --w th-chrono --with-date_tine

The following section describes all the macros used to configure Boost. Thread.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/1_48_0/libs/config/doc/html/boost_config/boost_macro_reference.html#boost_config.boost_macro_reference.macros_for_libraries_with_separate_source_code
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Y,

Thread 4.3.0

Configuration

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Table 1. Default Values for Configurable Features

Feature
USES_CHRONO

PROVIDES_INTER-
RUPTIONS

THROW_IF_PRECON-
DITION_NOT_SATIS
FIED

PROVIDES_PROM-
ISE_LAZY

PROVIDES_BA-
SIC_THREAD_ID

PROVIDES_GENER-
IC_SHARED _MU-
TEX_ON_WIN

FROVIDES SHARED MU-
TEX _UP -
WARDS_CONVER-
SION

PROVIDES_EXPLI-
CIT_LOCK_CONVER-
SION

PROVIDES FUTURE
PROVIDES_FU-
TURE_CTOR ALLOC-
ATORS

FROVIDES THREAD DE-
STRUCT -
OR_CALLS TERMIN-
ATE_IF_JOINABLE
FROLCESTHRZDMOEAS
SIGN_CALLS TER-
MINATE_IF_JOIN-
ABLE
FROVIDES ONCE CXX11
USES_MOVE

USES DATETIME

FROVIDES THREAD EQ

Anti-Feature
DONT_USE CHRONO

DONT_PROVIDE_IN-
TERRUPTIONS

DONT_PROVIDE FROM-
ISE_LAZY

DONT_PROVIDE_BA-
SIC_THREAD_ID

DONT_PROVIDE_GEN-
ERIC_SHARED MU-
TEX_ON_WIN

DONT FROLCESARD MU
TEX _UP -
WARDS_CONVER-
SION

DONT_PROVIDE_EX-
PLICIT_LOCK_CON-
VERSION

DONT_PROVIDE_FU-
TURE

DONT_PROVIDE_FU-
TURE_CTOR ALLOC-
ATORS

DONT FRO/CETHRZ2D OB
STRUCT -
OR_CALLS TERMIN-
ATE_IF_JOINABLE

DONTFMEHRZDMOELS
SIGN_CALLS TER-
MINATE_IF_JOIN-
ABLE

DONT FROCEONEE OXXTL
DONT_USE_MOVE

DONT_USE_DATE-
TIME

DONT_ FRO/CETHRAD KD

V2

YES/NO

YES

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

YES/NO

YES

V3

YES/NO

YES

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES/NO

YES

V4

YES/NO

YES

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES/NO

NO

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Feature Anti-Feature V2 V3 V4
PROVIDES CONDI- DONT PROVIDE CON- YES YES NO
TION DITION

PROVIDES NES- DONT PROVIDE NES YES YES NO
TED_LOCKS TED _LOCKS

PROVIDES SIGNA- DONT _PROVIDE SG- NO NO YES
TURE_PACK- NATURE_PACK-

AGED_TASK AGED_TASK

PROVIDES_FU- DONT PROVIDE FU- NO NO YES
TURE_INVAL- TURE_INVAL-

ID_AFTER _GET ID_AFTER _GET

PROVIDES VARIAD- DONT PROVIDE VARI- NO NO C++11

IC_THREAD ADIC_THREAD

Boost.Chrono

Boost. Thread uses by default Boost.Chrono for the time related functions and define BOOST_THREAD USES CHRONO if
BOOST_THREAD DONT_USE_CHRONO is not defined. The user should define BOOST_THREAD_DONT_USE_CHRONO for compilers
that don't work well with Boost.Chrono.

O Warning
When defined BOOST_THREAD_PLATFORM_WIN32 BOOST _THREAD_USES CHRONO is defined inde-
pendently of user settings.

Boost.Move

Boost. Thread uses by default an internal move semantic implementation. Since version 3.0.0 you can use the move emulation emu-
lation provided by Boost.Move.

When BOOST_THREAD VERSI ON==2 define BOOST_THREAD USES MOVE if you want to use Boost.Move interface. When
BOOST_THREAD_VERSI ON>=3 define BOOST_THREAD DONT_USE_MOVE if you don't want to use Boost.Move interface.

Boost.DateTime

The Boost.DateTime time related functions introduced in Boost 1.35.0, using the Boost.Date Time library are deprecated. These
include (but are not limited to):

e boost::this_thread::sleep()
e tinmed_join()
e tinmed wait()
e tinmed_l ock()

When BOOST_THREAD_VERSI ON<=3 && defined BOOST_THREAD_PLATFORM_PTHREAD define
BOOST_THREAD DONT_USE_DATETI MEif you don't want to use Boost.DateTimerel ated interfaces. When BOOST_THREAD_VERSI ON>3
&& defined BOOST_THREAD_PLATFORM_PTHREAD define BOOST_THREAD USES_DATETI ME if you want to use
Boost.DateTime related interfaces.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

O Warning
When defined BOOST_THREAD PLATFORM_WIN32 BOOST _THREAD USES DATETIME isdefined inde-
pendently of user settings.

Boost.Atomic
Boost. Thread uses by default an Boost.Atomic in POSIX platforms to implement call_once..

Define BOOST_THREAD_USES _ATOM C if you want to use Boost.Atomic. Define BOOST_THREAD DONT_USE_ATOM C if you
don't want to use Boost.Atomic or if it is not supported in your platform.

boost : : t hread: : oper at or == deprecated

The following operators are deprecated:

* boost::thread::operator==

* boost::thread::operator!=

When BOOST_THREAD_PROVI DES_THREAD EQis defined Boost. Thread provides these deprecated feature.
Use instead

* boost::thread::id::operator==

* boost::thread::id::operator!=

O Warning
Thisis abreaking change respect to version 1.x.

When BOOST THREAD VERSI ON>=4 define BOOST THREAD PROVI DES THREAD EQ if you want this feature. When
BOOST_THREAD_VERS| ON<4 define BOOST THREAD DONT_PROVI DE_THREAD EQ if you don't want this feature.

boost::condition deprecated

boost : : condi ti on isdeprecated. When BOOST_THREAD PROVI DES_CONDI TI ONisdefined Boost. Thread providesthisdeprecated
feature.

Useinstead boost : : condi ti on_vari abl e_any.

O Warning
Thisis abreaking change respect to version 1.x.

When BOOST_THREAD VERS|I ON>3 define BOOST THREAD PROVI DES CONDI TION if you want this feature. When
BOOST_THREAD_VERSI ON<=3 define BOOST _THREAD_DONT_PROVI DE_CONDI TI ONif you don't want this feature.

Mutex nested lock types deprecated
The following nested typedefs are deprecated:

* boost:: nutex::scoped_| ock,

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

* boost::nutex::scoped_try_I ock,

* boost::tinmed_mnutex::scoped_| ock

* boost::timed_mutex::scoped_try_ | ock

* boost::tined_nutex::tinmed_scoped_tinmed_| ock

* boost::recursive_nutex::scoped_| ock,

* boost::recursive_mutex::scoped_try_| ock,

* boost::recursive_tinmed_nutex::scoped_| ock

* boost::recursive_timed_nutex::scoped_try_| ock

* boost::recursive_timed_nutex::tined_scoped_timed_| ock

When BOOST_THREAD PROVI DES_NESTED LOCKS is defined Boost. Thread provides these deprecated feature.

Useinstead * boost : : uni que_| ock<boost : : mut ex>, * boost : : uni que_| ock<boost : : nut ex> withthetry_to_I ock_t
constructor, * boost : : uni que_| ock<boost::ti med_nut ex> * boost: : uni que_| ock<boost: :ti nmed_nut ex> with the
try_to_l ock_t constructor * boost : : uni que_I| ock<boost: :ti med_nut ex> * boost: : uni que_l ock<boost: :recurs-
ive_nutex> * boost::unique_|lock<boost::recursive_mutex> with the try to_lock_t constructor, *
boost : : uni que_l ock<boost::recursive_timed_mut ex>*boost: : uni que_| ock<boost::recursive_tined_nutex>
withthetry_to_| ock_t constructor * boost : : uni que_| ock<boost: :recursive_timed_nut ex>

O Warning
Thisis abreaking change respect to version 1.x.

When BOOST_THREAD VERSI ON>=4 define BOOST_THREAD PROVI DES_NESTED LOCKS if you want these features. When
BOOST_THREAD_VERSI ON<4 define BOOST_THREAD_DONT_PROVI DE_NESTED_LOCKS if you don't want thes features.

thread::id

Boost.Thread uses by default athread::id on Posix based on the pthread type (BOOST_THREAD_PROVIDES BASIC_THREAD_ID).
For backward compatibility and also for compilers that don't work well with this modification the user can define
BOOST_THREAD DONT_PROVI DE_BASI C_THREAD | D.

Define BOOST_THREAD DONT_PROVI DE_BASI C_THREAD | D if you don't want these features.

Shared Locking Generic

The shared mutex implementation on Windows platform provides currently less functionality than the generic one that is used for
PTheads based platforms. In order to have access to these functions, the user needs to define BOOST_THREAD PROVI DES_GENER-
I C_SHARED MUTEX_ON_W Nto use the generic implementation, that while could be less efficient, provides all the functions.

When BOOST_THREAD VERS| ON==2 define BOOST_THREAD PROVI DES_GENERI C_SHARED MJUTEX_ON W N if you want these
features. When BOOST_THREAD VERSI ON>=3 define BOOST_THREAD_DONT_PROVI DE_GENERI C_SHARED MUTEX_ON W N if
you don't want these features.

Shared Locking Upwards Conversion

Boost. Threadsincludesin version 3 the Shared L ocking Upwards Conversion as defined in Shared L ocking. These conversions need
to be used carefully to avoid deadl ock or livelock. The user need to define explicitly BOOST_THREAD PROVI DES_SHARED MUTEX_UP-
WARDS_CONVERSI ON to get these upwards conversions.

httpo://www.renderx.com/

http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

When BOOST_THREAD_VERSI ON==2 define BOOST_THREAD PROVI DES_SHARED_ MUTEX_UPWARDS_CONVERSI ON if you want
thesefeatures. When BOOST _THREAD VERS|I ON>=3 defineBOOST _THREAD DONT_PROVI DE_SHARED MUTEX_UPWARDS CONVERSI ON
if you don't want these features.

Explicit Lock Conversion

In Shared Locking the lock conversions are explicit. As this explicit conversion breaks the lock interfaces, it is provided only if the
BOOST_THREAD PROVI DES_EXPLI Cl T_LOCK_CONVERSI ONis defined.

When BOOST_THREAD_VERSI ON==2 define BOOST_THREAD _PROVI DES_EXPLI CI T_LOCK_CONVERSI ON if youwant thesefeatures.
When BOOST_THREAD_VERSI ON==3 define BOOST_THREAD_DONT_PROVI DE_EXPLI Cl T_LOCK_CONVERSI ON if you don't want
these features.

unique_future versus future

C++11 usesst d: : f ut ur e. Versions of Boost.Thread previous to version 3.0.0 usesboost : uni que_f ut ur e. Since version 3.0.0
boost : : f ut ur e replaces boost : : uni que_f ut ur e when BOOST_THREAD_ PROVI DES_FUTURE is defined. The documentation
doesn't contains anymore however boost : : uni que_f ut ure.

When BOOST_THREAD VERSI ON==2 define BOOST_THREAD PROVI DES_FUTURE if you want to use boost::future. When
BOOST_THREAD VERSI ON>=3 define BOOST_THREAD DONT_PROVI DE_FUTURE if you want to use boost::unique_future.

promise lazy initialization

C++11 promise initialize the associated state at construction time. Versions of Boost.Thread previous to version 3.0.0 initialize it
lazily at any point in time in which this associated state is needed.

Since version 3.0.0 this difference in behavior can be configured. When BOOST_THREAD PROVI DES_PROM SE_LAZY is defined
the backward compatible behavior is provided.

When BOOST_THREAD_VERSI ON==2 define BOOST_THREAD_DONT_PROVI DE_PROM SE_LAZY if you want to use boost::future.
When BOOST_THREAD_VERSI ON>=3 define BOOST_THREAD PROVI DES_PROM SE_LAZY if youwant to useboost::unique_future.

promise Allocator constructor

C++11 std::promise provides constructors with allocators.

tenpl ate <typenane R>
cl ass prom se

{
publi c:
tenpl ate <cl ass All ocat or >
explicit prom se(allocator_arg_t, Allocator a);
/1
b

tenpl ate <class R class Alloc> struct uses_all ocator<promni se<R> All oc>: true_type {};
where

struct allocator_arg t { };
constexpr allocator_arg_t allocator_arg = allocator_arg_t();

tenplate <class T, class Alloc> struct uses_all ocator;

Since version 3.0.0 Boost. Thread implements this constructor using the following interface

10

httpo://www.renderx.com/

http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

nanmespace boost

{
typedef container::allocator_arg_t allocator_arg t;
constexpr allocator_arg_t allocator_arg = {};

namespace contai ner

{
tenplate <class R class Alloc>
struct uses_all ocator<prom se<R> Al loc>: true_type {};

}

tenplate <class T, class Alloc>
struct uses_allocator : public container::uses_allocator<T, Aloc> {};

which introduces adependency on Boost.Container. Thisfeatureisprovided only if BOOST _THREAD PROVI DES FUTURE CTOR AL-
LOCATORS is defined.

When BOOST_THREAD_VERSI ON==2 define BOOST_THREAD_PROVI DES_FUTURE_CTOR_ALLOCATORS if you want these features.

When BOOST_THREAD_VERSI ON>=3 define BOOST_THREAD DONT_PROVI DE_FUTURE_CTOR_ALLOCATORS if you don't want
these features.

Call to terminate if joinable

C++11 hasadifferent semantic for the thread destructor and the move assignment. Instead of detaching the thread, callsto terminate()
if the thread was joinable. When BOOST_THREAD PROVI DES_THREAD DESTRUCTOR CALLS TERM NATE_| F_JO NABLE and
BOOST_THREAD_PROVI DES_THREAD MOVE_ASSI GN_CALLS TERM NATE | F_JO NABLE is defined Boost.Thread provides the
C++ semantic.

When BOOST_THREAD VERSI ON==2 defineBOOST_THREAD PROVI DES_ THREAD DESTRUCTCR CALLS TERM NATE | F_JO NABLE
if you want these features. When BOOST_THREAD_VERSI ON>=3 define BOOST_THREAD_DONT_PROVI DE_THREAD_DESTRUCT-
OR_CALLS TERM NATE_I F_JO NABLE if you don't want these features.

When BOOST_THREAD VERSI ON==2 defineBOCST_THREAD PROVI DES_ THREAD MOVE_ASSI GN CALLS TERM NATE | F_JO NABLE

if you want these features. When BOOST _THREAD VERS| ON>=3 define BOOST THREAD DONT_PROVI DE_THREAD MOVE AS-
SI GN_CALLS TERM NATE_| F_JO NABLE if you don't want these features.

once_flag

C++11 defines a default constructor for once flag. When BOOST_THREAD_PROVI DES_ONCE_CXX11 is defined Boost.Thread
provides this C++ semantics. In this case, the previous aggregate syntax is not supported.

boost::once_flag once = BOOST_ONCE INIT;
You should now just do

boost: : once_fl ag once;

When BOOST_THREAD VERS| ON==2 define BOOST THREAD_PROVI DES_ONCE CXX11 if you want these features. When
BOOST_THREAD_VERS| ON>=3 define BOOST _THREAD DONT_PROVI DE_ONCE_CXX11 if you don't want these features.

Signature parameter for packaged_task

C++11 packaged task class has a Signature template parameter. When BOOST_THREAD PROVI DES_SI GNATURE _PACKAGED TASK
is defined Boost. Thread provides this C++ feature.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

O Warning
Thisis abreaking change respect to version 3.x.

When BOOST_THREAD_VERSI ON<4 define BOOST_THREAD PROVI DES_SI GNATURE PACKAGED TASK if you want this feature.
When BOOST_THREAD_VERSI ON>=4 define BOOST_THREAD_DONT_PROVI DE_SI GNATURE _PACKAGED TASK if you don't want
this feature.

-var thread constructor with variadic rvalue parameters

C++11 thread constructor accep avariable number of rvalue argumentshas. When BOOST_THREAD PROVI DES_VARI ADI C_THREAD
is defined Boost. Thread provides this C++ feature if the following are not defined

« BOOST_NO_SFINAE_EXPR

« BOOST_NO_CXX11 VARIADIC_TEMPLATES

« BOOST NO_CXX11 DECLTYPE

« BOOST_NO_CXX11 DECLTYPE_N3276

« BOOST_NO_CXX11 RVALUE REFERENCES

« BOOST NO_CXX11 TRAILING RESULT TYPES

« BOOST_NO_CXX11 RVALUE REFERENCES

BOOST_NO_CXX11 HDR_TUPLE

When BOOST_THREAD_VERSI ON>4 define BOOST_THREAD DONT_PROVI DE_VARI ADI C_THREAD if you don't want this feature.

future<>::get() invalidates the future

C++11 future<>::get() invalidates the future once its value has been obtained. When BOOST_THREAD_PROVI DES_FUTURE_| NVAL-
I D AFTER _GET isdefined Boost.Thread provides this C++ feature.

O Warning
Thisis abreaking change respect to version 3.x.

When BOOST_THREAD VERSI ON<4 define BOOST_THREAD PROVI DES_FUTURE_| NVALI D_AFTER_GET if you want this feature.
When BOOST_THREAD_VERSI ON>=4 define BOOST_THREAD_DONT_PROVI DE_FUTURE_| NVALI D_AFTER_GET if you don't want
this feature.

Interruptions
Thread interruption, while useful, makes any interruption point less efficient than if the thread were not interruptible.

When BOOST_THREAD PROVI DES_| NTERRUPTIONS is defined Boost.Thread provides interruptions. When
BOOST_THREAD_DONT_PROVI DE_| NTERRUPTI ONS is defined Boost.Thread don't provide interruption.

Boost. Thread definesBOOST_THREAD_PROVIDES_INTERRUPTIONSIf neither BOOST_THREAD_PROVIDES_INTERRUP-
TIONS nor BOOST_THREAD_DONT_PROVIDE_INTERRUPTIONS are defined, so that there is no compatibility break.

12

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Version

BOOST_THREAD_VERSI ONdefinesthe Boost. Thread version. The default versionis 2. Inthis case thefollowing breaking or extending
macros are defined if the oppositeis not requested:

BOOST_THREAD_PROVI DES_PROM SE_LAZY

The user can request the version 3 by defining BOOST_THREAD VERSI ON to 3. In this case the following breaking or extending
macros are defined if the opposite is not requested:

Breaking change BOOST_THREAD PROVI DES_EXPLI Cl T_LOCK_CONVERSI ON
Conformity & Breaking change BOOST_THREAD_PROVI DES_FUTURE

Uniformity BOOST_THREAD PROVI DES_GENERI C_SHARED MUTEX_ON W N
Extension BOOST_THREAD PROVI DES_SHARED MUTEX_UPWARDS_CONVERSI ON
Conformity BOOST_THREAD_PROVI DES_FUTURE_CTOR_ALLCOCATORS

Conformity & Breaking change BOOST_THREAD_PROVIDES THREAD_DESTRUCTOR_CALLS TERMINATE_IF_JOIN-
ABLE

Conformity & Bresking changeBOOST_THREAD_PROVIDES THREAD_MOVE _ASSIGN_CALLS TERMINATE_IF_JOIN-
ABLE

Conformity & Breaking change BOOST_THREAD_PROVI DES_ONCE_CXX11

Breaking change BOOST_THREAD DONT_PROVI DE_PROM SE_LAZY

The user can request the version 4 by defining BOOST_THREAD_VERSI ON to 4. In this case the following bresking or extending
macros are defined if the opposite is not requested:

Conformity & Breaking change BOOST_THREAD_PROVI DES_SI GNATURE_PACKAGED_TASK
Conformity & Breaking change BOOST_THREAD PROVI DES FUTURE | NVALI D AFTER GET
Conformity BOOST_THREAD_PROVI DES_VARI ADI C_THREAD

Breaking change BOOST_THREAD_DONT_PROVI DE_THREAD EQ

Breaking change BOOST_THREAD DONT_USE_DATETI ME

Limitations

Some compilers don't work correctly with some of the added features.

SunPro

If _ SUNPRO_CC < 0x5100 the library defines

BOOST_THREAD_DONT_USE_MOVE

If __ SUNPRO_CC < 0x5100 the library defines

BOOST_THREAD_DONT_PROVI DE_FUTURE_CTOR ALLOCATORS

VACPP

If __IBMCPP__ <1100 thelibrary defines

render

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

« BOOST_THREAD DONT_USE_CHRONO
+ BOOST_THREAD USES_DATE

And Boost.Thread doesn't links with Boost.Chrono.

WCE
If _WIN32_WCE && _WIN32_WCE==0x501 the library defines

* BOOST_THREAD_DONT_PROVI DE_FUTURE_CTOR_ALLOCATORS

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

History
Version 4.3.0 - boost 1.56

Know Bugs:

#2442 Application statically linked with Boost. Thread crashes when Google Desktop isinstalled (Windows XP)

#3926 thread _specific_ptr + dlopen library causes a SIGSEGV.

#4833 MinGW/test_tss lib: Support of automatic tss cleanup for native threading API not available

#6782 call_once usesincorrect barrier intrinsic on Visual Studio

#7319 Take care of c++std-lib-32966 issue

#8600 wait_for_any hangs, if called with multiple copies of shared future referencing same task

#9307 future::fallback_to assert with ERRORRRRR boost: mutex lock failed in pthread_mutex_lock: Invalid argument
#9308 future::async fails with terminate called throwing an exception when called with alambda - clang-darwin-asan11
#9310 test_4648_lib fails on clang-darwin-asan1l

#9311 ex_lambda future fails on msvc-11.0

#9425 Boost promise & future does not use supplied allocator for value storage

#9558 future continuations unit test hangs in get()/pthread_cond_wait() on Mac 10.7/32-bit/x86/darwin-4.2.1

Please take alook at thread Know Bugs to see the current state.

Please take alook at thread trunk regression test to see the last snapshot.

Sever limitations:

There are some severe bugs that prevent the use of the library on concrete contexts, in particular:

on thread specific storage that prevent the library to be used with dynamic libraries,

The experimental features of boost::future have some severe holes that make the program crash unexpectedly.

New Experimental Features:

#7446 Async: Add when_any.

#7447 Async: Add when_all.

#7448 Async: Add async taking a scheduler parameter.
#8274 Synchro: Add concurrent queue

#8518 Synchro: Add alatch class.

#8513 Async: Add a basic thread_pool executor.

#8516 Async: Add future/shared_future::then taking a scheduler as parameter.

Fixed Bugs:

#8070 prefer GetTickCount64 over GetTickCount

15

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/2442
http://svn.boost.org/trac/boost/ticket/3926
http://svn.boost.org/trac/boost/ticket/4833
http://svn.boost.org/trac/boost/ticket/6782
http://svn.boost.org/trac/boost/ticket/7319
http://svn.boost.org/trac/boost/ticket/8600
http://svn.boost.org/trac/boost/ticket/9307
http://svn.boost.org/trac/boost/ticket/9308
http://svn.boost.org/trac/boost/ticket/9310
http://svn.boost.org/trac/boost/ticket/9311
http://svn.boost.org/trac/boost/ticket/9425
http://svn.boost.org/trac/boost/ticket/9558
https://svn.boost.org/trac/boost/query?status=assigned&status=new&status=reopened&component=thread&type=!Feature+Requests&col=id&col=summary&order=id
http://www.boost.org/development/tests/release/developer/thread.html
http://svn.boost.org/trac/boost/ticket/7446
http://svn.boost.org/trac/boost/ticket/7447
http://svn.boost.org/trac/boost/ticket/7448
http://svn.boost.org/trac/boost/ticket/8274
http://svn.boost.org/trac/boost/ticket/8518
http://svn.boost.org/trac/boost/ticket/8513
http://svn.boost.org/trac/boost/ticket/8516
http://svn.boost.org/trac/boost/ticket/8070
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#9333 ex_scoped_thread compile fails on msvc-12.0

#9366 async(Executor, ...) failsto compile with msvc-10,11,12

#9402 test_excutor regression on msve-10,11,12

#9404 ex_make future regression error

#9471 Synchronization documentation nits

#9535 Missing exception safety might result in crash

#9618 try_join_for problem: program is not terminate.

#9673 thread compilation with MingW/gcc on Windows gives errors

#9708 boost::condition_variable::timed_wait unexpectedly wakes up while should wait infinite

#9711 future continuation called twice

Version 4.2.0 - boost 1.55

Know Bugs:

#2442 Application statically linked with Boost. Thread crashes when Google Desktop isinstalled (Windows XP)

#3926 thread specific_ptr + dlopen library causes a SIGSEGV.

#4833 MinGW/test_tss lib: Support of automatic tss cleanup for native threading API not available

#6782 call_once usesincorrect barrier intrinsic on Visual Studio

#7319 Take care of c++std-1ib-32966 issue

#3600 wait_for_any hangs, if called with multiple copies of shared future referencing same task

#9307 future::fallback to assert with ERRORRRRR hoost: mutex lock failed in pthread mutex_lock: Invalid argument
#9308 future::async fails with terminate called throwing an exception when called with alambda - clang-darwin-asan1l
#9311 ex_|lambda future fails on msvc-11.0

#9310 test_4648 lib fails on clang-darwin-asanll

Please take alook at thread trunk regression test to see the current state.

Sever limitations:

There are some severe bugs that prevent the use of the library on concrete contexts, in particular:

on thread specific storage that prevent the library to be used with dynamic libraries,

The experimental features of boost::future have some severe holes that make the program crash unexpectedly.

New Features:

#8519 Synchro: Update class barrier with a completion function.
#8515 Async: Add shared_future::then.

#8519 Synchro: Update class barrier with a completion function

render

16

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/9333
http://svn.boost.org/trac/boost/ticket/9366
http://svn.boost.org/trac/boost/ticket/9402
http://svn.boost.org/trac/boost/ticket/9404
http://svn.boost.org/trac/boost/ticket/9471
http://svn.boost.org/trac/boost/ticket/9535
http://svn.boost.org/trac/boost/ticket/9618
http://svn.boost.org/trac/boost/ticket/9673
http://svn.boost.org/trac/boost/ticket/9708
http://svn.boost.org/trac/boost/ticket/9711
http://svn.boost.org/trac/boost/ticket/2442
http://svn.boost.org/trac/boost/ticket/3926
http://svn.boost.org/trac/boost/ticket/4833
http://svn.boost.org/trac/boost/ticket/6782
http://svn.boost.org/trac/boost/ticket/7319
http://svn.boost.org/trac/boost/ticket/8600
http://svn.boost.org/trac/boost/ticket/9307
http://svn.boost.org/trac/boost/ticket/9308
http://svn.boost.org/trac/boost/ticket/9311
http://svn.boost.org/trac/boost/ticket/9310
https://svn.boost.org/trac/boost/query?status=assigned&status=new&status=reopened&component=thread&type=!Feature+Requests&col=id&col=summary&order=id
http://svn.boost.org/trac/boost/ticket/8519
http://svn.boost.org/trac/boost/ticket/8515
http://svn.boost.org/trac/boost/ticket/8519
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

» #8615 Async: Replace make future/make_shared_future by make ready future.

* #8627 Async: Add future<>::unwrap and unwrapping constructor.

» #8677 Async: Add future<>::get_or.

e #8678 Async: Add future<>::fallback to.

» #8891 upgrade to_unique lock: missing mutex() function.

» #8955 Request for more efficient way to get exception_ptr from future.

Fixed Bugs:

» #7461 detail::win32::ReleaseSemaphore may be called with count_to _release equal to 0
» #8070 prefer GetTickCount64 over GetTickCount

e #8768 win32 condition variable::wait_until infinite wait in rare cases.

* #8817 Boost Thread Windows CE _createthreadex handling breaks mingw w64.

» #8943 Failed to compile code using boost::call_once with Intel C++ Composer XE 2013 on Windows.
» #8931 Typosin external_locking reference.

» #9029 Misprint in documentation.

» #9037 gce -Wshadow gives warnings in condition_variable{,_fwd} .hpp.

e #9041 Boost.Thread DSO's may need to link with Boost.Atomic.

» #9048 boost::scoped_thread useless ctor with variadic template arguments.

» #9079 Condition variable will wait forever for some timepoint values (Win).

Version 4.1.0 - boost 1.54

New Features:

» #7285 C++11 compliance: Allow to pass movable arguments for call_once.
e #7445 Async: Add future<>.then

» #7449 Synchro: Add a synchronized value class

Fixed Bugs:

o #4878 MinGW 4.5.0 undefined reference to bool interruptible wait(detail::win32::handle handle to wait_for,detail::t imeout
target_time).

* #4882 Win32 shared_mutex does not handle timeouts correctly.
» #5752 boost::call_once() is unreliable on some platforms

» #6652 Boost.Thread shared mutex.hpp:50:99: warning: dereferencing type-punned pointer will break strict-aliasing rulesWskriet-
o

o #6843 [Intel C++] Compile Errors with '#include <atomic>'

» #6966 future boost::future_category inconsistent dll linkage

17

render

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/8615
http://svn.boost.org/trac/boost/ticket/8627
http://svn.boost.org/trac/boost/ticket/8677
http://svn.boost.org/trac/boost/ticket/8678
http://svn.boost.org/trac/boost/ticket/8891
http://svn.boost.org/trac/boost/ticket/8955
http://svn.boost.org/trac/boost/ticket/7461
http://svn.boost.org/trac/boost/ticket/8070
http://svn.boost.org/trac/boost/ticket/8768
http://svn.boost.org/trac/boost/ticket/8817
http://svn.boost.org/trac/boost/ticket/8943
http://svn.boost.org/trac/boost/ticket/8931
http://svn.boost.org/trac/boost/ticket/9029
http://svn.boost.org/trac/boost/ticket/9037
http://svn.boost.org/trac/boost/ticket/9041
http://svn.boost.org/trac/boost/ticket/9048
http://svn.boost.org/trac/boost/ticket/9079
http://svn.boost.org/trac/boost/ticket/7285
http://svn.boost.org/trac/boost/ticket/7445
http://svn.boost.org/trac/boost/ticket/7449
http://svn.boost.org/trac/boost/ticket/4878
http://svn.boost.org/trac/boost/ticket/4882
http://svn.boost.org/trac/boost/ticket/5752
http://svn.boost.org/trac/boost/ticket/6652
http://svn.boost.org/trac/boost/ticket/6843
http://svn.boost.org/trac/boost/ticket/6966
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#7720 exception lock_error while intensive locking/unlocking of mutex

#7755 Thread: deadlock with shared_mutex on Windows

#7980 Build error: msvc-11.0 and BOOST_THREAD_DONT_USE DATETIME
#7982 pthread_delay np() parm compile error on AlX

#8027 thread library fails to compile with Visual Studio 2003

#8070 prefer GetTickCount64 over GetTickCount

#8136 boost::this thread::sleep for() sleepslonger than it should in Windows
#8212 Boost thread compilation error on Solaris 10

#8237 fix documentation for 'thread_group'

#8239 barrier::wait() not marked as interruption_point

#8323 boost::thread::try_join_for/try_join_until may block indefinitely due to a combination of problems in Boost.Thread and
Boost.Chrono

#8337 The internal representation of "std::string(this->code()->message())" escapes, but is destroyed when it exits scope.
#8371 C++11 once_flag enabled when constexpr is not available

#8422 Assertion in win32::WaitForSingleObject()

#8443 Header file inclusion order may cause crashes

#8451 Missing documented function 'boost;:scoped _thread::joinable

#8458 -DBOOST_THREAD_DONT_USE_CHRONO in thread.obj.rsp but not explicitly set

#8530 [Coverity] Unused variable thread _handle, uninitialized variable cond_mutex in thread/pthread/thread_data.hpp
#8550 static linking of Boost.Thread with an MFC-DII

#8576 "sur parolle" should be "sur parole”.

#8596 With C++0x enabled, boost::packaged_task stores a reference to function objects, instead of a copy.

#8626 Reintroduce BOOST VERIFY on pthread _mutex_destroy return type

#8645 Typo in Strict lock definition

#3671 promise: set_..._at_thread_exit

#8672 future<>::then(void()) doesn't works

#8674 Futures as local named objects can't be returned with implicit move.

Version 4.0.0 - boost 1.53

Deprecated features:

O Warning
Deprecated features since boost 1.53 will be available only until boost 1.58.

render

18

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7720
http://svn.boost.org/trac/boost/ticket/7755
http://svn.boost.org/trac/boost/ticket/7980
http://svn.boost.org/trac/boost/ticket/7982
http://svn.boost.org/trac/boost/ticket/8027
http://svn.boost.org/trac/boost/ticket/8070
http://svn.boost.org/trac/boost/ticket/8136
http://svn.boost.org/trac/boost/ticket/8212
http://svn.boost.org/trac/boost/ticket/8237
http://svn.boost.org/trac/boost/ticket/8239
http://svn.boost.org/trac/boost/ticket/8323
http://svn.boost.org/trac/boost/ticket/8337
http://svn.boost.org/trac/boost/ticket/8371
http://svn.boost.org/trac/boost/ticket/8422
http://svn.boost.org/trac/boost/ticket/8443
http://svn.boost.org/trac/boost/ticket/8451
http://svn.boost.org/trac/boost/ticket/8458
http://svn.boost.org/trac/boost/ticket/8530
http://svn.boost.org/trac/boost/ticket/8550
http://svn.boost.org/trac/boost/ticket/8576
http://svn.boost.org/trac/boost/ticket/8596
http://svn.boost.org/trac/boost/ticket/8626
http://svn.boost.org/trac/boost/ticket/8645
http://svn.boost.org/trac/boost/ticket/8671
http://svn.boost.org/trac/boost/ticket/8672
http://svn.boost.org/trac/boost/ticket/8674
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

e C++11 compliance: packaged task<R> is deprecated, use instead packaged task<R()>. See
BOOST_THREAD_PROVIDES SIGNATURE_PACKAGED _TASK and BOOST_THREAD_DONT_PROVIDE_SIGNA-
TURE_PACKAGED_TASK

» #7537 deprecate Mutex::scoped _lock and scoped _try lock and boost::condition

New Features:

e #6270 c++11 compliance: Add thread constructor from movable callable and movable arguments Provided when
BOOST_THREAD_PROVIDES VARIADIC THREAD is defined (Default value from Boost 1.55): See
BOOST_THREAD_PROVIDES VARIADIC THREAD and BOOST_THREAD_DONT_PROVIDE_VARIADIC_THREAD.

e #7279 C++11 compliance: Add noexcept in system related functions

e #7281 C++11 compliance: Add ArgTypes to packaged task template. Provided when BOOST_THREAD_PROVIDES SIGNA-
TURE_PACKAGED_TASK isdefined (Default valuefrom Boost 1.55). See BOOST_THREAD_PROVIDES SIGNATURE_PACK-
AGED_TASK and BOOST_THREAD_DONT_PROVIDE_SIGNATURE_PACKAGED_TASK.

e #7282 C++11 compliance: Add packaged_task::make ready at thread exit function
» #7285 C++11 compliance: Allow to pass movable arguments for call_once

e #7412 C++11 compliance: Add async from movable calable and movable arguments Provided when
BOOST_THREAD_PROVIDES VARIADIC_THREAD andBOOST_THREAD_PROVIDES SIGNATURE_PACKAGED_TASK
are defined (Default value from Boost 1.55): See BOOST_THREAD_PROVIDES SIGNATURE_PACKAGED_TASK and
BOOST_THREAD_DONT_PROVIDE_SIGNATURE_PACKAGED_TASK, BOOST_THREAD_PROVIDES VARIAD-
IC_THREAD and BOOST_THREAD_DONT_PROVIDE_VARIADIC_THREAD.

* #7413 C++11 compliance: Add async when the launch policy is deferred.

* #7414 C++11 compliance: future::get post-condition should be valid()==fal se.

o #7422 Provide a condition variable with zero-overhead performance penality.

» #7444 Async: Add make future/make shared future.

» #7540 Threads: Add a helper class that join athread on destruction.

e #7541 Threads. Add athread wrapper class that joins on destruction.

» #7575 C++11 compliance: A future created by async should "join" in the destructor.
e #7587 Synchro: Add strict_lock and nested_strict_lock.

» #7588 Synchro: Split the locks.hpp in several filesto limit dependencies.

» #7590 Synchro: Add lockable concept checkers based on Boost.ConceptCheck.

» #7591 Add lockable traits that can be used with enable if.

e #7592 Synchro: Add anull_mutex that is a no-op and that is amodel of Upgardelockable.

» #7593 Synchro: Add aexternally locked class.

#7594 Threads: Allow to disable thread interruptions.
Fixed Bugs:

» #5752 boost::call_once() is unreliable on some platforms

19

render

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7537
http://svn.boost.org/trac/boost/ticket/6270
http://svn.boost.org/trac/boost/ticket/7279
http://svn.boost.org/trac/boost/ticket/7280
http://svn.boost.org/trac/boost/ticket/7281
http://svn.boost.org/trac/boost/ticket/7282
http://svn.boost.org/trac/boost/ticket/7285
http://svn.boost.org/trac/boost/ticket/7412
http://svn.boost.org/trac/boost/ticket/7413
http://svn.boost.org/trac/boost/ticket/7414
http://svn.boost.org/trac/boost/ticket/7422
http://svn.boost.org/trac/boost/ticket/7414
http://svn.boost.org/trac/boost/ticket/7540
http://svn.boost.org/trac/boost/ticket/7541
http://svn.boost.org/trac/boost/ticket/7575
http://svn.boost.org/trac/boost/ticket/7587
http://svn.boost.org/trac/boost/ticket/7588
http://svn.boost.org/trac/boost/ticket/7590
http://svn.boost.org/trac/boost/ticket/7591
http://svn.boost.org/trac/boost/ticket/7592
http://svn.boost.org/trac/boost/ticket/7593
http://svn.boost.org/trac/boost/ticket/7590
http://svn.boost.org/trac/boost/ticket/5752
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

e #7464 BOOST_TEST(n alive == 1); fails due to race condition in aregression test tool.

» #7657 Serious performance and memory consumption hit if condition_variable methods condition notify_oneor notify_all isused
repeatedly.

» #7665 this_thread::sleep_for no longer uses steady _clock in thread.

o #7668 thread_group::join_all() should check whether its threads are joinable.

» #7669 thread_group::join_all() should catch resource _deadlock_would_occur.

* #7671 Error including boost/thread.hpp header on iOS.

o #7672 lockable traits.hpp syntax error: "defined" token misspelled.

o #7798 boost::future set_wait_callback thread safety issues.

» #7808 Incorrect description of effects for this_thread::sleep _for and this_thread::sleep_until.

e #7812 Returns. cv_status::no_timeout if the call is returning because the time period specified by rel_time has elapsed,
cv_status::timeout otherwise.

» #7874 compile warning: thread.hpp:342: warning: type attributes are honored only at type definition.
» #7875 BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED should not be enabled by default.
» #7882 wrong exception text from condition_variable::wait(unique_|ock<mutex>&).

o #7890 thread::do_try_join_until() ismissing areturn type.

Version 3.1.0 - boost 1.52

Deprecated Features:
Deprecated features since boost 1.50 available only until boost 1.55:

These deprecated features will be provided by default up to boost 1.52. If you don't want to include the deprecated features you could
define BOOST_THREAD_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0 0. Since 1.53 these features will not
be included any more by default. Since this version, if you want to include the deprecated features yet you could define
BOOST_THREAD_PROVIDE_DEPRECATED_FEATURES SINCE_V3_0_0. These deprecated features will be only available
until boost 1.55, that is you have yet 1 year to move to the new features.

» Time related functions don't using the Boost.Chrono library, use the chrono overloads instead.
Breaking changes when BOOST_THREAD_VERSION==3 (Default value since Boost 1.53):

There are some new features which share the same interface but with different behavior. These breaking features are provided by
default when BOOST_THREAD_VERSION is 3, but the user can however choose the version 2 behavior by defining the corres-
ponding macro. As for the deprecated features, these broken features will be only available until boost 1.55.

» #6229 Rename the unique_future to future following the c++11.

» #6266 Breaking change: thread destructor should call terminate if joinable.

» #6269 Breaking change: thread move assignment should call terminate if joinable.
New Features:

» #2361 thread specific_ptr: document nature of the key, complexity and rationale.

» #4710 C++11 compliance: Missing async().

20

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7464
http://svn.boost.org/trac/boost/ticket/7657
http://svn.boost.org/trac/boost/ticket/7665
http://svn.boost.org/trac/boost/ticket/7668
http://svn.boost.org/trac/boost/ticket/7669
http://svn.boost.org/trac/boost/ticket/7671
http://svn.boost.org/trac/boost/ticket/7672
http://svn.boost.org/trac/boost/ticket/7798
http://svn.boost.org/trac/boost/ticket/7808
http://svn.boost.org/trac/boost/ticket/7812
http://svn.boost.org/trac/boost/ticket/7874
http://svn.boost.org/trac/boost/ticket/7875
http://svn.boost.org/trac/boost/ticket/7882
http://svn.boost.org/trac/boost/ticket/7890
http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://svn.boost.org/trac/boost/ticket/2361
http://svn.boost.org/trac/boost/ticket/4710
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

#7283 C++11 compliance: Add notify_all_at_thread_exit.

#7345 C++11 compliance: Add noexcept to recursive mutex try_lock.

Fixed Bugs:

#2797 Two problems with thread specific_ptr.

#5274 failed to compile future.hpp with stlport 5.1.5 under msvc8.1, because of undefined class.
#5431 compile error in Windows CE 6.0(interl ocked).

#5696 win32 detail::set_tss data does nothing when tss cleanup functionis NULL.
#6931 mutex waits forwever with Intel C++ Compiler XE 12.1.5.344 Build 20120612
#7045 Thread library does not automatically compile date_time.

#7173 wrong function name interrupt_point().

#7200 Unable to build boost.thread modul arized.

#7220 gec 4.6.2 warns about inline+dllimport functions.

#7238 this _thread::sleep_for() does not respond to interrupt().

#7245 Minor typos on documentation related to version 3.

#7272 win32/thread_primitives.hpp: (Unneccessary) Warning.

#7284 Clarify that there is no access priority between lock and shared lock on shared mutex.
#7329 boost/thread/future.hpp does not compile on HPUX.

#7336 BOOST_THREAD_DONT_USE_SY STEM doesn't work.

#7349 packaged task holds reference to temporary.

#7350 allocator_destructor does not destroy object

#7360 Memory leak in pthread implementation of boost::thread specific_ptr

#7370 Boost.Thread documentation

#7438 Segmentation fault in test_once regression test in group.join_all();

#7461 detail::win32::Rel easeSemaphore may be called with count_to_release equal to 0

#7499 call_once doesn't call even once

Version 3.0.1 - boost 1.51

Deprecated Features:

Deprecated features since boost 1.50 available only until boost 1.55:

These deprecated features will be provided by default up to boost 1.52. If you don't want to include the deprecated features you could
define BOOST_THREAD_DONT_PROVIDE _DEPRECATED FEATURES SINCE V3 0 0. Since 1.53 these features will not
be included any more by default. Since this version, if you want to include the deprecated features yet you could define
BOOST_THREAD_PROVIDE_DEPRECATED_FEATURES SINCE V3 0 0. These deprecated features will be only available

until boost 1.55, that is you have 1 year and a half to move to the new features.

21

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7283
http://svn.boost.org/trac/boost/ticket/7345
http://svn.boost.org/trac/boost/ticket/2797
http://svn.boost.org/trac/boost/ticket/5274
http://svn.boost.org/trac/boost/ticket/5431
http://svn.boost.org/trac/boost/ticket/5696
http://svn.boost.org/trac/boost/ticket/6931
http://svn.boost.org/trac/boost/ticket/7045
http://svn.boost.org/trac/boost/ticket/7173
http://svn.boost.org/trac/boost/ticket/7200
http://svn.boost.org/trac/boost/ticket/7220
http://svn.boost.org/trac/boost/ticket/7238
http://svn.boost.org/trac/boost/ticket/7245
http://svn.boost.org/trac/boost/ticket/7272
http://svn.boost.org/trac/boost/ticket/7284
http://svn.boost.org/trac/boost/ticket/7329
http://svn.boost.org/trac/boost/ticket/7336
http://svn.boost.org/trac/boost/ticket/7329
http://svn.boost.org/trac/boost/ticket/7350
http://svn.boost.org/trac/boost/ticket/7360
http://svn.boost.org/trac/boost/ticket/7370
http://svn.boost.org/trac/boost/ticket/7438
http://svn.boost.org/trac/boost/ticket/7461
http://svn.boost.org/trac/boost/ticket/7499
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Time related functions don't using the Boost.Chrono library, use the chrono overloads instead.

Breaking changes when BOOST_THREAD_VERSION==3:

There are some new features which share the same interface but with different behavior. These breaking features are provided by
default when BOOST_THREAD_VERSION is 3, but the user can however choose the version 2 behavior by defining the corres-
ponding macro. As for the deprecated features, these broken features will be only available until boost 1.55.

#6229 Rename the unique_future to future following the c++11.
#6266 Breaking change: thread destructor should call terminate if joinable.

#6269 Breaking change: thread move assignment should call terminate if joinable.

Fixed Bugs:

#4258 Linking with boost thread does not work on mingw/gcc 4.5.

#4885 Access violation in set_tss data at process exit due to invalid assumption about TIsAlloc.
#6931 mutex waits forwever with Intel Compiler and /debug:parallel

#7044 boost 1.50.0 header missing.

#7052 Thread: BOOST_THREAD_PROVIDES DEPRECATED_FEATURES_SINCE_V3_0_0 only masks thread::operator==,
thread::operator!= forward declarations, not definitions.

#7066 An attempt to fix current_thread tls key static initialization order.
#7074 Multiply defined symbol boost::allocator_arg.
#7078 Trivial 64-bit warning fix on Windows for thread attribute stack size

#7089 BOOST_THREAD_ WAIT_BUG limits functionality without solving anything

Version 3.0.0 - boost 1.50

Breaking changes when BOOST_THREAD_VERSION==3:

#6229 Breaking change: Rename the unique_future to future following the c++11.
#6266 Breaking change: thread destructor should call terminate if joinable.

#6269 Breaking change: thread move assignment should call terminate if joinable.

New Features:

#1850 Request for unlock_guard to compliment lock_guard.

#2637 Request for shared_mutex duration timed_lock and timed_lock_shared.

#2741 Proposal to manage portable and non portable thread attributes.

#3567 Request for shared_lock guard.

#6194 Adapt to Boost.Move.

#6195 c++11 compliance: Provide the standard time related interface using Boost.Chrono.
#6217 Enhance Boost. Thread shared mutex interface following Howard Hinnant proposal.

#6224 c++11 compliance: Add the use of standard noexcept on compilers supporting them.

22

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://svn.boost.org/trac/boost/ticket/4258
http://svn.boost.org/trac/boost/ticket/4885
http://svn.boost.org/trac/boost/ticket/6931
http://svn.boost.org/trac/boost/ticket/7044
http://svn.boost.org/trac/boost/ticket/7052
http://svn.boost.org/trac/boost/ticket/7066
http://svn.boost.org/trac/boost/ticket/7074
http://svn.boost.org/trac/boost/ticket/7078
http://svn.boost.org/trac/boost/ticket/7089
http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://svn.boost.org/trac/boost/ticket/1850
http://svn.boost.org/trac/boost/ticket/2637
http://svn.boost.org/trac/boost/ticket/2741
http://svn.boost.org/trac/boost/ticket/3567
http://svn.boost.org/trac/boost/ticket/6194
http://svn.boost.org/trac/boost/ticket/6195
http://svn.boost.org/trac/boost/ticket/6217
http://svn.boost.org/trac/boost/ticket/6224
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

o #6225 Add the use of standard =delete defaulted operations on compilers supporting them.

» #6226 c++11 compliance: Add explicit bool conversion from locks.

» #6228 Add promise constructor with allocator following the standard c++11.

e #6230 c++11 compliance: Follows the exception reporting mechanism as defined in the c++11.
» #6231 Add BasicL ockable requirements in the documentation to follow c++11.

» #6272 c++11 compliance: Add thread::id hash specialization.

e #6273 c++11 compliance: Add cv_status enum class and use it on the conditions wait functions.
» #6342 c++11 compliance: Adapt the one flag to the c++11 interface.

» #6671 upgrade lock: missing mutex and release functions.

» #6672 upgrade lock:: missing constructors from time related types.

» #6675 upgrade lock:: missing non-member swap.

» #6676 lock conversion should be explicit.

» Added missing packaged_task::result_type and packaged task:: constructor with allocator.

» Added packaged task::reset()

Fixed Bugs:

#2380 boost::move from Ivalue does not work with gcc.

o #2430 shared_mutex for win32 doesn't have timed_lock upgrade.

» #2575 Bug- Boost 1.36.0 on Itanium platform.

» #3160 Duplicate tutorial code in boost::thread.

o #4345 thread::id and joining problem with cascade of threads.

» #4521 Error using boost::move on packaged_task (MSVC 10).

e #4711 Must use implementation details to return move-only types.

o #4921 BOOST_THREAD_USE _DLL and BOOST_THREAD_USE_LIB are crucia and need to be documented.
» #5013 documentation: boost::thread: pthreas _exit causes terminate().

» #5173 boost::this thread::get_idisvery slow.

» #5351 interrupt a future get boost::unknown_exception.

» #5516 Upgrade lock is not acquired when previous upgrade lock releasesif another read lock is present.
» #5990 shared_future<T>::get() has wrong return type.

» #6174 packaged task doesn't correctly handle moving results.

» #6222 Compile error with SunStudio: unique_future move.

o #6354 PGI: Compiler threading support is not turned on.

» #6673 shared_lock: move assign doesn't works with c++11.

23

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6225
http://svn.boost.org/trac/boost/ticket/6226
http://svn.boost.org/trac/boost/ticket/6228
http://svn.boost.org/trac/boost/ticket/6230
http://svn.boost.org/trac/boost/ticket/6231
http://svn.boost.org/trac/boost/ticket/6272
http://svn.boost.org/trac/boost/ticket/6273
http://svn.boost.org/trac/boost/ticket/6342
http://svn.boost.org/trac/boost/ticket/6671
http://svn.boost.org/trac/boost/ticket/6672
http://svn.boost.org/trac/boost/ticket/6675
http://svn.boost.org/trac/boost/ticket/6676
http://svn.boost.org/trac/boost/ticket/2380
http://svn.boost.org/trac/boost/ticket/2430
http://svn.boost.org/trac/boost/ticket/2575
http://svn.boost.org/trac/boost/ticket/3160
http://svn.boost.org/trac/boost/ticket/4345
http://svn.boost.org/trac/boost/ticket/4521
http://svn.boost.org/trac/boost/ticket/4711
http://svn.boost.org/trac/boost/ticket/4921
http://svn.boost.org/trac/boost/ticket/5013
http://svn.boost.org/trac/boost/ticket/5173
http://svn.boost.org/trac/boost/ticket/5351
http://svn.boost.org/trac/boost/ticket/5516
http://svn.boost.org/trac/boost/ticket/5990
http://svn.boost.org/trac/boost/ticket/6174
http://svn.boost.org/trac/boost/ticket/6222
http://svn.boost.org/trac/boost/ticket/6354
http://svn.boost.org/trac/boost/ticket/6673
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

e #6674 shared_mutex: try_lock_upgrade until doesn't works.

#6908 Compile error due to unprotected definitions of _WIN32_WINNT and WINVER.

#6940 TIME_UTC isamacroin C11.

#6959 call of absisambiguous.

» Fix issue signaled on the ML with task_object(task_object const&) in presence of task object(task object & &)

Version 2.1.1 - boost 1.49

Fixed Bugs:

e #2309 Lack of g++ symbol visibility support in Boost. Thread.

* #2639 documentation should be extended(defer_lock, try_to_lock, ...).

* #3639 Boost.Thread doesn't build with Sun-5.9 on Linux.

» #3762 Thread can't be compiled with winscw (Codewarrior by Nokia).

* #3885 document about mix usage of boost.thread and native thread api.

» #3975 Incorrect precondition for promise::set_wait_callback().

» #4048 thread::id formatting involves locale

» #4315 gce 4.4 Warning: inline ... declared as dllimport: attribute ignored.
» #4480 OpenVMS patches for compiler issues workarounds.

* #4819 boost.thread's documentation misprints.

o #5423 thread issues with C++0x.

» #5617 boost::thread::id copy ctor.

* #5739 set-but-not-used warnings with gcc-4.6.

» #5826 threads.cpp: resource leak on threads creation failure.

» #5839 thread.cpp: ThreadProxy leaks on exceptions.

» #5859 win32 shared_mutex constructor leaks on exceptions.

* #6100 Compute hardware_concurrency() using get_nprocs() on GLIBC systems.
» #6168 recursive_mutex is using wrong config symbol (possible typo).

» #6175 Compile error with SunStudio.

» #6200 patch to have condition_variable and mutex error better handle EINTR.
o #6207 shared_|lock swap compiler error on clang 3.0 c++11.

» #6208 try_lock wrapper swap compiler error on clang 3.0 c++11.

Version 2.1.0 - Changes since boost 1.40

The 1.41.0 release of Boost adds futures to the thread library. There are also afew minor changes.

24

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6674
http://svn.boost.org/trac/boost/ticket/6908
http://svn.boost.org/trac/boost/ticket/6940
http://svn.boost.org/trac/boost/ticket/6959
http://svn.boost.org/trac/boost/ticket/2309
http://svn.boost.org/trac/boost/ticket/2639
http://svn.boost.org/trac/boost/ticket/3639
http://svn.boost.org/trac/boost/ticket/3762
http://svn.boost.org/trac/boost/ticket/3885
http://svn.boost.org/trac/boost/ticket/3975
http://svn.boost.org/trac/boost/ticket/4048
http://svn.boost.org/trac/boost/ticket/4315
http://svn.boost.org/trac/boost/ticket/4480
http://svn.boost.org/trac/boost/ticket/4819
http://svn.boost.org/trac/boost/ticket/5423
http://svn.boost.org/trac/boost/ticket/5617
http://svn.boost.org/trac/boost/ticket/5739
http://svn.boost.org/trac/boost/ticket/5826
http://svn.boost.org/trac/boost/ticket/5839
http://svn.boost.org/trac/boost/ticket/5859
http://svn.boost.org/trac/boost/ticket/6100
http://svn.boost.org/trac/boost/ticket/6168
http://svn.boost.org/trac/boost/ticket/6175
http://svn.boost.org/trac/boost/ticket/6200
http://svn.boost.org/trac/boost/ticket/6207
http://svn.boost.org/trac/boost/ticket/6208
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Changes since boost 1.35

The 1.36.0 release of Boost includes afew new features in the thread library:

New genericl ock() andtry_l ock() functionsfor locking multiple mutexes at once.

Rvalue reference support for move semantics where the compilers supportsit.

A few bugs fixed and missing functions added (including the serious win32 condition variable bug).
scoped_t ry_| ock types are now backwards-compatible with Boost 1.34.0 and previous rel eases.

Support for passing function arguments to the thread function by supplying additional arguments to the boost : : t hr ead con-
structor.

Backwards-compatibility overloads added for t i med_| ock andti ned_wai t functionsto allow use of xt i me for timeouts.

Version 2.0.0 - Changes since boost 1.34

Almost every line of codein Boost.Thread has been changed since the 1.34 rel ease of boost. However, most of the interface changes
have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking changes
are described below.

New Features

Instances of boost : : t hr ead and of the various lock types are now movable.
Threads can be interrupted at interruption points.

Condition variables can now be used with any type that implementsthe Lockabl e concept, through the use of boost : : condi -
tion_variabl e_any (boost::conditionisatypedef toboost::condition_variabl e_any, provided for backwards
compatibility). boost::condition_variable is provided as an optimization, and will only work with
boost : : uni que_l ock<boost : : mut ex> (boost : : nut ex: : scoped_| ock).

Thread IDs are separated from boost : : t hr ead, so athread can obtainit'sown ID (usingboost : : t hi s_t hread: : get _i d()),
and | Ds can be used as keys in associative containers, as they have the full set of comparison operators.

Timeouts are now implemented using the Boost DateTimelibrary, through atypedef boost : : syst em t i me for absolutetimeouts,
and with support for relative timeouts in many cases. boost : : xt i ne is supported for backwards compatibility only.

Locksareimplemented aspublicly accessibletemplatesboost : : | ock_guar d,boost : : uni que_| ock, boost : : shared_| ock,
andboost : : upgr ade_I ock, which aretemplated on the type of the mutex. The Lockabl e concept has been extended to include
publicly available! ock() and unl ock() member functions, which are used by the lock types.

Breaking Changes

Thelist below should cover al changes to the public interface which break backwards compatibility.

boost : : try_nut ex has been removed, and the functionality subsumed into boost : : mut ex. boost: :try_nut ex isleft asa
t ypedef , but is no longer a separate class.

boost::recursive_try_mutex has been removed, and the functionality subsumed into boost: : recursi ve_mut ex.
boost::recursive_try_mutex isleftasat ypedef, but isno longer a separate class.

boost::detail::thread::|ock_ops has been removed. Code that relies on the | ock_ops implementation detail will no
longer work, asthis has been removed, asit isno longer necessary now that mutex types now have public| ock() and unl ock()
member functions.

scoped_| ock constructors with a second parameter of type bool are no longer provided. With previous boost rel eases,

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

boost: : mut ex: : scoped_| ock sone_I| ock(sone_nutex, fal se);

could be used to create alock object that was associated with a mutex, but did not lock it on construction. This facility has now
been replaced with the constructor that takes aboost : : def er _| ock_t ype asthe second parameter:

boost : : mut ex: : scoped_| ock sone_| ock(sonme_nut ex, boost : : def er _| ock) ;

Thel ocked() member function of the scoped_| ock types has been renamed to owns_| ock() .

You can no longer obtain a boost : : t hr ead instance representing the current thread: a default-constructed boost : : t hr ead
object is not associated with any thread. The only use for such a thread object was to support the comparison operators: this
functionality has been moved to boost : : t hread: : i d.

Thebroken boost : : read_write_nut ex has been replaced with boost : : shar ed_nut ex.

boost : : nut ex isnow never recursive. For Boost releases prior to 1.35 boost : : mut ex was recursive on Windows and not on
POSIX platforms.

When using aboost : : recur si ve_nut ex with acall to boost : : condi ti on_vari abl e_any: : wai t (), the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Future

The following features will be included in next releases.
1. Complete the C++11 missing features, in particular
» #6227 C++11 compliance: Use of variadic templates on Generic Locking Algorithms on compilers providing them.
2. Add some minor features, in particular
e #7589 Synchro: Add polymorphic lockables.
3. Add some features based on C++ proposals, in particular
» #8273 Synchro: Add externally locked streams.
» #8514 Async: Add athread_pool executor with work stealing.

4. Add some of the extension proposed in A Standardized Representation of Asynchronous Operations or extension to them, in
particular

» #7446 Async: Add when_any.

#7447 Async: Add when_all.

#7448 Async: Add async taking a scheduler parameter.
» #8516 Async: Add future/shared_future::then taking a scheduler as parameter.
5. And some additional extensions related to futures as:

o #8517 Async: Add avariadic shared_future::then.

27

render
httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6227
http://svn.boost.org/trac/boost/ticket/7589
http://svn.boost.org/trac/boost/ticket/8273
http://svn.boost.org/trac/boost/ticket/8514
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3428.pdf
http://svn.boost.org/trac/boost/ticket/7446
http://svn.boost.org/trac/boost/ticket/7447
http://svn.boost.org/trac/boost/ticket/7448
http://svn.boost.org/trac/boost/ticket/8516
http://svn.boost.org/trac/boost/ticket/8517
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Thread Management
Synopsis

#i ncl ude <boost/thread/thread. hpp>

namespace boost
{
cl ass thread;
voi d swap(thread& | hs, thread& rhs) noexcept;

namespace this_thread
{
thread::id get_id() noexcept;
t enpl at e<t ypenane Ti meDurati on>
voi d yield() noexcept; // DEPRECATED
tenpl ate <class O ock, class Duration>
voi d sleep_until (const chrono::tinme_point<Cdock, Duration>& abs_tine);
tenpl ate <cl ass Rep, class Period>
voi d sl eep_for(const chrono::durati on<Rep, Period>& rel _tine);

t enpl at e<t ypenane Cal | abl e>
void at_thread_exit(Callable func); // EXTENSI ON

void interruption_point(); // EXTENSI ON

bool interruption_requested() noexcept; // EXTENSI ON
bool interruption_enabled() noexcept; // EXTENSI ON
class disable_interruption; // EXTENSI ON

class restore_interruption; // EXTENSI ON

#i

f defined BOOST THREAD USES DATETI ME

tenpl at e <Ti meDurati on>

voi d sl eep(TinmeDuration const& rel _tine); [/ DEPRECATED
voi d sl eep(systemtinme const& abs_tine); // DEPRECATED
#endi f

}
class thread_group; // EXTENSI ON

Tutorial

The boost : : t hr ead class is responsible for launching and managing threads. Each boost : : t hr ead object represents a single
thread of execution, or Not-a-Thread, and at most one boost : : t hr ead object represents a given thread of execution: objects of
typeboost : : t hr ead are not copyable.

Objectsof typeboost : : t hr ead are movable, however, so they can be stored in move-aware containers, and returned from functions.
This allows the details of thread creation to be wrapped in afunction.

boost::thread nmake_thread();

void f()
{

boost::thread sone_t hread=nmake_t hread();
some_t hread. join();

28

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

S Note
On compilers that support rvalue references, boost : : t hr ead provides a proper move constructor and move-as-
signment operator, and therefore meets the C++0x MoveConstructible and MoveAssignable concepts. With such
compilers, boost : : t hr ead can therefore be used with containers that support those concepts.

For other compilers, move support is provided with a move emulation layer, so containers must explicitly detect
that move emulation layer. See <boost/thread/detail/move.hpp> for details.
Launching threads

A new thread islaunched by passing an object of acallable typethat can be invoked with no parametersto the constructor. The object
is then copied into internal storage, and invoked on the newly-created thread of execution. If the object must not (or cannot) be
copied, thenboost : : r ef canbeused to passin areferenceto the function object. Inthiscase, the user of Boost.Thread must ensure
that the referred-to object outlives the newly-created thread of execution.

struct callable

{
b

void operator()();

boost::thread copies_are_safe()

{

call abl e x;
return boost::thread(x);
} /1l x is destroyed, but the newly-created thread has a copy, so this is K

boost: :thread oops()

{

call abl e x;
return boost::thread(boost::ref(x));
} Il x is destroyed, but the newl y-created thread still has a reference
/1 this |l eads to undefined behaviour

If you wish to construct an instance of boost : : t hr ead with a function or callable object that requires arguments to be supplied,
this can be done by passing additional argumentsto the boost : : t hr ead constructor:

void find_the_question(int the_answer);

boost: :thread deep_t hought _2(find_the_question, 42);

The arguments are copied into the internal thread structure: if a reference is required, use boost : : ref , just as for references to
callable functions.

Thereis an unspecified limit on the number of additional arguments that can be passed.

Thread attributes

Thread launched in this way are created with implementation defined thread attributes as stack size, scheduling, priority, ... or any
platform specific attributes. It is not evident how to provide a portable interface that allows the user to set the platform specific at-
tributes. Boost. Thread stay in the middle road through the class thread::attributes which allows to set at |east in a portable way the
stack size asfollows:

boost::thread::attributes attrs;
attrs. set_size(4096*10);
boost: :thread deep_thought_2(attrs, find_the_question, 42);

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Even for this simpl e attribute there coul d be portabl e i ssues as some platforms could require that the stack size should have aminimal
size and/or be amultiple of agiven page size. The library adapts the requested size to the platform constraints so that the user doesn't

need to take care of it.

Thisis the single attribute that is provided in a portable way. In order to set any other thread attribute at construction time the user
needs to use non portable code.

On PThread platforms the user will need to get the thread attributes handle and use it for whatever attribute.

Next follows how the user could set the stack size and the scheduling policy on PThread platforms.

boost::thread::attributes attrs;

/1 set portable attributes

...

attr.set stack_size(4096*10);

#i f defi ned(BOOST_THREAD PLATFORM W N32)

/1 ... window version
#el i f defi ned(BOOST_THREAD PLATFORM PTHREAD)
/1 ... pthread version
pthread_attr_setschedpolicy(attr.get_native_handl e(), SCHED RR);
#el se
#error "Boost threads unavailable on this platfornt
#endi f

boost::thread th(attrs, find_the_question, 42);

On Windows platforms it is not so simple as there is no type that compiles the thread attributes. There is alinked to the creation of
athread on Windows that is emulated via the thread::attributes class. Thisisthe LPSECURITY_ATTRIBUTES IpThreadAttributes.
Boost. Thread provides a non portable set_security function so that the user can provide it before the thread creation as follows

#i f defi ned(BOOST_THREAD PLATFORM W N32)
boost::thread::attributes attrs;
/1 set portable attributes
attr.set_stack_size(4096*10);
/1 set non portable attribute
LPSECURI TY_ATTRI BUTES sec;
/'l init sec
attr.set_security(sec);
boost::thread th(attrs, find_the_question, 42);
/'l Set other thread attributes using the native_handl e_type.
/...

#el se

#error "Platform not supported"”

#endi f

Exceptions in thread functions

If the function or callable object passed to the boost : : t hr ead constructor propagates an exception when invoked that is not of
typeboost: :thread_i nterrupted,std::ternminate() iscaled.

Detaching thread

A thread can be detached by explicitly invoking the det ach() member function on the boost : : t hr ead object. In this case, the
boost : : t hr ead object ceases to represent the now-detached thread, and instead represents Not-a-Thread.

int main()

{
boost: :thread t (ny_func);
t.detach();

}

30

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Joining a thread

In order to wait for a thread of execution to finish, thej oi n(), __join for or __join_until (ti med_j oi n() deprecated) member
functions of the boost : : t hr ead object must be used. j oi n() will block the calling thread until the thread represented by the
boost : : t hr ead object has completed.

int main()

{
boost: :thread t (my_func);

t.join();
}

If thethread of execution represented by theboost : : t hr ead object hasalready completed, or theboost : : t hr ead object represents
Not-a-Thread, then j oi n() returnsimmediately.

int main()

{

boost::thread t;
t.join(); // do nothing

}

Timed based join are similar, except that acall to__join_for or __join_until will also return if the thread being waited for does not
complete when the specified time has elapsed or reached respectively.

int main()

{

boost: :thread t;

if (t.join_for(boost::chrono::mlliseconds(500)))
/'l do sonething el se

t.join(); // join anyway

}

Destructor V1

When the boost : : t hr ead object that represents athread of execution is destroyed the thread becomes detached. Once athread is
detached, it will continue executing until the invocation of the function or callable object supplied on construction has compl eted,
or the program is terminated. A thread can aso be detached by explicitly invoking the det ach() member function on the
boost : : t hr ead object. Inthiscase, theboost : : t hr ead object ceasesto represent the now-detached thread, and instead represents
Not-a-Thread.

Destructor V2

Whentheboost : : t hr ead object that representsathread of execution isdestroyed the program terminatesif thethreadis__joinable .

int main()

{
boost: :thread t (ny_func);

} Il calls std::term nate()

You can use athread_joiner to ensure that the thread has been joined at the thread destructor.

31

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

int main()
{
boost::thread t(my_func);
boost::thread_joiner g(t);
/1 do soneting else
} Il here the thread_joiner destructor will join the thread before it is destroyed

Interruption

A running thread can beinterrupted by invoking thei nt er r upt () member function of the corresponding boost : : t hr ead object.
When the interrupted thread next executes one of the specified interruption points (or if it is currently blocked whilst executing one)
with interruption enabled, then aboost : : t hr ead_i nt er r upt ed exception will be thrown in the interrupted thread. If not caught,
thiswill cause the execution of the interrupted thread to terminate. As with any other exception, the stack will be unwound, and de-
structors for objects of automatic storage duration will be executed.

If athread wishes to avoid being interrupted, it can create an instance of boost: :this_t hread: : di sabl e_i nterruption.
Objects of thisclass disableinterruption for the thread that created them on construction, and restore the interruption state to whatever
it was before on destruction:

void f()
{

/'l interruption enabled here

{
boost: :this_thread::disable_interruption di
/'l interruption disabled

{
boost: :this_thread::disable_interruption di2
/1 interruption still disabled
} I/ di2 destroyed, interruption state restored
/1 interruption still disabled

} I/ di destroyed, interruption state restored
/'l interruption now enabl ed

The effects of an instance of boost : : t hi s_t hread: : di sabl e_i nt errupti on can be temporarily reversed by constructing an
instanceof boost : : this_thread: : restore_i nterruption,passingintheboost: :this_thread:: disable_i nterruption
object in question. Thiswill restore theinterruption state to what it waswhentheboost : : t hi s_t hread: : di sabl e_i nterrupti on
object was constructed, and then disable interruption again when the boost : : t hi s_t hread: : rest ore_i nterrupt i on object
is destroyed.

void g()
{
/1 interruption enabled here
{
boost::this_thread::disable_interruption di
/1 interruption disabled
{
boost::this_thread::restore_interruption ri(di)
/1 interruption now enabl ed
} Il ri destroyed, interruption disable again
} /1 di destroyed, interruption state restored
/1 interruption now enabl ed

At any point, the interruption state for the current thread can be queried by calling boost : : t hi s_t hread: :i nterrupti on_en-
abl ed() .

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Predefined Interruption Points

The following functions are interruption points, which will throw boost : : t hr ead_i nt er rupt ed if interruption is enabled for
the current thread, and interruption is requested for the current thread:

* boost::thread::join()

* boost::thread::tined_join()

* boost::thread::try_join_for(),

* boost::thread::try_join_until (),

* boost::condition_variable::wait()

* boost::condition_variable::tined_wait()

* boost::condition_variable::wait_for()

* boost::condition_variable::wait_until()

* boost::condition_variable_any::wait()

* boost::condition_variable_any::timed_wait()
* boost::condition_variable_any::wait_for()

* boost::condition_variable_any::wait_until ()
* boost::thread::sleep()

* boost::this_thread::sleep_for()

* boost::this_thread::sleep_until()

* boost::this_thread::interruption_point()

Thread IDs

Objectsof classhboost : : t hread: : i d can be used to identify threads. Each running thread of execution has aunique ID obtainable
from the corresponding boost::thread by caling the get_id() member function, or by caling
boost::this_thread::get_id() fromwithin the thread. Objects of class boost : : t hread: : i d can be copied, and used as
keysin associative containers: the full range of comparison operatorsis provided. Thread |Ds can a so be written to an output stream
using the stream insertion operator, though the output format is unspecified.

Each instance of boost : : t hr ead: : i d either refersto somethread, or Not-a-Thread. Instances that refer to Not-a-Thread compare
equal to each other, but not equal to any instances that refer to an actual thread of execution. The comparison operators on
boost : : thread: :idyield atotal order for every non-equal thread ID.

Using native interfaces with Boost.Thread resources
boost : : t hr ead classhasmembersnat i ve_handl e_t ype andnat i ve_handl e providing accessto the underlying native handle.
This native handle can be used to change for example the scheduling.

In general, it is not safe to use this handle with operations that can conflict with the ones provided by Boost. Thread. An example of
bad usage could be detaching a thread directly as it will not change the internals of the boost : : t hr ead instance, so for example
the joinable function will continue to return true, while the native thread is no more joinable.

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

thread t(fct);

t hread: : nati ve_handl e_type hnd=t. nati ve_handl e();
pt hread_det ach(hnd) ;

assert(t.joinable());

Using Boost.Thread interfaces in a native thread
Any thread of execution created using the native interface is called a native thread in this documentation.
Thefirst example of a native thread of execution isthe main thread.

The user can access to some synchronization functions rel ated to the native current thread using theboost : : t hi s_t hread yi el d,
sl eep, sl eep_for,sleep_until,functions.

int min() {
/1
boost::this_thread: :sleep_for(boost::chrono::mlliseconds(10));
/1

}

Of course al the synchronization facilities provided by Boost. Thread are also available on native threads.

The boost : : thi s_t hread interrupt related functions behave in a degraded mode when called from a thread created using the
native interface, i.e. boost::this_thread::interruption_enabl ed() returns false. As consequence the use of
boost::this_thread::disable_interruption and boost::this thread::restore_interruption will do nothing
and callstoboost : :this_thread::interruption_point() will bejustignored.

Asthe single way to interrupt a thread is through aboost : : t hr ead instance, i nt er rupt i on_r equest () wiil returns false for
the native threads.

pt hread_exi t POSIX limitation

pt hread_exi t inglibc/NPTL causesa"forced unwind" that isalmost like a C++ exception, but not quite. On Mac OS X, for example,
pt hr ead_exi t unwinds without calling C++ destructors.

Thisbehavior isincompatible with the current Boost. Thread design, so the use of thisfunctionin aPOSIX thread result in undefined
behavior of any Boost. Thread function.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

ClaSS t hread

#i ncl ude <boost/thread/thread. hpp>

class thread
{
publi c:
class attributes; // EXTENSI ON

thread() noexcept;
thread(const thread& = delete;
t hread& operator=(const thread& = delete;

t hread(t hread&&) noexcept;
t hr ead& operat or=(t hread&&) noexcept;
~thread() ;

tenpl ate <cl ass F>
explicit thread(F f);
tenpl ate <cl ass F>
thread(F &&f);

tenpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);
tenplate <class F, class ...Args>

explicit thread(F&& f, Args&& .. args);

tenpl ate <cl ass F>

explicit thread(attributes& attrs, F f); // EXTENSI ON
tenpl ate <cl ass F>

thread(attributes& attrs, F &&f); // EXTENSI ON

tenpl ate <class F, class ...Args>

explicit thread(attributes& attrs, F&& f, Args&& .. args);

/1l nove support
thread(thread && x) noexcept;
t hread& operator=(thread && x) noexcept;

voi d swap(thread& x) noexcept;

class id;

id get_id() const noexcept;

bool joinable() const noexcept;

void join();

tenpl ate <cl ass Rep, class Period>

bool try_join_for(const chrono::duration<Rep, Period>& rel _tine); // EXTENSI ON
tenpl ate <class O ock, class Duration>

bool try_join_until(const chrono::time_point<dock, Duration>& t); // EXTENSI ON
voi d detach();

static unsigned hardware_concurrency() noexcept;
static unsigned physical _concurrency() noexcept;

t ypedef platformspecific-type native_handl e_type;
native_handl e_type native_handl e();

void interrupt(); // EXTENSION
bool interruption_requested() const noexcept; // EXTENSI ON

35

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#if defined BOOST_THREAD USES DATETI ME
bool tined_join(const systemtinme& wait_until); // DEPRECATED
t enpl at e<t ypenane Ti meDur ati on>
bool tined_join(TinmDuration const& rel _tine); // DEPRECATED
static void sl eep(const systemtine& xt);// DEPRECATED

#endi f

#i f defined BOOST_THREAD_ PROVI DES_THREAD EQ
bool operator==(const thread& other) const; // DEPRECATED
bool operator!=(const thread& other) const; // DEPRECATED

#endi f
static void yield() noexcept; // DEPRECATED

I

voi d swap(thread& | hs, t hread& rhs) noexcept;

Default Constructor

thread() noexcept;

Effects: Constructs aboost : : t hr ead instance that refers to Not-a-Thread.
Postconditions: this->get _id()==thread::id()
Throws: Nothing

Move Constructor

t hread(t hread&& other) noexcept;

Effects: Transfers ownership of the thread managed by ot her (if any) to the newly constructed boost : : t hr ead
instance.

Postconditions: other.get id()==thread::id() andget_id() returnsthe value of ot her. get _i d() prior to the
construction

Throws: Nothing

Move assignment operator

t hread& operat or=(t hread&& ot her) noexcept;

Effects: Transfers ownership of the thread managed by ot her (if any) to *t hi s.

- if defined BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_ASSIGN_CALLS TERMIN-
ATE_IF_JOINABLE: If thethread isjoinable call det ach() , DEPRECATED

-if defined BOOST_THREAD_PROVIDES THREAD _MOVE _ASSIGN_CALLS TERMINATE _IF JOIN-
ABLE: If thethread isjoinable callsto st d: : t er mi nate() .

Postconditions: ot her->get _id()==thread::id() andget_i d() returnsthe valueof ot her. get _i d() prior tothe
assignment.
Throws: Nothing
36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Thread Constructor

t enpl at e<t ypenane Cal | abl e>
thread(Cal | abl e func);

Requires:

Effects:

Postconditions:
Throws:

Error Conditions:

Cal | abl e must be Copyable and f unc() must be avalid expression.

f unc iscopied into storage managed internally by the thread library, and that copy isinvoked on anewly-
created thread of execution. If thisinvocation resultsin an exception being propagated into the internals
of thethread library that isnot of typeboost : : t hr ead_i nt errupt ed, thenst d: : t erm nat e() will
be called. Any return value from this invocation isignored.

*t hi s refersto the newly created thread of execution andt hi s- >get _i d()! =t hread: :i d().
boost: :thread_resource_error if anerror occurs.

resource_unavailable try again : the system lacked the necessary resourcesto create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Attributes Constructor EXTENSION

t enpl at e<t ypenane Cal | abl e>
thread(attributes& attrs, Callable func);

Preconditions:

Effects:

Postconditions:
Throws:

Error Conditions:

Cal | abl e must be copyable.

f unc iscopied into storage managed internally by the thread library, and that copy isinvoked on anewly-
created thread of execution with the specified attributes. If thisinvocation results in an exception being
propagated into the internals of the thread library that is not of type boost : : t hr ead_i nt err upt ed,
thenst d: : t er mi nat e() will becalled. Any return valuefromthisinvocationisignored. If the attributes
declare the native thread as detached, the boost::thread will be detached.

*t hi s refersto the newly created thread of execution andt hi s- >get _i d()! =t hread: :id().
boost: :thread_resource_error if anerror occurs.

resource_unavailable try again : the system lacked the necessary resourcesto create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Callable Move Constructor

t enpl at e<t ypenanme Cal | abl e>
t hread(Cal | abl e &&f unc);

Preconditions:

Effects:

Postconditions:
Throws:

Error Conditions:

Cal | abl e must be Movable.

f unc is moved into storage managed internally by the thread library, and that copy is invoked on a
newly-created thread of execution. If this invocation results in an exception being propagated into the
internals of the thread library that isnot of typeboost : : t hread_i nt err upt ed, thenst d: : ter m n-
at e() will becalled. Any return value from thisinvocation isignored.

*t hi s refersto the newly created thread of execution andt hi s- >get _i d()! =t hread: :id().
boost: :thread_resource_error if anerror occurs.

resource_unavailable try again : the system lacked the necessary resourcesto create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Thread Attributes Move Constructor EXTENSION

t enpl at e<t ypenane Cal | abl e>
thread(attributes& attrs, Callable func);

Preconditions:

Effects:

Postconditions:
Throws:

Error Conditions:

Cal | abl e must be copyable.

f unc iscopied into storage managed internally by the thread library, and that copy isinvoked on anewly-
created thread of execution with the specified attributes. If this invocation results in an exception being
propagated into the internals of the thread library that is not of type boost : : t hr ead_i nt er r upt ed,
thenst d: : t er mi nat e() will becalled. Any return valuefromthisinvocationisignored. If the attributes
declare the native thread as detached, the boost::thread will be detached.

*t hi s refersto the newly created thread of execution andt hi s- >get _i d()! =t hread: :i d().
boost: :thread_resource_error if anerror occurs.

resource_unavailable try again : the system lacked the necessary resourcesto create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Constructor with arguments

tenpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);

Preconditions:

Effects:

Postconditions:
Throws:

Error Conditions:

Note:

F and each An must be copyable or movable.

Asif t hread(boost : : bi nd(f, al, a2,...)). Consequently, f and each an are copied into internal
storage for access by the new thread.

*t hi s refersto the newly created thread of execution.
boost: :thread_resource_error if anerror occurs.

resource_unavailable try again : the system lacked the necessary resourcesto create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Currently up to nine additional argumentsal to a9 can be specified in addition to the function f .

Thread Destructor

~thread();

Effects: - if defined BOOST_THREAD_DONT_PROVIDE_THREAD_DESTRUCTOR_CALLS TERMINATE_IF_JOIN-
ABLE: If thethread isjoinable callsdet ach() , DEPRECATED

- if defined BOOST_THREAD_PROVIDES THREAD_DESTRUCTOR_CALLS TERMINATE_IF_JOINABLE:
If the thread isjoinable callsto st d: : t er mi nat e. Destroys*t hi s.

Throws: Nothing.

Note: The reason to moving to std::terminate is that either implicitly detaching or joining aj oi nabl e() thread inits de-
structor could result in difficult to debug correctness (for det ach) or performance (for j oi n) bugs encountered only
when an exception is raised. Thus the programmer must ensure that the destructor is never executed while the thread
is till joinable. Join the thread before destroying or use an scoped thread.

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member function j oi nabl e()

bool joinable() const noexcept;

Returns: true if *t hi s refersto athread of execution, f al se otherwise.

Throws: Nothing

Member function join()

void join();

Preconditions:
Effects:

Synchronization:

Note:

Postconditions:

Throws:

Error Conditions;

Notes:

the thread is joinable.
If *t hi s refersto athread of execution, waits for that thread of execution to complete.

The completion of the thread represented by *t hi s synchronizes with the corresponding successful
join() return.

Operations on *this are not synchronized.

If *t hi s refers to athread of execution on entry, that thread of execution has completed. *t hi s no
longer refersto any thread of execution.

boost : : t hread_i nt er rupt ed if the current thread of execution is interrupted or syst em err or

resource deadlock_would occur: if deadlock is detected or this->get_id() ==
boost::this_thread::get_id().

invalid_argument: if the thread is not joinable and BOOST_THREAD TRHOW | F_PRECONDI -
TI ON_NOT_SATI SFI ED is defined.

j oi n() isone of the predefined interruption points.

Member function tined join() DEPRECATED

bool tinmed_join(const systemtine& wait_until);

t enpl at e<t ypenane Ti meDur ati on>
bool tined_join(TineDuration const& rel _tine);

o Warning
DEPRECATED since 3.00.

Useinsteadtry join_for,try join_until.

Preconditions:

Effects:

Returns:

the thread is joinable.

If *t hi s refers to a thread of execution, waits for that thread of execution to complete, the time
wai t _unti | hasbeen reach or the specified durationr el _t i ne haselapsed. If *t hi s doesn't refer to
athread of execution, returnsimmediately.

trueif *t hi s refersto athread of execution on entry, and that thread of execution has completed before
the call timesout, f al se otherwise.

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Postconditions: If *t hi s refersto athread of executiononentry, andt i ned_j oi n returnst r ue, that thread of execution
has completed, and * t hi s nolonger refersto any thread of execution. If thiscall tot i med_j oi n returns
fal se, *t hi s isunchanged.

Throws: boost : : thread_i nt errupt ed if the current thread of execution isinterrupted or syst em err or
Error Conditions: resource_deadlock_would_occur: if deadlock isdetected or this->get_id() == boost::this _thread::get_id().

invalid_argument: if the thread is not joinable and BOOST _THREAD_TRHOW_IF PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: ti med_j oi n() isone of the predefined interruption points.

Member function try join for() EXTENSION

tenpl ate <cl ass Rep, class Period>
bool try_join_for(const chrono::duration<Rep, Period>& rel _tinme);

Preconditions: the thread isjoinable.

Effects: If *t hi s refersto athread of execution, waits for that thread of execution to complete, the specified
durationrel _ti me haselapsed. If *t hi s doesn't refer to athread of execution, returnsimmediately.

Returns: trueif *t hi s refersto athread of execution on entry, and that thread of execution has completed before
the call timesout, f al se otherwise.

Postconditions: If *t hi s refersto athread of execution onentry, andtry_j oi n_f or returnst r ue, that thread of exe-
cution has completed, and *t hi s no longer refersto any thread of execution. If thiscall totry_j oi n_f or
returnsf al se, *t hi s isunchanged.

Throws: boost : : thread_i nt errupt ed if the current thread of execution isinterrupted or syst em err or
Error Conditions: resource_deadlock_would_occur : if deadlock isdetected or this->get_id() == boost::this_thread::get_id().

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: try_join_for() isoneof the predefined interruption points.

Member function try join unti1l () EXTENSION

tenpl ate <class O ock, class Duration>
bool try_join_until(const chrono::tine_point<C ock, Duration>& abs_tinmne);

Preconditions: the thread is joinable.

Effects: If *t hi s refersto athread of execution, waitsfor that thread of execution to complete, thetimeabs_ti ne
has been reach. If *t hi s doesn't refer to athread of execution, returnsimmediately.

Returns: trueif *t hi s refersto athread of execution on entry, and that thread of execution has completed before
the call timesout, f al se otherwise.

Postconditions: If *t hi s refers to athread of execution on entry, andtry_j oi n_unti | returnst rue, that thread of
execution has completed, and *t hi s no longer refers to any thread of execution. If this cal to
try_join_until returnsfal se, *t hi s isunchanged.

Throws: boost : : thread_i nt errupt ed if the current thread of execution isinterrupted or system err or
Error Conditions: resource_deadlock_would_occur: if deadlock isdetected or this->get_id() == boost::this thread::get_id().
40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

invalid_argument: if the thread is not joinable and BOOST _THREAD_TRHOW_IF PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: try_join_until () isoneof the predefined interruption points.
Member function detach()

voi d detach();

Preconditions: the thread isjoinable.

Effects: The thread of execution becomes detached, and no longer has an associated boost : : t hr ead object.
Postconditions: *t hi s nolonger refersto any thread of execution.

Throws: system error

Error Conditions: no_such_process. if the thread is not valid.

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Member function get id()

thread::id get_id() const noexcept;

Returns: If *t hi s refersto athread of execution, an instance of boost : : t hr ead: : i d that represents that thread. Otherwise
returns a default-constructed boost : : t hread: : i d.

Throws: Nothing

Member function interrupt () EXTENSION

void interrupt();

Effects: If *t hi s refersto athread of execution, request that the thread will be interrupted the next time it enters one of the
predefined interruption points with interruption enabled, or if it is currently blocked in a call to one of the predefined
interruption points with interruption enabled .

Throws: Nothing

Static member function nar dwar e_concurrency()

unsi gned har dwar e_concurrency() noexecpt;

Returns: The number of hardware threads available on the current system (e.g. number of CPUs or cores or hyperthreading
units), or 0 if thisinformation is not available.

Throws: Nothing

41

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Static member function physical _concurrency()

unsi gned physi cal _concurrency() noexecpt;

Returns: The number of physical cores available on the current system. In contrast to har dwar e_concur rency() it does not
return the number of virtual cores, but it counts only physical cores.

Throws: Nothing

Member function native_handi e()

t ypedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

operator== DEPRECATED

bool operator==(const thread& other) const;

O Warning
DEPRECATED since 4.0.0.

Usea. get _id()==b.get _id() instead.

Returns: get _i d()==ot her.get _id()
operatort= DEPRECATED

bool operator!=(const thread& other) const;

o Warning
DEPRECATED since 4.0.0.

Usea.get _id()!=b.get _id() instead.

Returns: get _id()!=other.get _id()

Static member function sieep() DEPRECATED

voi d sl eep(systemtime const& abs_tine);

42

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

O Warning
DEPRECATED since 3.0.0.

Usethis_thread::sleep_for() orthis_thread::sleep_until().

Effects: Suspends the current thread until the specified time has been reached.
Throws: boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.
Notes: sl eep() isone of the predefined interruption points.

Static member function yieia() DEPRECATED

void yield();

O Warning
DEPRECATED since 3.0.0.

Usethis_thread::yield().

Effects: Seeboost::this thread::yield().

Member function swap()
voi d swap(thread& ot her) noexcept;

Effects: Exchanges the threads of execution associated with *t hi s and ot her, so *t hi s is associated with the
thread of execution associated with ot her prior to the call, and vice-versa.

Postconditions: t hi s->get _i d() returnsthesamevaueasot her . get _i d() priortothecall.ot her. get _i d() returns
the samevalue ast hi s- >get _i d() prior to the call.

Throws: Nothing.

Non-member function swap()

#i ncl ude <boost/thread/thread. hpp>

voi d swap(thread& | hs,thread& rhs) noexcept;

Effects: | hs. swap(rhs).

43

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class boost: :thread::id

#i ncl ude <boost/thread/thread. hpp>

class thread::id

{

publi c:
id() noexcept;
bool operator==(const id& y) const noexcept;
bool operator!=(const id& y) const noexcept;
bool operator<(const id& y) const noexcept;
bool operator>(const id& y) const noexcept;
bool operator<=(const id& y) const noexcept;
bool operator>=(const id& y) const noexcept;
tenpl at e<cl ass charT, class traits>
friend std::basic_ostrean<charT, traits>&
oper at or <<(std:: basic_ostream<charT, traits>& os, const id& X);

b

Default constructor

id() noexcept;

Effects: Constructsaboost : : t hread: : i d instance that represents Not-a-Thread.
Throws: Nothing
oper at or ==

bool operator==(const id& y) const noexcept;

Returns: trueif *t hi s andy both represent the same thread of execution, or both represent Not-a-Thread, f al se otherwise.
Throws: Nothing

operator!=

bool operator!=(const id& y) const noexcept;

Returns: true if *t hi s andy represent different threads of execution, or one represents a thread of execution, and the other
represent Not-a-Thread, f al se otherwise.

Throws: Nothing

oper at or <

bool operator<(const id& y) const noexcept;

Returns: trueif*this! =y istrue andtheimplementation-defined total order of boost : : t hread: : i d valuesplaces*t hi s
beforey, f al se otherwise.

Throws: Nothing

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Note; A boost : : t hread: : i dinstance representing Not-a-Thread will always compare less than an instance representing
athread of execution.

oper at or >

bool operator>(const id& y) const noexcept;

Returns: y<*this
Throws: Nothing

oper at or <=

bool operator<=(const id& y) const noexcept;

Returns: I'(y<*this)
Throws: Nothing

oper at or >=

bool operator>=(const id& y) const noexcept;

Returns: I'(*this<y)
Throws: Nothing

Friend operat or <<

tenpl at e<cl ass charT, class traits>
friend std::basic_ostrean<charT, traits>&
oper at or <<(std:: basic_ostream<charT, traits>& os, const id& X);

Effects: Writes arepresentation of theboost : : t hr ead: : i d instance x to the stream os, such that the representation of two
instances of boost : : t hread: : i d a and b isthe same if a==b, and different if a! =b.

Returns: os

Class boost::thread::attributes EXTENSION

class thread: :attributes {
public:
attributes() noexcept;
~ attributes()=default;
/'l stack
voi d set_stack_size(std::size_t size) noexcept;
std::size_t get_stack_size() const noexcept;

#i f defined BOOST_THREAD DEFI NES_THREAD ATTRI BUTES_NATI VE_HANDLE
t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type* native_handl e() noexcept;
const native_handl e_type* native_handl e() const noexcept;
#endi f

I

45

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Default constructor

thread_attri butes() noexcept;

Effects: Constructs a thread atrributes instance with its default values.
Throws: Nothing

Member function set _stack_si ze()

voi d set_stack_size(std::size_t size) noexcept;

Effects: Storesthe stack size to be used to create athread. Thisisan hint that the implementation can choose a better
sizeif to small or too big or not aligned to a page.

Postconditions: this-> get_stack_si ze() returnsthe chosen stack size.

Throws: Nothing.

Member function get _stack_si ze()

std::size_t get_stack_size() const noexcept;

Returns: The stack size to be used on the creation of athread. Note that this function can return O meaning the default.

Throws: Nothing.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type* native_handl e() noexcept;
const native_handl e_type* native_handl e() const noexcept;

Effects: Returnsan instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying thread attributes implementation. If no such instance exists, nati ve_handl e() and nati ve_handl e_t ype
are not present and BOOST_THREAD_DEFI NES_THREAD_ATTRI BUTES_NATI VE_HANDLE is hot defined.

Throws: Nothing.

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Namespace this_tnread

nanespace boost {

nanespace this_thread {
thread::id get_id() noexcept;
t enpl at e<t ypenane Ti meDur ati on>
voi d yield() noexcept;
tenpl ate <class O ock, class Duration>
voi d sleep_until (const chrono::tine_point<C ock, Duration>& abs_tine);
tenpl ate <cl ass Rep, class Period>
voi d sl eep_for(const chrono::duration<Rep, Period>& rel _tine);

t enpl at e<t ypenane Cal | abl e>
void at_thread_exit(Callable func); // EXTENSI ON

void interruption_point(); // EXTENSI ON

bool interruption_requested() noexcept; // EXTENSI ON
bool interruption_enabl ed() noexcept; // EXTENSI ON
class disable_interruption; // EXTENSI ON

class restore_interruption; // EXTENSI ON

#i

f defined BOOST_THREAD USES DATETI ME
void sl eep(TimeDuration const& rel _tinme); // DEPRECATED
voi d sl eep(systemtime const& abs_tine); // DEPRECATED
#endi f
}
}

Non-member function get _id()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
thread::id get_id() noexcept;
}
Returns: Aninstance of boost : : t hread: : i d that represents that currently executing thread.
Throws: boost : :thread_resource_error if anerror occurs.

Non-member function interruption_point () EXTENSION

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
void interruption_point();
}
Effects: Check to seeif the current thread has been interrupted.
Throws: boost::thread_interrupted if boost::this_thread::interruption_enabl ed()

boost::this_thread::interruption_requested() bothreturntrue.

47

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function i nterruption_requested() EXTENSION

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
bool interruption_requested() noexcept;
}
Returns: t rue if interruption has been requested for the current thread, f al se otherwise.

Throws: Nothing.

Non-member function i nterruption_enabl ed() EXTENSION

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
bool interruption_enabl ed() noexcept;
}
Returns: t rue if interruption has been enabled for the current thread, f al se otherwise.

Throws: Nothing.

Non-member function sieep() DEPRECATED

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
t enpl at e<t ypenane Ti meDurati on>
voi d sl eep(TimeDuration const& rel _tine);
voi d sl eep(systemtine const& abs_tinme)

}

O Warning
DEPRECATED since 3.0.0.

Usesl eep_for() andsl eep_until () instead.

Effects: Suspends the current thread until the time period specified by rel _t i ne has elapsed or the time point specified by
abs_ti me has been reached.
Throws: boost : : thread_i nt errupt ed if the current thread of execution isinterrupted.
Notes: sl eep() isone of the predefined interruption points.
48

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function sieep_until ()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
tenpl ate <class C ock, class Duration>
void sleep_until (const chrono::tinme_point<C ock, Duration>& abs_tinme)
}
Effects: Suspends the current thread until the time point specified by abs_t i me has been reached.
Throws: Nothing if Clock satisfies the TrivialClock reguirements and operations of Duration do not throw exceptions.
boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.
Notes: sl eep_until () isoneof the predefined interruption points.

Non-member function sieep_for()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
tenpl ate <cl ass Rep, class Period>
voi d sl eep_for(const chrono::durati on<Rep, Period>& rel _tine);
}
Effects: Suspends the current thread until the duration specified by by rel _t i me has elapsed.
Throws: Nothing if operations of chrono::duration<Rep, Period> do not throw exceptions. boost : : t hr ead_i nt er r upt ed
if the current thread of execution isinterrupted.
Notes: sl eep_f or () isone of the predefined interruption points.

Non-member function yiel d()

#i ncl ude <boost/thread/thread. hpp>

nanmespace this_thread

{
voi d yield() noexcept;
}
Effects: Gives up the remainder of the current thread's time slice, to allow other threads to run.

Throws: Nothing.

49

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Class disabl e interruption EXTENSION

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
cl ass disable_interruption
{
public:
di sabl e_interruption(const disable_interruption& = delete;
di sabl e_i nterrupti on& operator=(const disable_interruption& = delete;
di sabl e_interruption() noexcept;
~di sabl e_interruption() noexcept;
b
}

boost : :this_thread:: disabl e_interruption disablesinterruption for the current thread on construction, and restores the
prior interruption state on destruction. Instances of di sabl e_i nt er r upt i on cannot be copied or moved.

Constructor

di sabl e_interruption() noexcept;

Effects: Storesthecurrent stateof boost : : t hi s_t hread: : i nterrupti on_enabl ed() anddisablesinterruption
for the current thread.

Postconditions: boost::this_thread::interruption_enabl ed() returnsf al se for the current thread.

Throws: Nothing.

Destructor

~di sabl e_interruption() noexcept;

Preconditions: Must be called from the same thread from which * t hi s was constructed.

Effects: Restoresthe current state of boost : : t his_t hread: : i nterrupti on_enabl ed() forthecurrent thread
to that prior to the construction of *t hi s.

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returns the value stored in
the constructor of *t hi s.

Throws: Nothing.

50

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class restore_interruption EXTENSION

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
class restore_interruption
{
public:
restore_interruption(const restore_interruption& = delete;
restore_interruption& operator=(const restore_interrupti on& = delete;
explicit restore_interruption(disable_interruption& disabler) noexcept;
~restore_interruption() noexcept;
b
}

On construction of aninstance of boost : : t hi s_t hread: : rest ore_i nt er rupt i on, theinterruption state for the current thread
isrestored to theinterruption state stored by the constructor of the supplied instance of boost : : t hi s_t hr ead: : di sabl e_i nter -
rupt i on. When the instance is destroyed, interruption is again disabled. Instances of r est or e_i nt er r upt i on cannot be copied
or moved.

Constructor

explicit restore_interruption(disable_interruption& disabler) noexcept;

Preconditions: Must be called from the same thread from which di sabl er was constructed.

Effects: Restoresthe current state of boost : : t his_thread: : i nterrupti on_enabl ed() forthecurrent thread
to that prior to the construction of di sabl er .

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returns the value stored in
the constructor of di sabl er.

Throws: Nothing.

Destructor

~restore_interruption() noexcept;

Preconditions: Must be called from the same thread from which *t hi s was constructed.

Effects: Disables interruption for the current thread.

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returnsf al se.
Throws: Nothing.

Non-member function template at_thread_exit() EXTENSION

#i ncl ude <boost/thread/thread. hpp>

t enpl at e<t ypenane Cal | abl e>
void at_thread exit(Callable func);

Effects: A copy of func is placed in thread-specific storage. This copy is invoked when the current thread exits
(even if the thread has been interrupted).

51

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Postconditions: A copy of f unc has been saved for invocation on thread exit.

Throws: st d: : bad_al | oc if memory cannot be allocated for the copy of the function, boost: : t hread_re-
source_error if any other error occurs within the thread library. Any exception thrown whilst copying
f unc into internal storage.

Note: This function is not called if the thread was terminated forcefully using platform-specific APIs, or if the
thread is terminated due to acall to exit (), abort () or std::terninate(). In particular, returning
from main() is equivalent to cal to exit(), so will not cal any functions registered with
at _thread_exit()

ClaSS t hread_group EXTENSION

#i ncl ude <boost/thread/thread. hpp>

cl ass thread_group

{
publi c:
t hread_group(const thread_group& = delete;
t hread_group& operator=(const thread_group& = delete;

t hread_group();
~t hread_group();

t enpl at e<t ypenane F>

t hread* create_thread(F threadfunc);
voi d add_t hread(thread* thrd);

voi d renove_t hread(t hread* thrd);
bool is_this_thread_in();

bool is_thread_in(thread* thrd);
void join_all ();

void interrupt_all();

int size() const;

t hr ead_gr oup provides for a collection of threads that are related in some fashion. New threads can be added to the group with
add_t hread and cr eat e_t hr ead member functions. t hr ead_gr oup is not copyable or movable.

Constructor

t hread_group();

Effects: Create a new thread group with no threads.

Destructor

~t hread_group():

Effects: Destroy *t hi s and del et e all boost : : t hr ead objectsin the group.

Member function creat e_thread()

t enpl at e<t ypenane F>
t hread* create_thread(F threadfunc);

Effects: Create anew boost : : t hr ead object as-if by new t hr ead(t hr eadf unc) and add it to the group.

52

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Postcondition:

Returns:

Member

t hi s->si ze() isincreased by one, the new thread is running.

A pointer to the new boost : : t hr ead object.

function add_thread()

voi d add_t hread(thread* thrd);

Precondition:

Effects:

Postcondition:

Member

The expression delete thrd is well-formed and will not result in undefined behaviour and
is_thread_in(thrd) == fal se.

Take ownership of theboost : : t hr ead object pointed to by t hr d and add it to the group.

t hi s->si ze() isincreased by one.

function renove_t hread()

voi d renmove_t hread(t hread* thrd);

Effects:

Postcondition:

Member

If t hr d isamember of the group, remove it without calling del et e.

If t hr d was a member of the group, t hi s- >si ze() isdecreased by one.

function join all ()

void join all();

Requires:
Effects:
Postcondition:

Note:

Member

is_this thread_in() == fal se.
Call j oi n() oneachboost : : t hr ead object in the group.
Every thread in the group has terminated.

Sincej oi n() isone of the predefined interruption points, j oi n_al | () isalso an interruption point.

function is_this_thread_ in()

bool is_this thread_in();

Returns:

Member

trueif thereisathread t h inthegroup suchthatt h. get _id() == this_thread::get_id().

function is_thread_in()

bool is thread in(thread* thrd);

Returns:

Member

trueif thereisathread t h inthegroup suchthatt h. get _i d() == thrd->get _id().

function i nterrupt _all ()

void interrupt_all();

Effects:

Call i nterrupt () oneachboost: : t hr ead object in the group.

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Member function size()

int size();

Returns:

Throws:

The number of threadsin the group.

Nothing.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Scoped Threads
Synopsis

/1 #i ncl ude <boost/t hread/ scoped_t hread. hpp>

struct detach;
struct join_if_joinable;
struct interrupt_and_join_if_joinable;

tenpl ate <class Call abl eThread = join_if_joi nabl e>
class strict_scoped_thread;
tenpl ate <class Call abl eThread = join_if_joi nabl e>

cl ass scoped_t hr ead;
voi d swap(scoped_t hread& | hs, scoped_t hread& rhs) noexcept;

Motivation

Based on the scoped_thread class defined in C++ Concurrency in Action Boost. Thread defines a thread wrapper class that instead
of caling terminate if the thread is joinable on destruction, call a specific action given as template parameter.

While the scoped_thread class defined in C++ Concurrency in Action is closer to strict_scoped_thread class that doesn't allows any
change in the wrapped thread, Boost. Thread provides a class scoped_thread that provides the same non-deprecated interface than
t hr ead.

Tutorial

Scoped Threads are wrappers around a thread that allows the user to state what to do at destruction time. One of the common uses
isto join the thread at destruction time so thisis the default behavior. Thisis the single difference respect to a thread. While thread
call std::terminate() on the destructor isthethread isjoinable, strict_scoped_thread<> or scoped_thread<> join thethread if joinable.

The difference between strict_scoped thread and scoped_thread isthat the strict_scoped_thread hides completely the owned thread
and so the user can do nothing with the owned thread other than the specific action given as parameter, while scoped_thread provide
the sameinterface than t hr ead and forwards all the operations.

boost::strict_scoped_thread<> t1((boost::thread(f)));
/1tl.detach(); // conpile fails

boost: : scoped_t hread<> t2((boost::thread(f))):;

t2. detach();

Free Thread Functors

/' #i ncl ude <boost/thread/ scoped_t hread. hpp>

struct detach;
struct join_if_joinable;
struct interrupt_and_join_if_joinable;

55

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Functor detach

struct detach

{
voi d operator()(thread& t)

t. detach();

}
}

Functor join_if_joinable

struct join_if_joinable
{
voi d operator()(thread& t)

{
if (t.joinable())
{

}
}
};

t.join();

Functor interrupt_and join_if_joinable

struct interrupt_and_join_if_joinable
{
void operator()(thread& t)
{
t.interrupt();
if (t.joinable())
{

}
}
I

t.join();

CI asSs strict _scoped_t hread

/'l #include <boost/thread/ scoped_thread. hpp>

tenpl ate <class Cal |l abl eThread = join_if_joinabl e>
class strict_scoped_thread
{

thread t_; // for exposition purposes only
public:

strict_scoped_thread(strict_scoped_thread const& = delete;
strict_scoped_thread& operator=(strict_scoped_thread const& = delete;

explicit strict_scoped_thread(thread&& t) noexcept;
tenpl ate <typenane F&& typenane ...Args>
explicit strict_scoped_thread(F&& Args&s&. ..);

~strict_scoped_thread();

56

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

RAI t hr ead wrapper adding a specific destroyer allowing to master what can be done at destruction time.
CallableThread: A calablevoi d(t hr ead&) .
Thedefaultisaj oi n_i f_j oi nabl e.

st d/ boost : : t hr ead destructor terminates the program if thet hr ead is not joinable. Thiswrapper can be used to join the thread
before destroying it seems a natural need.

Example

boost::strict_scoped_thread<> t((boost::thread(F)));

Constructor from a thread

explicit strict_scoped_thread(thread&& t) noexcept;

Effects: move thethread toownt _

Throws: Nothing

Move Constructor from a Callable

tenpl ate <typenane F&& typenane ...Args>
explicit strict_scoped_thread(F&&, Argsé&&. ..);

Effects: Construct ainternal thread in place.

Postconditions: *t hi s. t _ refersto the newly created thread of executionandt hi s->get _i d()!=thread::id().
Throws: Any exception the thread construction can throw.

Destructor

~strict_scoped_thread();

Effects: Equivalent to Cal | abl eThread() (t_).
Throws: Nothing: TheCal | abl eThr ead() (t_) should not throw when joining the thread asthe scoped variableison ascope
outside the thread function.

57

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

ClaSS scoped_t hread

#i ncl ude <boost/thread/ scoped_thread. hpp>

tenpl ate <cl ass Cal | abl eThr ead>
cl ass scoped_t hread
{
thread t_; // for exposition purposes only

public:

scoped_t hread() noexcept;

scoped_t hread(const scoped_thread&) = delete;

scoped_t hread& operat or=(const scoped_thread& = delete;

explicit scoped_thread(thread&& th) noexcept;
tenpl ate <typenane F&& typenane ... Args>
explicit scoped_thread(F&&, Args&s&. ..);

~scoped_t hread();

/1l nove support

scoped_t hread(scoped_t hread && x) noexcept;

scoped_t hread& operat or=(scoped_t hread && x) noexcept;

voi d swap(scoped_t hread& x) noexcept;

typedef thread::id id;

id get_id() const noexcept;

bool joinable() const noexcept;

void join();
#i f def BOOST_THREAD_USES_ CHRONO

tenpl ate <cl ass Rep, class Period>

bool try_join_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_ join_until(const chrono::tinme_point<C ock, Duration>& t);
#endi f

voi d detach();

static unsi gned hardware_concurrency() noexcept;
static unsigned physical _concurrency() noexcept;

typedef thread::native_handl e_type native_handl e_type;
nati ve_handl e_type native_handl e();

#i f defined BOOST_THREAD PROVI DES_ | NTERRUPTI ONS
void interrupt();

bool interruption_requested() const noexcept;
#endi f

b

voi d swap(scoped_thread& | hs, scoped_t hread& rhs) noexcept;
RAI t hr ead wrapper adding a specific destroyer allowing to master what can be done at destruction time.
CallableThread: A callable void(thread&). The default isjoin_if_joinable.

thread std::thread destructor terminates the program if the thread is not joinable. Having a wrapper that can join the thread before
destroying it seems anatural need.

58

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Remark: scoped_t hread isnot at hr ead ast hr ead is not designed to be derived from as a polymorphic type.

Anyway scoped_t hr ead can be used in most of the contextsat hr ead could be used as it has the same non-deprecated interface
with the exception of the construction.

Example

boost: : scoped_t hread<> t((boost::thread(F)));
t.interrupt();

Default Constructor

scoped_t hread() noexcept;

Effects: Constructs a scoped_thread instance that wraps to Not-a-Thread.
Postconditions: this->get_id()==thread::id()
Throws: Nothing

Move Constructor

scoped_t hread(scoped_t hread&& ot her) noexcept;

Effects: Transfers ownership of the scoped_thread managed by ot her (if any) to the newly constructed scoped _thread
instance.

Postconditions: other.get _id()==thread::id() andget _id() returnsthe value of ot her. get _i d() prior to the
construction

Throws: Nothing

Move assignment operator

scoped_t hread& oper at or =(scoped_t hr ead&& ot her) noexcept;

Effects: Transfers ownership of the scoped thread managed by ot her (if any) to*t hi s.

- if defined BOOST_THREAD DONT_PROVI DE_THREAD MOVE _ASSI GN _CALLS TERM NATE | F_JO NABLE:
If therewas ascoped_t hr ead previously associated with * t hi s then that scoped_t hr ead is detached,
DEPRECATED

- if defined BOOST_THREAD_PROVI DES_THREAD MOVE._ASS|I GN_CALLS TERM NATE_| F_JO NABLE: If
the scoped_t hr ead isjoinable calls to std::terminate.

Postconditions: ot her->get _id()==thread::id() andget _id() returnsthevaueof ot her. get _i d() priortothe
assignment.
Throws: Nothing

Move Constructor from a thread

scoped_t hread(thread&& t);

Effects: move thethread toownt _

59

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Postconditions: *t hi s. t_ refersto the newly created thread of execution and t hi s- >get _i d()!=thread: :id().

Throws: Nothing

Move Constructor from a Callable

tenpl ate <typenane F&& typenane ... Args>
explicit scoped_thread(F&& Args&s&. ..);

Effects: Construct ainternal thread in place.

Postconditions: *t hi s. t _ refersto the newly created thread of execution andt hi s->get _id()!=thread: :id().
Throws: Any exception the thread construction can throw.

Destructor

~scoped_t hread();

Effects: Equivalent to Cal | abl eThread() (t_).
Throws: Nothing: TheCal | abl eThread() (t_) should not throw when joining the thread asthe scoped variableison ascope
outside the thread function.

Member function j oi nabl e()

bool joinable() const noexcept;

Returns: Equivalent to returnt_.joinable().

Throws: Nothing

Member function join()

void join();

Effects: Equivaenttot .join().
Member function try_ join_for()

tenpl ate <cl ass Rep, class Period>
bool try join_for(const chrono::duration<Rep, Period>& rel _time);

Effects: Equivalenttoreturnt _.try_join_for(rel _tine).

Member function try_ join_untii()

tenpl ate <class C ock, class Duration>
bool try_join_until(const chrono::tine_point<C ock, Duration>& abs_tine);

Effects: Equivalenttoreturnt _.try _join_until (abs_tinme).

60

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Member function detach()

voi d detach();

Effects: Equivalenttot _. det ach().

Member function get i d()

thread::id get_id() const noexcept;

Effects: Equivalenttoreturnt _. get _i d() .

Member function interrupt()

void interrupt();

Effects: Equivalenttot _.interrupt().

Static member function nar dwar e_concurrency()

unsi gned har dwar e_concurrency() noexecpt;

Effects: Equivalent toreturnt hr ead: : har dwar e_concurrency().

Static member function physi cal _concurrency()

unsi gned physi cal _concurrency() noexecpt;

Effects: Equivalent to returnt hr ead: : physi cal _concurrency().

Member function nati ve_handl e()

typedef thread::native_handl e_type native_handl e_type;
native_handl e_type native_handl e();

Effects: Equivalenttoreturnt _. native_handl e().

Member function swap()

voi d swap(scoped_t hread& ot her) noexcept;

Effects: Equivalentt _. swap(other.t_).
NO n-mem ber fu n Ct| on swap(scoped_t hread&, scoped_t hread&)

#i ncl ude <boost/thread/ scoped_thread. hpp>

voi d swap(scoped_t hread& | hs, scoped_t hread& rhs) noexcept;

Effects: | hs. swap(rhs).

61

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Synchronization

Tutorial

Handling mutexesin C++ is an excellent tutorial. You need just replace std and ting by boost.
Mutex, Lock, Condition Variable Rational e adds rational e for the design decisions made for mutexes, locks and condition variables.

In addition to the C++11 standard locks, Boost. Thread provides other locks and some utilities that help the user to make their code
thread-safe.

Internal Locking

S Note
Thistutorial isan adaptation of chapter Concurrency of the Object-Oriented Programming inthe BETA Programming
Language and of the paper of Andrel Alexandrescu "Multithreading and the C++ Type System™ to the Boost library.

Concurrent threads of execution

Consider, for example, modeling a bank account class that supports simultaneous deposits and withdrawal s from multiple locations
(arguably the "Hello, World" of multithreaded programming).

From here a component is amodel of the Cal | abl e concept.

| C++11 (Boost) concurrent execution of a component is obtained by means of thest d: : t hr ead(boost : : t hr ead):
boost::thread threadl(S);

where S isamodel of Cal | abl e. The meaning of this expression is that execution of S() will take place concurrently with the
current thread of execution executing the expression.

Thefollowing exampleincludes abank account of aperson (Joe) and two components, one corresponding to abank agent depositing
money in Joe's account, and one representing Joe. Joe will only be withdrawing money from the account:

62

httpo://www.renderx.com/

http://home.roadrunner.com/~hinnant/mutexes/locking.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2406.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

cl ass BankAccount;
BankAccount JoesAccount;

voi d bankAgent ()

{
for (int i =10; i>0; --i) {
/...
JoesAccount . Deposi t (500);
Il ..
}
}
voi d Joe() {
for (int i =10; i>0; --i) {
Il ..
i nt myPocket = JoesAccount.Wthdraw 100);
std::cout << myPocket << std::endl
/...
}
}

int main() {
/...
boost::thread threadl(bankAgent); // start concurrent execution of bankAgent
boost::thread thread2(Joe); // start concurrent execution of Joe
threadl. join()
thread2.join()
return O

From time to time, the bankAgent will deposit $500 in JoesAccount . Joe will similarly withdraw $100 from his account. These
sentences describe that the bankAgent and Joe are executed concurrently.

Internal locking

The above example works well as long as the components bankAgent and Joe doesn't access JoesAccount a the same time.
Thereis, however, no guarantee that this will not happen. We may use a mutex to guarantee exclusive access to each bank.

cl ass BankAccount {
boost:: nmutex ntx_;

i nt bal ance_;
publi c:
voi d Deposit(int amount) {
nmx_. 1 ock()

bal ance_ += anount;
nt x_. unl ock()

}

void Wthdraw(int anpunt) {
nmx_. 1 ock()
bal ance_ - = anount;
nt x_. unl ock()

int GetBal ance() {
nmx_. 1 ock()
int b = bal ance_;
nt x_. unl ock()
return b

63

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Execution of the Deposi t and W t hdr aw operations will no longer be able to make simultaneous access to balance.

A mutex is asimple and basic mechanism for obtaining synchronization. In the above example it is relatively easy to be convinced
that the synchronization works correctly (in the absence of exception). In asystem with several concurrent objects and several shared
objects, it may be difficult to describe synchronization by means of mutexes. Programs that make heavy use of mutexes may be
difficult to read and write. Instead, we shall introduce anumber of generic classes for handling more complicated forms of synchron-
ization and communication.

With the RAII idiom we can simplify alot this using the scoped locks. In the code below, guard's constructor locks the passed-in
object mt x_, and guard's destructor unlocks nt x_.

cl ass BankAccount {
boost::mutex mx_; // explicit nutex declaration
i nt bal ance_;
publi c:
voi d Deposit(int amount) {
boost : : | ock_guar d<boost : : mut ex> guard(ntx_);
bal ance_ += anount;

void Wthdraw(int anpunt) {
boost : : | ock_guar d<boost : : mut ex> guard(ntx_);
bal ance_ -= anount;

}
int GetBal ance() {

boost : : | ock_guar d<boost : : mut ex> guard(ntx_);
return bal ance_;

The object-level locking idiom doesn't cover the entire richness of athreading model. For example, the model aboveis quite deadlock-
prone when you try to coordinate multi-object transactions. Nonetheless, object-level locking is useful in many cases, and in com-
bination with other mechanisms can provide a satisfactory solution to many threaded access problemsin object-oriented programs.

Internal and external locking

The BankA ccount class above usesinternal locking. Basically, a class that usesinternal locking guarantees that any concurrent calls
toits public member functions don't corrupt an instance of that class. Thisistypically ensured by having each public member function
acquire a lock on the object upon entry. This way, for any given object of that class, there can be only one member function call
active at any moment, so the operations are nicely serialized.

This approach is reasonably easy to implement and has an attractive simplicity. Unfortunately, "simple" might sometimes morph
into "simplistic."

Internal locking isinsufficient for many real-world synchronization tasks. Imagine that you want to implement an ATM withdrawal
transaction with the BankAccount class. The requirements are ssmple. The ATM transaction consists of two withdrawals-one for
the actual money and one for the $2 commission. The two withdrawals must appear in strict sequence; that is, no other transaction
can exist between them.

The obvious implementation is erratic:

voi d ATMW t hdr awal (BankAccount & acct, int sum {
acct. Wt hdraw sum ;
/'l preenption possible
acct. Wthdraw 2) ;

The problem is that between the two calls above, another thread can perform another operation on the account, thus breaking the
second design requirement.

In an attempt to solve this problem, let's lock the account from the outside during the two operations:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

voi d ATMW t hdr awal (BankAccount & acct, int sum {
boost: : | ock_guard<boost:: nutex> guard(acct.ntx_); 1
acct. Wt hdraw(sum ;
acct. Wthdraw 2);

Notice that the code above doesn't compile, the nt x_ field is private. We have two possibilities;
» make nt x_ public which seems odd
» make the BankAccount lockable by adding the lock/unlock functions

We can add these functions explicitly

cl ass BankAccount {
boost::mutex ntx_;
i nt bal ance_;
public:
voi d Deposit(int anount) {
boost: : | ock_guar d<boost:: nmutex> guard(ntx_);
bal ance_ += anount;
}
void Wthdrawint amount) {
boost: : | ock_guar d<boost:: nmutex> guard(ntx_);

bal ance_ -= anount;
}
void lock() {
nmx_.lock();
}

voi d unlock() {
nmt x_. unl ock();

}

or inheriting from a class which add these lockable functions.

Thebasi c_| ockabl e_adapt er class helpsto define the BankAccount classas

cl ass BankAccount
: public basic_I| ockabl e_adapt er <nut ex>
{
i nt bal ance_;
publi c:
voi d Deposit(int anount) {
boost: : | ock_guar d<BankAccount > guard(*this);
bal ance_ += anmount;
}
void Wthdraw(int amount) {
boost: : | ock_guar d<BankAccount > guard(*this);
bal ance_ -= anmount;

i nt GetBal ance() {

boost: : | ock_guar d<BankAccount > guard(*this);
return bal ance_;

and the code that doesn't compiles becomes

65

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

voi d ATMW t hdr awal (BankAccount & acct, int sum {
boost: : | ock_guar d<BankAccount > guard(acct);
acct. Wt hdraw(sum ;
acct. Wthdraw 2);

Notice that now acct is being locked by Withdraw after it has already been locked by guard. When running such code, one of two
things happens.

* Your mutex implementation might support the so-called recursive mutex semantics. This means that the same thread can lock the
same mutex several times successfully. In this case, theimplementation works but has a performance overhead due to unnecessary
locking. (The locking/unlocking sequence in the two Withdraw calls is hot needed but performed anyway-and that costs time.)

» Your mutex implementation might not support recursive locking, which means that as soon as you try to acquire it the second
time, it blocks-so the ATMWithdrawal function enters the dreaded deadl ock.

Asboost : : nut ex isnot recursive, we need to use its recursive version boost : : recur si ve_nut ex.

cl ass BankAccount
publ i ¢ basi c_| ockabl e_adapt er <r ecur si ve_mnut ex>

{

I

The caller-ensured locking approach is more flexible and the most efficient, but very dangerous. In an implementation using caller-
ensured locking, BankAccount still holds a mutex, but its member functions don't manipulate it at al. Deposit and Withdraw are not
thread-safe anymore. Instead, the client code is responsible for locking BankAccount properly.

cl ass BankAccount
publ i ¢ basic_| ockabl e_adapt er <boost : mut ex> {
i nt bal ance_;
publi c:
voi d Deposit(int amount) {
bal ance_ += anount;

void Wthdraw(int anpunt) {
bal ance_ - = anount;
}

Obvioudly, the caller-ensured | ocking approach has asafety problem. BankA ccount'simplementation codeisfinite, and easy to reach
and maintain, but there's an unbounded amount of client code that manipulates BankAccount objects. In designing applications, it's
important to differentiate between requirementsimposed on bounded code and unbounded code. If your class makes undue requirements
on unbounded code, that's usually a sign that encapsulation is out the window.

To conclude, if in designing a multi-threaded class you settle on internal locking, you expose yourself to inefficiency or deadlocks.

On the other hand, if you rely on caller-provided locking, you make your class error-prone and difficult to use. Finaly, external
locking completely avoids the issue by leaving it all to the client code.

External Locking -- strict_lock and external | y_| ocked classes

S Note
This tutoria is an adaptation of the paper by Andrei Alexandrescu "Multithreading and the C++ Type System" to
the Boost library.

66

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Locks as permits

So what to do? Ideally, the BankAccount class should do the following:

* Support both locking models (internal and external).

» Begéfficient; that is, use no unnecessary locking.

» Besdfe; that is, BankAccount objects cannot be manipulated without appropriate locking.

L et'smake aworthwhile observation: Whenever you lock aBankAccount, you do so by using al ock_guar d<BankAccount > object.
Turning this statement around, wherever theresal ock_guar d<BankAccount >, there's also alocked BankAccount somewhere.
Thus, you can think of-and use-al ock_guar d<BankAccount > object asapermit. Owning al ock_guar d<BankAccount > gives
you rights to do certain things. The | ock_guar d<BankAccount > object should not be copied or aliased (it's not a transmissible
permit).

1. Aslong asapermitisstill alive, the BankAccount object stays locked.
2. When thel ock_guar d<BankAccount > is destroyed, the BankAccount 's mutex is rel eased.

Thenet effect isthat at any point inyour code, having accessto al ock_guar d<BankAccount > object guaranteesthat aBank Account
islocked. (You don't know exactly which BankAccount islocked, however-an issue that we'll address soon.)

For now, let's make a couple of enhancementsto the | ock_guar d class template defined in Boost.Thread. Well call the enhanced
versionstrict _| ock. Essentialy, astrict I ock'sroleisonly to live on the stack as an automatic variable. st ri ct _| ock must
adhere to a non-copy and non-alias policy. st ri ct _| ock disables copying by making the copy constructor and the assignment op-
erator private.

tenpl ate <typenane Lockabl e>
class strict_lock {
publi c:
t ypedef Lockabl e | ockabl e_type;

explicit strict_|lock(lockable_type& obj) : obj_(obj) {
obj.lock(); // locks on construction

}

strict _lock() = delete;
strict _lock(strict _|ock const& = delete;
strict_l ock& operator=(strict_lock const& = delete;

~strict_lock() { obj_.unlock(); } // unlocks on destruction

bool owns_| ock(mutex_type const* |) const noexcept // strict |ockers specific function

{
}

private:
| ockabl e_t ype& obj _;

return | == &obj_;

I

Silence can be sometimes louder than words-what's forbidden to do with ast ri ct _I ock isasimportant as what you can do. Let's
see what you can and what you cannot do with ast ri ct _I ock instantiation:

* You can create astrict | ock<T> only starting from a valid T object. Notice that there is no other way you can create a
strict_| ock<T>.

BankAccount myAccount ("John Doe", "123-45-6789");
strict_l ock<BankAccount > nyLock(nyAccount); // ok

67

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

* You cannot copy strict | ocks to one another. In particular, you cannot pass stri ct _| ocks by value to functions or have
them returned by functions:

extern strict_| ock<BankAccount> Foo(); // conpile-time error
extern void Bar(strict_| ock<BankAccount>); // conpile-tine error

» However, you till can passstri ct _| ocksby reference to and from functions:

/'l ok, Foo returns a reference to strict_| ock<BankAccount >
extern strict_| ock<BankAccount >& Foo();

/'l ok, Bar takes a reference to strict_| ock<BankAccount >
extern void Bar(strict_| ock<BankAccount >&);

All these rules were put in place with one purpose-enforcing that owning ast ri ct _| ock<T> isareasonably strong guarantee that
1. you locked aT object, and
2. that object will be unlocked at alater point.

Now that we have such astrict st ri ct _| ock, how do we harnessits power in defining a safe, flexible interface for BankAccount?
Theideaisasfollows:

» Each of BankAccount's interface functions (in our case, Deposit and Withdraw) comes in two overloaded variants.

» Oneversion keepsthe same signature as before, and the other takes an additional argument of typest ri ct _| ock<BankAccount >.
The first version is internally locked; the second one requires external locking. External locking is enforced at compile time by
requiring client codeto createast ri ct _| ock<BankAccount > object.

» BankAccount avoids code bloating by having the internal locked functions forward to the external locked functions, which do the
actual job.

A little code is worth 1,000 words, a (hacked into) saying goes, so here's the new BankAccount class:

cl ass BankAccount
: public basic_I| ockabl e_adapt er <boost : r ecur si ve_mnut ex>
{
i nt bal ance_;
public:
voi d Deposit(int anpbunt, strict_| ock<BankAccount>&) {
/1l Externally | ocked
bal ance_ += anmount;
}
voi d Deposit(int anount) {
strict_| ock<boost: mutex> guard(*this); // Internally | ocked
Deposi t (amount, guard);
}
void Wthdraw(int amount, strict_| ock<BankAccount>&) {
/1l Externally | ocked
bal ance_ -= anount;
}
void Wthdraw(int amount) {
strict_| ock<boost: mutex> guard(*this); // Internally | ocked
W t hdr aw(amount , guard);

Now, if you want the benefit of internal locking, you simply call Deposi t (i nt) and W't hdr aw(i nt) . If you want to use external
locking, you lock the object by constructing a strict_I ock<BankAccount> and then you cal Deposit(int,
strict_| ock<BankAccount >&) and Wt hdraw(i nt, strict_| ock<BankAccount >&) . For example, here's the ATMA t h-
drawal function implemented correctly:

68

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

voi d ATMW t hdr awal (BankAccount & acct, int sum {
strict_| ock<BankAccount > guard(acct);
acct. Wthdraw(sum guard);
acct. Wthdraw(2, guard);

This function has the best of both worlds-it's reasonably safe and efficient at the same time.

It's worth noting that st ri ct _| ock being a template gives extra safety compared to a straight polymorphic approach. In such a
design, BankAccount would derive from a Lockable interface. st ri ct _I ock would manipulate Lockable references so there's no
need for templates. This approach is sound; however, it provides fewer compile-time guarantees. Having astri ct _| ock object
would only tell that some object derived from Lockable is currently locked. In the templated approach, having a
strict _| ock<BankAccount > gives astronger guarantee-it'saBankAccount that stays |ocked.

There'saweasel word in there-l mentioned that ATMWithdrawal isreasonably safe. It'snot really safe because there's no enforcement
that thestri ct _| ock<BankAccount > object locks the appropriate BankAccount object. The type system only ensures that some
BankA ccount object islocked. For example, consider the following phony implementation of ATMWithdrawal:

voi d ATMW t hdr awal (BankAccount & acct, int sunm {
BankAccount fakeAcct("John Doe", "123-45-6789");
strict_| ock<BankAccount > guard(fakeAcct);
acct. Wthdraw(sum guard);
acct. Wthdraw(2, guard);

This code compiles warning-free but obviously doesn't do the right thing-it locks one account and uses another.

It'simportant to understand what can be enforced within the realm of the C++ type system and what needs to be enforced at runtime.
The mechanism we've put in place so far ensures that some BankA ccount object islocked during the call to BankAccount : : Wt h-
draw(int, strict_| ock<BankAccount >&) . We must enforce at runtime exactly what object islocked.

If our scheme still needs runtime checks, how is it useful? An unwary or malicious programmer can easily lock the wrong object
and manipulate any BankA ccount without actually locking it.

First, let's get the malice issue out of the way. C is alanguage that requires a lot of attention and discipline from the programmer.
C++ made some progress by asking alittle less of those, while still fundamentally trusting the programmer. These languages are not
concerned with malice (as Javais, for example). After all, you can break any C/C++ design simply by using casts "appropriately"
(if appropriately isan, er, appropriate word in this context).

The scheme is useful because the likelihood of a programmer forgetting about any locking whatsoever is much greater than the
likelihood of a programmer who does remember about locking, but locks the wrong object.

Usingst ri ct _| ock permits compile-time checking of the most common source of errors, and runtime checking of the lessfrequent
problem.

Let's see how to enforce that the appropriate BankAccount object is locked. First, we need to add a member function to the
strict_| ock classtemplate. Thebool strict_| ock<T>:: owns_| ock(Locl abl e*) functionreturnsareferenceto the locked
object.

tenpl ate <cl ass Lockabl e> class strict_lock {
as before ...
public:
bool owns_| ock(Lockabl e* ntx) const { return ntx==&obj ; }

b

Second, BankA ccount needs to use this function compare the locked object against this;

69

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

cl ass BankAccount {
publ i ¢ basic_| ockabl e_adapt er <boost : : r ecur si ve_nut ex>

i nt bal ance_;

public:
voi d Deposit(int amount, strict_| ock<BankAccount>& guard) {
/'l Externally | ocked
if (!guard.owns_l ock(*this))
throw "Locking Error: Wong Object Locked";
bal ance_ += anount;

The overhead incurred by the test above is much lower than locking a recursive mutex for the second time.

Improving External Locking

Now let's assume that BankAccount doesn't use its own locking at all, and has only athread-neutral implementation:

cl ass BankAccount {
int bal ance_;
publi c:
voi d Deposit(int amount) {
bal ance_ += anount;

}

void Wthdraw(int anpunt) {
bal ance_ - = anount;

}

Now you can use BankAccount in single-threaded and multi-threaded applications alike, but you need to provide your own synchron-
ization in the latter case.

Say we have an AccountManager class that holds and manipulates a BankAccount object:

cl ass Account Manager
publi ¢ basic_| ockabl e_adapt er <boost : : nut ex>

{

BankAccount checki ngAcct _;
BankAccount savi ngsAcct _;

Let's also assume that, by design, AccountManager must stay locked while accessing its BankAccount members. The question is,
how can we express this design constraint using the C++ type system? How can we state "You have access to this BankAccount
object only after locking its parent AccountManager object"?

The solution isto use alittle bridge template ext er nal | y_I ocked that controls access to a BankAccount.

70

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

tenpl ate <typenane T, typenane Lockabl e>
class externally_Il ocked {
BOOST_CONCEPT_ASSERT((Lockabl eConcept <Lockabl e>))

public:
external ly_|l ocked(T& obj, Lockabl e& | ockabl e)
obj _(obj)
| ockabl e_(| ockabl e)
{}

external |l y_| ocked(Lockabl e& | ockabl e)
obj _()
| ockabl e_(| ockabl e)

{}

T& get (strict_| ock<Lockabl e>& | ock) {

#i f def BOOST_THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI ED
if (!lock.owns_lock(& ockable_)) throw I ock_erd
ror(); run tinme check throw if not |ocks the sane

#endi f
return obj _;
}
voi d set(const T& obj, Lockabl e& | ockable) {
obj _ = obj
| ockabl e_=Il ockabl e
o}
private:
T obj _;

Lockabl e& | ockabl e_;

external | y_| ocked cloaks an object of type T, and actually provides full access to that object through the get and set member
functions, provided you pass areferenceto astri ct _| ock<Oaner > object.

Instead of making checki ngAcct _ and savi ngsAcct _ of typeBankAccount , Account Manager holds objects of typeext er n-
al | y_| ocked<BankAccount, Account Manager >:

cl ass Account Manager
publ i c basic_| ockabl e_adapt er <t hr ead_nut ex>

{
public:
t ypedef basi c_| ockabl e_adapt er <t hr ead_nut ex> | ockabl e_base_t ype
Account Manager ()
checki ngAcct _(*this)
savi ngsAcct _(*this)
{}
inline void Checking2Savi ngs(i nt anmount);
inline void AMbreConpli cat edChecki ng2Savi ngs(int anount);
private:
external | y_| ocked<BankAccount, Account Manager> checki ngAcct _;
external | y_| ocked<BankAccount, Account Manager> savi ngsAcct _;
}

The pattern is the same as before - to access the BankAccount object cloaked by checki ngAcct _, you need to call get . To call
get, you need to passit astri ct _| ock<Account Manager >. The one thing you have to take care of is to not hold pointers or
references you obtained by calling get . If you do that, make sure that you don't use them after the strict_lock has been destroyed.
That is, if you alias the cloaked objects, you're back from "the compiler takes care of that" mode to "you must pay attention” mode.

71

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Typicaly, you use ext ernal | y_| ocked as shown below. Suppose you want to execute an atomic transfer from your checking
account to your savings account:

voi d Account Manager : : Checki ng2Savi ngs(i nt anount) {
strict_| ock<Account Manager > guard(*this);
checki ngAcct _. get (guard) . Wt hdr awm(anount) ;
savi ngsAcct _. get (guard) . Deposi t (anount) ;

We achieved two important goals. First, the declaration of checki ngAcct _ and savi ngsAcct _ makesit clear to the code reader
that that variableis protected by alock on an AccountManager. Second, the design makesit impossible to manipul ate the two accounts
without actually locking a BankAccount. ext er nal | y_| ocked iswhat could be called active documentation.

Allowing other strict locks

Now imagine that the AccountManager function needs to take auni que_| ock in order to reduce the critical regions. And at some
time it needs to accessto the checki ngAcct _. Asuni que_I ock isnot astrict lock the following code doesn't compile:

voi d Account Manager : : AMor eConpl i cat edChecki ng2Savi ngs(int anmount) {
uni que_I| ock<Account Manager > guard(*this, defer_lock);
if (some_condition()) {

guard. | ock();

}
checki ngAcct _. get (guard). Wt hdraw anount); // COWPILE ERROR
savi ngsAcct _. get (guard) . Deposi t (anpbunt); // COWPILE ERROR
do_sonet hi ng_el se();

We need away to transfer the ownership from theuni que_I ock toast ri ct _| ock during the time we are working with savi ng-
sAcct _ and then restore the ownership on uni que_|I ock.

voi d Account Manager : : AMor eConpl i cat edChecki ng2Savi ngs(int amount) {
uni que_I| ock<Account Manager > guardl(*this, defer_|ock);
if (sone_condition()) {
guardl. |l ock();

}

{
strict_| ock<Account Manager > guard(guardl);
checki ngAcct _. get (guard) . Wt hdraw anount) ;
savi ngsAcct _. get (guard) . Deposi t (anount) ;

}

guar dl. unl ock();

In order to make this code compilable we need to store either a Lockable or auni que_| ock<Lockabl e> reference depending on
the constructor. We al so need to store which kind of reference we have stored, and in the destructor call either to the Lockableun! ock
or restore the ownership.

This seems too complicated to me. Another possibility is to define a nested strict lock class. The drawback is that instead of having
only one strict lock we have two and we need either to duplicate every function taking astri ct _| ock or make these function
templates. The problem with template functions is that we don't profit anymore of the C++ type system. We must add some static
metafunction that checks that the L ocker parameter isastrict lock. The problem isthat we can not really check this or can we?. The
i s_strict_| ock metafunction must be specialized by the strict lock developer. We need to believe it "sur parole”. The advantage
is that now we can manage with more than two strict locks without changing our code. Thisisreally nice.

Now we need to state that both classesarestri ct _| ocks.

72

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

tenpl ate <typenane Locker>
struct is_strict_lock : npl::false_ {};

tenpl ate <typenane Lockabl e>
struct is_strict_lock<strict_|ock<Lockable> > : npl::true_ {}

tenpl ate <typenane Locker>
struct is_strict_lock<nested_strict_|lock<Locker> > : npl::true_ {}

WEell let me show what thisnest ed_strict | ock class looks like and the impacts on the ext ernal | y_| ocked class and the
Account Manager : : AMor eConpl i cat edFunct i on function

First nest ed_strict _| ock classwill store on atemporary lock the Locker , and transfer the lock ownership on the constructor.
On destruction it will restore the ownership. Note the use of | ock_t rai t s and that the Locker needs to have a reference to the
mutex otherwise and exception is thrown.

tenpl ate <typenane Locker >
class nested_strict_Ilock
{
BOOST_CONCEPT_ASSERT((Movabl eLocker Concept <Locker >))
public:
typedef typenane | ockabl e_type<Locker>::type | ockabl e_type
typedef typenane syntactic_lock traits<lockable_ type>::lock _error |ock_error

nested_strict_| ock(Locker& | ock)
lock_(lock) // Store reference to | ocker
tnmp_l ock_(1 ock.nove()) // Move ownership to tenporaty | ocker

{
#i f def BOOST_THREAD _THROW. | F_PRECONDI TI ON_NOT_SATI SFI ED
if (tnmp_lock_.nmutex()==0) {
l ock_=tnp_lock_.nove(); // Rollback for coherency purposes
throw | ock_error()
}
#endi f
if ('tnp_lock_) tnp_lock_.lock(); // ensures it is |ocked
}

~nested_strict_lock() {
| ock_=tnp_lock_.nove(); // Move ownership to nesting | ocker
}
bool owns_l|ock() const { return true; }
| ockabl e_type* mutex() const { return tnp_lock_.mutex(); }
bool owns_| ock(| ockabl e_type* 1) const { return | ==mutex(); }

private:
Locker & | ock_;
Locker tnmp_l ock_;

Theexternal | y_| ocked get function is now atemplate function taking a Locker as parametersinstead of astri ct | ock. We
can add test in debug mode that ensure that the Lockable object is locked.

73

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

tenpl ate <typenane T, typenane Lockabl e>
class externally_Il ocked {
public:
I
tenpl ate <cl ass Locker>
T& get (Locker & | ock) {
BOOST_CONCEPT_ASSERT((Stri ct Locker Concept <Locker >)) ;

BOOST_STATI C_ASSERT((i s_strict_| ock<Locker>::value)); // locker is a strict |ocker "sur 0O

par ol e"

BOOST_STATI C_ASSERT((i s_sane<Lockabl e,

typenane | ockabl e_type<Locker>::type>::value)); // that |ocks the sane type

#i f ndef BOOST_THREAD_EXTERNALLY_ LOCKED DONT_CHECK OANERSHI P // define BOOST_THREAD EXTERND
ALLY_LOCKED NO CHECK OMNERSHI P i f you don't want to check | ocker ownership

if (! lock) throw lock_error(); // run tine check throw if no |ocked
#endi f
#i f def BOOST_THREAD_THROW | F_PRECONDI TI ON_NOT_SATI SFI ED

if (!lock.owns_|ock(& ockable_)) throw | ock_error();
#endi f

return obj_;

}

The Account Manager : : AMor eConpl i cat edFuncti on function needs only to replace the strict_lock by a nes-
ted_strict_Iock.

voi d Account Manager : : AMor eConpl i cat edChecki ng2Savi ngs(int amount) {
uni que_| ock<Account Manager > guardl(*this);
if (sonme_condition()) {
guardl. | ock();

}

{
nest ed_strict_I| ock<uni que_l ock<Account Manager > > guard(guardl);
checki ngAcct _. get (guard) . Wt hdr awm anount) ;
savi ngsAcct _. get (guard) . Deposi t (anount) ;

}

guar dl. unl ock();

Executing Around a Function

In particular, the library provides away to lock around the execution of a function.

tenpl ate <cl ass Lockabl e, class Function, class... Args>
auto with_| ock_guard(
Lockabl e& m
Functi on&& func,
Argsé&&. .. args
) -> decltype(func(boost::forward<Args>(args)...)) {
boost : : | ock_guard<Lockabl e> | ock(m ;
return func(boost: :forward<Args>(args)...);

}

that can be used with regular functions:

74

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

int func(int, int&);

/...

boost:: nutex m

int a;

int result = boost::with_lock _guard(m func, 1, boost::ref(a));

with boost::bind:

int result = boost::wth_lock_guard(
m boost: : bind(func, 2, boost::ref(a))
)

or with lambda expression:

int a;
int result = boost::with_|ock_guard(
m
[&a] (int x) {
/1l this scope is protected by mutex m
a = 3;
return x + 4;

},
5

Mutex Concepts

A mutex object facilitates protection against data races and allows thread-safe synchronization of data between threads. A thread
obtains ownership of a mutex object by calling one of the lock functions and relingquishes ownership by calling the corresponding
unlock function. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership to one or many threads.
Boost.Thread supplies recursive and non-recursive mutexes with exclusive ownership semantics, along with a shared ownership
(multiple-reader / single-writer) mutex.

Boost.Thread supports four basic concepts for lockable objects: Lockabl e, Ti medLockabl e, Shar edLockabl e and Upgr ade-
Lockabl e. Each mutex type implements one or more of these concepts, as do the various lock types.

Basi cLockabl e CONcept

/'l #include <boost/thread/| ockabl e_concepts. hpp>

namespace boost

{

t enpl at e<t ypenane L>
cl ass Basi cLockabl e; // EXTENSI ON

}

TheBasi cLockabl e concept models exclusive ownership. A type L meetsthe Basi cLockabl e requirementsif the following ex-
pressions are well-formed and have the specified semantics (mdenotes a value of type L):

* mlock();
e munl ock();

Lock ownership acquired through acall tol ock() must be released through a call to unl ock() .

75

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

m | ock();

Requires:

Effects:

Synchronization:

Postcondition:

Return type:

Throws:

Error Conditions:

Thread safety:

m unl ock();

Requires:

Synchronization:

Effects:

Return type:

Throws:

The calling thread doesn't owns the mutex if the mutex is not recursive.

The current thread blocks until ownership can be obtained for the current thread.

Prior unl ock() operations on the same object synchronizes with this operation.

The current thread owns m

voi d.

| ock_error if anerror occurs.

operation_not_permitted: if the thread does not have the privilege to perform the operation.
resource_deadlock would_occur: if the implementation detects that a deadlock would occur.
device _or_resource_busy: if the mutex is already locked and blocking is not possible.

If an exception is thrown then alock shall not have been acquired for the current thread.

The current thread owns m

This operation synchronizes with subsequent lock operations that obtain ownership on the same object.
Releases alock on mby the current thread.

voi d.

Nothing.

i s_basi c_| ockabl e trait -- EXTENSION

/'l #include <boost/thread/ | ockable_traits. hpp>

namespace boost

{

}

nanespace sync

{

t enpl at e<t ypenane L>
class is_basic | ockable;// EXTENSI ON

}

Some of the algorithms on mutexes use this trait via SFINAE.

Thistrait istrue_typeif the parameter L meetsthe Lockabl e requirements.

X

Warning

If BOOST_THREAD_NO_AUTO_DETECT MUTEX_TYPES is defined you will need to specialize this traits

for the models of BasicL ockable you could build.

76

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Lockabl e CONCept

/'l #include <boost/thread/| ockabl e_concepts. hpp>
namespace boost

{
t enpl at e<t ypenane L>
cl ass Lockabl e;

}

A type L meetsthe Lockabl e requirementsif it meetsthe Basi cLockabl e requirements and the following expressions are well-
formed and have the specified semantics (mdenotes a value of type L):

e mtry_l ock()

Lock ownership acquired through acall tot ry_| ock() must be released through a call to unl ock() .

mtry_l ock()

Requires: The calling thread doesn't owns the mutex if the mutex is not recursive.

Effects: Attempt to obtain ownership for the current thread without blocking.

Synchronization: Iftry_l ock() returnstrue, prior unl ock() operationson the same object synchronize with thisoperation.

Note: Sincel ock() does not synchronize with afailed subsequent t ry_I ock() , the visibility rules are weak
enough that little would be known about the state after afailure, even in the absence of spurious failures.

Return type: bool .

Returns: t rue if ownership was obtained for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread owns the m

Throws: Nothing.

i s_| ockabl e trait -- EXTENSION

/'l #include <boost/thread/ | ockable traits. hpp>
namespace boost

{

nanespace sync

{

t enpl at e<t ypenane L>
class is_lockable;// EXTENSI ON

}
}

Some of the algorithms on mutexes use this trait via SFINAE.

Thistrait istrue_typeif the parameter L meetsthe Lockabl e requirements.

O Warning
If BOOST_THREAD_NO_AUTO DETECT MUTEX_TYPES is defined you will need to specialize this traits
for the models of Lockable you could build.

77

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Recursive Lockable Concept

The user could require that the mutex passed to an agorithm is a recursive one. Whether alockable is recursive or not can not be
checked using template meta-programming. Thisis the motivation for the following trait.

i s_recursive_nutex_sur_parol e trait -- EXTENSION

/'l #include <boost/thread/l ockable_traits. hpp>

namespace boost

{
namespace sync
{
t enpl at e<t ypenane L>
class is_recursive_mutex_sur_parole: false_type; // EXTENSI ON
tenpl at e<>
class is_recursive_mutex_sur_parol e<recursive_mutex>: true_type; // EXTENSI ON
tenpl at e<>
class is_recursive_mutex_sur_parol e<ti ned_recursive_nutex>: true_type; // EXTENSI ON
}
}

Thetraitis_recursi ve_nmut ex_sur_parol e isfal se_type by default and is specialized for the provider ecur si ve_nut ex
andtimed_recursive_nutex.

It should be specialized by the user providing other model of recursive lockable.

i s_recursive_basic_| ockabl e trait -- EXTENSION

/'l #include <boost/thread/ | ockable_traits. hpp>
namespace boost

{
nanespace sync
{
t enpl at e<t ypenane L>
class is_recursive_basic_|l ockabl e;// EXTENSI ON
}
}

Thistraitsistrue typeif is basic lockable and is recursive_mutex_sur_parole.

i s_recursive_| ockabl e trait -- EXTENSION

/'l #include <boost/thread/ | ockable_traits. hpp>
namespace boost
{
namespace sync
{
t enpl at e<t ypenane L>
class is_recursive_|l ockabl e;// EXTENSI ON
}
}

Thistraitsistrue typeif is lockableand is_recursive_mutex_sur_parole.

78

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Ti medLockabl e CONCept

/'l #include <boost/thread/| ockabl e_concepts. hpp>
namespace boost

{

t enpl at e<t ypenane L>
cl ass TinedLockabl e; // EXTENSI ON

}

The Ti nedLockabl e concept refines the Lockabl e concept to add support for timeouts when trying to acquire the lock.

A type L meets the Ti nedLockabl e requirements if it meets the Lockabl e requirements and the following expressions are well-
formed and have the specified semantics.

Variables:

» mdenotes avalue of typelL,

e rel _time denotesavalue of aninstantiation of chr ono: : dur ati on, and

* abs_ti ne denotes avalue of an instantiation of chrono: : ti me_point:

Expressions:

e mtry_lock_for(rel _tine)

e mtry_ lock_until (abs_tine)

Lock ownership acquired through acall totry_| ock_for ortry_l ock_until must be released through acall to unl ock.

mtry_lock_until (abs_tine)

Requires: The calling thread doesn't owns the mutex if the mutex is not recursive.

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time isreached. If the specified time has already passed, behavesastry_| ock().

Synchronization: Iftry_lock_until () returnstrue, prior unl ock() operationson the same object synchronize with this
operation.

Return type: bool .

Returns: t rue if ownership was obtained for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread owns m

Throws: Nothing.

mtry_ lock _for(rel _tine)

Requires: The calling thread doesn't owns the mutex if the mutex is not recursive.
Effects: Asiftry_lock_until (chrono::steady_clock::now() + rel_tine).
Synchronization: Iftry_lock _for() returnstrue, prior unl ock() operations on the same object synchronize with this
operation.
79

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

O Warning
DEPRECATED since 4.00. The following expressions were required on version 2, but are now deprecated.

Useinsteadtry | ock_for,try_lock_until.

Variables:

e rel _ti me denotesavalue of aninstantiation of an unspecified Dur at i onType arithmetic compatiblewithboost : : system ti ne,
and

» abs_ti ne denotesavalue of aninstantiation of boost : : system ti ne:

Expressions:

e mtined_| ock(rel _tine)

e mtinmed_|l ock(abs_tine)

Lock ownership acquired through acall tot i med_I ock() must be released through acall to unl ock() .

mtinmed_| ock(abs_tine)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time isreached. If the specified time has already passed, behavesastry | ock().

Returns: t rue if ownership was obtained for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread owns m

Throws: | ock_error if anerror occurs.

mtimed_| ock(rel _tine)
Effects: As-if ti med_| ock(boost::get_systemtime()+rel _tine).

shar edLockabl e CONcept -- C++14

/'l #include <boost/thread/| ockabl e_concepts. hpp>

namespace boost

{
t enpl at e<t ypenane L>
cl ass SharedLockable; // C++14

}

TheShar edLockabl e concept isarefinement of the Ti medLockabl e concept that allowsfor shared ownership aswell asexclusive
ownership. This is the standard multiple-reader / single-write model: at most one thread can have exclusive ownership, and if any
thread does have exclusive ownership, no other threads can have shared or exclusive ownership. Alternatively, many threads may
have shared ownership.

A type L meets the Shar edLockabl e requirements if it meets the Ti medLockabl e requirements and the following expressions
are well-formed and have the specified semantics.

Variables:
» mdenotes avalue of typelL,

* rel _tinme denotesavalue of an instantiation of chr ono: : durati on, and

80

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

e abs_ti ne denotesavalue of aninstantiation of chr ono: : ti me_poi nt :
Expressions:

* mlock_shared()();

* mtry_l ock_shared()

e mtry_ |lock_shared_for(rel _tine)

e mtry_lock_shared_until (abs_tine)

* munl ock_shared()();

Lock ownership acquired through a cal to |ock_shared(), try_lock_shared(), try_|lock_shared_for or
try_l ock_shared_until must bereleased through a call to unl ock_shared().

m | ock_shar ed()

Effects: The current thread blocks until shared ownership can be obtained for the current thread.
Postcondition: The current thread has shared ownership of m
Throws: | ock_error if anerror occurs.

mtry_|l ock_shared()

Effects: Attempt to obtain shared ownership for the current thread without blocking.
Returns: t r ue if shared ownership was obtained for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has shared ownership of m

Throws: | ock_error if anerror occurs.

mtry lock shared for(rel tine)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified duration is elapsed. If the specified duration is aready elapsed, behaves as
try_lock_shared().

Returns: t rue if shared ownership was acquired for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has shared ownership of m
Throws: | ock_error if anerror occurs.

mtry_ |l ock_shared_until (abs_tine))

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behavesastry_| ock_shared().
Returns: t r ue if shared ownership was acquired for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has shared ownership of m
Throws: | ock_error if anerror occurs.
81

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

m unl ock_shar ed()

Precondition: The current thread has shared ownership of m

Effects: Releases shared ownership of mby the current thread.
Postcondition: The current thread no longer has shared ownership of m
Throws: Nothing

O Warning
DEPRECATED since 3.00. The following expressions were required on version 2, but are now deprecated.

Useinsteadtry | ock_shared for,try |l ock_shared_ until.

Variables:

» abs_ti ne denotesavalue of aninstantiation of boost : : system ti ne:

Expressions:

e mtined_| ock _shared(abs_tinme);

Lock ownership acquired through acall toti med_I ock_shar ed() must be released through acall to unl ock_shar ed() .

m timed_| ock_shared(abs_ti nme)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behavesastry_| ock_shar ed() .

Returns: t r ue if shared ownership was acquired for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread has shared ownership of m

Throws: | ock_error if anerror occurs.

Upgr adeLockabl e Concept -- EXTENSION

/'l #include <boost/thread/| ockabl e_concepts. hpp>

namespace boost

{
t enpl at e<t ypenane L>
cl ass UpgradeLockabl e; // EXTENSI ON

}

The Upgr adeLockabl e concept is arefinement of the Shar edLockabl e concept that allows for upgradable ownership aswell as
shared ownership and exclusive ownership. This is an extension to the multiple-reader / single-write model provided by the
Shar edLockabl e concept: asingle thread may have upgradable ownership at the same time as others have shared ownership. The
thread with upgradable ownership may at any time attempt to upgrade that ownership to exclusive ownership. If no other threads
have shared ownership, the upgrade is completed immediately, and the thread now has exclusive owner ship, which must be relinquished
by acall tounl ock(), just asif it had been acquired by acall to| ock() .

If athread with upgradable ownership tries to upgrade whilst other threads have shared ownership, the attempt will fail and the
thread will block until exclusive ownership can be acquired.

82

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Ownership can also be downgraded as well as upgraded: exclusive ownership of an implementation of the Upgr adeLockabl e
concept can be downgraded to upgradable ownership or shared ownership, and upgradable ownership can be downgraded to plain
shared ownership.

A type L meetsthe Upgr adeLockabl e requirementsif it meetsthe Shar edLockabl e requirements and the following expressions
are well-formed and have the specified semantics.

Variables:

e mdenotes avalue of typelL,

* rel _tinme denotesavalue of aninstantiation of chr ono: : durati on, and
» abs_ti ne denotesavalue of aninstantiation of chr ono: : ti me_poi nt :
Expressions:

* mlock_upgrade();

e m unl ock_upgrade()

* mtry_l ock_upgrade()

e mtry_lock_upgrade_for(rel _tine)

e mtry_|l ock_upgrade_until (abs_tinme)

* munl ock_and_| ock_shared()

e munl ock_and_| ock_upgrade();

e m unl ock_upgrade_and_| ock();

e mtry_unl ock_upgrade_and_I| ock()

e mtry_unl ock_upgrade_and_l ock_for(rel _tinme)

e mtry_unl ock_upgrade_and_| ock_until (abs_ti ne)

* munl ock_upgrade_and_| ock_shared();

If "BOOST_THREAD_PROVIDES SHARED MUTEX_UPWARDS CONVERSION is defined the following expressions are
also required:

e mtry_unl ock_shared_and_l ock();

* mtry_unlock_shared_and_|l ock_for(rel _tine);

e mtry_unl ock_shared_and_| ock_until (abs_tine);

e mtry_unl ock_shared_and_| ock_upgrade();

* mtry_unl ock_shared_and_| ock_upgrade_for(rel _tine);

e mtry_unl ock_shared_and_| ock_upgrade_until (abs_tine);

Lock ownership acquired through acall to | ock_upgr ade() must be released through acall to unl ock_upgr ade() . If the own-
ership typeis changed through a call to one of the unl ock_xxx_and_I ock_yyy() functions, ownership must be rel eased through
acall to the unlock function corresponding to the new level of ownership.

83

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

m | ock_upgr ade()
Precondition:

Effects:

Postcondition:
Synchronization:
Throws:

m unl ock_upgr ade()
Precondition:

Effects:

Postcondition:
Synchronization:
Throws:

mtry_l ock_upgrade()
Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:
mtry_| ock_upgrade_f

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:

The calling thread has no ownership of the mutex.

The current thread blocks until upgrade ownership can be obtained for the current thread.
The current thread has upgrade ownership of m

Prior unl ock_upgr ade() operations on the same object synchronize with this operation.

| ock_error if anerror occurs.

The current thread has upgrade ownership of m

Releases upgrade ownership of mby the current thread.

The current thread no longer has upgrade ownership of m

This operation synchronizes with subsequent lock operations that obtain ownership on the same object.

Nothing

The calling thread has no ownership of the mutex.

Attempts to obtain upgrade ownership of the mutex for the calling thread without blocking. If upgrade
ownership is not obtained, there is no effect and try_lock _upgrade() immediately returns.

t r ue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

Iftry_l ock_upgrade() returnstrue, prior unl ock_upgr ade() operationson the same object synchron-
ize with this operation.

Nothing
or(rel _tine)
The calling thread has no ownership of the mutex.

If the tick period of rel _ti me is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. Attempts to obtain upgrade lock ownership for the calling
thread within the relative timeout specified by r el _ti me. If thetime specified by rel _t i me islessthan
or equal torel _tine.zero(), the function attempts to obtain ownership without blocking (as if by
callingtry_I| ock_upgr ade()). The function returns within the timeout specified by rel _t i me only if
it has obtained upgrade ownership of the mutex object.

t r ue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

Iftry_l ock_upgrade_for(rel _tine) returnstrue, prior unl ock_upgr ade() operationsonthe same
object synchronize with this operation.

Nothing

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Notes:

Availableonly if BOOST _THREAD PROVI DES_GENERI C_SHARED MUTEX_ON_W Nisdefined on Windows
platform

mtry_| ock_upgrade_until (abs_tine)

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:

Notes:

The calling thread has no ownership of the mutex.

The function attempts to obtain upgrade ownership of the mutex. If abs_t i me has already passed, the
function attemptsto obtain upgrade ownership without blocking (asif by callingt ry_| ock_upgr ade()).
The function returns before the absolute timeout specified by abs_t i me only if it has obtained upgrade
ownership of the mutex object.

t r ue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

Iftry_l ock_upgrade_until (abs_tine) returnstrue, prior unl ock_upgr ade() operations on the
same object synchronize with this operation.

Nothing

Availableonly if BOOST_THREAD PROVI DES_GENERI C_SHARED MUTEX_ON_W Nisdefined on Windows
platform

m try_unl ock_shared_and_| ock()

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws;

Notes:

The calling thread must hold a shared lock on the mutex.

The function attempts to atomically convert the ownership from shared to exclusive for the calling thread
without blocking. For this conversion to be successful, this thread must be the only thread holding any
ownership of the lock. If the conversion is not successful, the shared ownership of m is retained.

t rue if exclusive ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has exclusive ownership of m

Iftry_unl ock_shared_and_| ock() returnstrue, prior unl ock() and subsegquent lock operations on
the same object synchronize with this operation.

Nothing

Available only if BOOST THREAD PROVI DES SHARED MUTEX UPWARDS_CONVERSI ON and
BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_W N is defined on Windows platform

mtry unl ock _shared and | ock for(rel _tine)

Precondition:

Effects:

Returns:

The calling thread shall hold a shared lock on the mutex.

If the tick period of rel _ti me is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from shared to exclusive for the calling thread within the relative timeout specified by rel _ti ne. If the
time specified by rel _ti me islessthan or equal torel _ti me. zer o() , the function attempts to obtain
exclusive ownership without blocking (asif by callingt ry_unl ock_shar ed_and_I ock()). Thefunction
shall return within the timeout specified by r el _t i me only if it has obtained exclusive ownership of the
mutex object. For this conversion to be successful, thisthread must be the only thread holding any ownership
of the lock at the moment of conversion. If the conversion is not successful, the shared ownership of the
mutex is retained.

t rue if exclusive ownership was acquired for the current thread, f al se otherwise.

85

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Postcondition:

Synchronization:

Throws:

Notes:

If the call returnst r ue, the current thread has exclusive ownership of m

If try_unl ock_shared_and_l ock_for(rel _time) returns true, prior unl ock() and subsequent
lock operations on the same object synchronize with this operation.

Nothing

Available only if BOOST_THREAD PROVI DES SHARED MUTEX_UPWARDS_CONVERSI ON and
BOOST_THREAD PROVI DES_GENERI C_SHARED MUTEX_ON W Nis defined on Windows platform

mtry_unl ock_shared_and_| ock_until (abs_ti ne)

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:

Notes:

The calling thread shall hold a shared lock on the mutex.

The function attemptsto atomically convert the ownership from shared to exclusive for the calling thread
within the absolute timeout specified by abs_t i me. If abs_t i me hasalready passed, the function attempts
to obtain exclusive ownership without blocking (as if by calling t ry_unl ock_shar ed_and_I ock()).
The function shall return before the absolute timeout specified by abs_t i me only if it has obtained ex-
clusive ownership of the mutex object. For this conversion to be successful, this thread must be the only
thread holding any ownership of thelock at the moment of conversion. If the conversion is not successful,
the shared ownership of the mutex is retained.

t r ue if exclusive ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has exclusive ownership of m

Iftry_unl ock_shared_and_| ock_until (rel _tine) returnstrue, prior unl ock() and subsequent
lock operations on the same object synchronize with this operation.

Nothing

Available only if BOOST_THREAD PROVI DES SHARED MUTEX_UPWARDS CONVERSI ON and
BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nis defined on Windows platform

m unl ock_and_| ock_shar ed()

Precondition:
Effects:
Postcondition:
Synchronization:

Throws:

The calling thread shall hold an exclusive lock on m

Atomically converts the ownership from exclusive to shared for the calling thread.

The current thread has shared ownership of m

This operation synchronizes with subsequent lock operations that obtain ownership of the same object.

Nothing

m try_unl ock_shared_and_| ock_upgrade()

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

The calling thread shall hold a shared lock on the mutex.

The function attempts to atomically convert the ownership from shared to upgrade for the calling thread
without blocking. For this conversion to be successful, there must be no thread holding upgrade ownership
of thisobject. If the conversion is not successful, the shared ownership of the mutex is retained.

t r ue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

Iftry_unl ock_shared_and_I| ock_upgrade() returnstrue, prior unl ock_upgr ade() and subsequent
lock operations on the same object synchronize with this operation.

86

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Throws:

Notes:

Nothing

Available only if BOOST_THREAD PROVI DES SHARED MUTEX_UPWARDS CONVERSI ON and
BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nis defined on Windows platform

m try_unl ock_shared_and_| ock_upgrade_for(rel _tine)

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws;

Notes:

The calling thread shall hold a shared lock on the mutex.

If the tick period of rel _ti me is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from shared to upgrade for the calling thread within the relative timeout specified by rel _ti ne. If the
time specifiedby rel _ti meislessthanor equal torel _ti me. zer o(), the function attempts to obtain
upgrade ownership without blocking (asif by callingtry_unl ock_shared_and_| ock_upgrade()).
The function shall return within the timeout specified by rel _ti me only if it has obtained exclusive
ownership of themutex object. For this conversion to be successful, there must be no thread holding upgrade
ownership of this object at the moment of conversion. If the conversion is not successful, the shared
ownership of misretained.

t rue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

Iftry unl ock_shared_and_| ock_upgrade_for(rel _time) returnstrue, priorunl ock_upgr ade()
and subsequent lock operations on the same object synchronize with this operation.

Nothing

Available only if BOOST THREAD PROVI DES SHARED MUTEX UPWARDS_CONVERSI ON and
BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_W N is defined on Windows platform

mtry _unl ock _shared and_| ock _upgrade _until (abs_tine)

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:

Notes:

The calling thread shall hold a shared lock on the mutex.

The function attempts to atomically convert the ownership from shared to upgrade for the calling thread
within the absol ute timeout specified by abs_ti me. If abs_t i me hasalready passed, the function attempts
to obtain upgrade ownership without blocking (asif by callingt ry_unl ock_shared_and_| ock_up-
grade()). The function shall return before the absolute timeout specified by abs_ti me only if it has
obtained upgrade ownership of the mutex object. For this conversion to be successful, there must be no
thread holding upgrade ownership of this object at the moment of conversion. If the conversion is not
successful, the shared ownership of the mutex is retained.

t r ue if upgrade ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has upgrade ownership of m

If try_unl ock_shared_and_| ock_upgrade_until (rel _tinme) returns true, prior unl ock_up-
gr ade() and subsequent lock operations on the same object synchronize with this operation.

Nothing

Available only if BOOST_THREAD PROVI DES SHARED MUTEX_UPWARDS_CONVERSI ON and
BOOST_THREAD PROVI DES_GENERI C_SHARED MUTEX_ON W Nis defined on Windows platform

m unl ock_and_| ock_upgr ade()

Precondition:

The current thread has exclusive ownership of m

87

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Effects: Atomically releases exclusive ownership of mby the current thread and acquires upgrade ownership of m
without blocking.

Postcondition: The current thread has upgrade ownership of m
Synchronization: This operation synchronizes with subsequent lock operations that obtain ownership of the same object.
Throws: Nothing

m unl ock_upgr ade_and_| ock()

Precondition: The current thread has upgrade ownership of m

Effects: Atomically releases upgrade ownership of mby the current thread and acquires exclusive ownership of m
If any other threads have shared ownership, blocks until exclusive ownership can be acquired.

Postcondition: The current thread has exclusive ownership of m

Synchronization: This operation synchronizeswith prior unl ock_shar ed() () and subsequent lock operationsthat obtain
ownership of the same object.

Throws: Nothing

mtry _unl ock_upgrade_and | ock()

Precondition: The calling thread shall hold a upgrade lock on the mutex.

Effects: Thefunction attemptsto atomically convert the ownership from upgradeto exclusivefor the calling thread

without blocking. For this conversion to be successful, this thread must be the only thread holding any
ownership of the lock. If the conversion is not successful, the upgrade ownership of m is retained.

Returns: t rue if exclusive ownership was acquired for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has exclusive ownership of m
Synchronization: If try_unl ock_upgrade_and_| ock() returnstrue, prior unl ock() and subsequent lock operations

on the same object synchronize with this operation.

Throws: Nothing
Notes: Availableonly if BOOST _THREAD PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nisdefined on Windows
platform

m try_unl ock_upgrade_and_l ock_for(rel _tine)

Precondition: The calling thread shall hold a upgrade lock on the mutex.

Effects: If the tick period of rel _ti me is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from upgrade to exclusive for the calling thread within the rel ative timeout specified by rel _t i me. If the
time specified by rel _ti me islessthan or equal torel _ti me. zer o() , the function attempts to obtain
exclusive ownership without blocking (as if by calling try_unl ock_upgrade_and_l ock()). The
function shall return within thetimeout specified by r el _t i me only if it has obtained exclusive ownership
of the mutex object. For this conversion to be successful, this thread shall be the only thread holding any
ownership of thelock at the moment of conversion. If the conversion is not successful, the upgrade own-
ership of mis retained.

Returns: t r ue if exclusive ownership was acquired for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has exclusive ownership of m
88

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Synchronization:

Throws;

Notes:

If try_unl ock_upgrade_and_l ock_for(rel _time) returnstrue, prior unl ock() and subsequent
lock operations on the same object synchronize with this operation.

Nothing

Availableonly if BOOST_THREAD PROVI DES_GENERI C_SHARED MUTEX_ON W Nisdefined on Windows
platform

mtry unl ock _upgrade_and | ock _until (abs_tine)

Precondition:

Effects:

Returns:
Postcondition:

Synchronization:

Throws:

Notes:

The calling thread shall hold a upgrade lock on the mutex.

Thefunction attemptsto atomically convert the ownership from upgrade to exclusivefor the calling thread
within the absol ute timeout specified by abs_t i me. If abs_t i me hasalready passed, thefunction attempts
to obtain exclusive ownership without blocking (asif by callingt ry_unl ock_upgrade_and_I ock()).
The function shall return before the absolute timeout specified by abs_t i me only if it has obtained ex-
clusive ownership of the mutex object. For this conversion to be successful, this thread shall be the only
thread holding any ownership of the lock at the moment of conversion. If the conversion is not successful,
the upgrade ownership of m is retained.

t r ue if exclusive ownership was acquired for the current thread, f al se otherwise.
If the call returnst r ue, the current thread has exclusive ownership of m

If try_unl ock_upgrade_and_l ock_for(rel _time) returnstrue, prior unl ock() and subsequent
lock operations on the same object synchronize with this operation.

Nothing

Availableonly if BOOST _THREAD PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nisdefined on Windows
platform

m unl ock_upgrade_and_I ock_shar ed()

Precondition:

Effects:

Postcondition:

Synchronization:

Throws:

The current thread has upgrade ownership of m

Atomically releases upgrade ownership of mby the current thread and acquires shared ownership of m
without blocking.

The current thread has shared ownership of m

This operation synchronizes with prior unl ock_shar ed() and subsequent lock operations that obtain
ownership of the same object.

Nothing

Lock Options

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ocks_options. hpp>

namespace boost

{

struct defer_lock_ t {};

struct try_to_lock_t {};

struct adopt _lock_ t {};

constexpr defer_l ock_t defer_| ock;
constexpr try to_lock_ t try_ to_Ilock;
const expr adopt | ock_t adopt _I ock;

89

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Lock option tags

#i ncl ude <boost/thread/| ocks. hpp>
#i ncl ude <boost/thread/| ocks_options. hpp>

struct defer _lock t {}

struct try_to_lock_t {};

struct adopt_lock_t {};

const defer lock t defer_ I ock;
const try to_lock_t try_ to_l ock;
const adopt _| ock_t adopt _I| ock

These tags are used in scoped locks constructors to specify a specific behavior.
» defer_| ock_t:isusedto construct the scoped lock without locking it.
e try_to_l ock_t:isusedto construct the scoped lock trying to lock it.

* adopt _| ock_t : isused to construct the scoped lock without locking it but adopting ownership.

Lock Guard

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ock_guard. hpp>

namespace boost

{

t enpl at e<t ypenane Lockabl e>

cl ass | ock_guard
#if | defined BOOST_THREAD NO MAKE LOCK_ GUARD

tenpl ate <typenane Lockabl e>

| ock_guar d<Lockabl e> nake_l ock_guard(Lockabl e& ntx); // EXTENSI ON

tenpl ate <typenane Lockabl e>

| ock_guar d<Lockabl e> nake_l ock_guard(Lockabl e& ntx, adopt_lock_t); // EXTENSI ON
#endi f

}

Class template 1 ock_guard

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ock_guard. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass | ock_guard

{

public:
explicit |ock_guard(Lockable& m)
| ock_guar d(Lockabl e& m , boost: : adopt _| ock_t);
~l ock_guard() ;

s

boost : : | ock_guar d isvery simple: on construction it acquires ownership of theimplementation of the Lockabl e concept supplied
as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking of a Lockabl e
object, to facilitate exception-safe locking and unlocking. In addition, thel ock_guar d(Lockabl e & m boost : : adopt _| ock_t)
constructor allowsthe boost : : | ock_guar d object to take ownership of alock already held by the current thread.

90

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

| ock_guard(Lockable & m

Effects: Stores areferenceto m Invokesm | ock() .

Throws: Any exception thrown by the call tom | ock() .

| ock_guard(Lockabl e & m boost: : adopt _I ock_t)

Precondition: The current thread owns alock on mequivalent to one obtained by acall tom | ock() .
Effects: Stores areference to m Takes ownership of the lock state of m
Throws: Nothing.

~l ock_guard()

Effects: Invokesm unl ock() ontheLockabl e object passed to the constructor.

Throws: Nothing.

Non Member Function neke_| ock_guard

tenpl ate <typenane Lockabl e>
| ock_guar d<Lockabl e> make_l ock_guard(Lockabl e& m; // EXTENSI ON

Returns: alock_guard asif initialized with { n} .

Throws: Any exception thrown by the call tom | ock() .

Non Member Function make I ock_guard

tenpl at e <typenane Lockabl e>
| ock_guar d<Lockabl e> make_| ock_guard(Lockabl e& m adopt_lock_t); // EXTENSI ON

Returns: alock_guard asif initialized with{m adopt _I ock}.

Throws: Any exception thrown by the call tom | ock() .
With Lock Guard

/'l #include <boost/thread/w th_| ock_guard. hpp>

namespace boost
{
tenpl ate <cl ass Lockable, class Function, class... Args>
auto with_l ock_guard(Lockabl e& m Function&& func, Args&& .. args) -> decltype(func(boost::forO
war d<Args>(args)...));
}

91

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Non Member Function with_ I ock_guard

tenpl ate <cl ass Lockabl e, class Function, class... Args>
auto with_l ock_guard(

Lockabl e& m

Functi on&& func,

Argsé&&. .. args
) -> decltype(func(boost::forward<Args>(args)...));

Precondition: mmust bein unlocked state

Effects: call f unc in scope locked by m

Returns: Result of func(args...) cal

Throws: Any exception thrown by thecall tom | ock andf unc(args. . .)
Postcondition: misin unlocked state

Limitations: Without c++11 variadic templates support number of argumentsis limited to 4

Without rval ue references support calling class method with boost : : bi nd must be const

For correct work with lambda macro BOOST_RESULT_OF_USE_DECLTYPE may be needed to define
Lock Concepts
StrictLock -- EXTENSION

/'l #include <boost/thread/|l ock_concepts. hpp>

namespace boost

{

t enpl at e<t ypenanme Lock>
class StrictLock;

}

A StrictLock isalock that ensures that the associated mutex is locked during the lifetime of the lock.

A type L meetsthe StrictLock requirements if the following expressions are well-formed and have the specified semantics
e L::nutex_type

* is_strict_|ock<L>

e cl.owns_Il ock(m;

and BasicL ockable<L::mutex_type>

where

* cl denotesavalueof typeL const &,

» mdenotesavalue of typeL: : nut ex_type const*,

L::mutex_type

The type L::mutex_type denotes the mutex that islocked by thislock.

92

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

is_strict_lock_sur_parol e<L>

Asthe semantic "ensures that the associated mutex islocked during the lifetime of the lock. " can not be described by syntactic re-
quirementsai s_strict _| ock_sur _par ol e trait must be specialized by the user defining the lock so that the following assertion

istrue:

is_strict_|ock_sur_parol e<L>: :value == true

cl.owns_l ock(n);

Return Type: bool

Returns: Whether the strict lock islocking the mutex m
Throws: Nothing.

Models

The following classes are models of Stri ct Lock:

* dtrict_lock: ensured by construction,

» nested_strict_lock: "sur parole” as the user could use adopt_lock t on unique_lock constructor overload without having locked

the mutex,

» boost:: | ock_guard: "sur parole" asthe user could use adopt_lock_t constructor overload without having locked the mutex.

Lock Types

/1 #include <boost/thread/l ocks. hpp>
/'l #include <boost/thread/ | ock_types. hpp>

namespace boost

{

t enpl at e<t ypenane Lockabl e>
cl ass uni que_lI ock;
t enpl at e<t ypenane Mt ex>

voi d swap(uni que_| ock <Mutex>& | hs, unique_| ock <Mut ex>& rhs);

t enpl at e<t ypenane Lockabl e>
class shared_lock; // C++14
t enpl at e<t ypenane Mt ex>

voi d swap(shared_| ock<Mut ex>& | hs, shared_| ock<Mutex>& rhs); // C++1l4

t enpl at e<t ypenane Lockabl e>
cl ass upgrade_| ock; // EXTENSI ON
t enpl at e<t ypenane Mt ex>

voi d swap(upgrade_| ock <Mutex>& | hs, upgrade_l ock <Mutex>& rhs);

tenmpl ate <cl ass Mut ex>
cl ass upgrade_to_uni que_Il ock; // EXTENSI ON

93

httpo://www.renderx.com/

/' EXTENSI ON

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class template uni que_l ock

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ock_types. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass uni que_I ock
{
public:
t ypedef Lockabl e mutex_type;
uni que_l ock() noexcept;
explicit unique_| ock(Lockable& m);
uni que_| ock(Lockabl e& m , adopt _I ock_t);
uni que_| ock(Lockabl e& m , defer_l ock_t) noexcept;
uni que_| ock(Lockable& m ,try _to_lock_t);

#i f def BOOST_THREAD PROVI DES_SHARED MUTEX UPWARDS CONVERSI ON
uni que_| ock(shared_| ock<nutex_type>&& sl, try_to_lock_ t); // C++l1l4
tenpl ate <class C ock, class Duration>
uni que_| ock(shared_l ock<nut ex_t ype>&& sl ,
const chrono: :tine_point<C ock, Duration>& abs_tine); // C++14
tenpl ate <cl ass Rep, class Period>
uni que_| ock(shared_| ock<nut ex_t ype>&& sl ,
const chrono: :duration<Rep, Period>& rel _time); // C++14
#endi f

tenpl ate <class C ock, class Duration>

uni que_| ock(Mut ex& mx, const chrono::tinme_point<C ock, Duration>& t);
tenpl ate <cl ass Rep, class Period>

uni que_| ock(Mut ex& mtx, const chrono::durati on<Rep, Period>& d);

~uni que_l ock();

uni que_| ock(uni que_l ock const &) = del ete;

uni que_| ock& operat or=(uni que_| ock const&) = del ete;

uni que_| ock(uni que_l ock<Lockabl e>&& ot her) noexcept;

explicit unique_| ock(upgrade_| ock<Lockabl e>&& ot her) noexcept; // EXTENSI ON

uni que_| ock& operat or =(uni que_| ock<Lockabl e>&& ot her) noexcept;

voi d swap(uni que_l ock& ot her) noexcept;
Lockabl e* rel ease() noexcept;

void | ock();
bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tine);

voi d unl ock();

explicit operator bool () const noexcept;
bool owns_l ock() const noexcept;

nmut ex_type* nutex() const noexcept;

#i f defined BOOST_THREAD USE _DATE TIME || defined BOOST_THREAD DONT_USE_CHRONO
uni que_| ock(Lockabl e& m ,systemtine const& target_tinme);

94

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

t enpl at e<t ypenane Ti neDur ati on>

bool tined_|l ock(TinmeDuration const& relative_tine);

bool tined_|lock(::boost::systemtinme const& absolute_tine);
#endi f

I

boost : : uni que_| ock ismore complex thanboost : : | ock_guar d: not only doesit provide for RAlI-stylelocking, it also allows
for deferring acquiring the lock until thel ock() member function is called explicitly, or trying to acquire the lock in anon-blocking
fashion, or with atimeout. Consequently, unl ock() isonly calledinthedestructor if the lock object haslocked the Lockabl e object,
or otherwise adopted alock on the Lockabl e object.

Specidizations of boost: : uni que_| ock model the Ti nedLockabl e concept if the supplied Lockabl e type itself models
Ti medLockabl e concept (e.g. boost : : uni que_| ock<boost::ti med_nut ex>), or the Lockabl e concept if the supplied
Lockabl e typeitself modelsLockabl e concept (e.g. boost : : uni que_| ock<boost : : nut ex>), ortheBasi cLockabl e concept
if the supplied Lockabl e typeitself models Basi cLockabl e concept.

An instance of boost : : uni que_Il ock is said to own the lock state of a Lockabl e mif mut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
mut ex() - >unl ock() .

The member functions of boost : : uni que_I ock are not thread-safe. In particular, boost : : uni que_I ock isintended to model
the ownership of aLockabl e object by a particular thread, and the member functions that release ownership of the lock state (in-
cluding the destructor) must be called by the same thread that acquired ownership of the lock state.

uni que_Il ock()

Effects: Creates alock object with no associated mutex.
Postcondition: owns_| ock() returnsf al se. mut ex() returns NULL.
Throws: Nothing.

uni que_| ock(Lockable & m

Effects: Stores areferenceto m Invokesm | ock() .
Postcondition: owns_| ock() returnstrue. nut ex() returns&m
Throws: Any exception thrown by the call tom | ock() .

uni que_| ock(Lockabl e & m boost:: adopt_| ock_t)

Precondition: The current thread owns an exclusive lock on m

Effects: Stores areference to m Takes ownership of the lock state of m
Postcondition:; owns_| ock() returnst rue. mut ex() returns &m

Throws: Nothing.

uni que_| ock(Lockabl e & m boost::defer_I| ock_t)

Effects: Stores areferenceto m
Postcondition:; owns_| ock() returnsf al se. mut ex() returns &m
Throws: Nothing.

95

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

uni que_| ock(Lockabl e & mboost::try_to_lock_t)

Effects: Stores a reference to m Invokesm try_| ock(), and takes ownership of the lock state if the call returns
true.
Postcondition: mut ex() returns&m If thecall totry_| ock() returnedt r ue, thenowns_| ock() returnst r ue, otherwise

owns_| ock() returnsf al se.

Throws: Nothing.
uni que_| ock(shared_| ock<nutex_type>&& sl, try_to_lock_t)

Requires: The supplied Mut ex type must implementt ry_unl ock_shar ed_and_I ock() .

Effects: Constructs an object of type boost : : uni que_| ock. Let pmbe the pointer to the mutex and owns the ownership
state. Initializes pmwith nullptr and owns with false. If sl . owns_I ock() () returnsf al se, setspmto the return
value of sl . rel ease(). Elsesl. owns_l ock() () returnstrue, and in this case if sl . nutex()->try_un-
| ock_shared_and_I ock() returnstr ue, setspmto thevauereturned by sl . r el ease() and setsowns tot r ue.

Note: If sl . owns_| ock() returnstrue andsl . mutex()->try_unl ock_shared_and_| ock() returnsf al se, sl is
not modified.

Throws: Nothing.

Notes: Available only if BOOST_THREAD_PROVI DES_SHARED MUTEX_UPWARDS_CONVERSI ON and

BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nis defined on Windows platform

uni que_| ock(shared_| ock<nut ex_type>&&, const chrono::tine_poi nt<C ock, Duration>&)

tenpl ate <class O ock, class Duration>
uni que_I| ock(shared_| ock<nut ex_t ype>&& sl ,
const chrono: :tine_point<C ock, Duration>& abs_tine);

Requires: The supplied Mut ex type shall implementtry_unl ock_shared_and_| ock_until (abs_tine).

Effects: Constructs an object of type boost : : uni que_| ock, initializing pmwith nul | pt r and owns withf al se. If sl .
owns_| ock() () returnsf al se, setspmtothereturnvalueof sl . rel ease() . Elsesl. owns_I ock() () returns
true,andinthiscaseif sl . mut ex()->try_unl ock_shared_and_| ock_until (abs_ti me) returnstrue, sets
pmto the value returned by sl . rel ease() and setsowns totr ue.

Note: If sl . owns_l ock() returnstrue andsl.nutex()-> try_unl ock_shared_and_| ock_until (abs_time)
returnsf al se, sl isnot modified.

Throws: Nothing.

Notes: Available only if BOOST_THREAD PROVI DES_SHARED MUTEX_UPWARDS CONVERSI ON and
BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nis defined on Windows platform

uni que_| ock(shared_| ock<nut ex_t ype>&&, const chrono::duration<Rep, Period>&)

tenpl ate <cl ass Rep, class Period>
uni que_I| ock(shared_| ock<nut ex_t ype>&& sl ,
const chrono: :durati on<Rep, Period>& rel _tine)

Requires: The supplied Mut ex type shall implementt ry_unl ock_shared_and_I ock_for(rel _tine).

Effects: Constructs an object of type boost : : uni que_| ock, initidizing pmwith nul | pt r and owns withf al se.
Ifsl. owns_I ock() () returnsf al se, setspmtothereturnvalueof sl . rel ease() . Elses! . owns_| ock()

96

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

returnst r ue, andinthiscaseif sl . mut ex()-> try_unl ock_shared_and_| ock_for(rel _tine) returns
true, setspmtothevaluereturned by s! . r el ease() and setsowns totr ue.

Note: Ifsl . owns_| ock() returnst rue andsl . nutex()-> try_unl ock_shared_and_| ock_for(rel _tinme)
returnsf al se, sl isnot modified.

Postcondition:
Throws: Nothing.
Notes: Available only if BOOST_THREAD_PROVI DES_SHARED MUTEX_UPWARDS CONVERSI ON and

BOOST_THREAD_PROVI DES_GENERI C_SHARED MUTEX_ON_ W Nis defined on Windows platform
uni que_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects: Stores areference to m Invokes m ti med_| ock(abs_ti ne), and takes ownership of the lock state if the
call returnst r ue.

Postcondition: nmut ex() returns&m Ifthecall toti med_| ock() returnedt r ue, thenowns_| ock() returnst r ue, ctherwise
owns_| ock() returnsf al se.

Throws: Any exceptions thrown by thecall tom ti med_I| ock(abs_ti ne).

tenpl ate <class C ock, class Duration> unique_| ock(Lockabl e & m const chrono::time_point<C ock,
Dur ati on>& abs_ti ne)

Effects: Storesareferencetom Invokesm try_| ock_unti |l (abs_ti me), and takes ownership of the lock state if
the call returnst r ue.

Postcondition: nmut ex() returns&m If thecaltotry | ock_until returnedtrue,thenowns | ock() returnstrue, oth-
erwiseowns_| ock() returnsf al se.

Throws: Any exceptionsthrown by thecall tom try_| ock_until (abs_tine).

tenpl ate <cl ass Rep, class Period> uni que_| ock(Lockable & m const chrono:: duration<Rep, Period>&

abs_tine)

Effects: Storesareferencetom Invokesm t ry_| ock_f or (rel _ti ne), and takes ownership of thelock stateif the
cal returnst r ue.

Postcondition: nmut ex() returns&m Ifthecall totry | ock _for returnedt r ue, thenowns_| ock() returnst r ue, ctherwise
owns_| ock() returnsf al se.

Throws: Any exceptionsthrown by thecalltom try_| ock_for(rel _tine).

~uni que_l ock()

Effects: Invokes mut ex() - > unl ock() if owns_I ock() returnstrue.
Throws: Nothing.

bool owns_Il ock() const

Returns: true if the*t hi s ownsthelock on the Lockabl e object associated with *t hi s.

Throws: Nothing.

97

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Lockabl e* nutex() const noexcept

Returns:

Throws;

A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Nothing.

explicit operator bool () const

Returns:

Throws:

owns_l ock() ().

Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws:

Postcondition:

The association between *t hi s and the Lockabl e object isremoved, without affecting the lock state of the
Lockabl e object. If owns_I ock() would havereturned t r ue, it isthe responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if there isno such
object.

Nothing.

*t hi s isnolonger associated with any Lockabl e object. mut ex() returnsNULL andowns_| ock() returns
fal se.

98

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class template shared_i ock - C++14

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ock_types. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass shared_ | ock
{
public:
t ypedef Lockabl e mutex_type;

/1 Shared | ocking

shared_| ock();

explicit shared_| ock(Lockable& m);

shared_| ock(Lockabl e& m , adopt _| ock_t);

shared | ock(Lockabl e& m , defer_lock t);

shared_| ock(Lockabl e& m ,try_to_l ock_t);

tenpl ate <class C ock, class Duration>

shared_| ock(Mut ex& ntx, const chrono::tine_point<C ock, Duration>& t);
tenpl ate <cl ass Rep, class Period>

shared_|l ock(Mut ex& ntx, const chrono::duration<Rep, Period>& d);
~shared_| ock();

shared | ock(shared | ock const&) = del ete;
shared_| ock& operator=(shared_|l ock const&) = delete;

shared_| ock(shared_| ock<Lockabl e> && ot her);
shared_| ock& operat or =(shared_I| ock<Lockabl e> && ot her);

void | ock();

bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tine);
voi d unl ock();

/1l Conversion from upgrade | ocking
explicit shared_| ock(upgrade_| ock<Lockabl e> && other); // EXTENSI ON

/'l Conversion from exclusive | ocking
explicit shared_| ock(uni que_l ock<Lockabl e> && ot her);

/'l Setters
voi d swap(shared_| ock& ot her);
nmut ex_t ype* rel ease() noexcept;

/'l Cetters

explicit operator bool () const;
bool owns_| ock() const;

nmut ex_type nmutex() const;

#i f defined BOOST_THREAD USE _DATE TIME || defined BOOST_THREAD DONT_USE_CHRONO
shared_| ock(Lockabl e& m ,systemtime const& target_tinme);
bool tined_|l ock(boost::systemtine const& target_tinme);

#endi f

I

Likeboost : : uni que_| ock, boost : : shar ed_| ock modelsthe Lockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : shar ed_| ock acquires shared ownership.

99

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Like boost : : uni que_I ock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
thel ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with atimeout. Con-
sequently, unl ock() isonly caled in the destructor if the lock object haslocked the Lockabl e object, or otherwise adopted alock
on the Lockabl e object.

An instance of boost: : shared_| ock is said to own the lock state of a Lockabl e mif nut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
mut ex() - >unl ock_shared() .

The member functions of boost : : shar ed_I ock are not thread-safe. In particular, boost : : shar ed_| ock isintended to model
the shared ownership of aLockabl e object by aparticular thread, and the member functions that release ownership of the lock state
(including the destructor) must be called by the same thread that acquired ownership of the lock state.

shared_| ock()

Effects: Creates alock object with no associated mutex.
Postcondition: owns_| ock() returnsf al se. mut ex() returns NULL.
Throws: Nothing.

shared_| ock(Lockable & m

Effects: Stores areferenceto m Invokesm | ock_shared().
Postcondition: owns_| ock() returnst rue. mut ex() returns &m
Throws: Any exception thrown by the call tom | ock_shar ed() .

shared_| ock(Lockabl e & m boost: : adopt _| ock_t)

Precondition: The current thread owns an exclusive lock on m

Effects: Stores areference to m Takes ownership of the lock state of m
Postcondition: owns_| ock() returnst rue. mut ex() returns &m

Throws: Nothing.

shared_| ock(Lockabl e & m boost::defer_|ock_t)

Effects: Stores areference tom
Postcondition: owns_| ock() returnsf al se. mut ex() returns &m
Throws: Nothing.

shared_| ock(Lockable & mboost::try to_lock_t)

Effects: Stores areferencetom Invokesm try_| ock_shar ed() , and takes ownership of the lock state if the call
returnstr ue.

Postcondition: mut ex() returns&m If thecal totry_| ock_shared() returnedt r ue, then owns_I ock() returnstr ue,
otherwise owns_| ock() returnsf al se.

Throws: Nothing.

100

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

shared_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects:

Postcondition:

Throws:

~shar ed_| ock()

Stores areference to m Invokesm ti ned_| ock(abs_ti ne), and takes ownership of the lock state if the
cal returnstr ue.

mut ex() returns&m If thecall tot i ned_| ock_shar ed() returnedt r ue, thenowns_| ock() returnst r ue,
otherwise owns_| ock() returnsf al se.

Any exceptions thrown by thecall tom ti med_I| ock(abs_ti ne).

Effects: Invokes mut ex() - > unl ock_shar ed() if owns_I ock() returnstr ue.

Throws: Nothing.

bool owns_Il ock() const

Returns: true if the*t hi s ownsthelock on the Lockabl e object associated with *t hi s.

Throws: Nothing.

Lockabl e* nut ex()

const

Returns: A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Throws: Nothing.

explicit operator

bool () const

Returns: owns_| ock().

Throws: Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws;

Postcondition:

The association between *t hi s and the Lockabl e object isremoved, without affecting the lock state of the
Lockabl e object. If owns_| ock() would havereturned t r ue, it isthe responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if thereis no such
object.

Nothing.

*t hi s isnolonger associated with any Lockabl e object. mut ex() returnsNULL and owns_| ock() returns
fal se.

101

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Class template upgrade_t ock - EXTENSION

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/| ock_types. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass upgrade_| ock
{
public:
t ypedef Lockabl e mutex_type;

/1 Upgrade | ocki ng

upgr ade_| ock();
explicit upgrade_l ock(rmutex_type& m);
upgrade_| ock(nmutex_type& m defer_lock_t) noexcept;
upgrade_l ock(nutex_type& m try_to_lock_ t);
upgrade_| ock(nmutex_type& m adopt_|ock_t);
tenpl ate <class C ock, class Duration>
upgr ade_| ock(nmutex_type& m
const chrono: :tine_point<C ock, Duration>& abs_tine);
tenpl ate <cl ass Rep, class Period>
upgr ade_| ock(mutex_type& m
const chrono: :duration<Rep, Period>& rel _tine);
~upgr ade_|I ock();

upgr ade_| ock(const upgrade_| ock& other) = delete;
upgr ade_| ock& operator =(const upgrade_| ock<Lockabl e> & other) = delete;

upgr ade_| ock(upgrade_| ock<Lockabl e> && ot her) ;
upgr ade_| ock& oper at or =(upgr ade_| ock<Lockabl e> && ot her);

void | ock();

bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tine);
voi d unl ock();

#i f def BOOST_THREAD_PROVI DES_SHARED MUTEX_UPWARDS_CONVERSI ON
/1 Conversion from shared | ocking
upgr ade_| ock(shared_| ock<mutex_type>&& sl, try to_lock_ t);
tenpl ate <class C ock, class Duration>
upgr ade_| ock(shared_I| ock<mut ex_t ype>&& sl ,
const chrono: :tine_point<C ock, Duration>& abs_tine);
tenpl ate <cl ass Rep, class Period>
upgr ade_| ock(shared_I| ock<mut ex_t ype>&& sl ,
const chrono: :duration<Rep, Period>& rel _tine);
#endi f

/'l Conversion from exclusive | ocking
explicit upgrade_| ock(uni que_l ock<Lockabl e> && other);

/'l Setters
voi d swap(upgrade_| ock& ot her);
nmut ex_t ype* rel ease() noexcept;

/'l Cetters

explicit operator bool () const;
bool owns_| ock() const;

mut ex_type nmutex() const;

102

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Likeboost : : uni que_I ock, boost : : upgrade_| ock modelstheLockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : upgr ade_| ock acquires upgrade ownership.

Like boost : : uni que_I ock, not only does it provide for RAIl-style locking, it also allows for deferring acquiring the lock until
the | ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unl ock() isonly caled in the destructor if the lock object haslocked the Lockabl e object, or otherwise adopted alock
on the Lockabl e object.

An instance of boost : : upgrade_I ock is said to own the lock state of a Lockabl e mif mut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
mut ex() - >unl ock_upgr ade() .

The member functionsof boost : : upgr ade_| ock are not thread-safe. In particular, boost : : upgr ade_| ock isintended to model
the upgrade ownership of a Upgr adeLockabl e object by a particular thread, and the member functions that release ownership of
the lock state (including the destructor) must be called by the same thread that acquired ownership of the lock state.

Class template upgr ade_t o_uni que_| ock =- EXTENSION

/1 #include <boost/thread/l ocks. hpp>
/'l #include <boost/thread/ | ock_types. hpp>

tenpl ate <cl ass Lockabl e>
cl ass upgrade_to_uni que_Il ock

{
public:
t ypedef Lockabl e nutex_type;
explicit upgrade_to_uni que_| ock(upgrade_| ock<Lockabl e>& m);
~upgr ade_to_uni que_l ock();
upgr ade_t o_uni que_l ock(upgrade_to_uni que_| ock const& other) = del ete;
upgr ade_t o_uni que_l ock& operat or =(upgrade_t o_uni que_| ock<Lockabl e> const & other) = del ete;
upgr ade_t o_uni que_| ock(upgrade_t o_uni que_| ock<Lockabl e> && ot her);
upgr ade_t o_uni que_| ock& operat or =(upgrade_t o_uni que_I| ock<Lockabl e> && ot her);
voi d swap(upgrade_to_uni que_| ock& ot her);
explicit operator bool () const;
bool owns_| ock() const;
mut ex_type* mutex() const;
¥

boost : : upgrade_t o_uni que_I| ock alows for a temporary upgrade of an boost : : upgrade_| ock to exclusive ownership.
When constructed with a reference to an instance of boost : : upgr ade_| ock, if that instance has upgrade ownership on some
Lockabl e object, that ownership is upgraded to exclusive ownership. When the boost : : upgrade_t o_uni que_| ock instanceis
destroyed, the ownership of the Lockabl e isdowngraded back to upgrade ownership.

103

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Mutex-specific class scoped_try_tock -- DEPRECATED

cl ass MiutexType: : scoped_try_| ock
{
private:
Mut exType: : scoped_try_| ock(Miut exType: : scoped_try_| ock<Mut exType>& ot her) ;
Mut exType: : scoped_try_| ock& operat or =(Mut exType: : scoped_try_| ock<Mut exType>& ot her) ;
publi c:
Mut exType: : scoped_try_l ock();
explicit MitexType::scoped_try_| ock(MiutexType& m ;
Mut exType: : scoped_try_| ock(Miut exType& m_, adopt _| ock_t);
Mut exType: : scoped_try_| ock(Miut exType& m_, defer_lock_t);
Mut exType: : scoped_try_| ock(Mut exType& m ,try_to_l ock_t);

Mut exType: : scoped_try_| ock(Mut exType: : scoped_try_| ock<Mut exType>&& ot her);
Mut exType: : scoped_try_| ock& operat or=(Mut exType: : scoped_try_| ock<Miut exType>&& ot her);

voi d swap(Mut exType: : scoped_try_| ock&& ot her);

void | ock();
bool try_lock();
voi d unl ock();

Mut exType* nmutex() const;
Mut exType* rel ease();

explicit operator bool () const;
bool owns_| ock() const;

The member typedef scoped_t ry_I ock isprovided for each distinct Mut ex Ty pe asatypedef to aclasswith the preceding definition.
The semantics of each constructor and member function areidentical to those of boost : : uni que_| ock<Mut exType> for the same
Mut ex Type, except that the constructor that takes a single referenceto amutex will call m try_I| ock() rather thanm | ock() .

104

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Other Lock Types - EXTENSION
Strict Locks

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/strict_Iock. hpp>

namespace boost

{

t enpl at e<t ypenane Lockabl e>

class strict_I ock;

tenpl ate <typenane Lock>

cl ass nested_strict_I ock;

tenpl ate <typenane Lockabl e>

struct is_strict_lock_sur_parole<strict_| ock<Lockabl e> >
tenpl ate <typenane Lock>

struct is_strict_lock_sur_parol e<nested_strict_| ock<Lock> >

#i

f | defined BOOST_THREAD NO MAKE STRI CT_LOCK
tenpl ate <typenane Lockabl e>
strict_| ock<Lockabl e> nmake_strict_| ock(Lockabl e& ntx);
#endi f
#if | defined BOOST_THREAD NO MAKE_NESTED STRI CT_LOCK

tenpl ate <typenane Lock>

nested_strict_Il ock<Lock> make_nested_strict_| ock(Lock& |K);
#endi f

}

Class template strict_| ock

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/strict_Iock. hpp>

t enpl at e<t ypenane Basi cLockabl e>
class strict_Ilock

{

public:
t ypedef Basi cLockabl e nutex_type;
strict_lock(strict_lock const& m) = del ete;
strict_l ock& operator=(strict_lock const& m) = delete;
explicit strict_lock(mutex_type& m);
~strict_lock();
bool owns_I| ock(mutex_type const* |) const noexcept;

b

strict_lockisamodel of Strict Lock.

strict_l ock isthesimplest St ri ct Lock: on construction it acquires ownership of the implementation of the Basi cLockabl e
concept supplied as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking
of aBasi cLockabl e object, to facilitate exception-safe locking and unlocking.

See also boost: : 1 ock_guard

strict_l ock(Lockable & m

Effects: Stores areferenceto m Invokesm | ock() .

105

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Throws: Any exception thrown by the call tom | ock().

~strict_lock()

Effects: Invokes m unl ock() onthelLockabl e object passed to the constructor.

Throws: Nothing.

Class template nested_strict_I ock

/'l #include <boost/thread/l ocks. hpp>
/'l #include <boost/thread/strict_I ock. hpp>

t enpl at e<t ypenane Lock>

class nested_strict_Ilock

{

public:
t ypedef BasicLockabl e nutex_type;
nested strict | ock(nested strict | ock const& m) = del ete;
nested_strict_l ock& operator=(nested_strict_lock const& m) = delete;
explicit nested_strict_| ock(Lock& |k),
~nested_strict_| ock() noexcept;

bool owns_| ock(mutex_type const* |) const noexcept;

nested_strict | ock isamodd of Stri ct Lock.

A nested strict lock is a scoped lock guard ensuring a mutex is locked on its scope, by taking ownership of an nesting lock, locking
the mutex on construction if not already locked and restoring the ownership to the nesting lock on destruction.

See also strict_| ock, boost : : uni que_l ock

nested_strict_l ock(Lock & Ik)

Requires: I k.mutex() !'= null_ptr.

Effects: Stores the reference to the lock parameter | k and takes ownership on it. If the lock doesn't owns the mutex
lock it.

Postcondition: owns_| ock(l k. mutex()).

Throws: - lock_error when BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED is defined and

Ik.mutex() == null_ptr

- Any exception that @c Ik.lock() can throw.
~nested_strict_| ock() noexcept
Effects: Restores ownership to the nesting lock.

bool owns_I| ock(mutex_type const* |) const noexcept

Return: Whether if thislock islocking that mutex.

106

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non Member Function make strict | ock

tenpl ate <typenane Lockabl e>
strict_| ock<Lockabl e> nake_strict_| ock(Lockabl e& m; // EXTENSI ON

Returns; adtrict_lock asif initialized with { n} .

Throws: Any exception thrown by the call tom | ock() .

Non Member Function make nested_strict | ock

tenpl ate <typenane Lock>
nested_strict_I| ock<Lock> nmake_nested_strict_| ock(Lock& Ik); // EXTENSI ON

Returns: anested_strict_lock asif initialized with { I k} .

Throws: Any exception thrown by thecall to | k. | ock() .

Locking pointers

/1 #include <boost/thread/ synchroni ezd_val ue. hpp>
/'l #include <boost/thread/strict_|ock_ptr.hpp>

namespace boost

{

tenpl at e<typenane T, typenane Lockable = nutex>
class strict_lock_ptr;

tenpl at e<typenane T, typenane Lockable = nutex>
class const_strict_lock_ptr;

Class template const _strict_l ock_ptr

/1 #include <boost/thread/ synchroni ezd_val ue. hpp>
/'l #include <boost/thread/strict_|ock _ptr. hpp>

tenpl ate <typenane T, typenane Lockable = nutex>
class const_strict_|lock_ptr
{
public:
typedef T val ue_type;
t ypedef Lockabl e nutex_type;

const_strict_lock_ptr(const_strict_lock _ptr const& m) = delete;
const_strict_lock_ptr& operator=(const_strict_lock _ptr const& m) = delete;

const_strict_lock_ptr(T const& val, Lockable & ntx);
const_strict_lock _ptr(T const& val, Lockable & ntx, adopt_l|ock t tag);

~const _strict_lock _ptr();

const T* operator->() const;
const T& operator*() const;

107

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

const_strict_lock_ptr(T const&, Lockabl e&)

const_strict_lock_ptr(T const& val, Lockable & m;

Effects: Invokesm | ock() , stores areferenceto it and to the value typeval .

Throws: Any exception thrown by the call tom | ock() .

const _strict_lock_ptr(T const&, Lockabl e&, adopt _| ock_t)

const_strict_lock_ptr(T const& val, Lockable & m adopt_lock_t tag);

Effects: Stores areferenceto it and to the value typeval .
Throws: Nothing.

~const _strict_lock_ptr()

~const _strict_lock_ptr();

Effects: Invokes m unl ock() ontheLockabl e object passed to the constructor.

Throws: Nothing.

operator->() const
const T* operator->() const;
Return: return a constant pointer to the protected value.

Throws: Nothing.

operator*() const

const T& operator*() const;

Return: return a constant reference to the protected value.

Throws: Nothing.

108

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class template strict_| ock_ptr

/1 #include <boost/thread/ synchroni ezd_val ue. hpp>
/'l #include <boost/thread/strict_|lock_ptr. hpp>

tenpl ate <typenane T, typenane Lockabl e = nutex>
class strict_lock_ptr : public const_strict_| ock_ptr<T, Lockabl e>

{

public:
strict_lock_ptr(strict_lock_ptr const& m) = delete;
strict_l ock_ptré& operator=(strict_lock _ptr const& m) = delete;
strict_lock_ptr(T & val, Lockable & mtx);
strict_lock_ptr(T & val, Lockable & mtx, adopt_|ock_t tag);
~strict_lock_ptr();

T* operator->();
T& operator*();

strict_lock_ptr(T const&, Lockabl e&)
strict_lock_ptr(T const& val, Lockable & m;
Effects: Invokesm | ock() , stores areference to it and to the value type val .

Throws: Any exception thrown by the call tom | ock() .

strict_lock_ptr(T const&, Lockabl e& adopt _| ock_t)

strict_lock_ptr(T const& val, Lockable & m adopt_|ock_t tag);

Effects: Stores areferenceto it and to the value typeval .
Throws: Nothing.

~strict_lock_ptr()
~ strict_lock_ptr();
Effects: Invokes m unl ock() ontheLockabl e object passed to the constructor.

Throws: Nothing.

oper at or->()

T* operator->();

Return: return a pointer to the protected value.

Throws: Nothing.

109

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

oper ator*()

T& operator*();

Return: return areference to the protected value.

Throws: Nothing.

Externally Locked

/'l #include <boost/thread/ externally_| ocked. hpp>
tenpl ate <class T, typename MitexType = boost:: nmutex>
cl ass external ly_| ocked;

tenpl ate <class T, typenane MitexType>

cl ass external ly_|l ocked<T&, MutexType>;

tenpl ate <typenane T, typename MitexType>
voi d swap(external | y_| ocked<T, MitexType> & | hs, externally_| ocked<T, MitexType> & rhs);

110

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Template Class external I y_| ocked

/'l #include <boost/thread/ externally_| ocked. hpp>

tenpl ate <class T, typenane MitexType>

cl ass externally_I ocked

{
/ / BOOST_CONCEPT_ASSERT((CopyConstructibl e<T>));
BOOST_CONCEPT_ASSERT((Basi cLockabl e<Mut exType>));

publi c:
t ypedef MitexType mutex_type;

external ly_| ocked(nmutex_type& mx, const T& obj);

external ly_| ocked(nmutex_type& mx, T&& obj);

explicit externally_| ocked(nutex_type& ntx);

external ly_| ocked(externally_| ocked const& rhs);

external ly_| ocked(externally_| ocked&& rhs);

external ly_| ocked& operator=(externally_| ocked const& rhs);
external |l y_| ocked& operator=(externally_| ocked&& rhs);

/'l observers
T& get (strict_| ock<nutex_type>& | k);
const T& get(strict_lock<mutex_type>& | k) const;

tenpl ate <cl ass Lock>

T& get (nested_strict_| ock<Lock>& | k);

tenpl ate <cl ass Lock>

const T& get(nested_strict_| ock<Lock>& | k) const;

tenpl ate <cl ass Lock>

T& get (Lock& 1k);

tenpl ate <cl ass Lock>

T const & get (Lock& | k) const;

mut ex_type* mutex() const noexcept;
/1l nodifiers
void | ock();
voi d unl ock();

bool try_lock();
voi d swap(externally_| ocked&);

ext ernal | y_| ocked isamodel of Lockabl e, it cloaks an object of type T, and actually providesfull accessto that object through
the get and set member functions, provided you pass a reference to a strict lock object.

Only the specificities respect to Lockabl e are described here.

external ly_| ocked(mutex_type& const T&)

external ly_| ocked(nutex_type& ntx, const T& obj);

Requires: T isamodel of CopyConstructible.
Effects: Constructs an externally locked object copying the cloaked type.
Throws: Any exception thrown by the call to T(obj) .

111

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

external ly_| ocked(nutex_type& T&&)

external ly_| ocked(nmutex_type& mx, T&& obj);

Requires: T isamodel of Movable.
Effects: Constructs an externally locked object by moving the cloaked type.
Throws: Any exception thrown by the call to T(obj) .

external ly_| ocked(nut ex_type&)

external | y_| ocked(nut ex_type& ntx);

Requires: T isamodel of DefaultConstructible.
Effects: Constructs an externally locked object by default constructing the cloaked type.
Throws: Any exception thrown by the call to T() .

external ly_| ocked(external | y_| ocked&&)

external ly_|l ocked(externally_| ocked&& rhs);

Requires: T isamodel of Movable.
Effects: Move constructs an externally locked object by moving the cloaked type and copying the mutex reference
Throws: Any exception thrown by the call to T(T&S&) .

external ly_| ocked(externally_| ocked&)
external ly_| ocked(externally_| ocked& rhs);
Requires: T isamodel of Copyable.
Effects: Copy constructs an externally locked object by copying the cloaked type and copying the mutex reference

Throws: Any exception thrown by the call to T(T&) .

external ly_| ocked(externally_| ocked&&)

external |l y_| ocked& operator=(externally_| ocked&& rhs);

Requires: T isamodel of Movable.
Effects: Move assigns an externally locked object by moving the cloaked type and copying the mutex reference
Throws: Any exception thrown by the call to T: : oper at or =(T&&) .

external ly_| ocked(externally_| ocked&)

external ly_| ocked& operator=(externally_| ocked consté& rhs);

Requires: T isamodel of Copyable.

112

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Effects: Copy assigns an externally locked object by copying the cloaked type and copying the mutex reference
Throws: Any exception thrown by the call to T: : oper at or =(T&) .

get (strict_Il ock<nutex_type>&)

T& get (strict_| ock<nutex_type>& | Kk);
const T& get(strict_lock<mutex_type>& | k) const;

Requires: Thel k parameter must be locking the associated mutex.
Returns: A reference to the cloaked object
Throws: | ock_error if BOOST_THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-

ditions are not satisfied .

get (strict_l ock<nested_strict_| ock<Lock>>&)

tenpl ate <cl ass Lock>

T& get (nested_strict_| ock<Lock>& | k);

tenpl ate <cl ass Lock>

const T& get(nested_strict_| ock<Lock>& | k) const;

Requires: i s_same<nut ex_type, typenane Lock::nmutex_type>andthel k parameter must be locking the associated
mutex.

Returns: A reference to the cloaked object

Throws: | ock_error if BOOST_THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-

ditions are not satisfied .

get (strict_l ock<nested_strict_| ock<Lock>>&)

tenpl ate <cl ass Lock>

T& get (Lock& 1k);

tenpl ate <cl ass Lock>

T const & get (Lock& | k) const;

Requires: Lock isamodel of St ri ct Lock,i s_sane<nut ex_type, typename Lock:: nut ex_t ype>andthel k parameter
must be locking the associated mutex.
Returns: A reference to the cloaked object

Throws: | ock_error if BOOST _THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-
ditions are not satisfied .

113

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Template Class external I y_I| ocked<T&>

/'l #include <boost/thread/ externally_| ocked. hpp>

tenpl ate <class T, typenane MitexType>

class externally_| ocked<T&, MutexType>

{
/ / BOOST_CONCEPT_ASSERT((CopyConstructibl e<T>));
BOOST_CONCEPT_ASSERT((Basi cLockabl e<Mut exType>));

publi c:
t ypedef MitexType mutex_type;

external ly_| ocked(nmutex_type& mx, T& obj);

explicit externally_| ocked(nutex_type& ntx);

external ly_| ocked(externally_| ocked const& rhs) noexcept;

external |l y_| ocked(external ly_| ocked&& rhs) noexcept;

external |l y_| ocked& operator=(externally_|l ocked const& rhs) noexcept;
external |l y_| ocked& operator=(externally_l ocked&& rhs) noexcept;

/'l observers

T& get (strict_| ock<nutex_type>& | k);

const T& get(strict_lock<mutex_type>& | k) const;
tenpl ate <cl ass Lock>

T& get (nested_strict_| ock<Lock>& | k);

tenpl ate <cl ass Lock>

const T& get(nested_strict_| ock<Lock>& | k) const;
tenpl ate <cl ass Lock>

T& get (Lock& 1k);

tenpl ate <cl ass Lock>

T const & get (Lock& | k) const;
mut ex_type* mutex() const noexcept;

/1l nodifiers

void | ock();

voi d unl ock();

bool try_lock();
voi d swap(external |l y_| ocked&) noexcept;

ext ernal | y_| ocked isamodel of Lockabl e, it cloaksan object of type T, and actually providesfull accessto that object through
the get and set member functions, provided you pass areference to a strict lock object.

Only the specificities respect to Lockabl e are described here.

external ly_| ocked<T&>(nut ex_type&, T&)

external ly_| ocked<T&>(nmutex_type& ntx, T& obj) noexcept;

Effects: Constructs an externally locked object copying the cloaked reference.

external |l y_| ocked<T&>(external |l y_| ocked&&)

external ly_| ocked(external | y_| ocked&& rhs) noexcept;

Effects: Moves an externally locked object by moving the cloaked type and copying the mutex reference

114

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

external ly_| ocked(externally_ | ocked&&)
external l y_| ocked& operator=(externally_| ocked&& rhs);
Effects: Move assigns an externally locked object by copying the cloaked reference and copying the mutex reference
external ly_| ocked(externally_| ocked&)
external ly_| ocked& operator=(externally_| ocked const& rhs);
Requires: T isamodel of Copyable.
Effects: Copy assigns an externally locked object by copying the cloaked reference and copying the mutex reference

Throws: Any exception thrown by the call to T: : oper at or =(T&) .

get (strict_Il ock<nutex_type>&)

T& get (strict_| ock<nutex_type>& | k) ;
const T& get(strict_lock<mutex_type>& | k) const;

Requires: Thel k parameter must be locking the associated mutex.
Returns: A reference to the cloaked object
Throws: | ock_error if BOOST_THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-

ditions are not satisfied .

get (strict_l ock<nested_strict_| ock<Lock>>&)

tenpl ate <cl ass Lock>

T& get (nested_strict_| ock<Lock>& | k) ;

tenpl ate <cl ass Lock>

const T& get(nested_strict_| ock<Lock>& | k) const;

Requires: i s_same<nut ex_type, typenane Lock:: mutex_type>andthel k parameter must be locking the associated
mutex.

Returns: A reference to the cloaked object

Throws: | ock_error if BOOST _THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-

ditions are not satisfied .

get (strict_l ock<nested_strict_| ock<Lock>>&)

tenpl ate <cl ass Lock>

T& get (Lock& 1k);

tenpl ate <cl ass Lock>

T const & get (Lock& | k) const;

Requires: Lock isamodel of St ri ct Lock,i s_sane<nut ex_t ype, typename Lock:: nut ex_t ype>andthel k parameter
must be locking the associated mutex.
Returns: A reference to the cloaked object

Throws: | ock_error if BOOST_THREAD THROW | F_PRECONDI TI ON_NOT_SATI SFI EDisdefined and the run-time precon-
ditions are not satisfied .

115

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

swap(external ly_| ocked& externally_| ocked&)

tenpl ate <typenane T, typename MitexType>
voi d swap(external |l y_| ocked<T, MitexType> & | hs, externally_| ocked<T, MitexType> & rhs)

Class template shared_| ock_guard

/'l #include <boost/thread/ shared_I ock_guard. hpp>
namespace boost
{

t enpl at e<t ypenane Shar edLockabl e>

cl ass shared_| ock_guard

{

public:
shared_| ock_guard(shared_| ock_guard const&) = del ete;
shared_| ock_guar d& operat or=(shared_| ock_guard const&) = del ete;
explicit shared_| ock_guard(SharedLockabl e& m);
shar ed_| ock_guar d(SharedLockabl e& m_, boost : : adopt _| ock_t);
~shared_| ock_guard();

b

shar ed_| ock_guar d isvery simple: on construction it acquires shared ownership of the implementation of the Shar edLockabl e
concept supplied as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking
of a SharedLockable object, to facilitate exception-safe shared locking and unlocking. In addition, the
shar ed_| ock_guar d(Shar edLockabl e &m boost:: adopt | ock_t) constructor allows the shar ed_| ock_guar d object
to take shared ownership of alock already held by the current thread.

shar ed_| ock_guar d(SharedLockable & m

Effects: Stores areferenceto m Invokesm | ock_shared() ().

Throws: Any exception thrown by the call tom | ock_shared() ().

shar ed_| ock_guar d(Shar edLockabl e & m boost:: adopt | ock_t)

Precondition: The current thread owns alock on mequivalent to one obtained by acall tom | ock_shared() ().
Effects: Stores areference to m Takes ownership of the lock state of m
Throws: Nothing.

~shar ed_| ock_guard()

Effects: Invokes m unl ock_shared() () onthe Shar edLockabl e object passed to the constructor.

Throws: Nothing.

116

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Class template reverse_l ock

/'l #include <boost/thread/reverse_| ock. hpp>
namespace boost

{

t enpl at e<t ypenane Lock>
cl ass reverse_ | ock

{
publi c:
reverse | ock(reverse | ock const&) = delete;
reverse_|l ock& operator=(reverse_l ock const& = delete;
explicit reverse_l ock(Lock& m);
~reverse_| ock();
b

rever se_| ock reverse the operations of alock: it provide for RAII-style, that unlocks the lock at construction time and lock it at
destruction time. In addition, it transfer ownership temporarily, so that the mutex can not be locked using the L ock.

Aninstance of r ever se_| ock doesn't own the lock never.

reverse_l ock(Lock & m

Effects: Stores areferenceto m Invokesm unl ock() if mowns hislock and then stores the mutex by callingm r e-
| ease().

Postcondition: I'm owns_l ock()() && m nutex()==0.

Throws: Any exception thrown by the call to m unl ock() .

~reverse_| ock()

Effects: Let be mtx the stored mutex*. If not O Invokes nt x- >l ock() and gives again the nt x to the Lock using the ad-
opt _| ock_t overload.

Throws: Any exception thrown by nt x- >l ock() .

Remarks: Notethat if nt x- >l ock() throwsan exception while unwinding the program will terminate, so don't usereverse lock
if an exception can be thrown.

117

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Lock functions

Non-member function 1 ock(Lockabl e1, Lockabl e2, . . .)

/'l #include <boost/thread/| ocks. hpp>
/'l #include <boost/thread/ | ock_al gorithns. hpp>

namespace boost

{

t enpl at e<t ypenanme Lockabl el, t ypenanme Lockabl e2>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2);

t enpl at e<t ypenane Lockabl el, t ypenanme Lockabl e2, t ypenane Lockabl e3>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3) ;

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3, t ypenane Lockabl e4>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& | 4) ;

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenanme Lockabl e3,typenane Lockabl e4,typel

nanme Lockabl e5>

voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& | 4, Lockabl e5& | 5) ;

Effects:

Throws:

Postcondition:

Locksthe Lockabl e objects supplied as argumentsin an unspecified and indeterminate order in away that
avoids deadlock. Itissafeto call this function concurrently from multiple threads with the same mutexes (or
other lockable objects) in different orders without risk of deadlock. If any of thel ock() ortry_I ock()
operations on the supplied Lockabl e objects throws an exception any locks acquired by the function will
be released before the function exits.

Any exceptions thrown by calling | ock() ortry_l ock() onthesupplied Lockabl e objects.

All the supplied Lockabl e objects are locked by the calling thread.

Non-member function 1 ock(begin, end) // EXTENSION

t enpl at e<t ypenane Forwardlterator>
voi d | ock(Forwardlterator begin, Forwardlterator end);

Preconditions:

Effects:

Throws:

Postcondition:

Theval ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

Locks all the Lockabl e objects in the supplied range in an unspecified and indeterminate order in a way
that avoids deadlock. It issafeto call thisfunction concurrently from multiple threads with the same mutexes
(or other lockable objects) in different orders without risk of deadlock. If any of thel ock() ortry_I ock()
operations on the Lockabl e objects in the supplied range throws an exception any locks acquired by the
function will be released before the function exits.

Any exceptions thrown by calling | ock() ortry_| ock() onthesupplied Lockabl e objects.

All the Lockabl e objects in the supplied range are locked by the calling thread.

render

118

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function try_I ock(Lockabl e1, Lockabl e2, . . .)

t enpl at e<t ypenanme Lockabl el, t ypenanme Lockabl e2>
int try | ock(Lockablel& |1, Lockabl e2& |2);

t enpl at e<t ypenane Lockabl el, t ypenanme Lockabl e2, t ypenane Lockabl e3>
int try_ | ock(Lockablel& |1, Lockabl e2& | 2, Lockabl e3& | 3);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3,typenane Lockabl e4>
int try_|ock(Lockabl el& |1, Lockabl e2& |2, Lockabl e3& | 3, Lockabl e4& 14);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3, t ypenane Lockabl e4, t ypename LockO

abl e5>

int try_ | ock(Lockabl el& |1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& |4, Lockabl e5& 15);

Effects:

Returns:

Throws:

Postcondition:

Callstry_l ock() oneachof theLockabl e objectssupplied asarguments. If any of thecallstot ry_I| ock()
returnsf al se then all locks acquired are released and the zero-based index of the failed lock is returned.

If any of thet ry_| ock() operationsonthesupplied Lockabl e objectsthrowsan exception any locksacquired
by the function will be released before the function exits.

-1 if al the supplied Lockabl e objects are now locked by the calling thread, the zero-based index of the
object which could not be locked otherwise.

Any exceptions thrown by callingtry_| ock() onthe supplied Lockabl e objects.

If the function returns- 1, all the supplied Lockabl e objects are locked by the calling thread. Otherwise any
locks acquired by this function will have been rel eased.

Non-member function try_| ock(begin, end) /[EXTENSION

t enpl at e<t ypenane Forwardlterator>
Forwardlterator try_ | ock(Forwardlterator begin, Forwardlterator end);

Preconditions:

Effects:

Returns:

Throws:

Postcondition:

Theval ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

Calstry_I ock() oneachof theLockabl e objectsinthesupplied range. If any of thecallstot ry_I ock()
returnsf al se then all locks acquired are released and an iterator referencing the failed lock is returned.

If any of thet ry_| ock() operationsonthesupplied Lockabl e objectsthrowsan exception any locksacquired
by the function will be released before the function exits.

end if al the supplied Lockabl e objects are now locked by the calling thread, an iterator referencing the
object which could not be locked otherwise.

Any exceptions thrown by callingtry_| ock() onthe supplied Lockabl e objects.

If the function returns end then all the Lockabl e objects in the supplied range are locked by the calling
thread, otherwise all locks acquired by the function have been released.

render

119

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Lock Factories - EXTENSION

namespace boost

{

tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> nmake_uni que_| ock(Lockabl e& ntx); // EXTENSI ON

tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> rmake_uni que_| ock(Lockabl e& ntx, adopt_lock_t); // EXTENSI ON
tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> nmake_uni que_| ock(Lockabl e& ntx, defer_lock_t); // EXTENSI ON
tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> nmake_uni que_| ock(Lockabl e& ntx, try_ to_lock_ t); // EXTENSI ON

#if | defined(BOOST_THREAD NO MAKE UNI QUE_LOCKS)

tenpl ate <typenane ...Lockabl e>

std: :tupl e<uni que_l ock<Lockabl e> ... > nake_uni que_| ocks(Lockable& ...ntx); // EXTENSI ON
#endi f

}

Non Member Function make_uni que_| ock(Lockabl e&)

tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> rmake_uni que_| ock(Lockabl e& ntx); // EXTENSI ON

Returns: aboost : : uni que_| ock asif initialized with uni que_| ock<Lockabl e>(nt x) .

Throws: Any exception thrown by the call to boost : : uni que_I| ock<Lockabl e>(nt x) .

Non Member Function make_uni que_| ock(Lockabl e&, t ag)

tenpl ate <typenanme Lockabl e>
uni que_| ock<Lockabl e> rmake_uni que_| ock(Lockabl e& ntx, adopt_lock_t tag); // EXTENSI ON

tenpl ate <typenanme Lockabl e>
uni que_| ock<Lockabl e> make_uni que_| ock(Lockabl e& ntx, defer_lock_t tag); // EXTENSI ON

tenpl ate <typenane Lockabl e>
uni que_| ock<Lockabl e> rmake_uni que_| ock(Lockabl e& ntx, try to_lock_t tag); // EXTENSI ON

Returns: aboost : : uni que_| ock asif initialized with uni que_| ock<Lockabl e>(nt x, tag).

Throws: Any exception thrown by the call to boost : : uni que_I ock<Lockabl e>(ntx, tag).

Non Member Function make_uni que_| ocks(Lockabl e& .. .)

tenpl ate <typenane ...Lockabl e>
std::tupl e<uni que_l ock<Lockabl e> ... > make_uni que_l ocks(Lockable& ...ntx); // EXTENSI ON

Effect: Locks al the mutexes.
Returns: astd::tuple of unique boost : : uni que_| ock owning each one of the mutex.
Throws: Any exception thrown by boost : : | ock(nt x...).

120

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Mutex Types
Class mut ex

#i ncl ude <boost/thread/ mut ex. hpp>

cl ass nutex:
boost : : noncopyabl e

{
publi c:
nmut ex() ;
~mut ex() ;
void | ock();
bool try_lock();
voi d unl ock();

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

t ypedef uni que_l| ock<mut ex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;

boost : : nut ex implementsthe Lockabl e concept to provide an exclusive-ownership mutex. At most one thread can own the lock
on agiven instance of boost : : nut ex at any time. Multiple concurrent callsto| ock(),try_Il ock() andunl ock() shall be per-
mitted.

Member function native_handl e()

typedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

Typedef try_mitex

#i ncl ude <boost/t hread/ nut ex. hpp>

typedef nutex try_nutex;

boost::try_nutex isatypedef toboost: : mut ex, provided for backwards compatibility with previous releases of boost.

121

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class ti med_nut ex

#i ncl ude <boost/thread/ mut ex. hpp>

class tined _nmutex:
boost : : noncopyabl e

{

publi c:
timed_mutex();
~timed_mutex();

void | ock();
voi d unl ock();
bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);
tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& t);

t ypedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();

t ypedef uni que_l ock<tined_nutex> scoped_ti nmed_| ock;
t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_timed_| ock scoped_| ock;

#i f defined BOOST_THREAD PROVI DES DATE TI ME || defined BOOST_THREAD DONT_USE_CHRONO
bool tined_|l ock(systemtine const & abs_tine);
t enpl at e<t ypenane Ti meDur ati on>
bool tinmed | ock(TineDuration const & relative tine);

#endi f

b
boost : : ti med_nut ex implements the Ti medLockabl e concept to provide an exclusive-ownership mutex. At most one thread
can own the lock on a given instance of boost : : ti med_nut ex at any time. Multiple concurrent callsto | ock(),try_Il ock(),

timed_l ock(),tinmed_| ock() andunl ock() shal be permitted.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

122

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Class recursive_mutex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

cl ass recursive_mnutex:
boost : : noncopyabl e

{
publi c:
recursive_nutex();
~recursive_nutex();
void | ock();
bool try_l ock() noexcept;
voi d unl ock();
t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();
t ypedef uni que_l ock<recursive_nutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;
b

boost : : recur si ve_mut ex implements the Lockabl e concept to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of boost : : recur si ve_nut ex at any time. Multiple concurrent calls to | ock(),
try_l ock() andunl ock() shall bepermitted. A thread that aready has exclusive ownership of agivenboost : : r ecur si ve_mut ex
instance can call | ock() ortry_l ock() toacquire an additional level of ownership of the mutex. unl ock() must be called once
for each level of ownership acquired by a single thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

Typed ef recursi ve_try_nmutex

#i ncl ude <boost/thread/recursive_mnutex. hpp>

typedef recursive_mutex recursive_try_nutex;

boost::recursive_try_mutex isatypedef toboost: : recursive_nut ex, provided for backwards compatibility with pre-
vious releases of boost.

123

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class recursive_tinmed_nut ex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

class recursive_tined nutex:
boost : : noncopyabl e

{

publi c:
recursive_timed nutex();
~recursive_tinmed nmutex();

void | ock();
bool try_l ock() noexcept;
voi d unl ock();

tenpl ate <cl ass Rep, class Period>

bool try_l ock_for(const chrono::duration<Rep, Period>& rel _tinme);
tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& t);

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

t ypedef uni que_l ock<recursive_timed_mutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_l ock scoped_timed_| ock;

#i f defined BOOST_THREAD PROVI DES DATE TI ME || defined BOOST_THREAD DONT_USE_CHRONO
bool tined_|l ock(systemtine const & abs_tine);
t enpl at e<t ypenane Ti meDur ati on>
bool tinmed | ock(TineDuration const & relative tine);

#endi f

I

boost : : recursi ve_ti med_nut ex implementsthe Ti medLockabl e concept to provide an exclusive-ownership recursive mutex.
At most one thread can own the lock on a given instance of boost : : recur si ve_t i ned_nut ex at any time. Multiple concurrent
calstol ock(),try_lock(),timed_l ock(),timed_|l ock() andunl ock() shall be permitted. A thread that already has ex-
clusive ownership of agiven boost : : recursi ve_ti med_nut ex instance can call | ock(),ti med_| ock(),timed_| ock() or
try_l ock() toacquirean additional level of ownership of the mutex. unl ock() must be called once for each level of ownership
acquired by asingle thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

124

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class shared_mitex -- C++14

#i ncl ude <boost/thread/ shared_mnut ex. hpp>

cl ass shared_nut ex
{
publi c:
shared _nmut ex(shared_nutex const&) = del ete;
shar ed_mut ex& oper at or =(shared_mut ex const&) = del ete;

shared_mutex();
~shared_nutex();

voi d | ock_shared();

bool try_l ock_shared();

tenpl ate <cl ass Rep, class Period>

bool try_l ock_shared_for(const chrono::duration<Rep, Period>& rel _tine);

tenpl ate <class C ock, class Duration>

bool try_l ock_shared_until (const chrono::tinme_point<C ock, Duration>& abs_tinme);
voi d unl ock_shared();

void | ock();

bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tine);
voi d unl ock();

#i f defined BOOST_THREAD PROVI DES DEPRECATED FEATURES SI NCE_V3_0_0
/'l use upgrade_nutex instead.
void | ock_upgrade(); // EXTENSI ON
voi d unl ock_upgrade(); // EXTENSI ON

voi d unl ock_upgrade_and_l ock(); // EXTENSI ON

voi d unl ock_and_| ock_upgrade(); // EXTENSI ON

voi d unl ock_and_| ock_shared(); // EXTENSI ON

voi d unl ock_upgrade_and_| ock_shared(); // EXTENSI ON
#endi f

#i f defined BOOST_THREAD USES_ DATETI ME
bool tinmed_|l ock_shared(systemtine const& timeout); // DEPRECATED
bool tined_| ock(systemtine const& timeout); // DEPRECATED

#endi f

I

The class boost : : shar ed_nut ex provides an implementation of a multiple-reader / single-writer mutex. It implements the
Shar edLockabl e concept.

Multiple concurrent callsto !l ock(),try_lock(),try_lock for(),try lock_until(),timed_|ock(),!|ock shared(),
try lock_shared for(),try_lock shared until(),try_|ock_shared() andti ned_| ock_shared() arepermitted.

Note the the lack of reader-writer priority policies in shared_mutex. This is due to an algorithm credited to Alexander Terekhov
which letsthe OS decide which thread is the next to get the lock without caring whether aunique lock or shared lock is being sought.
Thisresultsin acomplete lack of reader or writer starvation. It issimply fair.

125

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class upgrade_mutex -- EXTENSION

#i ncl ude <boost/thread/ shared_mnut ex. hpp>

cl ass upgrade_nut ex
{
publi c:
upgr ade_mut ex(upgrade_mnut ex const &) = del ete;
upgr ade_mut ex& oper at or =(upgr ade_mut ex const &) = del ete;

upgr ade_mut ex() ;
~upgr ade_nut ex() ;

voi d | ock_shared();

bool try_l ock_shared();

tenpl ate <cl ass Rep, class Period>

bool try_l ock_shared_for(const chrono::duration<Rep, Period>& rel _tine);

tenpl ate <class C ock, class Duration>

bool try_l ock_shared_until (const chrono::tinme_point<C ock, Duration>& abs_tinme);
voi d unl ock_shared();

void | ock();

bool try_lock();

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tine);
voi d unl ock();

voi d | ock_upgrade();

tenpl ate <cl ass Rep, class Period>

bool try_l ock_upgrade_for(const chrono::duration<Rep, Period>& rel_tinme);

tenpl ate <class C ock, class Duration>

bool try_l ock_upgrade_until (const chrono::time_point<C ock, Duration>& abs_tine);
voi d unl ock_upgrade();

// Shared <-> Excl usive

#i f def BOOST_THREAD PROVI DES_SHARED MUTEX UPWARDS CONVERSI ONS

bool try_unl ock_shared_and_| ock();

tenpl ate <cl ass Rep, class Period>

bool try_unl ock_shared_and_| ock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_unl ock_shared_and_|l ock_until (const chrono::time_point<C ock, Duration>& abs_tine);
#endi f

voi d unl ock_and | ock_shared();

/| Shared <-> Upgrade

#i f def BOOST_THREAD PROVI DES_SHARED MUTEX UPWARDS CONVERSI ONS
bool try_unl ock_shared_and_| ock_upgrade();
tenpl ate <cl ass Rep, class Period>
bool try_unl ock_shared_and_| ock_upgrade_for(const chrono::duration<Rep, Period>& rel _tine);
tenpl ate <class C ock, class Duration>
bool try_unl ock_shared_and_| ock_upgrade_until (const chrono::time_point<C ock, Dural
tion>& abs_tine);
#endi f
voi d unl ock_upgrade_and_| ock_shared();

/1 Upgrade <-> Excl usive

voi d unl ock_upgrade_and_| ock();
#if def i ned(BOOST_THREAD_ PLATFORM PTHREAD)

126

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

|| defined(BOOST_THREAD PROVI DES GENERI C_SHARED MUTEX_ON W N)

bool try_unl ock_upgrade_and_I ock()

tenpl ate <cl ass Rep, class Period>

bool try_unl ock_upgrade_and_| ock_for(const chrono::duration<Rep, Period>& rel _tine);

tenpl ate <class O ock, class Duration>

bool try_unl ock_upgrade_and_| ock_until (const chrono::tinme_point<d ock, Duration>& abs_tine);
#endi f

voi d unl ock_and_I ock_upgrade()

I

Theclassboost : : upgrade_nut ex provides an implementation of a multiple-reader / single-writer mutex. It implements the Up-
gr adeLockabl e concept.

Multiple concurrent callsto | ock(),try_l ock(),try_lock _for(),try_lock_until(),timed_l ock(),!ock_shared(),
try_lock_shared_for(),try_lock_shared_until(),try_l ock_shared() andti med_| ock_shared() arepermitted

Class nuii _mitex -- EXTENSION

#i ncl ude <boost/thread/ null _nutex. hpp>

class nul |l _mut ex
{
publi c:
nul | _mutex(nul |l _mutex const&) = delete
nul | _nmut ex& operator=(null _mitex const& = delete

nul | _rmutex();
~nul | _mutex();

voi d | ock_shared()

bool try_l ock_shared();
#i f def BOOST_THREAD_USES_ CHRONO

tenpl ate <cl ass Rep, class Period>

bool try_l ock_shared_for(const chrono::duration<Rep, Period>& rel _tine);

tenpl ate <class C ock, class Duration>

bool try_lock_shared_until (const chrono::time_point<C ock, Duration>& abs_tine);
#endi f

voi d unl ock_shared()

void | ock();

bool try_lock();
#i f def BOOST_THREAD_USES_CHRONO

tenpl ate <cl ass Rep, class Period>

bool try_lock_for(const chrono::duration<Rep, Period>& rel _tinme);

tenpl ate <class C ock, class Duration>

bool try_lock_until (const chrono::tine_point<C ock, Duration>& abs_tinmne);
#endi f

voi d unl ock()

voi d | ock_upgrade();
#i f def BOOST_THREAD_USES_CHRONO

tenpl ate <cl ass Rep, class Period>

bool try_l ock_upgrade_for(const chrono::duration<Rep, Period>& rel _tinmne);

tenpl ate <class C ock, class Duration>

bool try_l ock_upgrade_until (const chrono::tine_point<C ock, Duration>& abs_tinme);
#endi f

voi d unl ock_upgrade()

/1l Shared <-> Excl usive

bool try_unl ock_shared_and_| ock()

127

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#i f def BOOST_THREAD USES_CHRONO
tenpl ate <cl ass Rep, class Period>

bool try_unl ock_shared_and_| ock_for(const chrono::duration<Rep, Period>& rel _tinme);
tenpl ate <class O ock, class Duration>

bool try_unlock_shared_and_|l ock_until (const chrono::tinme_point<d ock, Duration>& abs_tine);
#endi f

voi d unl ock_and_| ock_shared()
/1 Shared <-> Upgrade

bool try_unl ock_shared_and_| ock_upgrade()
#i f def BOOST_THREAD USES_CHRONO
tenpl ate <cl ass Rep, class Period>

bool try_unlock_shared_and_| ock_upgrade_for(const chrono::duration<Rep, Period>& rel _tine);
tenpl ate <class O ock, class Duration>

bool try_unl ock_shared_and_| ock_upgrade_until (const chrono::tinme_point<d ock, Dural
tion>& abs_tinme);
#endi f

voi d unl ock_upgrade_and_| ock_shared()

/1 Upgrade <-> Excl usive

voi d unl ock_upgrade_and_I ock()

bool try_unl ock_upgrade_and_Il ock()
#i f def BOOST_THREAD_USES_CHRONO

tenpl ate <cl ass Rep, class Period>

bool try_unl ock_upgrade_and_| ock_for(const chrono::duration<Rep, Period>& rel _tine);
tenpl ate <class O ock, class Duration>

bool try_unl ock_upgrade_and_| ock_until (const chrono::tinme_point<d ock, Duration>& abs_tine);
#endi f

voi d unl ock_and_I ock_upgrade()

The class boost : : nul | _mut ex provides a no-op implementation of a multiple-reader / single-writer mutex. It is a model of the
Upgr adeLockabl e concept.

Condition Variables
Synopsis

nanespace boost

{

enum cl ass cv_status

{
no_ti meout,
ti meout
¥
cl ass condition_variabl e;
cl ass condition_vari abl e_any;

void notify_ all _at_thread_exit(condition_variabl e& cond, unique_l ock<nutex> |k)

Theclassescondi ti on_vari abl e andcondi ti on_vari abl e_any provide a mechanism for one thread to wait for notification
from another thread that a particular condition has become true. The general usage pattern isthat one thread locks a mutex and then
callswai t on aninstance of condi ti on_vari abl e or condi ti on_vari abl e_any. When the thread is woken from the wait,
then it checks to see if the appropriate condition is now true, and continues if so. If the condition is not true, then the thread then
callswai t again to resume waiting. In the simplest case, this condition is just a boolean variable:

128

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

boost: : condition_variabl e cond;
boost : : nutex mut;

bool data_ready;

voi d process_datal();

void wait_for_data_to_process()

{
boost: : uni que_Il ock<boost: : mutex> | ock(mut);
whi | e(! dat a_r eady)
{
cond. wai t (| ock) ;
}
process_data();
}

Notice that thel ock ispassed towai t : wai t will atomically add the thread to the set of threads waiting on the condition variable,
and unlock the mutex. When the thread is woken, the mutex will be locked again before the call to wai t returns. This allows other
threads to acquire the mutex in order to update the shared data, and ensures that the data associated with the condition is correctly
synchronized.

In the mean time, another thread sets the condition to t r ue, and then calls either noti fy_one or noti fy_al | on the condition
variable to wake one waiting thread or all the waiting threads respectively.

void retrieve_data();
voi d prepare_data();

voi d prepare_data_for_processing()

{
retrieve_data();
prepare_data();
{
boost: : | ock_guar d<boost:: nutex> | ock(nut);
dat a_ready=true;
}
cond. notify_one();
}

Note that the same mutex is locked before the shared data is updated, but that the mutex does not have to be locked across the call
tonotify_one.

This example uses an object of typecondi ti on_vari abl e, but would work just aswell with an object of typecondi ti on_vari -
abl e_any:condi ti on_vari abl e_any ismoregenera, and will work with any kind of lock or mutex, whereascondi ti on_vari -
abl e requires that the lock passed to wai t is an instance of boost : : uni que_| ock<boost : : mut ex>. This enables condi -
ti on_vari abl e to make optimizations in some cases, based on the knowledge of the mutex type; condi ti on_vari abl e_any
typically has a more complex implementation than condi ti on_vari abl e.

129

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class condition_variabl e

/1 #i ncl ude <boost/thread/ condition_variabl e. hpp>

namespace boost

{

cl ass condition_variable

{

public:
condition_variable();
~condi tion_variable();

void notify_one() noexcept;
void notify_all () noexcept;

voi d wait (boost: :uni que_l ock<boost: : nut ex>& | ock);

t enpl at e<t ypenane predi cate_type>
voi d wait (boost: :uni que_| ock<boost:: nutex>& | ock, predi cate_type predicate);

tenpl ate <class C ock, class Duration>
typenanme cv_status::type
wait_until(
uni que_| ock<mut ex>& | ock,
const chrono: :tine_point<C ock, Duration>& t);

tenpl ate <class C ock, class Duration, class Predicate>
bool
wait_until(

uni que_| ock<mut ex>& | ock,

const chrono: :tine_point<C ock, Duration>& t,

Predi cate pred);

tenpl ate <cl ass Rep, class Period>
typenanme cv_status::type
wait_ for(
uni que_| ock<mut ex>& | ock,
const chrono: : duration<Rep, Period>& d);

tenpl ate <cl ass Rep, class Period, class Predicate>
bool
wait_ for(

uni que_| ock<mut ex>& | ock,

const chrono: : duration<Rep, Period>& d,

Predi cate pred);

#i f defined BOOST_THREAD USES DATETI ME
bool tined_wait (boost: : uni que_| ock<boost: : mutex>& | ock, boost::systemtine const& abs_tine);
t enpl at e<t ypenane duration_type>
bool tinmed_wait (boost:: unique_| ock<boost:: nutex>& | ock, duration_type const& rel _tine);
t enpl at e<t ypenane predi cate_type>
bool tinmed_wait (boost: :uni que_| ock<boost:: nmutex>& | ock, boost::sysl
temtime const& abs_tine, predicate_type predicate);
t enpl at e<t ypenane duration_type,typenane predicate_type>
bool tined_wait(boost: :unique_| ock<boost::mutex>& | ock, duration_type const& rel _time, preld
di cate_type predicate);
bool tined_wait (boost:: unique_| ock<boost:: nmutex>& | ock, boost: : xtinme const& abs_tinme);

t enpl at e<t ypenane predi cate_type>

130

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

bool tinmed_wait(boost::unique_| ock<boost:: nutex>& | ock, boost:: xtime const& abs_tine, preld
di cate_type predicate);
#endi f

I

condi tion_vari abl e()

Effects: Constructs an object of classcondi ti on_vari abl e.

Throws: boost: :thread_resource_error if anerror occurs.

~condi ti on_vari abl e()

Precondition: All threadswaitingon*t hi s havebeennotifiedby acall tonoti fy_one ornoti fy_al | (thoughtherespective
callstowai t orti med_wai t need not have returned).

Effects: Destroys the object.

Throws: Nothing.

void notify_one()

Effects: If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t , unblocksone of thosethreads.

Throws: Nothing.
void notify_all()

Effects: If any threads are currently blocked waiting on*t hi s inacall towai t orti med_wai t , unblocksall of thosethreads.

Throws: Nothing.
voi d wait (boost:: unique_| ock<boost: : mutex>& | ock)

Precondition: I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied inthe callstowai t orti med_wait inall
thethreads currently waiting on*t hi s would returnthe samevalueasl! ock- >nut ex() forthiscal towai t .

Effects: Atomically cal | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
calltot hi s->notify_one() orthis->notify_all(),orspuriousy. When thethread is unblocked (for
whatever reason), the lock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane predi cate_type> void wait(boost:: uni que_| ock<boost:: mutex>& | ock, predicate_type
pred)

Effects: Asif

131

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

while(!pred())

{

wai t (1 ock);

}

bool tinmed_wait (boost:: uni que_| ock<boost:: nutex>& | ock, boost::systemtine const& abs_tine)

Precondition:

Effects:

Returns:
Postcondition:

Throws:

| ock islocked by the current thread, and either no other thread is currently waiting on*t hi s, or the execution
of the mut ex() member function on the | ock objects supplied in the callsto wai t or ti med_wai t in all
thethreads currently waiting on*t hi s would return the samevalueas| ock- >nut ex() forthiscal towai t .

Atomically call | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal to this->notify one() or this->notify all(), when the time as reported by
boost: : get _system ti me() wouldbeequal toor later than the specifiedabs_t i me, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() before the
call towai t returns. Thelock isaso reacquired by invoking | ock. | ock() if the function exits with an ex-
ception.

f al se if thecall isreturning because the time specified by abs_t i me was reached, t r ue otherwise.
I ock islocked by the current thread.

boost::thread_resource_error if anerror occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost: :t hread object associated with the current thread of
execution.

t enpl at e<t ypenane duration_type> bool tined_wait(boost:: unique_| ock<boost:: nutex>& | ock, durati on_type

const& rel _tine)

Precondition:

Effects:

Returns:
Postcondition:

Throws:

K

Note

I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied inthe callstowai t orti med_wait inal
thethreads currently waiting on*t hi s would returnthe samevalueas! ock- >nut ex() forthiscal towai t .

Atomically cal | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal tot hi s->notify_one() orthis->notify_all(),aftertheperiodof timeindicated by therel _ti me
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

f al se if the call is returning because the time period specified by rel _ti me has elapsed, t r ue otherwise.
| ock islocked by the current thread.

boost: :thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost : : t hr ead object associated with the current thread of
execution.

Theduration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane predi cate_type> bool tined_wait(boost:: unique_l ock<boost:: nmutex>& | ock,

boost::systemtine const& abs_tinme, predicate_type pred)

Effects:

Asif

132

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

while(!pred())

{

}

if(!'timed_wait(lock,abs_tine))

{
}

return pred();

return true;

tenpl ate <class C ock, class Duration> cv_status wait_until (boost:: uni que_| ock<boost:: nutex>& | ock,

const chrono: :tine_point<C ock, Duration>& abs_tine)

Precondition:

Effects:

Returns:

Postcondition:

Throws:

| ock islocked by the current thread, and either no other thread is currently waiting on*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied in the calls to wait or wait_for or
wai t _unti | inall thethreads currently waiting on*t hi s would return the samevalue as| ock- >nut ex()
for thiscall towai t .

Atomically call | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal tothis->notify one() orthis->notify_all (), when thetime as reported by C ock: : now()
would be equal to or later than the specified abs_t i ne, or spuriously. When the thread is unblocked (for
whatever reason), the lock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

cv_status::timeout if the cal is returning because the time specified by abs_ti me was reached,
cv_status::no_tinmeout otherwise.

I ock islocked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost: : t hr ead object associated with the current thread of
execution.

tenpl ate <cl ass Rep, class Period> cv_status wait_for(boost::unique_|l ock<boost:: nutex>& | ock, const

chrono: : durati on<Rep, Period>& rel _tine)

Precondition:

Effects:

Returns:

Postcondition:

Throws:

I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the mut ex() member function on the | ock objects supplied in the callstowait or wait _until or
wai t _for inall the threads currently waiting on *t hi s would return the same value as | ock- >nut ex()
for thiscall towai t .

Atomically cal | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal tot hi s->notify_one() orthis->notify_all(),aftertheperiodof timeindicated by therel _ti me
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

cv_status::timeout ifthecalisreturningbecausethetime period specifiedbyrel _ti me haselapsed,
cv_status::no_tinmeout otherwise.

| ock islocked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nt err upt ed if the wait was
interrupted by acall toi nt errupt () ontheboost : : t hr ead object associated with the current thread of
execution.

render

133

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

S Note

Theduration overload of timed_wait isdifficult to use correctly. The overload taking a predicate should be preferred
in most cases.

tenpl ate <cl ass O ock, class Duration, class Predicate> bool wait_until (boost:: uni que_l ock<boost: : nu-
tex>& | ock, const chrono::tinme_point<C ock, Duration>& abs_tine, Predicate pred)

Effects: Asif

while(!pred())
{
if('wait_until (lock,abs_tine))

{
}

return pred();

}

return true;

tenpl ate <cl ass Rep, class Period, class Predicate> bool wait_for(boost:: unique_| ock<boost:: nutex>&
| ock, const chrono::duration<Rep, Period>& rel _tine, Predicate pred)

Effects: Asif

return wait_until (lock, chrono::steady_clock::now() + d, boost::nobve(pred));

134

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class condition_variabl e_any

/1 #i ncl ude <boost/thread/ condition_variabl e. hpp>

namespace boost

{
cl ass condition_vari abl e_any
{
public:
condi tion_variabl e_any();
~condi ti on_vari abl e_any();
void notify_one();
void notify_all();
t enpl at e<t ypenane | ock_t ype>
void wait(lock_type& | ock);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
void wait(lock_type& | ock, predi cate_type predicate);
tenpl ate <cl ass | ock_type, class O ock, class Duration>
cv_status wait_until(
| ock_type& | ock,
const chrono: :tine_point<C ock, Duration>& t);
tenmpl ate <cl ass | ock_type, class O ock, class Duration, class Predicate>
bool wait _until(
| ock_type& I ock,
const chrono: :tine_point<C ock, Duration>& t,
Predi cate pred);
tenpl ate <cl ass | ock_type, class Rep, class Period>
cv_status wait_for(
| ock_type& I ock,
const chrono: : duration<Rep, Period>& d);
tenpl ate <class lock_type, class Rep, class Period, class Predicate>
bool wait for(
| ock_type& | ock,
const chrono: : duration<Rep, Period>& d,
Predi cate pred);
#i f defined BOOST_THREAD _USES_DATETI ME
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type& | ock, boost::systemtinme const& abs_tine);
t enpl at e<t ypenane | ock_type, typenanme duration_type>
bool tinmed_wait(lock_type& |ock,duration_type const& rel _tinme);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::systemtime const& abs_time, predicate_type predi cO
ate);
t enpl at e<t ypenane | ock_type, t ypenane duration_type,typenane predicate_type>
bool timed_wait(lock_type& | ock, duration_type const& rel _tine, predicate_type predicate);
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type>& | ock, boost::xtinme const& abs_tine);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::xtime const& abs_time, predi cate_type predicate);
#endi f
b
}

135

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

condi tion_variabl e_any()

Effects: Constructs an object of classcondi ti on_vari abl e_any.

Throws; boost : :

thread_r esource_error if anerror occurs.

~condi ti on_vari abl e_any()

Precondition: All threadswaitingon*t hi s havebeen notified by acall tonoti fy_one ornoti fy_al | (though therespective
calstowai t orti nmed_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

voi d notify_one()

Effects: If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t , unblocksone of thosethreads.

Throws: Nothing.

void notify_all ()

Effects: If any threads are currently blocked waiting on*t hi s inacall towai t orti med_wai t , unblocksall of thosethreads.

Throws: Nothing.
t enpl at e<t ypenane

Effects:

Postcondition:

Throws:

t enpl at e<t ypenane
pred)

Effects: Asif

| ock_type> void wait(lock type& | ock)

Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot his->notify one() orthis->notify_all(),orspuriousy. When thethread isunblocked (for
whatever reason), the lock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

| ock islocked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost : : t hr ead object associated with the current thread of
execution.

| ock_type,typenane predicate type> void wait(lock type& | ock, predicate_ type

while(!pred())

{

wai t (I ock);

}

t enpl at e<t ypenane

Effects:

| ock_type> bool tined wait(lock type& |ock, boost::systemtinme consté& abs_tine)

Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
cal to this->notify one() or this->notify all(), when the time as reported by
boost : : get _system ti me() would beequal to or later thanthe specified abs_t i ne, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() beforethe

136

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

call towai t returns. The lock isalso reacquired by invoking | ock. | ock() if thefunction exits with an ex-

ception.

Returns: f al se if the call isreturning because the time specified by abs_t i me was reached, t r ue otherwise.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nterrupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

t enpl at e<typenane | ock_type, typenane duration_type> bool tined wait(lock type& |ock,duration_type
const& rel _tine)

Effects: Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
caltot his->notify_one() orthis->notify_all(),aftertheperiodof timeindicated by therel _ti me
argument has el apsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

Returns: f al se if the call isreturning because the time period specified by r el _t i me has elapsed, t r ue otherwise.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nt er rupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

S Note
Theduration overload of timed_wait isdifficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane | ock_type, typenane predicate_type> bool tined wait(lock type& | ock, boost::sys-
temtime const& abs_tine, predicate_type pred)

Effects: Asif

while(!pred())
{

if(!'tinmed wait(lock,abs tinme))

{
}

return pred();

}

return true;

tenpl ate <class | ock_type, class dock, class Duration> cv_status wait_until (lock_type& | ock, const
chrono: :ti ne_poi nt<C ock, Duration>& abs_tine)

Effects: Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
call tothis->notify_one() orthis->notify_all (), when thetime as reported by C ock: : now()
would be egual to or later than the specified abs_t i me, or spuriously. When the thread is unblocked (for
whatever reason), the lock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

137

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Returns:

Postcondition:

Throws:

cv_status::timeout if the cal is returning because the time specified by abs_ti me was reached,
cv_status::no_tinmeout otherwise.

| ock islocked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost : : t hr ead object associated with the current thread of
execution.

tenpl ate <cl ass | ock_type, class Rep, class Period> cv_status wait_for(lock_type& | ock, const

chrono: : durati on<Rep, Period>& rel _tine)

Effects:

Returns:

Postcondition:

Throws:

N

Note

Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
caltot his->notify one() orthis->notify_all(),aftertheperiodof timeindicatedby therel _ti me
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is aso reacquired by invoking
| ock. | ock() if the function exits with an exception.

cv_status::tineout if the cal is returning because the time specified by abs_ti me was reached,
cv_status::no_tinmeout otherwise.

| ock islocked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nterrupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

Theduration overload of timed_wait isdifficult to use correctly. The overload taking a predicate should be preferred

in most cases.

tenpl ate <cl ass | ock_type, class dock, class Duration, class Predicate> bool wait_until (lock_type&

| ock,

Effects:

const

Asif

chrono: :time_poi nt<Cl ock, Duration>& abs_tine, Predicate pred)

while(!pred())

{

}

if('wait_until (lock,abs_tine))

{
}

return pred();

return true;

tenpl ate <cl ass | ock_type, class Rep, class Period, class Predicate> bool wait_for(lock_type& | ock,

const

Effects:

chrono: : duration<Rep, Period>& rel _tinme, Predicate pred)

Asif

return wait_until (I ock, chrono::steady_clock::now() + d, boost::nove(pred));

138

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Typedef condition DEPRECATED V3

/'l #include <boost/thread/condition. hpp>
namespace boost

{

t ypedef condition_variabl e_any condition;

The typedef condi t i on isprovided for backwards compatibility with previous boost releases.

Non-member Function notify_all _at_thread_exit ()

/'l #include <boost/thread/condition_variabl e. hpp>

namespace boost

{
void notify_all _at_thread_exit(condition_variable& cond, unique_|l ock<nmutex> |k)
}

Requires: | k islocked by the calling thread and either no other thread is waiting on cond, or | k. nut ex() returns the same
value for each of the lock arguments supplied by all concurrently waiting (viawai t ,wait _for,orwait_until)
threads.

Effects: transfers ownership of the lock associated with | k into internal storage and schedules cond to be notified when the

current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
This notification shall be asif

I k. unl ock();
cond. notify all();

One-time Initialization

#i ncl ude <boost/thread/ once. hpp>

namespace boost

{

struct once_fl ag;
t enpl at e<t ypenane Function, class ...ArgTypes>
inline void call_once(once_flag& flag, Function&& f, ArgTypes&&. .. args)

#i f defined BOOST_THREAD PROVI DES DEPRECATED FEATURES_SI NCE_V3_0_0

void call _once(void (*func)(),once_flag& flag)
#endi f

}

O Warning
the variadic prototype is provided only on C++11 compilers supporting variadic templates, otherwise the interface
islimited up to 3 parameters.

139

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

O Warning
the move semanticsis ensured only on C++11 compilers supporting SFINAE expression, decltype N3276 and auto.
Waiting for a boost::bind that is move aware.

boost : : cal | _once provides a mechanism for ensuring that an initialization routine is run exactly once without data races or
deadlocks.

Typedef once_1 ag

#i f def BOOST_THREAD PROVI DES_ONCE_CXX11
struct once_flag

{

constexprr once_flag() noexcept;

once_fl ag(const once_flag&) = delete;

once_fl ag& operator=(const once_flag& = delete;

i
#el se

typedef platformspecific-type once_flag;

#define BOOST_ONCE_INIT platformspecific-initializer
#endi f

Objectsof typeboost : : once_f | ag shal beinitialized withBOOST_ONCE_| NI Tif BOOST _THREAD PROVIDES ONCE CXX11
is not defined

boost::once_flag f=BOOST_ONCE I NI T;

Non-member function cal1 _once

t enpl at e<t ypenane Function, class ...ArgTypes>
inline void call_once(once_flagé& flag, Function&& f, ArgTypes&& .. args);

Requires: Funct i on and each or theAr gTypes areMoveConst r uct i bl e andi nvoke(decay_copy(boost: : for -
war d<Function>(f)), decay_copy(boost::forward<ArgTypes>(args))...) shal be well
formed.

Effects: Callsto cal I _once on the same once_f | ag object are serialized. If there has been no prior effective
cal | _once onthesameonce_f | ag object, the argument f unc iscaled as-if by invokingi nvoke(de-
cay_copy(boost: : forward<Function>(f)), decay_copy(boost: : f orwar d<Ar g-
Types>(args))...), and the invocation of cal | _once is effective if and only if i nvoke(de-
cay_copy(boost: : forward<Function>(f)), decay_copy(boost: : f orwar d<Arg-
Types>(args))...) returnswithout exception. If an exception is thrown, the exception is propagated
tothecdler. If there hasbeen aprior effectivecal | _once onthesameonce_f | ag object, thecal | _once
returns without invoking f unc.

Synchronization: The completion of an effective cal | _once invocation on aonce_f | ag object, synchronizes with all
subsequent cal | _once invocations on the same once_f | ag object.

Throws: t hread_r esour ce_err or when the effects cannot be achieved or any exception propagated fromf unc.

Note: The function passed to cal | _once must not also call cal | _once passing the same once_f | ag object.
This may cause deadlock, or invoking the passed function a second time. The alternative is to allow the
second call to return immediately, but that assumes the code knows it has been called recursively, and can
proceed even though the call to cal | _once didn't actually call the function, in which case it could also
avoid calling cal | _once recursively.

140

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Note; On some compilers this function has some restrictions, e.g. if variadic templates are not supported the
number of argumentsislimitedto 3; .

void call _once(void (*func)(),once_flag& flag);

This second overload is provided for backwards compatibility and is deprecated. The effects of cal | _once(func, f1 ag) shall be
the same asthose of cal | _once(fl ag, func).

Barriers -- EXTENSION

A barrier is a simple concept. Also known as a rendezvous, it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (n), and as threads reach the barrier they must wait until all n threads have arrived.
Once the n-th thread has reached the barrier, al the waiting threads can proceed, and the barrier is reset.

Class barrier

#i ncl ude <boost/thread/ barrier. hpp>

class barrier

{

publi c:
barrier(barrier const& = delete;
barrier& operator=(barrier const& = delete;
barrier(unsigned int count);
tenpl ate <typenane F>
barrier(unsigned int count, F&&);
~barrier();
bool wait();
voi d count _down_and wait();

b

Instances of boost : : barri er arenot copyable or movable.

Constructor barrier (unsi gned int)

barri er(unsigned int count);

Effects: Construct a barrier for count threads.

Throws: boost: :thread_resource_error if anerror occurs.

Constructor barrier (unsigned int, F&8)

barrier(unsigned int count, F&& conpletion);

Requires: The result type of the completion function call conpl et i on() isvoi d or unsi gned int.
Effects: Construct abarrier for count threads and a completion function conpl et i on.
Throws: boost ::thread_resource_error if anerror occurs.

141

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Destructor ~barrier()

~barrier();

Precondition:

Effects:

Throws:

No threads are waiting on *t hi s.
Destroys*t hi s.

Nothing.

Member Function wai t ()

bool

Effects:

Returns:

Throws:

Notes:

wai t () ;

Block until count threads have called wai t or count _down_and_wai t on*t hi s. When the count -th thread calls
wai t , thebarrier isreset and all waiting threads are unblocked. The reset depends on whether the barrier was constructed
with a completion function or not. If there is no completion function or if the completion function result is void, the
reset consists in restoring the original count. Otherwise the rest consist in assigning the result of the completion
function (which must not be 0).

t r ue for exactly one thread from each batch of waiting threads, f al se otherwise.
-boost::thread_resource_error if anerror occurs.

- boost::thread_i nterrupted if the wait was interrupted by acall toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

wai t () isan interruption point.

Member Function count _down_and_wai t ()

voi d count _down_and wait();

Effects:

Throws:

Notes:

Block until count threads have called wai t or count _down_and_wai t on*t hi s. When the count -th thread calls
wai t , thebarrier isreset and all waiting threads are unblocked. The reset depends on whether the barrier was constructed
with a completion function or not. If there is no completion function or if the completion function result is void, the
reset consists in restoring the original count. Otherwise the rest consist in assigning the result of the completion
function (which must not be 0).

-boost::thread_resource_error if anerror occurs.

- boost: :thread_i nterrupted if the wait was interrupted by acall toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

count _down_and_wai t () isan interruption point.

Latches -- EXPERIMENTAL

Introdcution

Latches are athread co-ordination mechanism that allow one or more threadsto block until one or more threads have reached apoint.

Examples

Sample use cases for the latch include:

142

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

* Setting multiple threads to perform atask, and then waiting until all threads have reached a common point.
* Creating multiple threads, which wait for asigna before advancing beyond a common point.

An example of the first use case would be as follows:

voi d DoWrk(thread_pool * pool) {
| atch conpl etion_| at ch(NTASKS) ;
for (int i = 0; i < NTASKS; ++i) {
pool - >submit ([& {
/'l perform work

conpl etion_|l atch. count _down();

1)
}

/1 Block until work is done
conpletion_latch.wait();

}

An example of the second use case is shown below. We need to load data and then process it using a number of threads. Loading
the datais I/O bound, whereas starting threads and creating data structures is CPU bound. By running these in parallel, throughput
can be increased.

voi d Dowork() {
latch start_latch(1);
vect or <t hr ead*> wor kers;
for (int i = 0; i < NTHREADS;, ++i) {
wor ker s. push_back(new thread([& {
// Initialize data structures. This is CPU bound.

start_latch. wait();
/1 perform work

1)
}
/1 Load input data. This is I/O bound.

/1l Threads can now start processing
start _latch. count _down();

}

143

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class 1atch

#i ncl ude <boost/thread/| atch. hpp>

class latch

{
publi c:
|atch(latch const&) = delete;
| at ch& operator=(latch const&) = delete;
|atch(std::size_ t count);
~latch();
void wait();
bool try wait();
tenpl ate <cl ass Rep, class Period>
cv_status wait_for(const chrono::duration<Rep, Period>& rel _tine);
tenpl ate <cl ass | ock_type, class O ock, class Duration>
cv_status wait_until (const chrono::tinme_point<C ock, Duration>& abs_tine);
voi d count _down();
voi d count _down_and wait();
b

A latch maintains an internal counter that is initialized when the latch is created. One or more threads may block waiting until the
counter is decremented to O.

Instances of | at ch are not copyable or movable.

Constructor I atch(std: : size_t)

latch(std::size_t count);

Effects: Construct alatch with isinitial value for the internal counter.
Note: The counter could be zero.

Throws: Nothing.

Destructor ~I at ch()

~latch();
Precondition: No threads are waiting or invoking count_down on *t hi s.
Effects: Destroys*t hi s latch.
Throws: Nothing.

Member Function wai t ()

void wait();

Effects: Block the calling thread until the internal count reaches the value zero. Then all waiting threads are unblocked.
Throws: -boost::thread_resource_error if anerror occurs.
144

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

- boost: :thread_i nterrupted if the wait was interrupted by acall toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

Notes: wai t () isan interruption point.

Member Function try wait()

bool try wait();

Returns: Returns trueif the internal count is 0, and false otherwise. Does not block the calling thread.

Throws: -boost::thread_resource_error if anerror occurs.

Member Function wait_for()

tenpl ate <cl ass Rep, class Period>
cv_status wait_for(const chrono::durati on<Rep, Period>& rel _tine);

Effects: Block the calling thread until theinternal count reaches the value zero or the duration has been elapsed. If no timeout,
all waiting threads are unblocked.

Returns: cv_status::no_timeout if the internal count is 0, and cv_status::timeout if duration has been elapsed.
Throws: -boost::thread_resource_error if anerror occurs.

- boost::thread_interrupted if the wait was interrupted by acall toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

Notes: wai t _for () isaninterruption point.

Member Function wait_until ()

tenpl ate <class | ock_type, class O ock, class Duration>
cv_status wait_until (const chrono::tine_point<C ock, Duration>& abs_tine);

Effects: Block the calling thread until the internal count reaches the value zero or the time_point has been reached. If no
timeout, all waiting threads are unblocked.

Returns: cv_status::no_timeout if the internal count is 0, and cv_status::timeout if time_point has been reached.
Throws: -boost::thread_resource_error if anerror occurs.

- boost::thread_i nterrupted if the wait was interrupted by a call toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

Notes: wai t _until () isaninterruption point.

Member Function count _down()

voi d count_down();

Requires: Theinternal counter isnon zero.
Effects: Decrementstheinternal count by 1, and returns. If the count reaches 0, any threads blocked in wait() will be released.
Throws: -boost::thread_resource_error if anerror occurs.

145

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

-boost::thread_interrupted if thewait wasinterrupted by acall toi nterrupt () ontheboost::thread
object associated with the current thread of execution.

Notes: count _down() isaninterruption point.

Member Function count _down_and_wai t ()

voi d count _down_and_wai t ();

Requires: The interna counter is non zero.

Effects: Decrements the internal count by 1. If the resulting count is not 0, blocks the calling thread until the internal count
is decremented to O by one or more other threads calling count_down() or count_down_and_ wait().

Throws: -boost::thread_resource_error if anerror occurs.

- boost::thread_i nterrupted if thewait wasinterrupted by acall toi nterrupt () ontheboost: :thread
object associated with the current thread of execution.

Notes: count _down_and_wai t () isan interruption point.

[

Member Function reset ()

reset(size_t);

Requires: This function may only be invoked when there are no other threads currently inside the waiting functions.
Returns: Resets the latch with a new value for the initial thread count.
Throws: -boost::thread_resource_error if anerror occurs.

]
Executors and Schedulers -- EXPERIMENTAL

O Warning
These features are experimental and subject to change in future versions. There are not too much tests yet, so it is
possible that you can find out some trivial bugs :(

S Note
Thesefeatures are based on the N3785 - Executor sand Schedulersrevision 3 C++1y proposal from Chris Mysen,
Niklas Gustafsson, Matt Austern, Jeffrey Yasskin. The text that follows has been adapted from tis paper to show
the differences.

Executors are objects that can execute units of work packaged as function objects. Boost. Thread differs from N3785 mainly in the
an Executor doesn't needs to inherit from an abstract class Executor. Static polymorphism is used instead and type erasure is used
internally.

146

render

httpo://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3785.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Introduction

Multithreaded programs often invol ve discrete (sometimes small) units of work that are executed asynchronously. This often involves
passing work units to some component that manages execution. We aready have boost::async, which potentially executes afunction
asynchronously and eventually returnsits result in afuture. (“Asif” by launching a new thread.)

If thereis aregular stream of small work items then we almost certainly don’'t want to launch a new thread for each, and it’s likely
that we want at |east some control over which thread(s) execute which items. It is often convenient to represent that control asmultiple
executor objects. This allows programsto start executors when necessary, switch from one executor to another to control execution
policy, and use multiple executors to prevent interference and thread exhaustion. Several possible implementations exist of the ex-
ecutor class and in practice there are a number of main groups of executors which have been found to be useful in real-world code
(more implementations exist, thisis simply a high level classification of them). These differ along a couple main dimensions, how
many execution contexts will be used, how they are selected, and how they are prioritized.

1. Thread Pools

a. Simple unbounded thread pool, which can queue up an unbounded amount of work and maintains a dedicated set of threads
(up to some maximum) which dequeue and execute work as available.

b. Bounded thread pools, which can be implemented as a specialization of the previous ones with abounded queue or semaphore,
which limits the amount of queuing in an attempt to bound the time spent waiting to execute and/or limit resource utilization
for work tasks which hold state which is expensive to hold.

c. Thread-spawning executors, in which each work always executes in anew thread.

d. Prioritized thread pools, which have works which are not equally prioritized such that work can move to the front of the exe-
cution queueif necessary. Thisrequiresaspecial comparator or prioritization function to allow for work ordering and normally
is implemented as a blocking priority queue in front of the pool instead of a blocking queue. This has many uses but is a
somewhat specialized in nature and would unnecessarily clutter the initial interface.

e. Work stealing thread pools, thisisaspeciaized use case and is encapsul ated in the ForkJoinPool in java, which alows lightweight
work to be created by tasksin the pool and either run by the same thread for invocation efficiency or stolen by another thread
without additional work. These have been left out until there isamore concrete fork-join proposal or until thereisamore clear
need as these can be complicated to implement

2. Mutua exclusion executors

a. Seria executors, which guarantee all work to be executed such that no two works will execute concurrently. This allows for
asequence of operationsto be queued in sequence and that sequential order is maintained and work can be queued on aseparate
thread but with no mutual exclusion required.

b. Loop executor, in which one thread donates itself to the executor to execute all queued work. Thisis related to the serial ex-
ecutor in that it guarantees mutual exclusion, but instead guarantees a particular thread will execute the work. These are partic-
ularly useful for testing purposes where code assumes an executor but testing code desires control over execution.

c. GUI thread executor, where a GUI framework can expose an executor interface to allow other threads to queue up work to be
executed as part of the GUI thread. This behaves similarly to aloop executor, but must be implemented as a custom interface
as part of the framework.

3. Inline executors, which execute inline to the thread which calls submit(). This has no queuing and behaves like anormal executor,
but always uses the caller's thread to execute. This allows parallel execution of works, though. This type of executor is often
useful when thereisan executor required by an interface, but when for performance reasonsit’s better not to queue work or switch
threads. This is often very useful as an optimization for work continuations which should execute immediately or quickly and
can also be useful for optimizations when an interface requires an executor but thework tasks are too small to justify the overhead
of afull thread pool.

A question arises of which of these executors (or others) be included in this library. There are use cases for these and many other
executors. Often it isuseful to have more than oneimplemented executor (e.g. the thread pool) to have more precise control of where
the work is executed due to the existence of a GUI thread, or for testing purposes. A few core executors are frequently useful and
these have been outlined here as the core of what should bein thislibrary, if common use cases arise for aternative executor imple-

147

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

mentations, they can be added in the future. The current set provided here are: a basic thread pool basi c_t hr ead_pool , a serid
executor seri al _execut or, aloop executor | oop_execut or, aninline executor i nl i ne_execut or and athread-spawning ex-
ecutor t hr ead_execut or

Examples

Parallel Quick Sort

#i ncl ude <boost/thread/ executors/ basic_t hread_pool . hpp>
#i ncl ude <boost/thread/future. hpp>

#i ncl ude <numeric>

#i ncl ude <al gorithne

#i ncl ude <functional >

#i ncl ude <i ostreanr

#include <list>

t enpl at e<t ypenane T>

struct sorter

{
boost : : basi c_t hread_pool pool
typedef std::list<T> return_type

std::1ist<T> do_sort(std::list<T> chunk_data)
{
i f(chunk_data.empty()) {
return chunk_dat a;
}

std::list<T> result;
result.splice(result.begin(),chunk_data, chunk_data.begin())
T const & partition_val =*result.begin();

typenanme std::list<T>::iterator divide_point =
std::partition(chunk_data. begin(), chunk_data.end()
[& (T const& val){return val <partition_val;})

std::1ist<T> new_| ower_chunk;
new_| ower _chunk. spli ce(new_| ower _chunk. end(), chunk_data
chunk_dat a. begi n(), divide_point)
boost:: future<std::list<T> > new_| ower =
boost: : async(pool, &sorter::do_sort, this, std::nmove(new_| ower_chunk))
std::list<T> new_higher(do_sort(chunk_data))
result.splice(result.end(), new_higher);
while(!new_|ower.is_ready()) {
pool . schedul e_one_or _yield();
}
result.splice(result.begin(), new | ower.get())
return result

}

t enpl at e<t ypenane T>
std::1ist<T> parallel_quick_sort(std::list<T>& input) {
if(input.empty()) {
return input;
}

sorter<T> s
return s.do_sort(input)

148

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Design Rationale

The authors of Boost. Thread have taken a different approach respect to N3785. Instead of basing all the design on aabstract executor
class we make executor concepts. We believe that thisisthe good direction as a static polymorphic executor can be seen asadynamic
polymorphic executor using a simple adaptor. We believe also that it would make the library more usable, and more convenient for
USers.

The major design decisions concern deciding what a unit of work is, how to manage with units of work and time related functions
in a polymorphic way.

An Executor is an object that schedules the closures that have been submitted to it, usually asynchronously. There could be multiple
models of the Executor class. Some specific design notes:

» Thread pools are well know models of the Executor concept, and this library does indeed include abasic_thread pool class, but
other implementations also exist, including the ability to schedule work on GUI threads, scheduling work on a donor thread, as
well as several specializations of thread pools.

» The choice of which executor to use is explicit. This is important for reasons described in the Motivation section. In particular,
consider the common case of an asynchronous operation that itself spawns asynchronous operations. If both operations ran on the
same executor, and if that executor had a bounded number of worker threads, then we could get deadlock. Programs often deal
with such issues by splitting different kinds of work between different executors.

» Evenif there could beastrong valuein having adefault executor, that can be used when detailed control isunnecessary, the authors
don't know how to implement it in a portable a robust way.

» Thelibrary provides Executors based on static and dynamic polymorphism. The static polymorphism interface is intended to be
used on contexts that need to have the best performances. The dynamic polymorphism interface has the advantage to been able
to change the executor a function is suing without making it atemplate and it possible to pass executors across a binary interface.
For some applications, the cost of an additional virtual dispatch could be almost certainly negligible compared to the other operations
involved.

» Conceptually, an executor puts closures on a queue and at some point executes them. The queue is always unbounded, so adding
aclosureto an executor never blocks. (Defining “never blocks’ formally is challenging, but informally we just mean that submit()
isan ordinary function that executes something and returns, rather than waiting for the compl etion of some potentially long running
operation in another thread.)

Closure

Oneimportant question isjust what aclosureis. Thislibrary hasavery simple answer: aclosureisacCal | abl e with no parameters
and returning “voidv.

N3785 choose the more specific st d: : f unct i on<voi d() > asit provides only dynamic polymorphism and states that in practice
theimplementation of atemplate based approach or another approach isimpractical. The authors of thislibrary think that the template
based approach is compatible with a dynamic based approach. They give some arguments:

Thefirst oneisthat avirtual function can not be atemplate. Thisistrue but it is also true that the executor interface can provide the
template functions that call to the virtual public functions. Another reason they give isthat "atemplate parameter would complicate
the interface without adding any real generality. In the end an executor class is going to need some kind of type erasure to handle
all the different kinds of function objects with voi d() signature, and that’s exactly what std::function already does'. We think that
it is up to the executor to manage with this implementation details, not to the user.

We share al the argument they giverelated tothevoi d() interface of the work unit. A work unit isaclosure that takes no arguments
and returns no value. Thisisindeed a limitation on user code, but combined with boost : : async taking executors as parameters
the user has all what is needs.

The third one is related to performance. They assert that "any mechanism for storing closures on an executor’s queue will have to
use some form of type erasure. There’s no reason to believe that a custom closure mechanism, written just for std::executor and used
nowhere else within the standard library, would be better in that respect than st d: : f unct i on<voi d() >". We believe that the im-
plementation can do better that storing the closure on ast d: : f unct i on<voi d() >. e.g. theimplementation can use intrusive data
to store the closure and the pointers to other nodes needed to store the closuresin a given order.

149

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Inadditionst d: : functi on<voi d() > can not be constructed by moving the closure, so e.g. st d: : packaged_t ask could not be
aClosure.

Not Handled Exceptions

Asin N3785 and based on the same design decision than st d/boost : : t hr ead if auser closure throws an exception, the executor
must call thest d: : t er mi nat e function. Note that when wecombineboost : : async and Execut or s, theexceptionwill be caught
by the closure associated to the returned future, so that the exception is stored on the returned future, asfor the other async overloads.

At thread entry

It iscommon idiom to set some thread local variable at the beginning of athread. As Executors could instantiate threads internally
these Executors shall have the ability to call auser specific function at thread entry on the executor constructor.

For executors that don't instantiate any thread an that would use the current thread this function shall be called only for the thread
calingtheat _t hr ead_ent ry member function.

Cancelation
The library does not provision yet for the ability to cancel/interrupt work, though thisis a commonly requested feature.

This could be managed externally by an additional cancelation object that can be shared between the creator of the unit of work and
the unit of work.

We can think also of a cancelable closure that could be used in a more transparent way.

An dternative is to make async return a cancelable_task but thiswill need also a cancelable closure.

Current executor

Thelibrary does not provision for the ability to get the current executor, though having accessto it could ssimplify alot the user code.

The reason isthat the user can always use athread_|local variable and reset it using theat _t hr ead_ent ry member function.

thread_ | ocal current_executor_state_type current_executor_state;
executor* current_executor() { return current_executor_state.current_executor(); }
basi c_t hread_pool pool (
/1 at_thread_entry
[1(basic_thread_pool & pool) {
current _executor_state. set_current_executor(pool);

}
E

Default executor

The library authors share some of the concerns of the C++ standard committee (introduction of a new single shared resource, a
singleton, could make it difficult to make it portable to all the environments) and that this library doesn't need to provide a default
executor for the time been.

The user can always define his default executor himself and usethe at _t hread_entry member function to set the default con-
structor.

150

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

thread_l ocal default_executor_state_type default_executor_state;
executor* default_executor() { return default_executor_state.default_executor(); }

/1 in main
MyDef aul t Execut or nyDef aul t Execut or (
/] at_thread_entry

[1(MyDefaul t Executor & ex) {
def aul t _execut or_state. set _defaul t _executor(ex);

}
)

basi c_t hread_pool pool (
/] at_thread_entry

[&ryDef aul t Execut or | (basi c_t hread_pool & pool) {
def aul t _execut or _state. set_def aul t _execut or (nyDef aul t Executor) ;

}
),

Reference

Concept d osure

A type E meetsthe d osur e requirementsif isamodel of Cal | abl e(voi d()) and amodel of CopyConst ruct i bl e/MoveCon-
structi bl e.

Concept Execut or

The Execut or concept models the common operations of all the executors.
A type E meetsthe Execut or requirementsif the following expressions are well-formed and have the specified semantics
* E :work

e e.submt(lw;

e e.submt(rw;

e e.submt(lc);

e e.submt(rc);

* e.close();

* b =e.closed();

e e.try_executing_one();

* e.reschedul e_until (p);

where

* e denotes avalue of type E,

| wdenotes alvalue referece of type E: : wor k,

* rc denotes arvalue referece of type E: : wor k

* | ¢ denotes alvalue referece of type Cl osur e,

* rc denotes arvalue referece of type d osur e

151

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

* p denotesavaue of type Pr edi cat e

e.submit(lw;

Effects:

Synchronization:
Return type:

Throws;

Exception safety:

e.submt(rw;

Effects:

Synchronization:

Return type:

Throws:

Exception safety:

e.subnmit(lc);

Effects:

Synchronization:

Return type:

Throws:

Exception safety:

e.subnmit(lc);

Effects:

Synchronization:

Return type:

Throws;

Exception safety:

e.cl ose();

Effects:

The specified closure will be scheduled for execution at some point in the future. If invoked closure
throws an exception the executor will call std::terminate, asis the case with threads.

completion of closure on aparticular thread happens before destruction of thread'sthread local variables.
voi d.

sync_queue_is closed if the thread poal is closed. Whatever exception that can be throw while storing
the closure.

If an exception is thrown then the executor state is unmodified.

The specified closure will be scheduled for execution at some point in the future. If invoked closure
throws an exception the executor will call std::terminate, asis the case with threads.

completion of closure on aparticular thread happens before destruction of thread'sthread local variables.
voi d.

sync_queue_is closed if the thread pooal is closed. Whatever exception that can be throw while storing
the closure.

If an exception is thrown then the executor state is unmodified.

The specified closure will be scheduled for execution at some point in the future. If invoked closure
throws an exception the executor will call std::terminate, asis the case with threads.

completion of closure on aparticular thread happens before destruction of thread'sthread local variables.
voi d.

sync_queue_is _closed if the thread pool is closed. Whatever exception that can be throw while storing
the closure.

If an exception is thrown then the executor state is unmodified.

The specified closure will be scheduled for execution at some point in the future. If invoked closure
throws an exception the executor will call std::terminate, asis the case with threads.

completion of closure on aparticular thread happens before destruction of thread'sthread local variables.
voi d.

sync_queue_is closed if the thread pool is closed. Whatever exception that can be throw while storing
the closure.

If an exception is thrown then the executor state is unmodified.

close the executor e for submissions.

152

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Remark: The worker threads will work until there is no more closuresto run.
Return type: voi d.

Throws: Whatever exception that can be throw while ensuring the thread safety.
Exception safety: If an exception is thrown then the executor state is unmodified.

b = e.close();

Return type: bool .
Return: voi d.
Throws: whether the pool is closed for submissions.

e.try_executing_one();

Effects: try to execute one work.

Remark: whether awork has been executed.

Return type: bool .

Return: Whether awork has been executed.

Throws: whatever the current work constructor throws or thewor k() throws.

e.reschedul e_until (p);

Requires: This must be called from an scheduled work

Effects: reschedule works until p() .

Return type: bool .

Return: Whether awork has been executed.

Throws: whatever the current work constructor throws or the wor k() throws.
Class work

#i ncl ude <boost/t hread/ work. hpp>
nanespace boost {
typedef 'inplenmentation_defined work;

}

Requires: work isamodel of 'Closure
Class execut or

Executor abstract base class.

153

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#i ncl ude <boost/thread/ executor. hpp>
nanespace boost {
cl ass executor

{
public:
typedef boost::work work;

execut or (executor const& = delete;
execut or & operat or =(executor const& = delete;

executor();
virtual ~executor() {};

virtual void close() = 0;
virtual bool closed() = 0;

virtual void subnmit(work&& closure) = 0;
tenpl ate <typenane Cd osure>

voi d subm t(d osure&& closure);

virtual bool try_executing_one() = 0;

tenpl ate <typenane Pred>
bool reschedul e_until (Pred const& pred);

Constructor execut or ()

executor();

Effects: Constructs a executor.
Throws: Nothing.

Destructor ~execut or ()
virtual -~executor();
Effects: Destroys the executor.

Synchronization: The completion of all the closures happen before the completion of the executor destructor.

Template Class execut or _adapt or

Polymorphic adaptor of amodel of Executor to an executor.

154

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#i ncl ude <boost/thread/ executor. hpp>
nanespace boost {

tenpl ate <typenane Executor>

cl ass executor_adaptor : public executor

{

Executor ex; // for exposition only
public:
typedef executor::work work;

execut or _adapt or (execut or _adapt or const&) = del ete;
execut or _adapt or & oper at or =(execut or _adapt or const&) = del ete;

tenpl ate <typenane ... Args>
execut or _adaptor (Args&& ... args);

Execut or & under | yi ng_executor () ;

voi d close();
bool closed();

voi d subm t (work&& cl osure);

bool try_executing_one();

Constructor execut or _adapt or (Args&& ...)

tenpl ate <typenane ... Args>
execut or _adaptor (Args&& ... args);

Effects: Constructs a executor_adaptor.
Throws: Nothing.

Destructor ~execut or _adapt or ()

virtual ~ executor_adaptor();
Effects: Destroys the executor_adaptor.
Synchronization: The completion of all the closures happen before the completion of the executor destructor.

Function member under | yi ng_execut or ()

Execut or & under | yi ng_executor () ;

Return: The underlying executor instance.
Throws: Nothing.
Template Class serial _execut or

A seria executor ensuring that there are no two work units that executes concurrently.

155

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#i ncl ude <boost/thread/ serial _executor. hpp>
nanespace boost {

tenpl ate <cl ass Executor >

cl ass serial _executor

{

Execut or & ex;
public:
typedef executors::work work;

serial _executor(serial _executor const&) = delete;
serial _executor & operator=(serial _executor const&) = delete;

serial _execut or (Executor & ex);
Execut or & under | yi ng_executor () ;

voi d close();
bool closed();

voi d subm t (work&& cl osure);
tenpl ate <typenane d osure>

voi d subm t(d osure&& closure);
bool try_executing_one();

tenpl ate <typenane Pred>
bool reschedul e_until (Pred const& pred);

Constructor seri al _execut or (Execut or & chrono: : duration<Rep, Period>)

serial _executor (Executor& ex);

Effects: Constructs a serial_executor.
Throws: Nothing.

Destructor ~seri al _executor ()

~serial executor();

Effects: Destroys the serial_executor.
Synchronization: The completion of al the closures happen before the completion of the executor destructor.

Function member under | yi ng_execut or ()

Execut or & under | yi ng_executor () ;

Return: The underlying executor instance.
Throws: Nothing.
Class basi c_t hread_pool

A thread pool with up to afixed number of threads.

156

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

#i ncl ude <boost/thread/ work. hpp>
nanespace boost {
cl ass basic_t hread_pool

{
public:
typedef boost::work work;

basi c_t hread_pool (basi c_t hread_pool const&) = delete;
basi c_t hread_pool & oper at or =(basi c_t hread_pool const&) = del ete;

basi c_t hread_pool (unsi gned const thread_count = thread:: hardware_concurrency());
tenpl ate <cl ass At ThreadEntry>

basi c_t hread_pool (unsi gned const thread_count, AtThreadEntry at_thread_entry);
~basi c_t hread_pool ();

voi d cl ose();
bool closed();

tenpl ate <typenane d osure>
voi d subm t(d osure&& closure);

bool try_executing_one();

tenpl ate <typenane Pred>
bool reschedul e_until (Pred const& pred);

Constructor basi c_t hread_pool (unsi gned const)

Effects: creates athread pool that runs closuresont hr ead_count threads.
Throws: Whatever exception is thrown while initializing the needed resources.

Destructor ~basi c_t hread_pool ()

virtual ~basic_thread_pool ();

Effects: Destroys the thread pool.
Synchronization: The completion of all the closures happen before the completion of the executor destructor.
Class I oop_execut or

A user scheduled executor.

157

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

#i ncl ude <boost/thread/ | oop_executor. hpp>
nanespace boost {
cl ass | oop_execut or

{
public:
typedef thread_detail::work work;

| oop_executor (| oop_executor const&) = del ete;
| oop_execut or & operator=(|1 oop_executor const&) = del ete;

| oop_executor();
~l oop_executor () ;

voi d cl ose();
bool closed();

tenpl ate <typenane Cd osure>
voi d subm t(d osure&& closure);

bool try_executing_one();
tenpl ate <typenane Pred>
bool reschedul e_until (Pred const& pred);

voi d loop();
voi d run_queued_cl osures();

Constructor | oop_execut or ()
| oop_executor();
Effects: creates a executor that runs closures using one of its closure-executing methods.

Throws: Whatever exception is thrown whileinitializing the needed resources.

Destructor ~l oop_execut or ()

virtual ~loop_executor();
Effects: Destroys the thread pooal.
Synchronization: The completion of all the closures happen before the completion of the executor destructor.

Function member | oop()

voi d loop();

Return: reschedule works until cl osed() or empty.
Throws: whatever the current work constructor throws or the wor k() throws.

Function member run_queued_cl osures()

voi d run_queued_cl osures();

Return: reschedule the enqueued works.

158

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Throws: whatever the current work constructor throws or thewor k() throws.

Futures

Overview

The futures library provides a means of handling synchronous future values, whether those values are generated by another thread,
or on asingle thread in response to external stimuli, or on-demand.

This is done through the provision of four class templates. f ut ur e and boost : : shar ed_f ut ur e which are used to retrieve the
asynchronous results, and boost : : proni se and boost : : packaged_t ask which are used to generate the asynchronous results.

Aninstance of f ut ur e holdsthe one and only reference to aresult. Ownership can be transferred between instances using the move
constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result. When the result
isready, it isreturned from boost : : f ut ur e<R>: : get () by rvalue-reference to alow the result to be moved or copied as appro-
priate for the type.

On the other hand, many instances of boost : : shar ed_f ut ur e may reference the same result. Instances can be freely copied and
assigned, and boost::shared_future<R>::get() retuns a non const reference so that multiple calls to
boost : : shar ed_f ut ur e<R>: : get () aresafe.You can moveaninstanceof f ut ur e intoaninstanceof boost : : shared_f ut ure,
thus transferring ownership of the associated asynchronous result, but not vice-versa.

boost : : async isasimple way of running asynchronous tasks. A call to boost : : async returns af ut ur e that will contain the
result of the task.

You canwait for futures either individually or with oneof theboost : : wai t _for _any() andboost::wait_for_all () functions.

Creating asynchronous values

You can set the value in a future with either aboost : : proni se or aboost : : packaged_t ask. A boost : : packaged_t ask is
a callable object that wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in
turn, and populates afuture with the return value. Thisisan answer to the perennial question: "how do | return avalue from athread?":
packagethefunction youwishtorunasaboost : : packaged_t ask and passthe packaged task to the thread constructor. The future
retrieved from the packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the
future in place of the return value.

int calculate_the_answer_to_l|ife_the_universe_and_everything()

{
}

return 42;

boost : : packaged_t ask<int> pt(cal cul ate_the_answer_to_l|ife_the_universe_and_everything);
boost:: future<int> fi=pt.get_future();

boost::thread task(boost::mve(pt)); // launch task on a thread
fi.wait(); // wait for it to finish

assert(fi.is_ready());

assert (fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert (fi.get()==42);

A boost : : proni se isabit morelow level: it just providesexplicit functionsto store aval ue or an exception in the associated future.
A promise can therefore be used where the value may come from more than one possible source, or where a single operation may
produce multiple values.

159

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

boost: : promi se<int> pi;
boost:: future<int> fi;
fi=pi.get_future();

pi . set_val ue(42);

assert
assert

(fi.is_ready());

(
assert (

(

(

fi

fi.has_value()):

Ifi.has_exception());

i.get_state()==boost::future_state::ready);
i

assert (f
fi

assert .get()==42);

Wait Callbacks and Lazy Futures

Both boost : : proni se and boost : : packaged_t ask support wait callbacks that are invoked when athread blocks in a call to
wai t () ortimed_wait () onafuturethat iswaiting for the result from the boost : : promni se or boost : : packaged_t ask, in
the thread that is doing the waiting. These can be set usingtheset _wai t _cal | back() member function ontheboost : : proni se

or boost : : packaged_t ask in question.

This allows lazy futures where the result is not actually computed until it is needed by some thread. In the example below, the call
tof. get () invokesthecallback i nvoke_l azy_t ask, which runsthe task to set the value. If you removethecall tof . get (), the

task is not ever run.

int calculate_the_answer_to_life_the_universe_and_everything()

{
return 42;
}
void i nvoke_| azy_task(boost:: packaged_t ask<i nt >& t ask)
{
try
{
task();
catch(boost::task_al ready_started&)
{}
}
int main()
{
boost : : packaged_t ask<i nt> task(cal cul ate_the_answer_to_life_the_universe_and_everything);
task. set _wait_cal |l back(invoke_l azy_task);
boost:: future<int> f(task.get_future());
assert (f.get()==42);
}

Handling Detached Threads and Thread Specific Variables

Detached threads pose a problem for objects with thread storage duration. If we use a mechanism other thant hread: : __j oi n to
wait for at hr ead to complete its work - such as waiting for a future to be ready - then the destructors of thread specific variables
will till be running after the waiting thread has resumed. This section explain how the standard mechanism can be used to make
such synchronization safe by ensuring that the objects with thread storage duration are destroyed prior to the future being made

ready. e.g.

160

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

int find_the_answer(); // uses thread specific objects
voi d thread_func(boost: : prom se<i nt >&& p)

{
p. set_value_at _thread_exit(find_the_answer());

}

int main()

{
boost: : prom se<int> p;
boost::thread t(thread_func, boost:: nove(p));
t.detach(); // we're going to wait on the future
std::cout<<p.get_future().get()<<std::endl;

}

When the call to get () returns, we know that not only isthe future value ready, but the thread specific variables on the other thread
have also been destroyed.

Such mechanisms are provided for boost : : condi ti on_vari abl e, boost : : promi se and boost : : packaged_t ask. eg.

voi d task_executor (boost:: packaged_t ask<voi d(int)> task,int param

{
task. nake_ready_at_thread_exit(param; // execute stored task
} I/ destroy thread specific and wake threads waiting on futures fromtask

Other threads can wait on a future obtained from the task without having to worry about races due to the execution of destructors of
the thread specific objects from the task's thread.

boost::condition_variable cv;
boost:: mutex m

conpl ex_type the_dat a;

bool data_ready;

voi d thread_func()
{
boost : : uni que_Il ock<std:: mutex> I k(m;
the _data=find_the_answer();
dat a_r eady=t r ue;
boost::notify_all _at_thread_exit(cv, boost:: mve(lk));
} I/ destroy thread specific objects, notify cv, unlock mutex

void waiting_thread()

{
boost : : uni que_Il ock<std:: mutex> I k(m;
whi | e(! dat a_r eady)
{
cv.wait(lk);
}
process(the_data);
}

The waiting thread is guaranteed that the thread specific objects used by t hr ead_f unc() have been destroyed by the time pr o-
cess(the_dat a) iscaled. If thelock on misreleased and re-acquired after setting dat a_r eady and before calling boost : : no-
tify_all_at_thread_exit () thenthisdoes NOT hold, since the thread may return from the wait due to a spurious wake-up.

Executing asynchronously

boost : : async is a simple way of running asynchronous tasks to make use of the available hardware concurrency. A cal to
boost : : async returnsaboost : : f ut ur e that will contain the result of the task. Depending on the launch policy, the task is either

161

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

run asynchronously on its own thread or synchronously on whichever thread callsthewai t () or get () member functions on that
future.

A launch policy of either boost::launch::async, which asks the runtime to create an asynchronous thread, or boost::launch::deferred,
which indicates you simply want to defer the function call until alater time (lazy evaluation). Thisargument isoptiona - if you omit
it your function will use the default policy.

For example, consider computing the sum of avery large array. The first task isto not compute asynchronously when the overhead
would be significant. The second task is to split the work into two pieces, one executed by the host thread and one executed asyn-
chronously.

int parallel_sumint* data, int size)

{
int sum = 0;
if (size < 1000)
for (int i =0; i < size; ++i)
sum += datali];
el se {
auto handl e = boost::async(parallel _sum data+size/ 2, size-sizel?2);
sum += paral | el _sunm{data, size/2);
sum += handl e. get () ;
}
return sum
}

Shared Futures
shar ed_f ut ur e is designed to be shared between threads, that is to allow multiple concurrent get operations.
Multiple get

The second get () call in the following example is undefined.

voi d bad_second_use(type arg) {

auto ftr = async([=]{ return work(arg); });

if (condl)
{

usel(ftr.get());
} else
{

use2(ftr.get());
}

use3(ftr.get()); // second use is undefined

Using ashar ed_f ut ur e solvestheissue

voi d good_second_use(type arg) {

shared_future<type> ftr = async([=]{ return work(arg); });

if (condl)
{

usel(ftr.get()):
} else
{

use2(ftr.get());
}

use3(ftr.get()); // second use is defined

162

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

share()

Namming the return type when declaring the shar ed_f ut ur e is needed; auto is not available within template argument lists. Here
shar e() could be used to simplify the code

void better_second use(type arg) {

auto ftr = async([=]{ return work(arg); }).share();
if (condl)
{
usel(ftr.get());
} else
{

use2(ftr.get());
}

use3(ftr.get()); // second use is defined

Writing on get()

The user can either read or write the future avariable.

void wite_to_get(type arg) {

auto ftr = async([=]{ return work(arg); }).share();
if (condl)
{
usel(ftr.get());
} else
{
if (cond2)
use2(ftr.get());
el se

ftr.get() = something(); // assign to non-const reference.

use3(ftr.get()); // second use is defined

This works because the shar ed_f ut ur e<>: : get () function returns a non-const reference to the appropriate storage. Of course
the access to this storage must be ensured by the user. The library doesn't ensure the access to the internal storage is thread safe.

There has been some work by the C++ standard committe on an at oni ¢_f ut ur e that behaves as an at oni ¢ variable, that isis
thread safe, and ashar ed_f ut ur e that can be shared between several threads, but there were not enough consensus and time to
get it ready for C++11.

Making immediate futures easier

Some functions may know the value at the point of construction. In these cases the value is immediately available, but needs to be
returned as a future or shared_future. By using make ready future a future can be created which holds a pre-computed result in its
shared state.

Without these features it is non-trivial to create a future directly from avalue. First a promise must be created, then the promise is
set, and lastly the future is retrieved from the promise. This can now be done with one operation.

make_ready_future

Thisfunction creates afuture for agiven value. If no value is given then afuture<void> is returned. Thisfunction is primarily useful
in cases where sometimes, the return value is immediately available, but sometimesit is not. The example below illustrates, that in
an error path the value is known immediately, however in other paths the function must return an eventual value represented as a
future.

163

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

boost : : future<int> conpute(int x)
{
if (x == 0) return boost::nmake_ready future(0);
if (x <0) return boost::nake_ready_future<int>(std::logic_error("Error"));
boost::future<int> f1 = boost::async([]() { return x+1; });
return f1,

}

There are two variations of this function. The first takes a value of any type, and returns a future of that type. The input value is
passed to the shared state of the returned future. The second version takes no input and returns a future<void>.

Associating future continuations

In asynchronous programming, it is very common for one asynchronous operation, on completion, to invoke a second operation and
pass data to it. The current C++ standard does not allow one to register a continuation to a future. With . t hen, instead of waiting
for the result, a continuation is "attached" to the asynchronous operation, which is invoked when the result is ready. Continuations
registered using the . t hen function will help to avoid blocking waits or wasting threads on polling, greatly improving the respons-
iveness and scalability of an application.

future.then() providesthe ability to sequentially compose two futures by declaring one to be the continuation of another. With
. t hen() theantecedent futureisready (hasavalue or exception stored in the shared state) before the continuation starts asinstructed
by the lambda function.

In the example below thef ut ur e<st ri ng> f 2 isregistered to be a continuation of f ut ur e<i nt >f 1 usingthe. t hen() member
function. This operation takes alambda function which describes how f 2 should proceed after f 1 is ready.

#i ncl ude <boost/thread/future. hpp>
usi ng nanmespace boost;
int main()
{
future<int> f1 = async([]() { return 123; });
future<string> f2 = fi1.then([](future<int> f) { return f.get().to_string(); // here .get() O
won't block });

}

Onekey feature of thisfunction isthe ability to chain multiple asynchronous operations. |n asynchronous programming, it's common
to define a sequence of operations, in which each continuation executes only when the previous one completes. In some cases, the
antecedent future produces aval ue that the continuation acceptsasinput. By using f ut ur e. t hen() , creating achain of continuations
becomes straightforward and intuitive:

nyFuture.then(...).then(...).then(...).

Some points to note are:

» Each continuation will not begin until the preceding has completed.

* If an exception is thrown, the following continuation can handleit in atry-catch block
Input Parameters:

» Lambda function: One option which can be considered is to take two functions, one for success and one for error handling.
However thisoption has not been retained for the moment. Thelambdafunction takes afuture asitsinput which carriesthe exception
through. This makes propagating exceptions straightforward. This approach also simplifies the chaining of continuations.

» Scheduler: Providing an overload to . t hen, to take a scheduler reference places great flexibility over the execution of the future
inthe programmer's hand. As described above, often taking alaunch policy is not sufficient for powerful asynchronous operations.
The lifetime of the scheduler must outlive the continuation.

164

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

 Launch policy: if the additional flexibility that the scheduler providesis not required.

Return values: The decision to return a future was based primarily on the ability to chain multiple continuations using . t hen() .
This benefit of composability gives the programmer incredible control and flexibility over their code. Returning af ut ur e object
rather than ashar ed_f ut ur e is also amuch cheaper operation thereby improving performance. A shar ed_f ut ur e object is not
necessary to take advantage of the chaining feature. It is also easy to go from af ut ur e to ashar ed_f ut ur e when needed using
future::share().

Futures Reference

/1 #i ncl ude <boost/thread/future. hpp>

namespace boost

{
nanmespace future_state // EXTENSI ON
{
enum state {uninitialized, waiting, ready, noved};
}

enum cl ass future_errc

{

br oken_prom se,
future_already_retrieved,
prom se_al ready_satisfi ed,
no_state

}

enum cl ass | aunch

{
async = unspecified,
deferred = unspecified,
execut or = unspecified,
any = async | deferred

}

enum cl ass future_status {
ready, tineout, deferred

b
nanespace system
: tenpl ate <>
struct is_error_code_enum<future_errc> : public true_type {};
error_code nmake_error_code(future_errc e);

error_condition nake_error_condition(future_errc e);

}

const system :error_category& future_category();
class future_error;

cl ass exceptional _ptr;

tenpl ate <typenane R>
cl ass pronise;

tenpl ate <typenane R>
voi d swap(prom se<R>& x, prom se<R>& y) noexcept;

namespace contai ner {

165

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

tenplate <class R class Alloc>
struct uses_al |l ocator <prom se<R>, Alloc>:

}

tenpl ate <typenane R>
class future

tenpl ate <typenane R>
cl ass shared_future

tenpl ate <typenane S>
cl ass packaged_t ask

true_type

tenpl ate <class S> voi d swap(packaged_t ask<S>&, packaged_t ask<S>&) noexcept

tenplate <class S, class Alloc>

struct uses_all ocat or <packaged_t ask <S>, Al
tenpl ate <cl ass F>

future<typenane result_of <typenane decay<F>
async(F f);

tenpl ate <cl ass F>

future<typenane result_of <typenane decay<F>
async(l aunch policy, F f);

tenplate <class F, class... Args>
future<typenane result_of <typenane decay<F>
async(F&& f, Args&& .. args);

tenplate <class F, class... Args>
future<typenane result_of <typenane decay<F>
async(l aunch policy, F&& f, Args&& .. args);
tenpl ate <cl ass Executor, class F, class..
future<typenane result_of <typenane decay<F>
async(Executor &ex, F&& f, Args&& .. args);

t enpl at e<t ypenane |terator>

void wait_for_all(lterator begin,Iterator end)

FS>
fs);

t enpl at e<t ypenane F1,typenane. .
void wait_for_all (Fl& f1, Fs&. .

t enpl at e<t ypenanme |terator>

Iterator wait_for_any(lterator begin,lterator end);

t enpl at e<t ypename F1,typenane... Fs>

unsigned wait_for_any(F1& f1,Fs& .. fs); [/

tenpl ate <typenane T>

future<typenanme decay<T>::type> make_future(T&& val ue)

future<voi d> make_future(); // DEPRECATED

tenpl ate <typenane T>

future<typenanme decay<T>::type> make_ready_future(T&& val ue)
/1 EXTENSI ON

future<voi d> nmake_ready_future()
//tenpl ate <typenane T>

[/ future<T> nmake_ready_future(exception_ptr
//tenpl ate <typenane T, typenane E>
/1 future<T> nmake_ready_future(E ex);

exceptional _ptr
tenpl ate <typenane E>

exceptional _ptr nake_exceptional (E ex); [/

nake_excepti onal (exception_ptr ex)

0Cc>;

ctype()>::type>

ctype()>::type>

ctype(typenane decay<Args>::type...)>

ctype(typenane decay<Args>::type...)>

Ar gs>
ctype(typenane decay<Args>::type...)>

/1 EXTENSI ON

/1 EXTENSI ON

/' EXTENSI ON

EXTENSI ON

/| DEPRECATED

/1 EXTENSI ON

ex); /! DEPRECATED

/| DEPRECATED

/1 EXTENSI ON

EXTENSI ON

itype>

itype>

itype>

166

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

exceptional _ptr nake_exceptional (); // EXTENSI ON

tenpl ate <typenane T>
shar ed_f ut ure<t ypename decay<T>::type> make_shared_future(T&& value); // DEPRECATED
shared_f ut ure<voi d> make_shared_future(); // DEPRECATED

Enumeration state

nanespace future state

{

enum state {uninitialized, waiting, ready, noved};

}
Enumeration future errc

enum cl ass future_errc

{
br oken_proni se = inpl enmentati on defined,
future_already_retrieved = inplenentation defined,
proni se_al ready_satisfied = inplenentation defined,
no_state = inplenentati on defined

}

The enum val ues of future_errc are distinct and not zero.

Enumeration I aunch

enum cl ass | aunch

{
async = unspecified,
def erred = unspecifi ed,
execut or = unspecifi ed,
any = async | deferred

The enum type launch is a bitmask type with launch::async and launch::deferred denoting individual bits.

Specialization is_error_code_enunxfuture_errc>

nanespace system

{

templ ate <>
struct is_error_code_enum<future_errc> : public true_type {};

Non-member function make_error_code()

nanmespace system

{
error_code make_error_code(future_errc e);
}
Returns: error_code(static_cast<int>(e), future_category()).

167

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function make_error_condition()

nanespace system

{
error_condition nmake error_condition(future errc e);
}
Returns: error_condition(static_cast<int>(e), future_category()).

Non-member function future_category()

const system :error_category& future_category();

Returns: A reference to an object of atype derived from class error_category.

Notes: The object'sdef aul t _error _condi ti on and equivalent virtual functions behave as specified for the class sys-
tem :error_category. Theobject'snane virtual function returns a pointer to the string "future”.

Class future_error

class future_error
public std::logic_error

{
public:
future_error(system:error_code ec);
const system :error_code& code() const no_except;
b
Constructor

future_error(system:error_code ec);

Effects: Constructs a future_error.
Postconditions: code() ==ec
Throws: Nothing.

Member function code()

const system :error_code& code() const no_except;
Returns: The value of ec that was passed to the object's constructor.
Enumeration future_status

enum cl ass future_status {
ready, tineout, deferred

b

168

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class exceptional _ptr EXPERIMENTAL

cl ass exceptional _ptr

{
publi c:
exceptional _ptr();
explicit exceptional _ptr(exception_ptr ex);
tenpl ate <cl ass E>
explicit exceptional _ptr(E&& ex);

Constructor

exceptional _ptr();

explicit exceptional _ptr(exception_ptr ex);
tenpl ate <cl ass E>

explicit exceptional _ptr(E&& ex);

Effects: The exception that is passed in to the constructor or the current exception if no parameter is moved into the
constructed except i onal _ptr if it is an rvaue. Otherwise the exception is copied into the constructed
exceptional _ptr.

Postconditions: valid() == true & is_ready() = true & has_value() = fal se

Throws: Nothing.

169

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

future class template

tenpl ate <typenane R>
class future

{

publi c:
typedef R value_type; [// EXTENSI ON
future(future const& rhs) = del ete;
future& operator=(future const& rhs) = del ete;

future() noexcept;
~ future();

/1 nove support

future(future && other) noexcept;

future(future< future<R>>&& rhs); [/ EXTENSI ON
future& operator=(future && other) noexcept;

/| factories
shared_f uture<R> share();

t enpl at e<t ypenane F>
future<typenanme boost::result_of <F(future&) >::type>
then(F&& func); // EXTENSI ON
tenpl at e<typenane S, typenane F>
future<typenanme boost::result_of <F(future&) >::type>
t hen(S& schedul er, F&& func); // EXTENSI ON NOT_YET_| MPLEMENTED
t enpl at e<t ypenane F>
future<typenanme boost::result_of <F(future&) >::type>
then(l aunch policy, F&& func); // EXTENSI ON

see bel ow unwrap(); // EXTENSION
future fallback_to(); // EXTENSION

voi d swap(future& other) noexcept;

/'l retrieving the val ue
see bel ow get ();
see bel ow get _or(see below); // EXTENSI ON

exception_ptr get _exception ptr(); // EXTENSI ON

/'l functions to check state

bool valid() const noexcept;

bool is_ready() const; // EXTENSI ON

bool has_exception() const; // EXTENSI ON
bool has_val ue() const; // EXTENSI ON

/1 waiting for the result to be ready

void wait() const;

tenpl ate <cl ass Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;

tenpl ate <class C ock, class Duration>

future_status wait_until (const chrono::tinme_point<C ock, Duration>& abs_tinme) const;

#i f defined BOOST_THREAD USES_DATE_TI ME
t enpl at e<t ypenane Durati on>

170

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

bool tined_wait(Duration const& rel _tinme) const; // DEPRECATED SINCE V3.0.0

bool tined_wait_until (boost::systemtinme const& abs_tine) const; // DEPRECATED SI NCE V3.0.0
#endi f
typedef future_state::state state; [/ EXTENSI ON
state get_state() const; // EXTENSI ON

b

Default Constructor

future();

Effects: Constructs an uninitialized f ut ur e.

Postconditions: t hi s->i s_ready returnsf al se.t hi s->get _state() returnsboost::future_state::uninitial-
i zed.

Throws: Nothing.

Destructor

~ future();
Effects: Destroys*t hi s.

Throws: Nothing.

Move Constructor

future(future && other);

Effects: Constructsanew f ut ur e, and transfers ownership of the shared state associated with ot her to*t hi s.

Postconditions: t hi s- >get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returns boost : : future_state::uninitialized. If ot her was associated with a shared state, that
result is now associated with *t hi s. ot her isnot associated with any shared state.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Unwrap Move Constructor - EXTENSION

future(future< future<R>>&& other); // EXTENSI ON

O Warning
This constructor is experimental and subject to change in future versions. There are not too much tests yet, soitis
possible that you can find out some trivial bugs :(

Requires: other.valid().
[Effects:

Congtructsanew f ut ur e, and transfers ownership of the shared state associated with ot her and unwrapping
the inner future (see unwr ap()).

171

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Postconditions: t hi s->get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returnsboost : : future_state: : uninitialized. The associated shared state is now unwrapped and
the inner future shared state is associated with *t hi s. ot her is not associated with any shared state, !
ot her.valid().

Throws: Nothing.
Notes: If the compiler does not support rval ue-references, thisisimplemented using the boost.thread move emul ation.

Move Assignment Operator

future& operator=(future && other);

Effects: Transfers ownership of the shared state associated with ot her to*t hi s.

Postconditions: t hi s- >get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returns boost : : future_state: :uninitialized. If ot her was associated with a shared state, that
result isnow associated with* t hi s. ot her isnot associated with any shared state. If *t hi s wasassociated
with an asynchronous result prior to the call, that result no longer has an associated f ut ur e instance.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Member function swap()

voi d swap(future & other) no_except;

Effects: Swaps ownership of the shared states associated with ot her and *t hi s.

Postconditions: t hi s->get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returns the value of t hi s- >get _st at e() prior to the call. If ot her was associated with a shared state,
that result isnow associated with *t hi s, otherwise*t hi s hasno associated result. If *t hi s wasassociated
with ashared state, that result is now associated with ot her , otherwise ot her has no associated result.

Throws: Nothing.

Member function get ()

R get();
R& future<R&>: :get();
void future<void>::get();

Effects: If *t hi s is associated with a shared state, waits until the result is ready as-if by a call to boost : : f u-
ture<R>: :wait (), and retrieves the result (whether that is avalue or an exception).
Returns: - future<R&>::get() returnthe stored reference.
- future<voi d>:: get (), thereisno return value.
- future<R>::get () returnsan rvalue-reference to the value stored in the shared state.
Postconditions: this->is_ready() returnstrue.this->get _state() returnsboost::future_state: :ready.
Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.

-boost: : thread_i nterrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

172

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

- Any exception stored in the shared state in place of avalue.
Notes: get () isan interruption point.

Member function get _or () - EXTENSION

R get_or (R&& v); /1 EXTENSI ON

R get_or(R const& v); // EXTENSI ON

R& future<R&>::get_or(R& v); [/ EXTENSI ON
void future<void>: :get_or(); // EXTENSION

O Warning
These functions are experimental and subject to change in future versions. There are not too much testsyet, soit is
possible that you can find out some trivial bugs :(

Effects: If *t hi s is associated with a shared state, waits until the result is ready as-if by a call to boost : : f u-
ture<R>: : wai t (), and depending on whether the shared state has_val ue() the retrievesthe result.

Returns: - future<R&>::get_or(v) returnthestored referenceif has value() and the passes parameter otherwise.

- future<voi d>::get_or(),thereisno returnvalue, but the function doesn't throws even if the shared
state contained an exception.

- future<R>::get_or(v) returns an rvalue-reference to the value stored in the shared state if
has_val ue() and an rvalue-reference build with the parameter v.

Postconditions: this->is_ready() returnstrue.this->get state() returnsboost::future_state: :ready.
Throws: -boost::future_uninitializedif*this isnotassociated with ashared state.
Notes: get _or () isaninterruption point.

Member function wai t ()

void wait() const;

Effects: If *t hi s isassociated with a shared state, waits until the result is ready. If the result is not ready on entry,
and the result has await callback set, that callback isinvoked prior to waiting.

Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.

- boost: : t hread_i nterrupt ed if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.
Postconditions: this->i s_ready() returnstrue.this->get _state() returnsboost::future_state: :ready.
Notes: wai t () isan interruption point.

Member function ti med_wai t () DEPRECATED SINCE V3.0.0

t enpl at e<t ypenane Duration>
bool tinmed_wait(Duration const& wait_duration);

173

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

X

Effects:

Returns:

Throws:

Postconditions:

Notes:

Warning

DEPRECATED since 3.00.

Useinsteadwai t _f or.

If *this is associated with a shared state, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has await callback set, that
callback isinvoked prior to waiting.

trueif *t hi s isassociated with ashared state, and that result is ready before the specified time has el apsed,
f al se otherwise.

-boost::future_uninitializedif*this isnotassociated with ashared state.

- boost: : t hread_i nterrupt ed if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then this->i s _ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

timed_wait () isaninterruption point. Dur at i on must be a type that meets the Boost.DateTime time
duration requirements.

Member function ti ned_wai t () DEPRECATED SINCE V3.0.0

bool tined_wait(boost::systemtine const& wait_tineout);

O Warning
DEPRECATED since 3.00.

Useinstead wai t _until .

Effects:

Returns:

Throws:

Postconditions:

Notes:

If *t hi s is associated with a shared state, waits until the result is ready, or the time point specified by
wai t _ti meout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback isinvoked prior to waiting.

trueif*t hi s isassociated with ashared state, and that result isready before the specified time has passed,
f al se otherwise.

-boost::future_uninitializedif*this isnotassociated with ashared state.

-boost : : thread_i nt errupt ed if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then this->i s _ready() returnstrue and t hi s->get _state() returns
boost: :future_state::ready.

timed_wait () isaninterruption point.

render

174

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Member function wai t_for ()

tenpl ate <cl ass Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;

Effects:

Returns:

Throws:

Postconditions:

Notes:

If *this is associated with a shared state, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has await callback set, that
callback isinvoked prior to waiting.

-future_status:: deferred if the shared state contains a deferred function. (Not implemented yet)
-future_status::ready if the shared state is ready.

-future_status::tinmeout ifthefunctionisreturning becausetherelativetimeout specifiedbyrel _ti me
has expired.

-boost::future_uninitializedif*this isnotassociated with a shared state.

-boost::thread_interrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then this->i s _ready() retunstrue and t hi s->get _state() returns
boost::future_state::ready.

wai t _for () isaninterruption point. Dur at i on must beatypethat meetsthe Boost.DateTimetime duration
requirements.

Member function wai t _until ()

tenpl ate <class O ock, class Duration>
future_status wait_until (const chrono::tinme_point<C ock, Duration>& abs_tinme) const;

Effects:

Returns:

Throws:

Postconditions:

Notes:

If *t hi s is associated with a shared state, waits until the result is ready, or the time point specified by
wai t _ti meout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

-future_status: : deferred if the shared state contains a deferred function. (Not implemented yet)
-future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the absolute timeout specified by
absl| _ti me hasreached.

-boost::future_uninitializedif*this isnotassociated with a shared state.

-boost: : thread_i nterrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then this->i s _ready() retunstrue and t hi s->get _state() returns
boost::future_state::ready.

wai t _until () isaninterruption point.

render

175

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member function val i d()
bool valid() const noexcept;
Returns: true if *t hi s isassociated with a shared state, f al se otherwise.

Throws: Nothing.

Member function i s_ready() EXTENSION

bool is_ready() const;

Returns: true if *t hi s isassociated with a shared state and that result is ready for retrieval, f al se otherwise.
Throws: Nothing.

Member function has_val ue() EXTENSION

bool has_val ue() const;

Returns: trueif *t hi s isassociated with ashared state, that result isready for retrieval, and theresult isastored value, f al se
otherwise.
Throws: Nothing.

Member function has_excepti on() EXTENSION

bool has_exception() const;

Returns: true if *t hi s isassociated with a shared state, that result is ready for retrieval, and the result is a stored exception,
f al se otherwise.

Throws: Nothing.

Member function get _exception_ptr() EXTENSION

exception_ptr get_exception_ptr();

Effects: If *t hi s is associated with a shared state, waits until the result is ready. If the result is not ready on entry, and the
result has await callback set, that callback isinvoked prior to waiting.

Returns: aexception_ptr, storring or not an exception.

Throws: Whatever nut ex: : |1 ock()/ mut ex: : unl ock() can throw.

Member function get _state() EXTENSION

future_state::state get_state();

Effects: Determine the state of the shared state associated with *t hi s, if any.

Returns: boost::future_state::uninitialized if *this is not associated with a shared state. boost: : fu-
ture_state: : ready if the shared state associated with * t hi s isready for retrieval, boost : : future_state: :wai t -
i ng otherwise.

Throws: Nothing.

176

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member function share()

shared future<R> share();

Returns:

Postconditions:

shar ed_f ut ure<R>(boost:: nmove(*this)).

this->valid() == fal se.

Member function t hen() - EXTENSION

t enpl at e<t ypenane F>

future<typenane boost::result_of <F(future&) >::type>
t hen(F&& func);
tenpl at e<typenane S, typenane F>

future<typenanme boost::result_of <F(future&) >::type>
then(S& schedul er, F&& func); // EXTENSI ON NOT_YET | MPLEMENTED
t enpl at e<t ypenane F>

future<typenane boost::result_of <F(future&) >::type>
then(l aunch policy, F&& func); // EXTENSI ON

/'l EXTENSI ON

O Warning
These functions are experimental and subject to change in future versions. There are not too much testsyet, soit is
possible that you can find out some trivial bugs :(

Note

S These functions are based on the N3634 - | mprovements to std::future<T> and related APIs C++1y proposal
by N. Gustafsson, A. Laksberg, H. Sutter, S. Mithani.

Notes:

Effects:

Returns:

Postconditions:

The three functions differ only by input parameters. The first only takes a callable object which accepts a
future object as a parameter. The second function takes a scheduler as the first parameter and a callable
object asthe second parameter. The third function takes alaunch policy asthe first parameter and acallable
object as the second parameter.

- The continuation is called when the object's shared state is ready (has a value or exception stored).
- The continuation launches according to the specified policy or scheduler.

- When the scheduler or launch policy is not provided the continuation inherits the parent's launch policy
or scheduler.

- If the parent was created with pr om se<< or withapackaged_t ask<> (hasno associated launch palicy),
the continuation behaves the same as the third overload with a policy argument of | aunch: : async |
| aunch: : def er r ed and the same argument for func.

- If the parent has a policy of | aunch: : def er r ed and the continuation does not have a specified launch
policy or scheduler, then the parent isfilled by immediately calling . wai t () , and the policy of the antecedent
isl aunch: : def err ed.

Anobject of type fut ure<typenanme boost::result_of <F(future)>thatreferstotheshared state
created by the continuation.

-The fut ur e object passed to the parameter of the continuation functionisacopy of theoriginal f ut ure.

-valid() == fal seonorigina future object immediately after it returns.

177

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3634.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member function unw ap() EXTENSION

tenpl ate <typenane R2>

future<R2> future< future<R2>>::unwap(); // EXTENSI ON
tenpl ate <typenane R2>

boost: :shared_future<R2> future< boost::shared_future<R2>>::unwap(); // EXTENSION

O Warning
These functions are experimental and subject to change in future versions. There are not too much testsyet, soit is
possible that you can find out some trivial bugs :(

S Note
These functions are based on the N3634 - | mprovements to std::future<T> and related APIs C++1y proposal
by N. Gustafsson, A. Laksberg, H. Sutter, S. Mithani.

Notes: Removes the outermost future and returns a future with the associated state been a proxy of inner future.
Effects: - Returns a future that becomes ready when the shared state of the inner future is ready.
Returns: An object of type future with the associated state been a proxy of inner future.
Postconditions: - Thereturned future hasval i d() == true regardless of the validity of the inner future.
178

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3634.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

shared_future class template

tenpl ate <typenane R>

cl

{

ass shared future

publi c:

#i

typedef future_state::state state; // EXTENSI ON
typedef R value_type; [// EXTENSI ON

shared_future() noexcept;
~shared_future();

/'l copy support
shared_future(shared_future const& other);
shared_f uture& operator=(shared_future const& other);

/1l nove support

shared_future(shared_future &% other) noexcept;
shared_future(future<R> && other) noexcept;
shared_future& operator=(shared_future &% other) noexcept;
shared_future& operator=(future<R> && other) noexcept;

/| factories
t enpl at e<t ypenane F>

future<typenanme boost::result_of <F(shared_future&) >::type>
then(F&& func); // EXTENSI ON
tenpl at e<typenane S, typenane F>

future<typenanme boost::result_of <F(shared_future&) >::type>
t hen(S& schedul er, F&& func); // EXTENSI ON NOT_YET_| MPLEMENTED
t enpl at e<t ypenane F>

future<typenanme boost::result_of <F(shared_future&) >::type>
then(l aunch policy, F&& func); // EXTENSI ON

voi d swap(shared_future& other);

/'l retrieving the val ue
see bel ow get ();

exception_ptr get _exception ptr(); // EXTENSI ON

/1 functions to check state, and wait for ready
bool valid() const noexcept;

bool is_ready() const noexcept; // EXTENSI ON

bool has_exception() const noexcept; // EXTENSI ON
bool has_val ue() const noexcept; // EXTENSI ON

/1 waiting for the result to be ready
void wait() const;
tenpl ate <cl ass Rep, class Period>

future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;

tenpl ate <class C ock, class Duration>

future_status wait_until (const chrono::tinme_point<C ock, Duration>& abs_tinme) const;

f defi ned BOOST_THREAD USES DATE TIME || defined BOOST THREAD DONT_USE_CHRONO

t enpl at e<t ypenane Durati on>

bool tined_wait(Duration const& rel_time) const; // DEPRECATED SINCE V3.0.0

bool tinmed_wait_until (boost::systemtime const& abs_tine) const;

#endi f

}

state get_state() const noexcept; // EXTENSI ON

/| DEPRECATED SI NCE V3.0.0

179

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Default Constructor

shared_future();

Effects: Constructs an uninitialized shared future.

Postconditions: t hi s->i s_r eady returnsf al se.t hi s- >get _st at e() returnsboost: : future_state::uninitial -
i zed.

Throws: Nothing.

Member function get ()

const R& get();

R& get();
void get();
Effects: If *t hi s is associated with a shared state, waits until the result is ready as-if by a call to boost : : shared_f u-
ture<R>::wait(),andreturnsaconst referenceto the result.
Returns: -shared_f ut ure<R&>: : get () return the stored reference.
-shared_future<voi d>:: get (), thereisno return vaue.
-shared_future<R>::get () returnsaconst referenceto the value stored in the shared state.
Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.
- boost::thread_i nterrupted if the result associated with *t hi s is not ready at the point of the call, and the
current thread is interrupted.
Notes: get () isaninterruption point.

Member function wai t ()

void wait() const;

Effects: If *t hi s isassociated with a shared state, waits until the result isready. If the result is not ready on entry,
and the result has await callback set, that callback isinvoked prior to waiting.

Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.

-boost : : thread_i nterrupt ed if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.
Postconditions: this->is_ready() returnstrue.this->get _state() returnsboost::future_state: :ready.

Notes: wai t () isan interruption point.

180

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member function ti med_wai t ()

t enpl at e<t ypenane Duration>
bool tinmed wait(Duration const& wait_duration);

Effects:

Returns:

Throws:

Postconditions:

Notes:

If *this is associated with a shared state, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has await callback set, that
callback isinvoked prior to waiting.

trueif *t hi s isassociated with ashared state, and that result isready before the specified time has el apsed,
f al se otherwise.

-boost::future_uninitializedif*this isnotassociated with a shared state.

-boost: : thread_i nterrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then this->i s _ready() retunstrue and t hi s->get _state() returns
boost::future_state::ready.

timed_wait () isaninterruption point. Dur at i on must be a type that meets the Boost.DateTime time
duration requirements.

Member function ti med_wai t ()

bool tined_wait(boost::systemtine const& wait_tineout);

Effects:

Returns:

Throws:

Postconditions:

Notes:

If *t hi s is associated with a shared state, waits until the result is ready, or the time point specified by
wai t _ti meout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback isinvoked prior to waiting.

trueif*t hi s isassociated with ashared state, and that result isready before the specified time has passed,
f al se otherwise.

-boost::future_uninitializedif*this isnotassociated with a shared state.

-boost : : thread_i nterrupt ed if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

If this call returned true, then t hi s->i s _ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

timed_wait () isaninterruption point.

Member function wai t _for ()

tenpl ate <cl ass Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;

Effects:

Returns:

If *this is associated with a shared state, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has await callback set, that
callback is invoked prior to waiting.

-future_status: : deferred if the shared state contains a deferred function. (Not implemented yet)

181

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

-future_status::ready if the shared state is ready.

-future_status::timeout if thefunctionisreturning becausethe relativetimeout specifiedbyrel _ti me
has expired.

Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.

-boost: :thread_i nterrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->i s _ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait() isaninterruption point. Dur at i on must be a type that meets the Boost.DateTime time
duration requirements.

Member function wai t _until ()

tenpl ate <class C ock, class Duration>
future_status wait_until (const chrono::tinme_point<C ock, Duration>& abs_tine) const;

Effects: If *t hi s is associated with a shared state, waits until the result is ready, or the time point specified by
wai t _ti meout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: -future_status:: def erred if the shared state contains a deferred function. (Not implemented yet)
-future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the absolute timeout specified by
absl| _ti me hasreached.

Throws: -boost::future_uninitializedif*this isnotassociated with a shared state.

-boost: : thread_i nterrupted if theresult associated with *t hi s isnot ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->i s _ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait () isaninterruption point.

Member function val i d()

bool valid() const noexcept;

Returns: true if *t hi s isassociated with ashared state, f al se otherwise.
Throws: Nothing.

Member function i s_ready() EXTENSION

bool is_ready() const;

Returns: true if *t hi s isassociated with a shared state, and that result is ready for retrieval, f al se otherwise.

182

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Throws: Whatever nut ex: : 1 ock()/ mut ex: : unl ock() can throw.

Member function has_val ue() EXTENSION

bool has_val ue() const;

Returns: trueif *t hi s isassociated with ashared state, that result isready for retrieval, and theresult isastored value, f al se
otherwise.

Throws: Whatever nut ex: : 1 ock()/ mut ex: : unl ock() can throw.

Member function has_excepti on() EXTENSION

bool has_exception() const;

Returns: true if *t hi s isassociated with a shared state, that result is ready for retrieval, and the result is a stored exception,
f al se otherwise.

Throws: Whatever nut ex: : 1 ock()/ mut ex: : unl ock() can throw.

Member function get _exception_ptr() EXTENSION

exception_ptr get_exception_ptr();

Effects: If *t hi s is associated with a shared state, waits until the result is ready. If the result is not ready on entry, and the
result has await callback set, that callback isinvoked prior to waiting.

Returns: aexception_ptr, storring or not an exception.

Throws: Whatever nut ex: : 1 ock()/ mut ex: : unl ock() can throw.

Member function get _stat e() EXTENSION

future_state::state get_state();

Effects: Determine the state of the shared state associated with *t hi s, if any.

Returns: boost::future state::uninitialized if *this is not associated with a shared state. boost: : fu-
ture_state: :ready if theshared stateassociated with* t hi s isready for retrieval, boost : : future_state: :wai t -
i ng otherwise.

Throws: Whatever mut ex: : 1 ock()/ mut ex: : unl ock() can throw.

Member function t hen() EXTENSION

t enpl at e<t ypenane F>

future<typenane boost::result_of <F(shared_future&) >::type>
then(F&& func); // EXTENSI ON
tenpl at e<typenane S, typenane F>

future<typenane boost::result_of <F(shared_future&) >::type>
then(S& schedul er, F&& func); // EXTENSI ON NOT_YET_I| MPLEMENTED
t enpl at e<t ypenane F>

future<typenane boost::result_of <F(shared_future&) >::type>
then(l aunch policy, F&& func); // EXTENSI ON

183

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

O Warning
These functions are experimental and subject to change in future versions. There are not too much testsyet, soit is
possible that you can find out some trivial bugs :(

Note

@ These functions are based on the N3634 - | mprovements to std::future<T> and related APIs C++1y proposal
by N. Gustafsson, A. Laksberg, H. Sutter, S. Mithani.

Notes:

Effects:

Returns:

Postconditions:

The three functions differ only by input parameters. The first only takes a callable object which accepts a
shared future object as a parameter. The second function takes a scheduler as the first parameter and a
callable object as the second parameter. The third function takes alaunch policy as the first parameter and
acallable object as the second parameter.

- The continuation is called when the object's shared state is ready (has a value or exception stored).
- The continuation launches according to the specified policy or scheduler.

- When the scheduler or launch policy is not provided the continuation inherits the parent's launch policy
or scheduler.

- If the parent was created with pr oni se or with apackaged_t ask (has no associated launch policy), the
continuation behaves the same as the third overload with a policy argument of | aunch: : async |
| aunch: : def er r ed and the same argument for func.

- If the parent has a policy of | aunch: : def er r ed and the continuation does not have a specified launch
policy or scheduler, then the parent isfilled by immediately calling . wai t () , and the policy of the antecedent
isl aunch: : deferred

An object of type future<typename boost::result_of <F(shared_f uture)> that refers to the
shared state created by the continuation.

- The future object is moved to the parameter of the continuation function .

-valid() == fal seonorigina future object immediately after it returns.

184

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3634.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

proni se class template

tenpl ate <typenane R>
cl ass prom se
{
publi c:
typedef R value_type; [// EXTENSI ON

prom se();
tenpl ate <cl ass All ocat or >
prom se(al l ocator_arg_t, Allocator a);
prom se & operator=(promni se const& rhs) = del ete;
prom se(proni se const& rhs) = del ete;
~prom se();
/1 Move support
prom se(proni se &% rhs) noexcept;;
prom se & operator=(prom se&& rhs) noexcept; ;
voi d swap(prom se& ot her) noexcept;
/1 Result retrieval
future<R> get _future();
/1 Set the val ue
voi d set _val ue(see bel ow);
voi d set _exception(boost::exception_ptr e);
tenpl ate <typenane E>
voi d set_exception(E e); // EXTENSI ON
/1 setting the result with deferred notification
void set _value_at thread exit(see bel ow ;
voi d set_exception_at_thread_exit(exception_ptr p);
tenpl ate <typenane E>
voi d set_exception_at_thread_exit(E p); // EXTENSI ON

t enpl at e<t ypenane F>
void set _wait _callback(F f); // EXTENSI ON

Default Constructor

prom se();

Effects: Constructs anew boost : : pr oni se with no associated result.
Throws: Nothing.

Allocator Constructor

tenpl ate <cl ass All ocator >
prom se(al locator_arg_t, Allocator a);

Effects: Constructs anew boost : : pr onmi se with no associated result using the allocator a.
Throws: Nothing.

Notes: Available only if BOOST_THREAD_FUTURE_USES _ALLOCATORS is defined.

185

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Move Constructor

prom se(prom se && other);

Effects: Constructs anew boost : : pr oni se, and transfers ownership of the result associated with ot her to *t hi s, leaving
ot her with no associated result.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Move Assignment Operator

prom se& operator=(prom se && other);

Effects: Transfers ownership of the result associated with ot her to *t hi s, leaving ot her with no associated result. If there
was already aresult associated with *t hi s, and that result was not ready, sets any futures associated with that result
toready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.
Destructor

~promi se();
Effects: Destroys*t hi s. If there was aresult associated with *t hi s, and that result is not ready, sets any futures associated

with that task to ready with aboost : : br oken_pr oni se exception as the result.
Throws: Nothing.

Member Function get _future()

future<R> get _future();

Effects: If *t hi s was not associated with aresult, allocate storage for anew shared state and associateit with*t hi s. Returns
af ut ur e associated with the result associated with *t hi s.

Throws: boost::future_already retrieved if the future associated with the task has already been retrieved.
st d: : bad_al | oc if any memory necessary could not be allocated.

Member Function set _val ue()

void set_value(R&& r);

voi d set_value(const R& r);

voi d proni se<R&>::set_value(R& r);
voi d proni se<voi d>: :set_val ue();

Effects: - 1f BOOST_THREAD_ PROVIDES PROMISE LAZY isdefined and if *t hi s was not associated with
aresult, allocate storage for a new shared state and associate it with *t hi s.

- Storethevaluer inthe shared state associated with* t hi s. Any threads blocked waiting for the asynchron-
ous result are woken.

186

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Postconditions: All futures waiting on the shared state are ready and boost::future<R>::has_value() or
boost : : shared_f ut ure<R>: : has_val ue() for those futures shal returnt r ue.

Throws: - boost : : proni se_al ready_sati sfi ed if theresult associated with *t hi s isalready ready.
- boost : : broken_proni se if *t hi s has no shared state.
-std:: bad_al | oc if the memory required for storage of the result cannot be allocated.
- Any exception thrown by the copy or move-constructor of R.

Member Function set _exception()

voi d set_exception(boost::exception_ptr e);
tenpl ate <typenane E>
voi d set_exception(E e); // EXTENSI ON

Effects: - If BOOST_THREAD_PROVIDES PROMISE LAZY isdefined and if *t hi s was not associated with
aresult, allocate storage for anew shared state and associate it with *t hi s.

- Store the exception e in the shared state associated with *t hi s. Any threads blocked waiting for the
asynchronous result are woken.

Postconditions: All futures waiting on the shared state are ready and boost : : f ut ur e<R>: : has_exception() or
boost : : shared_f ut ure<R>: : has_excepti on() for those futures shal returnt r ue.

Throws: -boost:: promise_al ready_sati sfi ed if theresult associated with *t hi s is already ready.
- boost : : broken_proni se if *t hi s has no shared state.
-std:: bad_al | oc if thememory required for storage of the result cannot be allocated.

Member Function set _val ue_at _thread_exit()

voi d set_value_at_thread_exit(R&& r);

voi d set_value_at_thread_exit(const R& r);

voi d prom se<R&>::set_value_at_thread_exit(R& r);
voi d prom se<voi d>::set_value_at_thread_exit();

Effects: Stores the value r in the shared state without making that state ready immediately. Schedules that state to be made
ready when the current thread exits, after all objects of thread storage duration associated with the current thread have
been destroyed.

Throws: - boost : : proni se_al ready_sati sfi ed if theresult associated with *t hi s isalready ready.

- boost : : broken_proni se if *t hi s has no shared state.
-std:: bad_al | oc if the memory required for storage of the result cannot be allocated.

- Any exception thrown by the copy or move-constructor of R.

187

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member Function set _exception_at _thread_exit()

voi d set_exception_at_thread_exit(boost::exception_ptr e);
tenpl ate <typenane E>
voi d set_exception_at_thread_exit(E p); // EXTENSI ON

Effects:

Postconditions:

Throws:

Stores the exception pointer p in the shared state without making that state ready immediately. Schedules
that state to be made ready when the current thread exits, after all objects of thread storage duration associated
with the current thread have been destroyed.

All futures waiting on the shared state are ready and boost : : f ut ur e<R>: : has_exception() or
boost : : shared_f ut ure<R>: : has_excepti on() for those futures shal returnt r ue.

-boost:: promise_al ready_sati sfi ed if theresult associated with *t hi s is aready ready.
- boost : : broken_proni se if *t hi s has no shared state.

-std:: bad_al | oc if the memory required for storage of the result cannot be allocated.

Member Function set _wai t _cal | back() EXTENSION

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Preconditions:

Effects:

Throws:

The expression f (t) wheret isalvalue of type boost : : pr oni se shall be well-formed. Invoking a copy
of f shall have the same effect asinvoking f

Storeacopy of f with the shared state associated with* t hi s asawait callback. Thiswill replace any existing
wait callback store alongside that result. If athread subsequently calls one of thewait functionson af ut ur e
or boost : : shar ed_f ut ur e associated with this result, and the result isnot ready, f (*t hi s) shall bein-
voked.

st d: : bad_al | oc if memory cannot be allocated for the required storage.

188

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

packaged_t ask class template

t enpl at e<t ypenane S>
cl ass packaged_t ask;
t enpl at e<t ypenane R
class... ArgTypes

>
cl ass packaged_t ask<R(ArgTypes) >
{
publi c:

packaged_t ask(packaged_t ask const &) = del ete;

packaged_t ask& oper at or =(packaged_t ask const &) = del ete;

// construction and destruction
packaged_t ask() noexcept;

explicit packaged_task(R(*f)(ArgTypes...));

tenpl ate <cl ass F>
explicit packaged_task(F&& f);

tenpl ate <cl ass All ocat or >

packaged_t ask(al l ocator_arg_t, Allocator a, R(*f)(ArgTypes...));
templ ate <class F, class Allocator>

packaged_t ask(all ocator_arg_t, Allocator a, F&& f);

~packaged_t ask()
{}

/'l nove support
packaged_t ask(packaged_t ask&& ot her) noexcept;
packaged_t ask& oper at or =(packaged_t ask&& ot her) noexcept;

voi d swap(packaged_t ask& ot her) noexcept;
bool valid() const noexcept;
/1 result retrieval
future<R> get _future();
/'l execution
voi d operator()(ArgTypes...);
voi d make_ready_at_thread_exit(ArgTypes...);
void reset();

t enpl at e<t ypenane F>
void set _wait _callback(F f); // EXTENSI ON

Task Constructor

packaged_task(R(*f) (ArgTypes...));

t enpl at e<t ypenane F>
packaged_t ask(F&&f) ;

Preconditions: f () isavalid expression with areturn type convertible to R. Invoking a copy of f must behave the same as
invoking f .
Effects: Constructs anew boost : : packaged_t ask with boost : : f or war d<F>(f) stored as the associated task.
Throws: - Any exceptions thrown by the copy (or move) constructor of f .
189

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

-std:: bad_al | oc if memory for theinterna data structures could not be allocated.
Notes: The R(*f)(ArgTypes...)) overload to alow passing a function without needing to use &.

Remark: This constructor doesn't participate in overload resolution if decay<F>:type is the same type as
boost::packaged task<R>.

Allocator Constructor

tenpl ate <cl ass All ocat or >

packaged_t ask(al l ocator_arg_t, Allocator a, R(*f)(ArgTypes...));
templ ate <class F, class Allocator>

packaged_t ask(al l ocator_arg_t, Allocator a, F&& f);

Preconditions: f () isavalid expression with a return type convertible to R. Invoking a copy of f shall behave the same as
invoking f .
Effects: Constructs a new boost : : packaged_t ask with boost : : f or war d<F>(f) stored as the associated task

using the alocator a.

Throws: Any exceptionsthrown by the copy (or move) constructor of f . st d: : bad_al | oc if memory for theinternal
data structures could not be allocated.

Notes: Available only if BOOST _THREAD_FUTURE_USES ALLOCATORS s defined.
Notes: The R(*f)(ArgTypes...)) overload to allow passing afunction without needing to use &.

Move Constructor

packaged_t ask(packaged_t ask && ot her);

Effects: Constructs anew boost : : packaged_t ask, and transfers ownership of the task associated with ot her to *t hi s,
leaving ot her with no associated task.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisis implemented using the boost.thread move emulation.

Move Assignment Operator

packaged_t ask& oper at or =(packaged_t ask && ot her);

Effects: Transfers ownership of the task associated with ot her to*t hi s, leaving ot her with no associated task. If there was
aready atask associated with *t hi s, and that task has not been invoked, sets any futures associated with that task to
ready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisis implemented using the boost.thread move emulation.

Destructor

~packaged_t ask();

Effects: Destroys*t hi s. If there was atask associated with *t hi s, and that task has not been invoked, sets any futures asso-
ciated with that task to ready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.

190

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Member Function get _future()

future<R> get_future();

Effects: Returns af ut ur e associated with the result of the task associated with *t hi s.

Throws: boost : : task_noved if ownership of the task associated with *t hi s has been moved to another instance of
boost : : packaged_t ask.boost : : fut ure_al ready_retri eved if thefuture associated with the task has already
been retrieved.

Member Function operator () ()

voi d operator()();

Effects: Invoke the task associated with *t hi s and store the result in the corresponding future. If the task returns
normally, thereturn valueis stored asthe shared state, otherwise the exception thrown is stored. Any threads
blocked waiting for the shared state associated with this task are woken.

Postconditions: All futures waiting on the shared state are ready

Throws: -boost : : t ask_noved if ownership of thetask associated with*t hi s has been moved to another instance
of boost : : packaged_t ask.

-boost : : task_al ready_start ed if thetask has aready been invoked.

Member Function make_ready_at thread_exit()

voi d nake_ready_at_thread_exit(ArgTypes...);

Effects: Invoke the task associated with *t hi s and store the result in the corresponding future. If the task returns normally,
the return value is stored as the shared state, otherwise the exception thrown is stored. In either case, this is done
without making that state ready immediately. Schedules the shared state to be made ready when the current thread
exits, after all objects of thread storage duration associated with the current thread have been destroyed.

Throws: - boost : : task_noved if ownership of the task associated with *t hi s has been moved to another instance of
boost : : packaged_t ask.

- boost : : task_al ready_start ed if the task has already been invoked.

Member Function reset ()

void reset();

Effects: Reset the state of the packaged task so that it can be called again.

Throws: boost : : task_noved if ownership of the task associated with *t hi s has been moved to another instance of
boost : : packaged_t ask.

Member Function set _wai t _cal | back() EXTENSION

t enpl at e<t ypenane F>
void set_wait_cal | back(F f);

Preconditions: The expressionf (t) wheret isalvalue of typeboost : : packaged_t ask shall be well-formed. Invoking
acopy of f shall have the same effect as invoking f

191

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Effects: Store acopy of f with the task associated with *t hi s asawait callback. Thiswill replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on af ut ur e or
boost : : shar ed_f ut ur e associated with this task, and the result of the task is not ready, f (*t hi s) shall
be invoked.

Throws: boost : : t ask_noved if ownership of the task associated with *t hi s has been moved to another instance
of boost : : packaged_t ask.

Non-member function decay_copy()

tenpl ate <class T>

typename decay<T>::type decay_copy(T&& v)

{

return boost::forward<T>(v);

}

Non-member function async()

The function template async provides a mechanism to launch a function potentially in a new thread and provides the result of the
function in a future object with which it shares a shared state.

o Warning
async(l aunch: : deferred, F) isNOTYET IMPLEMENTED!

Non-Variadic variant

tenpl ate <cl ass F>

future<typenane result_of <typenane decay<F>::type()>::type>

async(F&& f);
tenpl ate <cl ass F>

future<typenane result_of <typenane decay<F>::type()>::type>
async(l aunch policy, F&& f);
tenpl ate <cl ass Executor, class F>
future<typenane result_of <typenane decay<F>::type(typenane decay<Args>::type...)>: :type>

async(Execut or &ex,

Requires:

Effects

F&& f, Args&& .. args);

decay_copy(boost: : forward<F>(f)) ()

shall be avalid expression.

The first function behaves the same as a call to the second function with a policy argument of
I aunch: : async | |aunch:: def erred and the same arguments for F.

The second function creates a shared state that is associated with the returned future object.

The further behavior of the second function depends on the policy argument as follows (if more than
one of these conditions applies, the implementation may choose any of the corresponding policies):

-if policy & launch::async isnon-zero- callsdecay_copy(boost : : f orward<F>(f)) () asif
in a new thread of execution represented by a thread object with the calls to decay_copy() being
evaluated in the thread that called async. Any return value is stored as the result in the shared state.
Any exception propagated from the execution of decay_copy(boost : : f or war d<F>(f)) () isstored
asthe exceptional result in the shared state. Thethread object is stored in the shared state and affects the
behavior of any asynchronous return objects that reference that state.

192

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Returns:

Synchronization:

Throws:

Error conditions:

Remarks:

-if policy & launch::deferred isnon-zero - Stores decay_copy(boost : : f orwar d<F>(f))
in the shared state. This copy of f constitute a deferred function. Invocation of the deferred function
evaluatesboost : : nove(g) () whereg isthestored valueof decay _copy(boost : : f orwar d<F>(f)).
The shared state is not made ready until the function has completed. Thefirst call to anon-timed waiting
function on an asynchronous return object referring to this shared state shall invoke the deferred function
in the thread that called the waiting function. Once evaluation of boost: : nove(g) () begins, the
function is no longer considered deferred. (Note: If this policy is specified together with other policies,
suchaswhenusingapolicy valueof | aunch: : async | | aunch: : def er r ed, implementations should
defer invocation or the selection of the policy when no more concurrency can be effectively exploited.)

- if novalid launch policy is provided the behaviour is undefined.

Anobject of type f ut ure<t ypename resul t_of <t ypenane decay<F>::type()>::type>that
refersto the shared state created by thiscall to async.

Regardless of the provided policy argument,

- the invocation of async synchronizes with the invocation of f. (Note: This statement applies even
when the corresponding future object is moved to another thread.); and

- the completion of the function f is sequenced before the shared state is made ready. (Note: f might
not be called at all, so its completion might never happen.)

If the implementation chooses the| aunch: : async palicy,

- acall to a non-timed waiting function on an asynchronous return object that shares the shared state
created by this async call shall block until the associated thread has completed, asif joined, or elsetime
out;

- the associated thread completion synchronizes with the return from the first function that successfully
detectsthe ready status of the shared state or with the return from the last function that releases the shared
state, whichever happensfirst.

system error if policy isl aunch: : async and the implementation is unable to start a new thread.

-resource_unavail abl e_try_agai n - if policy is| aunch: : async and the system is unable to
start anew thread.

Thefirst signature shall not participate in overload resolution if decay<F>::type is boost::launch.

Variadic variant

tenpl ate <class F, class... Args>

future<typenane result_of <typenane decay<F>::type(typenane decay<Args>::type...)> :type>
async(F&& f, Args&& .. args);
tenpl ate <class F, class... Args>

future<typenane result_of <typenane decay<F>::type(typenane decay<Args>::type...)> :type>
async(l aunch policy, F&& f, Args&& .. args);
tenpl ate <cl ass Executor, class F, class... Args>

future<typenane result_of <typenane decay<F>::type(typenane decay<Args>::type...)> :type>
async(Executor &ex, F&& f, Args&& .. args);

O Warning
thevariadic prototypeis provided only on C++11 compilers supporting rval ue references, variadic templates, decltype
and a standard library providing <tuple> (waiting for a boost::tuple that is move aware), and
BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK isdefined.

Requires: Fandeach Ti in Args shall satisfy the MoveConst r uct i bl e requirements.

193

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Effects:

Note:

Returns:

Synchronization:

Throws:

Error conditions:

Remarks:

invoke (decay_copy (boost::forward<F>(f)), decay_copy (boost::forward<Args>(args))...)
shall be avalid expression.

- The first function behaves the same as a call to the second function with a policy argument of
I aunch: : async | |aunch: : def erred and the same arguments for F and Ar gs.

- The second function creates ashared state that is associated with the returned future object. The further
behavior of the second function depends on the policy argument as follows (if more than one of these
conditions applies, the implementation may choose any of the corresponding policies):

-if policy & launch::async isnon-zero - callsi nvoke(decay_copy(forward<F>(f)), de-

cay_copy (forward<Args>(args))...) asifinanew thread of execution represented by athread
object withthecallstodecay_copy() beingevaluated inthethread that called async. Any return value
is stored as the result in the shared state. Any exception propagated from the execution of i nvoke(de-

cay_copy(boost::forward<F>(f)), decay_copy (boost::forward<Args>(args))...) is
stored asthe exceptional result in the shared state. The thread object is stored in the shared state and affects
the behavior of any asynchronous return objects that reference that state.

-if policy & launch::deferred isnon-zero - Stores decay_copy(f orwar d<F>(f)) and de-
cay_copy(forward<Args>(args))... intheshared state. These copiesof f and ar gs congtitute a
deferred function. Invocation of the deferred function evaluates i nvoke(nove(g), nove(xyz))
where g is the stored value of decay_copy(f orward<F>(f)) and xyz is the stored copy of de-
cay_copy(forward<Args>(args)).... The shared state is not made ready until the function has
completed. Thefirst call to a non-timed waiting function on an asynchronous return object referring to
this shared state shall invoke the deferred function in the thread that called the waiting function. Once
evaluation of i nvoke(nmove(g), nove(xyz)) begins, the function isno longer considered deferred.

- if no valid launch policy is provided the behaviour is undefined.

If this policy is specified together with other policies, such as when using a policy value of
 aunch: :async | |aunch:: deferred, implementations should defer invocation or the selection
of the policy when no more concurrency can be effectively exploited.

Anobject of type fut ure<typenane resul t _of <t ypenanme decay<F>::type(typenane de-
cay<Args>::type...)>::type> that refersto the shared state created by this call to async.

Regardless of the provided policy argument,

- theinvocation of async synchronizes with theinvocation of f . (Note: This statement applies even when
the corresponding future object is moved to another thread.); and

- the completion of the function f is sequenced before the shared state is made ready. (Note: f might not
be called at all, so its completion might never happen.)

If the implementation chooses the| aunch: : async poalicy,

- acall to awaiting function on an asynchronous return object that sharesthe shared state created by this
async call shall block until the associated thread has completed, asif joined, or elsetime out;

- the associated thread completion synchronizes with the return from the first function that successfully
detectsthe ready status of the shared state or with the return from the last function that releases the shared
state, whichever happensfirst.

system error if policy isl aunch: : async and the implementation is unable to start a new thread.

-resource_unavail abl e_try_agai n - if policy is| aunch: : async and the system is unable to
start anew thread.

Thefirst signature shall not participate in overload resolution if decay<F>::type is boost::launch.

194

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function wait_for_any() - EXTENSION

t enpl at e<t ypenane |terator>
Iterator wait_for_any(lterator begin,lterator end); // EXTENSI ON

t enpl at e<t ypenane F1,typenane F2>
unsi gned wait_for_any(F1& f1, F2& f2); // EXTENSI ON

t enpl at e<t ypenane F1,typenane F2,typename F3>
unsi gned wait_for_any(F1& f1, F2& f2, F3& f3); // EXTENSI ON

t enpl at e<t ypenanme F1,typename F2,typenane F3,typenane F4>
unsigned wait_for_any(F1& f1, F2& f2, F3& 3, F4& f4); [/ EXTENSI ON

tenpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4,typename F5>
unsi gned wait_for_any(F1& f1, F2& f2, F3& 3, F4& f4,F5& f5); // EXTENSI ON

Preconditions: The types Fn shall be specializations of f ut ure or boost : : shared_future, and I terator shal bea
forward iterator with aval ue_t ype which isaspecialization of f ut ur e or boost : : shared_f uture.

Effects: Waits until at least one of the specified futuresis ready.

Returns: The range-based overload returnsan | t er at or identifying the first future in the range that was detected as
ready. The remaining overloads return the zero-based index of the first future that was detected as ready
(first parameter => 0, second parameter => 1, etc.).

Throws: boost:: thread_interrupted if the current thread is interrupted. Any exception thrown by the wait
callback associated with any of the futures being waited for. st d: : bad_al | oc if memory could not be a-
located for the internal wait structures.

Notes: wai t _for_any() isaninterruption point.

Non-member function wait _for_all() - EXTENSION

t enpl at e<t ypenane |terator>
void wait_for_all(lterator begin,Iterator end); // EXTENSI ON

t enpl at e<t ypenane F1,typenane F2>
void wait_for_all (F1& f1, F2& f2); // EXTENSI ON

tenpl at e<t ypenane F1,typenane F2,typenanme F3>
void wait_for_all (F1& f1, F2& f2,F3& f3); // EXTENSI ON

t enpl at e<t ypenanme F1,typename F2,typenane F3,typenane F4>
void wait_for_all (F1l& f1, F2& f2, F3& f3, F4& f4); [/ EXTENSI ON

tenpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4,typename F5>
void wait_for_all (F1& f1, F2& f2, F3& f3, F4& f4, F5& f5); // EXTENSI ON

Preconditions: The types Fn shall be specializations of f ut ure or boost : : shared_future, and Iterator shal bea
forward iterator with aval ue_t ype which isaspecialization of f ut ur e or boost : : shared_future.

Effects: Waits until al of the specified futures are ready.
Throws: Any exceptions thrown by acall towai t () on the specified futures.
Notes: wai t_for_all () isaninterruption paint.

195

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Non-member function make_ready future() EXTENSION

tenpl ate <typenane T>

fut ure<t ypename decay<T>::type> make_ready_future(T&& value); // EXTENSI ON
future<voi d> make_ready_future(); // EXTENSION

tenpl ate <typenane T>

future<T> make_ready_future(exception_ptr ex); [/ DEPRECATED

tenpl ate <typenane T, typenanme E>

future<T> nmake_ready_future(E ex); // DEPRECATED

Effects: - value prototype: The value that is passed into the function is moved to the shared state of the returned
function if it is an rvalue. Otherwise the value is copied to the shared state of the returned function.

- exception: The exception that is passed into the function is copied to the shared state of the returned function.

Returns: - aready future with the value set with val ue

- aready future with the exception set with ex

- aready future<void> with the value set (void).
Postcondition: - Returned future, valid() == true

- Returned future, is_ready() = true

- Returned future, has_value() = true or has_exception() depending on the prototype.

Non-member function nake_exceptional () EXTENSION

exceptional _ptr nmake_exceptional (exception_ptr ex); // EXTENSI ON
tenpl ate <typenane E>

exceptional _ptr nmake_exceptional (E ex); [// EXTENSI ON

exceptional _ptr nmake_exceptional (); // EXTENSI ON

Effects: The exception that is passed in to the function or the current exception if no parameter isgiven ismoved into thereturned
exceptional _ptr if itisan rvalue. Otherwise the exception is copied into the returned except i onal _ptr.

Returns: An exceptional_ptr instance implicitly convertible to a future<T>

Non-member function nake_future() DEPRECATED

tenpl ate <typenane T>
fut ure<typename decay<T>::type> make_future(T&& value); [/ DEPRECATED
future<voi d> make_future(); // DEPRECATED

Effects: Thevauethat is passed into the function is moved to the shared state of the returned functioniif itisan rvalue.
Otherwise the value is copied to the shared state of the returned function. .

Returns: - future<T>, if function is given avalue of type T

- future<void>, if the function is not given any inputs.
Postcondition: - Returned future<T>, valid() == true

- Returned future<T>, is_ready() = true

See; nmake_ready_future()

196

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Non-member function make_shared_future() DEPRECATED

tenpl ate <typenane T>
shared_f ut ure<t ypename decay<T>::type> make_shared_future(T&& value); [/ DEPRECATED
shared_future<voi d> make_shared future(); // DEPRECATED

Effects: The value that is passed in to the function is moved to the shared state of the returned function if it is an
rvalue. Otherwise the value is copied to the shared state of the returned function. .

Returns: - shared_future<T>, if function is given avalue of type T

- shared future<void>, if the function is not given any inputs.
Postcondition: - Returned shared_future<T>, valid() == true

- Returned shared_future<T>, is_ready() = true

See; meke_ready_future() andfuture<>::share()

197

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Thread Local Storage
Synopsis

Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a multi-
threaded application. One exampleisthe C er r no variable, used for storing the error code related to functions from the Standard C
library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide a separate
instance of er r no for each thread, in order to avoid different threads competing to read or update the value.

Though compilers often provide this facility in the form of extensionsto the declaration syntax (such as__decl spec(t hr ead) or
t hr ead annotations on st at i ¢ or namespace-scope Vvariable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.

Portable thread-local storage With boost : : t hread_specific_ptr

boost : : thread_specific_ptr provides a portable mechanism for thread-local storage that works on all compilers supported
by Boost.Thread. Each instance of boost : : t hr ead_speci fi c_pt r representsapointer to an object (such aser r no) where each
thread must have a distinct value. The value for the current thread can be obtained using the get () member function, or by using
the* and - > pointer deference operators. Initially the pointer has avalue of NULL in each thread, but the value for the current thread
can be set using ther eset () member function.

If the value of the pointer for the current thread ischanged usingr eset () , thenthe previousvalueis destroyed by calling the cleanup
routine. Alternatively, the stored value can be reset to NULL and the prior value returned by calling ther el ease() member function,
allowing the application to take back responsibility for destroying the object.

Cleanup at thread exit

When a thread exits, the objects associated with each boost : : t hread_speci fi c_ptr instance are destroyed. By default, the
object pointed to by a pointer p is destroyed by invoking del ete p, but this can be overridden for a specific instance of
boost : : thread_speci fic_ptr by providing acleanup routineto the constructor. In this case, the object is destroyed by invoking
func(p) wheref unc isthe cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified order.
If acleanup routine sets the value of associated with aninstance of boost : : t hread_speci fi ¢_pt r that hasalready been cleaned
up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of boost : : t hr ead_speci f -

i c_ptr with values.

Note: on some platforms, cleanup of thread-specific data is not performed for threads created with the platform's native API. On
those platforms such cleanup is only done for threads that are started with boost : : t hr ead unlessboost : : on_t hread_exi t ()
is called manually from that thread.

Rationale about the nature of the key

Boost. Thread uses the address of thet hr ead_speci fi c_ptr instance as key of the thread specific pointers. This avoids to cre-
ate/destroy a key which will need alock to protect from race conditions. This has a little performance liability, as the access must
be done using an associative container.

198

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

(:lfifoS thread_specific_ptr

[#i

nanmesp

{
tenp
cl as

{
publ

ncl ude <boost/thread/tss. hpp>
ace boost

| ate <typenane T>
s thread_specific_ptr

ic:

thread_specific_ptr()

explicit thread_specific_ptr(void (*cleanup_function)(T*))
~t hread_specific_ptr();

T* get() const;
T* operator->() const
T& operator*() const;

T* rel ease();
voi d reset (T* new_val ue=0);

thread_specific_ptr();

Requires:

Effects:

Throws:

del ete this->get () iswel-formed.

Construct at hr ead_speci fi c_pt r object for storing a pointer to an object of type T specific to each thread. The
default del et e-based cleanup function will be used to destroy any thread-local objectswhenr eset () iscaled, or
the thread exits.

boost::thread _resource_error if anerror occurs.

explicit thread_specific_ptr(void (*cleanup_function)(T*));

Requires:

Effects:

Throws:

cl eanup_function(this->get()) doesnot throw any exceptions.

Construct at hr ead_speci fi c_pt r object for storing a pointer to an object of type T specific to each thread. The
suppliedcl eanup_f unct i on will beused to destroy any thread-local objectswhenr eset () iscalled, or thethread
exits.

boost::thread _resource_error if anerror occurs.

~t hread_specific_ptr();

Requires:

Effects:
Throws:

Remarks:

All the thread specific instances associated to thisthread specific_ptr (except maybe the one associated to thisthread)
must be null.

Callst hi s- >reset () toclean up the associated value for the current thread, and destroys*t hi s.
Nothing.

The requirement is due to the fact that in order to delete all these instances, the implementation should be forced to
maintain alist of all the threads having an associated specific ptr, which is against the goal of thread specific data.

render

199

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

S Note
Care needsto betaken to ensure that any threads still running after aninstance of boost : : t hread_speci fic_ptr
has been destroyed do not call any member functions on that instance.

T* get() const;

Returns: The pointer associated with the current thread.

Throws: Nothing.

S Note
Theinitia value associated with an instance of boost : : t hread_speci fi c_ptr iSNULL for each thread.

T* operator->() const;

Returns: t hi s->get ()

Throws: Nothing.

T& operator*() const;

Requires: t hi s->get isnot NULL.
Returns: *(this->get())
Throws: Nothing.

void reset(T* new_val ue=0);

Effects: If this->get()!=new value and this->get() isS non-NULL, invoke del ete this->get() or
cl eanup_function(this->get()) asappropriate. Store new_val ue asthe pointer associated with the
current thread.

Postcondition: t hi s->get () ==new val ue

Throws: boost::thread_resource_error if anerror occurs.

T* rel ease();

Effects: Returnt hi s- >get () and store NULL as the pointer associated with the current thread without invoking the
cleanup function.

Postcondition: this->get()==

Throws: Nothing.

200

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Synchronized Data Structures
Synchronized Values - EXPERIMENTAL

O Warning
These features are experimental and subject to change in future versions. There are not too much tests yet, so it is
possible that you can find out some trivial bugs :(

Tutorial

g Note
Thistutorial isan adaptation of the paper of Anthony Williams"Enforcing Correct Mutex Usage with Synchronized
Values' to the Boost library.

The Problem with Mutexes

The key problem with protecting shared data with amutex is that there is no easy way to associate the mutex with the data. It isthus
relatively easy to accidentally write code that fails to lock the right mutex - or even locks the wrong mutex - and the compiler will
not help you.

std:: mutex mi;
int val uel;
std:: nmutex ng;
int val ue2;

i nt readVal uel()
{

boost: : | ock_guar d<boost:: nmutex> | k(ntl);
return val uel;

}
i nt readVal ue2()

{

boost: : | ock_guard<boost::nmutex> I k(nl); // oops: wong mutex
return val ue2;

}

M oreover, managing the mutex lock also clutters the source code, making it harder to see what is really going on.

The use of synchronized value solves both these problems - the mutex isintimately tied to the value, so you cannot access it without
alock, and yet access semantics are still straightforward. For simple accesses, synchronized value behaves like a pointer-to-T; for
example:

201

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

boost: : synchroni zed_val ue<std: : string> val ue3;
std::string readVal ue3()

{ return *val ue3;

i/oi d setValue3(std::string const& newval)

{ *val ue3=newval ;

i/oi d appendToVal ue3(std::string consté& extra)
{ val ue3- >append(extra);

}

Both forms of pointer dereference return a proxy object rather than areal reference, to ensure that the lock on the mutex is held
across the assignment or method call, but thisis transparent to the user.

Beyond Simple Accesses

The pointer-like semanticswork very well for simple accesses such as assignment and callsto member functions. However, sometimes
you need to perform an operation that requires multiple accesses under protection of the samelock, and that's what the synchronize()
method provides.

By calling synchronize() you obtain an strict_lock_ptr object that holds alock on the mutex protecting the data, and which can be
used to access the protected data. The lock is held until the strict_lock_ptr object is destroyed, so you can safely perform multi-part
operations. The strict_lock_ptr object also acts as a pointer-to-T, just like synchronized value does, but thistime the lock is already
held. For example, the following function adds atrailing slash to apath held in a synchronized value. The use of the strict_lock_ptr
object ensures that the string hasn't changed in between the query and the update.

voi d addTrailingSl ashl fM ssing(boost: :synchroni zed_val ue<std: : string> & path)

{

boost::strict_lock_ptr<std::string> u=path.synchronize();

if(u->empty() || (*u->rbegin()!="7"))
{
ur='
}
}

Operations Across Multiple Objects

Though synchronized value works very well for protecting a single object of type T, nothing that we've seen so far solves the
problem of operations that require atomic access to multiple objects unless those objects can be combined within asingle structure
protected by a single mutex.

One way to protect access to two synchronized value objectsisto construct astrict_lock ptr for each object and use those to access
the respective protected values; for instance:

202

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

synchroni zed_val ue<std: : queue<MessageType> > ql, q2;
voi d transferMessage()
{
strict_lock_ptr<std::queue<MessageType> > ul
strict_lock_ptr<std::queue<MessageType> > u2

gl. synchroni ze();
g2. synchroni ze() ;

if(lul->enmpty())
{
u2->push_back(ul->front());
ul->pop_front();
}
}

Thisworks well in some scenarios, but not all -- if the same two objects are updated together in different sections of code then you
need to take care to ensure that the strict_lock_ptr objects are constructed in the same sequence in al cases, otherwise you have the
potential for deadlock. Thisis just the same as when acquiring any two mutexes.

In order to be able to use the dead-lock free lock algorithms we need to use instead unique_lock_ptr, which is Lockable.

synchroni zed_val ue<st d: : queue<MessageType> > ql, q2;
voi d transferMessage()
{

uni que_Il ock_ptr<std:: queue<MessageType> > ul = gl.uni que_synchroni ze(boost: : defer_I| ock);
uni que_| ock_ptr<std:: queue<MessageType> > u2 = ¢2.uni que_synchroni ze(boost: : defer_I| ock);
boost::lock(ul,u2); // dead-lock free algorithm

if(lul->enmpty())
{
u2->push_back(ul->front());
ul->pop_front();
}
}

While the preceding takes care of dead-lock, the access to the synchronized value via unique_lock ptr requires a lock that is not
forced by the interface. An alternative on compilers providing a standard library that supports movable std::tuple is to use the free
synchronize function, which will lock all the mutexes associated to the synchronized values and return atuple os strict_lock_ptr.

synchroni zed_val ue<st d: : queue<MessageType> > (1, q2;
voi d transferMessage()

{

auto | ks = synchroni ze(ul,u2); // dead-lock free algorithm

if(!std::get<l>(lks)->enpty())
{
std:: get<2>(1ks)->push_back(ul->front());
std::get<1l>(lks)->pop_front();
}
}

Value semantics

synchronized value has value semantics even if the syntax letsis closeto apointer (thisisjust because we are unable to define smart
references).

203

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Reference

#i ncl ude <boost/thread/ synchroni zed_val ue. hpp>
namespace boost

{

tenpl at e<typenane T, typenane Lockabl e mut ex>

cl ass synchroni zed_val ue

/| Specialized swap al gorithm

tenpl ate <typenane T, typenane L>

voi d swap(synchroni zed_val ue<T,L> & | hs
tenpl ate <typenane T, typenanme L>

voi d swap(synchroni zed_val ue<T,L> & | hs
tenpl ate <typenane T, typenanme L>

void swap(T & | hs, synchroni zed_val ue<T

synchr oni
T & rhs)
L> & rhs)

/1 Hash support
tenpl at e<typenane T, typenane L>
struct hash<synchroni zed_val ue<T, L> >

/1 Comparison

tenpl ate <typenane T, typenanme L>

bool operator==(synchroni zed_val ue<T, L>
tenpl ate <typenane T, typenanme L>

bool operator!=(synchronized_val ue<T, L>
tenpl ate <typenane T, typenanme L>

bool operator<(synchroni zed_val ue<T, L> const &l hs
tenpl ate <typenane T, typenanme L>

bool operator<=(synchroni zed_val ue<T, L> const & hs
tenpl ate <typenane T, typenanme L>

bool operator>(synchroni zed_val ue<T, L> const &l hs
tenpl ate <typenane T, typenanme L>

bool operator>=(synchroni zed_val ue<T, L> const & hs

const &l hs,

const &l hs,

/1 Comparison with T
tenpl ate <typenane T, typenanme L>
bool operator==(T const& | hs
tenpl ate <typenane T, typenane L>
bool operator!=(T consté& | hs,
tenpl ate <typenane T, typenanme L>
bool operator<(T const& | hs, synchroni zed_val ue<T
tenpl ate <typenane T, typenanme L>
bool operator<=(T const& | hs
tenpl ate <typenane T, typenanme L>
bool operator>(T const& | hs, synchroni zed_val ue<T
tenpl ate <typenane T, typenanme L>
bool operator>=(T const& | hs

tenpl ate <typenane T, typenanme L>
bool operator==(synchroni zed_val ue<T, L> const & | hs
tenpl ate <typenane T, typenanme L>
bool operator!=(synchroni zed_val ue<T,L> const& | hs
tenpl ate <typenane T, typenanme L>
bool operator<(synchroni zed_val ue<T, L> const& | hs
tenpl ate <typenane T, typenanme L>
bool operator<=(synchroni zed_val ue<T,L> const & | hs
tenpl ate <typenane T, typenanme L>
bool operator>(synchroni zed_val ue<T, L> const& | hs
tenpl ate <typenane T, typenanme L>
bool operator>=(synchroni zed_val ue<T, L> const & | hs

zed _val ue<T,L> & rhs)

synchroni zed_val ue<T, L> const & rhs)
synchroni zed_val ue<T, L> const & rhs)
synchroni zed_val ue<T, L> const & r hs)
synchroni zed_val ue<T, L> const & rhs)
synchroni zed_val ue<T, L> const & rhs)

synchroni zed_val ue<T, L> const & rhs)

synchroni zed_val ue<T, L> const &r hs)

synchroni zed_val ue<T, L> const &r hs)

L> const & hs);

synchroni zed_val ue<T, L> const &r hs)

L> const & hs);

synchroni zed_val ue<T, L> const &r hs)

, T const& rhs);
, T const& rhs);
T const& rhs);
, T const& rhs);
T const& rhs);

, T const& rhs);

204

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

#if | defined(BOOST_THREAD NO_SYNCHRON ZE)

tenpl ate <typenane ...SV>

std::tupl e<typenane synchroni zed_val ue_strict_lock_ptr<SV>::type ...> synchroni ze(SV& ...sv);
#endi f

}

Class synchroni zed_val ue

#i ncl ude <boost/thread/ synchroni zed_val ue. hpp>

namespace boost

{

tenpl at e<typenane T, typenane Lockable = nutex>
cl ass synchroni zed_val ue
{
publi c:
typedef T val ue_type;
t ypedef Lockabl e mutex_type;

synchroni zed_val ue() noexept (i s_not hrow default_constructi bl e<T>::val ue);

synchroni zed_val ue(T const & other) noexept (i s_not hrow _copy_constructi bl e<T>:: val ue) ;
synchroni zed_val ue(T&& ot her) noexept (i s_not hrow_nove_constructi bl e<T>::val ue);
synchroni zed_val ue(synchroni zed_val ue consté& rhs);

synchroni zed_val ue(synchroni zed_val ue&& ot her);

/1 mutation

synchroni zed_val ue& oper at or =(synchroni zed_val ue const & rhs);
synchroni zed_val ue& operat or =(val ue_t ype const & val) ;

voi d swap(synchroni zed_val ue & rhs);

voi d swap(val ue_type & rhs);

|/ observers
T get() const;

#if | defined(BOOST_NO CXX11_EXPLI Cl T_CONVERSI ON_OPERATORS)
explicit operator T() const;

#endi f

strict_l ock_ptr<T, Lockabl e> operator->();
const_strict_l ock_ptr<T, Lockabl e> operator->() const;
strict_| ock_ptr<T, Lockabl e> synchronize();
const_strict_l ock_ptr<T, Lockabl e> synchroni ze() const;

deref _val ue operator*();;
const _deref_val ue operator*() const;

private:
T value_; // for exposition only
nmut abl e mutex_type mx_; // for exposition only
b
}
Requires: Lockabl e isLockabl e.

synchroni zed_val ue()

synchroni zed_val ue() noexept (i s_not hrow_defaul t _constructi bl e<T>::val ue);

Requires: TisDef aul t Constructi bl e.

205

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Effects: Default constructs the cloaked value_type
Throws: Any exception thrown by val ue_t ype() .

synchroni zed_val ue(T const &)

synchroni zed_val ue(T const & other) noexept (i s_not hrow_copy_constructi bl e<T>::val ue);

Requires: T isCopyConstructi bl e.
Effects: Copy constructs the cloaked value_type using the parameter ot her
Throws: Any exception thrown by val ue_t ype(ot her) .

synchroni zed_val ue(synchroni zed_val ue const &)

synchroni zed_val ue(synchroni zed_val ue const& rhs);

Requires: TisDef aul t Constructi bl e and Assi gnabl e.
Effects: Assigns the value on a scope protected by the mutex of the rhs. The mutex is not copied.
Throws: Any exception thrown by val ue_t ype() orval ue_t ype& oper at or =(val ue_t ype&) ornt x_. | ock().

synchroni zed_val ue(T&&)

synchroni zed_val ue(T&& ot her) noexept (i s_not hrow_nove_constructi bl e<T>::val ue);

Requires: T isCopyMovabl e .
Effects: Move constructs the cloaked value_type
Throws: Any exception thrown by val ue_t ype(val ue_t ype&s) .

synchroni zed_val ue(synchroni zed_val ue&&)

synchroni zed_val ue(synchroni zed_val ue&& ot her);

Requires: T isCopyMovabl e .
Effects: Move constructs the cloaked value type
Throws: Any exception thrown by val ue_t ype(val ue_t ype&&) or nt x_. | ock().

oper at or =(synchroni zed_val ue const &)

synchroni zed_val ue& operat or =(synchroni zed_val ue const & rhs);

Requires: TisAssignal e.

Effects: Copiesthe underlying value on ascope protected by the two mutexes. The mutex isnot copied. Thelocks are acquired
avoiding deadlock. For example, there is no problem if one thread assignsa = b and the other assignsbh = a.

Return: *this

Throws: Any exception thrown by val ue_t ype& operat or (val ue_type const&) orntx_. | ock().

206

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

operator=(T const &)

synchroni zed_val ue& operat or =(val ue_t ype const & val) ;

Requires: TisAssignal e.

Effects: Copies the value on a scope protected by the mutex.

Return: *this

Throws: Any exception thrown by val ue_t ype& oper at or (val ue_type const &) orntx_. | ock().

get () const

T get() const;

Requires: T isCopyConstructi bl e.
Return: A copy of the protected val ue obtained on a scope protected by the nutex.
Throws: Any exception thrown by val ue_t ype(val ue_t ype const&) ormtx_. | ock().

operator T() const

#if | defined(BOOST_NO CXX11_EXPLI CI T_CONVERSI ON_OPERATORS)
explicit operator T() const;

#endi f
Requires: T isCopyConstructi bl e.
Return: A copy of the protected val ue obtained on a scope protected by the mnutex.
Throws: Any exception thrown by val ue_t ype(val ue_t ype const&) ormtx_. | ock().

swap(synchroni zed_val ue&)

voi d swap(synchroni zed_val ue & rhs);

Requires: TisAssignal e.

Effects: Swaps the data on a scope protected by both mutex. Both mutex are acquired to avoid dead-lock. The mutexes are
not swapped.

Throws: Any exception thrown by swap(val ue_, rhs.value) orntx_.lock() orrhs_.ntx_.lock().

swap(synchroni zed_val ue&)

voi d swap(val ue_type & rhs);

Requires: T is Swapabl e.

Effects: Swaps the data on a scope protected by both mutex. Both mutex are acquired to avoid dead-lock. The mutexes are
not swapped.

Throws: Any exception thrown by swap(val ue_, rhs) ornmtx_. | ock().

207

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

oper ator->()

strict_l ock_ptr<T, Lockabl e> operator->();

Essentially calling a method obj - >f oo(x, y, z) calsthe method f oo(x, y, z) insideacritica section aslong-lived as the
cal itself.

Return: A strict_l ock_ptr<>.
Throws: Nothing.

operator->() const

const _strict_lock_ptr<T, Lockabl e> operator->() const;

If thesynchr oni zed_val ue object involved is const-qualified, then you'll only be ableto call const methodsthrough oper at or - >.
So, for example, vec- >push_back("xyz") won't work if vec were const-qualified. The locking mechanism capitalizes on the
assumption that const methods don't modify their underlying data.

Return: A const_strict_lock_ptr <>,
Throws: Nothing.

synchroni ze()
strict_|l ock_ptr<T, Lockabl e> synchroni ze();

The synchronize() factory make easier to lock on a scope. As discussed, oper at or - > can only lock over the duration of acall, so
itisinsufficient for complex operations. With synchr oni ze() you get to lock the object in ascoped and to directly accessthe object
inside that scope.

Example:

voi d fun(synchroni zed_val ue<vector<i nt>> & vec) {
aut o vec2=vec. synchroni ze();
vec2. push_back(42);
assert(vec2. back() == 42);

}

Return: A strict_lock_ptr <>,
Throws: Nothing.

synchroni ze() const

const_strict_lock_ptr<T, Lockabl e> synchroni ze() const;

Return: A const_strict_lock_ptr <>.

Throws: Nothing.

208

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

oper at or*()

der ef _val ue operator*();

Return: A an instance of a class that | ocks the nutex on construction and unl ocks it on destruction
and provides inplicit conversion to a reference to the protected val ue.

Throws: Nothing.

operator*() const

const _deref_val ue operator*() const

Return: A an instance of a class that | ocks the nutex on construction and unl ocks it on destruction
and provides inplicit conversion to a constant reference to the protected val ue.

Throws: Nothing.

Non-Member Function synchroni ze

#i ncl ude <boost/thread/ synchroni zed_val ue. hpp>
namespace boost

{
#if | defined(BOOST_THREAD NO SYNCHRONI ZE)

tenpl ate <typenane ...SV>
std: :tupl e<typenane synchroni zed_val ue_strict_| ock_ptr<SVv>: :type ...> synchronize(SV& ...sv);
#endi f

}

Synchronized Queues -- EXPERIMENTAL

O Warning
These features are experimental and subject to change in future versions. There are not too much testsyet, so it is
possible that you can find out some trivial bugs :(

S Note
These features are based on the N3533 - C++ Concurrent Queues C++1y proposal from Lawrence Crowl and
Chris Mysen and C++ Concurrency in Action from Anthony Williams.

Introduction

Queues provide a mechanism for communicating data between components of a system.

The existing dequein the standard library isan inherently sequential data structure. Its reference-returning element access operations
cannot synchronize accessto those elements with other queue operations. So, concurrent pushes and pops on queuesrequire adifferent
interface to the queue structure.

Moreover, concurrency adds anew dimension for performance and semantics. Different queue implementation must trade off uncon-
tended operation cost, contended operation cost, and element order guarantees. Some of these trade-offs will necessarily result in
semantics weaker than a serial queue.

209

render

httpo://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3533.html
http://www.manning.com/williams/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Tutorial

Concurrent queues are awell know mechanism for communicating data between different threads.

Concurrent queues have inherently copy/move semanticsfor the data handling operation. Reference-returning interfaces are forbidden
as multiple access to these references can not be thread-safe.

Examples

Reference

Synchronized Queue Model

Bounded-Unbounded Queues

One of the major features of a concurrent queue is whether it has a bounded-unbounded capacity.
Locking/Lock-free Queues

L ocking queues can by nature block waiting for the queue to be non-empty or non-full.

L ock-free queues will have some trouble waiting for the queue to be non-empty or non-full queues. These queues can not define
operations such as push (and pull for bounded queues). That is, it could have blocking operations (presumably emulated with busy
wait) but not waiting operations.

Closed Queue

Threads using a queue for communication need some mechanism to signal when the queue is no longer needed. The usual approach
is add an additional out-of-band signal. However, this approach suffers from the flaw that threads waiting on either full or empty
gueues need to be woken up when the queue is no longer needed. Rather than require an out-of-band signal, we chose to directly
support such asignal in the queue itself, which considerably simplifies coding.

To achieve this signal, a thread may close a queue. Once closed, no new elements may be pushed onto the queue. Push operations
on aclosed queue will either return queue_op_status::closed (when they have aqueue op_statusreturntype), set the closed parameter
if it has one or throw sync_queue::closed (when they do not). Elements already on the queue may be pulled off. When a queue is
empty and closed, pull operationswill either return queue_op_status::closed (when they have a status return), set the closed parameter
if it has one or throw sync_queue::closed (when they do not).

Concurrent Queues Throw specification

Locking

All the functions are defined as if we had in addition to its specific Throw specification the following:
Throws: Any exception thrown by the internal locking.

Allocation

All the functions that allocate a resource are defined as if we had in addition to its specific Throw specification the following:

Throws: Any exception due to allocation errors.

Basic Concurrent Queue Operations

The essential solution to the problem of concurrent queuing isto shift to value-based operations, rather than reference-based operations.
The BasicConcurrentQueue concept models the basic operations of a concurrent queue.

A type Qmeetsthe BasicConcurrentQueue requirementsif the following expressions are well-formed and have the specified semantics

210

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Q::vaue type
» Q:size type

* (. push_back(e);

* (. push_back(rve);

e g.pull _front(lre);

.

—

(0]
1

* b =q.emty();
* u = g.size();

where

g.pull _front();

denotesavalue of type Q

e denotes avalue of type Q::value type,

 u denotes avalue of type Q::size_type,

* | ve denotes alvalue referece of type Q::value type,

 rve denotes arvalue referece of type Q::vaue type:

* (s denotes avariable of of type queus_op_st at us,

g. push_back(e);

Effects:

Synchronization:
Postcondition:

Return type:

Throws:

Exception safety:

g. push_back(rve);

Effects:

Synchronization:
Postcondition:
Return type:
Throws:

Exception safety:

Waits until the queueis not full (for bounded queues) and then push back e to the queue copying it (this
could need an allocation for unbounded queues).

Prior pull-like operations on the same object synchronizes with this operation.

! g.enpty().

voi d.

If the queue was closed, throws sync_queue is closed. Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

Waits until the queue is not full (for bounded queues) and then push e to the queue moving it back in
the queue (this could need an allocation for unbounded queues).

Prior pull-like operations on the same object synchronizes with this operation.

! g.enpty().

voi d.

If the queue is closed, throws sync_queue is _closed. Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

211

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

g.pull _front(lve)

Effects:

Synchronization:

Postcondition:
Return type:

Throws;

Exception safety:

e = qg.pull_front()

Requires:

Effects:

Synchronization:

Postcondition:
Return type:
Return:

Throws:

Exception safety:

Waits until the queue is not empty and then pull_front the element from the queue q and moves the
pulled element into | ve (this could need an allocation for unbounded queues).

Prior pull-like operations on the same object synchronizes with this operation.
I g.full ().

voi d.

Any exception thrown by the move of e.

If an exception is thrown then the queue state is unmodified.

Q::value _typeis no throw copy movable. Thisis needed to ensure the exception safety.

Waits until the queue is not empty and not closed. If the queue is empty and closed throws
sync_queue_is closed. Otherwise pull the element from the queue q and moves the pulled element.

Prior pull-like operations on the same object synchronizes with this operation.
Iog.full().

Q :val ue_type.

The pulled element.

Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

Non-waiting Concurrent Queue Operations

The ConcurrentQueue concept models a queue with .

A type Q meets the ConcurrentQueue requirements if the following expressions are well-formed and have the specified semantics

e s = q.try_push_back(e);

.
(72}
1

g.try_push_back(rve);

e s =gq.try_pull_front(lre);

where

 (denotes avalue of type Q

» e denotesavalue of typeQ : val ue_t ype,

* s denotesavalue of type queue_st at us,

e udenotesavaueof typeQ : si ze_t ype,

* | ve denotes alvalue referece of type Q::value type,

 rve denotes arvalue referece of type Q::value_type:

212

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

s = ¢g.try_push_back(e);

Effects:
Synchronization:
Return type:

Return:

Postcondition:
Throws;

Exception safety:

If the queue q is not full and not closed, push back the e to the queue copying it.

Prior pull-like operations on the same object synchronizeswith this operation when the operation succeeds.
queue_op_st at us.

- If the queueisclosed, returnsqueue_op_st at us: : cl osed,

- otherwise if the queue q isfull return queue_op_status: : full,

- otherwisereturn queue_op_st at us: : success;

If the call returnsqueue_op_st at us: : success,! q.enpty().

If the queue is closed, throws sync_queue is closed. Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

s = ¢g.try_push_back(rve());

Effects:
Synchronization:
Return type:

Return:

Postcondition:
Throws;

Exception safety:

If the queue q is not full and not closed, push back the e onto the queue moving it.
Prior pull-like operations on the same object synchronizes with this operation.
queue_op_st at us.

- If the queueisclosed, returnsqueue_op_st at us: : cl osed,

- otherwise if the queue q isfull return queue_op_status: : ful I,

- otherwisereturn queue_op_st at us: : success;

If the call returnsqueue_op_st at us: : success,! q.enpty().

Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

s = qg.try_pull_front(lve)

Effects:

Synchronization:
Postcondition:
Return type:

Return:

Throws:

Exception safety:

Waits until the queue is not empty and then pull the element from the queue g and moves the pulled
eement into | ve (this could need an allocation for unbounded queues).

Prior pull-like operations on the same object synchronizes with this operation.
I g.full ().

bool .

- If the queue q is empty return queue_op_st at us: : enpty,

- otherwisereturn queue_op_st at us: : success;

Any exception thrown by the move of e.

If an exception is thrown then the queue state is unmodified.

render

213

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Non-blocking Concurrent Queue Operations

For cases when blocking for mutual exclusion is undesirable, we have non-blocking operations. The interface isthe same asthetry
operations but is allowed to also return queue_op_status::busy in case the operation is unable to complete without blocking.

Non-blocking operations are provided only for BlockingQueues

* s = . nonbl ocki ng_push_back(nb, e);

* s = @.nonbl ocki ng_push_back(nb, rve);
e s = . nonbl ocking_pull _front(nb, Ire);
where

g denotes avalue of type Q

* e denotes avaue of type Q::value_type,

s denotes avalue of type queue_st at us,

| ve denotes alvalue referece of type Q::value_type,

r ve denotes arvalue referece of type Q::value_type:

s = (. nonbl ocki ng_push_back(e);

Effects: If the queue q is not full and not closed, push back the e to the queue copying it.

Synchronization: Prior pull-like operations on the same obj ect synchronizeswith this operation when the operation succeeds.
Return type: queue_op_st at us.

Return: - If the operation would block, return queue _op_status::busy,

- otherwise, if the queueis closed, return queue_op_st at us: : cl osed,
- otherwise, if the queue q isfull return queue_op_status:: ful |,

- otherwise return queue_op_st at us: : success;

Postcondition: If the call returnsqueue_op_st at us: : success,! q.enmpty().
Throws: If the queue is closed, throws sync_queue _is_closed. Any exception thrown by the copy of e.
Exception safety: If an exception is thrown then the queue state is unmodified.

s = (. nonbl ocki ng_push_back(rve());

Effects: If the queue g is not full and not closed, push back the e onto the queue moving it.
Synchronization: Prior pull-like operations on the same object synchronizes with this operation.
Return type: queue_op_st at us.

Return: - If the operation would block, return queue _op_status::busy,

- otherwise if the queueis closed, returns queue_op_st at us: : cl osed,
- otherwise if the queue q isfull return queue_op_status::full,

- otherwisereturn queue_op_st at us: : success;

214

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Postcondition:
Throws;

Exception safety:

If the call returnsqueue_op_st at us: : success,! q.enpty().
Any exception thrown by the copy of e.

If an exception is thrown then the queue state is unmodified.

s = (. nonbl ocking_pull _front(lve)

Effects:

Synchronization:
Postcondition:
Return type:

Return:

Throws;

Exception safety:

Waits until the queue is not empty and then pull the element from the queue g and moves the pulled
eement into | ve (this could need an allocation for unbounded queues).

Prior pull-like operations on the same object synchronizes with this operation.
I g.full ().

bool .

- If the operation would block, return queue_op_status::busy,

- otherwise if the queue g is empty return queue_op_st at us: : enpt Yy,

- otherwise return queue_op_st at us: : success;

Any exception thrown by the move of e.

If an exception is thrown then the queue state is unmodified.

Bounded Concurrent Queue Operations

Bounded queues add the following valid expressions

* Qa(u);
e b=gq.full();
* u = qg.capacity();

where

 (denotes avalue of type Q

b denotes avalue of typebool ,

» udenotesavaueof typeQ : si ze_t ype,

b =q.full();

Return type: bool .

Return: Returnt r ue iff the queueisfull.

Remark: Not all queueswill have afull state, and these would always return false if the function is provided.

b = g.capacity();

Return type: Q :size_type.

Return: Return the capacity of queue.

Closed Concurrent Queue Operations

Closed queues add the following valid expressions

215

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

e g.close();

* b = g.closed();

* s = ¢.wait_push_back(e);

e s = g.wait_push_back(rve);

s =qwit_pull_front(lre);

g.close();

Effects: Close the queue.

b = g.closed();

Return type: bool .

Return: Returnt r ue iff the queue is closed.

s = g.wait_push_back(e);

Effects: Waits until the queueis not full (for bounded queues) and then push back e to the queue copying it (this
could need an allocation for unbounded queues).

Synchronization: Prior pull-like operations on the same object synchronizes with this operation.

Postcondition: I g.empty().

Return type: queue_op_st at us.

Return: - If the queueisclosed retun queue_op_st at us: : ¢l osed,

- otherwise, return queue_op_st at us: : success if no exception isthrown.
Throws: Any exception thrown by the copy of e.
Exception safety: If an exception is thrown then the queue state is unmodified.
s = (.wait_push_back(rve);

Effects: Waits until the queue is not full (for bounded queues) and then push e to the queue moving it back in
the queue (this could need an allocation for unbounded queues).

Synchronization: Prior pull-like operations on the same object synchronizes with this operation.
Postcondition: I g.empty().

Return type: queue_op_st at us.

Return:; - If the queueis closed return queue_op_st at us: : ¢l osed,

- otherwise, return queue_op_st at us: : success if no exception isthrown.

Throws: Any exception thrown by the copy of e.
Exception safety: If an exception is thrown then the queue state is unmodified.
216

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

s = q.wait_pull_front(lve)

Effects:

Synchronization:
Postcondition:
Return type:

Return:

Throws:

Exception safety:

if the queueisnot empty and not closed, waits until the queueis not empty and then pull_front the element
from the queue g and moves the pulled element into | ve.

Prior pull-like operations on the same object synchronizes with this operation.
I g.full ().

queue_op_st at us.

- If the queue is empty and closed, return queue_op_st at us: : cl osed,

- otherwise, return queue_op_st at us: : success if no exception isthrown.
Any exception thrown by the move of e.

If an exception is thrown then the queue state is unmodified.

Synchronized Bounded Queue

#i ncl ude <boost/thread/ sync_bounded_queue. hpp>

namespace boost

{

struct sync_queue_is_closed : std::exception {};

tenpl ate <typenane Val ueType>
cl ass sync_bounded_queue;

/1l Stream|i ke operators
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& oper at or <<(sync_bounded_queue<Val ueType>& sbq, Val ueType&& el em ;
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& operat
or <<(sync_bounded_queue<Val ueType>& sbhq, Val ueType const &el em ;
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& oper at or >>(sync_bounded_queue<Val ueType>& shq, Val ueType &el em ;

}

Class sync_queue_i s_cl osed

#i ncl ude <boost/thread/ sync_bounded_queue. hpp>

namespace boost

{

struct sync_queue_is_closed : std::exception {};

}

217

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class template sync_bounded_queue<>

#i ncl ude <boost/thread/ sync_bounded_queue. hpp>
namespace boost
{
tenpl ate <typenane Val ueType>
cl ass sync_bounded_queue
{
publi c:
t ypedef Val ueType val ue_type;
typedef std::size_t size_type;

sync_bounded_queue(sync_bounded_queue const &) = del ete;
sync_bounded_queue& oper at or =(sync_bounded_queue const &) = del ete;
explicit sync_bounded_queue(size_type nax_el ens);

t enpl at e <t ypenane Range>

sync_bounded_queue(si ze_type max_el ems, Range range);
~sync_bounded_queue();

/1l Cbservers

bool enpty() const;

bool full () const;
size_type capacity() const;
size_type size() const;
bool cl osed() const;

/1 Modifiers
voi d push_back(const val ue_type& Xx);
voi d push_back(val ue_type&& x);

gqueue_op_status try_push_back(const val ue_type& x);
gueue_op_status try_push_back(val ue_type&&) x);

gueue_op_st at us nonbl ocki ng_push_back(const val ue_type& x);
gueue_op_st at us nonbl ocki ng_push_back(val ue_t ype&& x);

void pull _front(value_type&);
val ue_type pull _front();

gueue_op_status try_pull _front(val ue_type&);
gueue_op_st atus nonbl ocki ng_pul | _front (val ue_type&);

void close();

Constructor sync_bounded_queue(si ze_t ype)

explicit sync_bounded_queue(size_type nax_el ens);

Effects: Constructs async_bounded _queue with a maximum number of elements given by max_el ens.
Throws: any exception that can be throw because of resources unavailable.
218

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Template Constructor sync_bounded_queue(si ze_type, Range)

tenpl ate <typename Range>
sync_bounded_queue(si ze_type max_el ems, Range range)

Effects: Constructs a sync_bounded_queue with a maximum number of elements given by max_el ens and push back the
elements of the range.

Throws: any exception that can be throw because of resources unavailable.

Non-Member Function oper at or <<()

#i ncl ude <boost/thread/ sync_bounded_queue. hpp>
namespace boost
{
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& oper at or <<(sync_bounded_queue<Val ueType>& sbq, Val ueType&& el em
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& operat O
or <<(sync_bounded_queue<Val ueType>& sbq, Val ueType const &el em ;

}
Non-Member Function oper at or >>()

#i ncl ude <boost/thread/ sync_bounded_queue. hpp>
namespace boost
{
tenpl ate <typenane Val ueType>
sync_bounded_queue<Val ueType>& oper at or >>(sync_bounded_queue<Val ueType>& sbhq, Val ueType &el enm ;

}

Synchronized Unbounded Queue

#i ncl ude <boost/thread/ sync_queue. hpp>
namespace boost
{

tenpl ate <typenane Val ueType>

cl ass sync_queue

/1l Stream|ike operators

tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or <<(sync_queue<Val ueType>& sbq, Val ueType&& el em
tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or <<(sync_queue<Val ueType>& sbq, Val ueType const &el em
tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or >>(sync_queue<Val ueType>& sbq, Val ueType &elem

219

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Class template sync_queue<>

#i ncl ude <boost/thread/ sync_queue. hpp>

namespace boost
{
tenpl ate <typenane Val ueType>
cl ass sync_queue
{
publi c:
t ypedef Val ueType val ue_type;
t ypedef csbl:: deque<Val ueType> underl yi ng_queue_type;
typedef std::size_t size_type;

sync_queue(sync_queue const&) = del ete;
sync_queue& operat or =(sync_queue const&) = del ete;
sync_queue() ;

explicit tenplate <typenanme Range>

sync_queue(Range range); // Not yet inplenented
~sync_queue() ;

/1l Cbservers

bool enpty() const;

bool full () const;

size_type size() const;

bool cl osed() const;

/1 Modifiers

voi d push_back(const val ue_type& Xx);
voi d push_back(val ue_type&& x);

gqueue_op_status try_push_back(const val ue_type& x);
gueue_op_status try_push_back(val ue_type&&) x);

gueue_op_st at us nonbl ocki ng_push_back(const val ue_type& x);
gueue_op_st at us nonbl ocki ng_push_back(val ue_t ype&& x);

void pull _front(val ue_type&);
val ue_type pull _front();

gqueue_op_status try_pull _front(val ue_type&);
gqueue_op_st at us nonbl ocki ng_pul | _front (val ue_type&);

under| yi ng_queue_t ype underlyi ng_queue() noexcept ;

void close();

Constructor sync_bounded_queue(si ze_t ype)

explicit sync_queue();

Effects: Constructs an empty sync_queue.

Throws: any exception that can be throw because of resources unavailable.

220

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Template Constructor sync_bounded_queue(si ze_type, Range)

tenpl ate <typename Range>
sync_bounded_queue(si ze_type max_el ems, Range range)

Effects: Constructs an sync_queue with all the elements of the range.
Throws: any exception that can be throw because of resources unavailable.

Member Function ful | ()
bool full () const;
Returns: false.
Member Function under | yi ng_queue()
under | yi ng_queue_type underlyi ng_queue() noexcept
Returns: Moves internal queue.
Non-Member Function oper at or <<()

#i ncl ude <boost/thread/ sync_queue. hpp>
namespace boost

{

tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or <<(sync_queue<Val ueType>& sbq

tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or <<(sync_queue<Val ueType>& sbq

Non-Member Function oper at or >>()

#i ncl ude <boost/thread/ sync_queue. hpp>
namespace boost

{

tenpl ate <typenane Val ueType>

sync_queue<Val ueType>& oper at or >>(sync_queue<Val ueType>& sbq

}

Val ueType&& el em ;

Val ueType const &el em

Val ueType &elem ;

221

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Time Requirements

As of Boost 1.50.0, the Boost.Thread library uses Boost.Chrono library for al operations that require atime out as defined in the
standard c++11. These include (but are not limited to):

* boost::this_thread::sleep_for

* boost::this_thread::sleep_until

* boost::thread::try_join_for

* boost::thread::try_join_until

* boost::condition_variable::wait_for

* boost::condition_variable::wait_until

* boost::condition_variable_any::wait_for

* boost::condition_variable_any::wait_until
e TimedLockable::try_ | ock _for

* TinedLockabl e::try_lock_until

Deprecated

Thetimerelated functionsintroduced in Boost 1.35.0, using the Boost.Date Time library are deprecated. These include (but are not
limited to):

* boost::this_thread::sleep()
e tinmed_join()
e tinmed_wait()
e tinmed_l ock()

For the overloads that accept an absolute time parameter, an object of type boost : : syst em ti ne isrequired. Typically, this will
be obtained by adding a duration to the current time, obtained with acall to boost : : get _system ti me() . e.g.

boost: : system time const timeout=boost::get_systemtinme() + boost::posix_time: :mlliseconds(500);
ext ern bool done;

extern boost::nmutex m

extern boost::condition_variable cond;

boost : : uni que_Il ock<boost: : mutex> | k(m;

whi | e(! done)
{
if(!lcond. timed_wait(lk,tineout))
{
throw "tinmed out";
}

For the overloads that accept a TimeDuration parameter, an object of any type that meets the Boost.Date Time Time Duration re-
quirements can be used, e.g.

222

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

boost::this_thread:: sl eep(boost::posix_tinme::mlliseconds(25));
boost:: nutex m
if(mtined_|l ock(boost::posix_tine::nanoseconds(100)))

{
}

/1

Typed ef systemtine

#i ncl ude <boost/thread/thread_tine. hpp>

t ypedef boost::posix_tinme::ptinme systemtine;
See the documentation for boost : : posi x_t i me: : pti ne inthe Boost.Date_Time library.
Non-member function get _systemtine()

#i ncl ude <boost/thread/thread_tine. hpp>

systemtinme get_systemtine();

Returns: The current time.

Throws: Nothing.

223

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Emulations

—delete €Mulation

C++11 alowsto delete some implicitly generated functions as constructors and assignment using '= delete' asin

public:
thread(thread const&) = delete;

On compilers not supporting this feature, Boost.Thread relays on a partial simulation, it declares the function as private without
definition.

private:
thread(thread &);

Theemulationispartial asthe private function can be used for overload resolution for some compilersand prefer it to other overloads
that need a conversion. See bel ow the consequences on the move semantic emulation.

Move semantics

In order to implement Movabl e classes, move parameters and return types Boost. Thread uses the rval ue reference when the compiler
support it. On compilers not supporting it Boost. Thread uses either the emulation provided by Boost.Move or the emulation provided
by the previous versions of Boost. Thread depending whether BOOST _THREAD_USES MOVE is defined or not. This macros is unset
by default when BOOST_THREAD VERSI ONis 2. Since BOOST_THREAD VERSI ON 3, BOOST_THREAD USES_MOVE is defined.

Deprecated Version 2 interface

Previousto version 1.50, Boost.Thread make use of its own move semantic emulation which had more limitations than the provided
by Boost.Move. In addition, it is of interest of the whole Boost community that Boost. Thread uses Boost.Move so that boost::thread
can be stored on Movable aware containers.

To preserve backward compatibility at least during some rel eases, Boost. Thread allows the user to use the deprecated move semantic
emulation defining BOOST_THREAD_DONT_USE_MOVE.

Many aspects of move semantics can be emulated for compilers not supporting rvalue references and Boost. Thread legacy offers
tools for that purpose.

Helpers class and function

Next follows the interface of the legacy move semantic helper class and function.

224

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

nanmespace boost

{
nanmespace detail
{
t enpl at e<t ypenane T>
struct thread_nove_t
{
explicit thread_nove t(T& t_);
T& operator*() const;
T* operator->() const;
private:
voi d operator=(thread_nove_t&);
b
}
t enpl at e<t ypenane T>
boost::detail::thread_nove_t<T> nove(boost::detail::thread_nove t<T> t);
}

Movable emulation
We can write a MovableOny class as follows. You just need to follow these simple steps:

» Addaconversiontothedetail : : t hread_nove_t <cl assname>

Make the copy constructor private.
» Write a constructor taking the parameter asdet ai | : : t hr ead_nove_t <cl assname>
» Write an assignment taking the parameter asdet ai | : : t hr ead_nove_t <cl assnanme>

For example the thread class defines the following:

225

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

class thread
{
I
private:
t hread(t hread&);
t hr ead& operat or=(t hread&);
public:
detail ::thread_nove_t <thread> nove()
{
detail ::thread_nove_t <thread> x(*this);
return x;
}

operator detail::thread_nove_t<thread>()

{
}

thread(detail::thread_nove_t<thread> x)

{

return move();

t hr ead_i nf o=x- >t hread_i nf 0;
x->thread_info.reset();

}

t hread& operator=(detail::thread_nove_t<thread> x)
{

thread new_t hread(x);

swap(new_t hread) ;

return *this;

/1

Portable interface

In order to make the library code portable Boost. Thread uses some macros that will use either the ones provided by Boost.Move or
the deprecated move semantics provided by previous versions of Boost. Thread.

See the Boost.M ove documentation for a compl ete description on how to declare new Movable classes and its limitations.

BOOST_THREAD_RV_REF(TYPE) isthe equivalent of BOOST _RV_REF(TYPE)
BOOST_THREAD_RV_REF_BEGis the equivalent of BOOST_RV_REF_BEG(TYPE)
BOOST_THREAD _RV_REF_ENDis the equivalent of BOOST RV_REF_END(TYPE)

BOOST_THREAD_FWD_REF(TYPE) isthe equivalent of "‘BOOST_FWD_REF(TY PE)

In addition the following macros are needed to make the code portable:

BOOST_THREAD_RV(V) macro to access the rvalue from aBOOST_THREAD_RV_RER(TYPE),
BOOST_THREAD MAKE RV_REF(RVALUE) makes arvalue.
BOOST_THREAD DCL_MOVABLE(CLASS) to avoid conflicts with Boost.Move

BOOST_THREAD DCL_MOVABLE BEG(T1) and BOOST THREAD DCL_MOVABLE ENDarevariant of BOOST _THREAD DCL_MOVABLE
when the parameter is a template instantiation.

Other macros are provided and must be included on the public section:

BOOST_THREAD NO_COPYABLE declares aclass no-copyable either del eting the copy constructors and copy assignment or moving
them to the private section.

226

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

e BOOST_THREAD MOVABLE(CLASS) declaresall theimplicit conversionsto an rvalue-reference.

e BOOST_THREAD MOVABLE_ONLY(CLASS) isthe equivalent of BOOST_MOVABLE_BUT_NOT_COPYABLE(CLASS)

+ BOOST_THREAD COPYABLE_AND MOVABLE(CLASS) isthe equivalent of BOOST _COPYABLE_AND_ MOVABLE(CLASS)
BOOST_THREAD NO COPYABLE(CLASS)

This macro marks a class as no copyable, disabling copy construction and assignment.

BOOST_THREAD_MOVABLE(CLASS)

This macro marks a class as movable, declaring all the implicit conversions to an rvalue-reference.

BOOST_THREAD MOVABLE_ONLY(CLASS)

This macro marks a type as movable but not copyable, disabling copy construction and assignment. The user will need to write a
move constructor/assignment to fully write a movable but not copyable class.

BOOST_THREAD_COPYABLE_AND_MOVABLE(CLASS)

Thismacro marks atype as copyable and movable. The user will need to write amove constructor/assignment and a copy assignment
to fully write a copyable and movable class.

BOOST_THREAD_RV_REF(TYPE) , BOOST_THREAD RV_REF_BEG and BOOST_THREAD RV_REF_END

Thismacro is used to achieve portable syntax in move constructors and assignments for classes marked as BOOST_THREAD_COPY-
ABLE_AND MOVABLE or BOOST _THREAD MOVABLE ONLY.

BOOST_THREAD RV_REF_BEGand BOOST_THREAD_RV_REF_END are used when the parameter end with a> to avoid the compiler
error.

BOOST_THREAD_RV(V)

While Boost.Move emulation allows to access an rvalue reference BOOST_THREAD RV_REF(TYPE) using the dot operator, the
legacy defines the oper at or - >. We need then a macro BOOST_THREAD_RV that mask this difference. E.g.

t hread(BOOST_THREAD RV_REF(thread) x)

{
t hread_i nf o=BOOST_THREAD RV(x).thread_i nfo;
BOOST_THREAD RV(X).thread_info.reset();

The use of this macros has reduced considerably the size of the Boost. Thread move related code.

BOOST_THREAD_NMAKE_RV_REF(RVALUE)

While Boost.Move is the best C++03 move emulation there are some limitations that impact the way the library can be used. For
example, with the following declarations

class thread {

I
private:

thread(thread &);
public:
thread(rv<thread>&);
I
s

227

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

This could not work on some compilers even if thread is convertible to r v<t hr ead> because the compiler prefers the private copy
constructor.

thread nkth()
{

return thread(f);

}

On these compilers we need to use instead an explicit conversion. The library provides a move member function that allows to
workaround the issue.

thread nkth()
{

return thread(f). nove();

}
Notethat : : boost : : move can hot be used in this case as thread is not implicitly convertibleto t hr ead&.

thread nkth()
{

return ::boost::nove(thread(f));

}
To make the code portable Boost. Thread the user needs to use a macro BOOST_THREAD MAKE_RV_REF that can beused asin

thread nkth()

{
return BOOST_THREAD MAKE_RV_REF(thread(f));

}

Note that this limitation is shared also by the legacy Boost. Thread move emulation.

BOOST_THREAD_DCL_MOVABLE, BOOST THREAD DCL_MOVABLE BEG(T1) and BOOST THREAD DCL_MOVABLE END

As Boost.Move defines also the boost: : nove function we need to specialize the has_nove_enul ati on_enabl ed_aux
metafunction.

tenpl ate <>
struct has_nove_enul ati on_enabl ed_aux<t hr ead>
BOOST_MOVE_BOOST_NS: : i nt egr al _const ant <bool , true>

{};
so that the following Boost.Move overload is disabled

tenpl ate <class T>
inline typenane BOOST_MOVE_BOOST_NS: : di sabl e_i f <has_nove_enul ati on_enl
abl ed_aux<T>, T&>::type nmove(T& Xx);

ThemacrosBOOST _THREAD DCL_MOVABLE(CLASS) , BOOST _THREAD DCL_MOVABLE_BEG(T1) and BOOST THREAD DCL_MOV-
ABLE_END are used for this purpose. E.g.

BOOST_THREAD_DCL_MOVABLE(t hr ead)

and

228

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

BOOST_THREAD_DCL_MOVABLE_BEG(T) proni se<T> BOOST_THREAD DCL_MOVABLE_END

Bool explicit conversion

Locks provide an explicit bool conversion operator when the compiler provides them.
explicit operator bool () const;
The library provides un implicit conversion to an undefined type that can be used as a conditional expression.

#i f defined(BOOST_NO_EXPLI Cl T_CONVERSI ON_OPERATORS)
oper at or unspeci fied-bool -type() const;
bool operator!() const;

#el se
explicit operator bool () const;

#endi f

The user should use the lock.owns_|ock() when aexplicit conversion is required.
operator UNspecified-bool-type() const

Returns: If owns_| ock() would returnt r ue, avalue that evaluatestot r ue in boolean contexts, otherwise a value that eval-
uatestof al se in boolean contexts.

Throws: Nothing.
bool operator! () const

Returns: I owns_| ock().

Throws: Nothing.

Scoped Enums

Some of the enumerations defined in the standard library are scoped enums.

On compilersthat don't support them, the library uses a class to wrap the underlying type. Instead of

enum cl ass future errc

{
br oken_prom se,
future_already_retrieved,
prom se_al ready_sati sfi ed,
no_state

b

the library declare these types as

229

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

BOOST_SCOPED_ENUM DECLARE _BEQ N(future_errc)

{
br oken_prom se,
future_already_retrieved,
prom se_al ready_sati sfi ed,
no_state

}

BOOST_SCOPED_ENUM DECLARE_END(future_errc)

These macros allows to use 'future_errc' in almost al the cases as an scoped enum.
There are however some limitations:
» Thetypeisnot aC++ enum, so'is_enum<future_errc>' will be false_type.

e The emulated scoped enum can not be used in switch nor in template arguments. For these cases the user needs to use some
macros.

Instead of

switch (ev)

{

case future_errc::broken_prom se:
I

use

switch (boost::native value(ev))

{

case future_errc::broken_prom se:
And instead of

#i f def BOOST_NO_SCOPED_ENUVS

tenpl ate <>

struct BOOST_SYMBOL_WVI SIBLE is_error_code_enum<future_errc> : public true_type { };
#endi f

use

#i f def BOOST_NO_SCOPED ENUVS

templ ate <>

struct BOOST_SYMBOL_VI SIBLE is_error_code_enum<future_errc::enumtype> : public true_type { };
#endi f

230

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Acknowledgments

The original implementation of Boost.Thread was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite Boost.Thread to William Kempf's design with fresh code that could be released
under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a thread
library for C++, thislibrary has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as possible.

Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original Boost.Thread library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.

Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on
the implementation details of the code.

231

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Conformance and Extension
C++11 standard Thread library

@ Note
C++11 - Standard for Programming Language C++

232

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Table 2. C++11 standard Confor mance

Section Description Status Comments Ticket
30 Thread support library ~ Yes - -
30.1 General - - -
30.2 Requirements - - -
30.2.1 Template parameter - - -
names
30.2.2 Exceptions Yes - -
30.2.3 Native handles Yes - -
30.24 Timing specifications Yes - -
30.25 Requirementsfor Lock- Yes - -
able types
30.25.1 In general - - -
30.25.2 BasicLockablerequire- Yes - -
ments
30.25.3 Lockable requirements yes - -
30.254 TimedLockablerequire- Yes - -
ments
30.2.6 decay_copy - - -
30.3 Threads Yes - -
30.3.1 Classthread Yes - -
30.3.1.1 Class thread::id Yes - -
30.3.1.2 thread constructors Partial - -
30.3.1.3 thread destructor Yes - -
30.3.14 thread assignment Yes - -
30.3.15 thread members Yes - -
30.3.1.6 thread static members ~ Yes - -
30.3.1.7 thread specialized a- Yes - -
gorithms
30.3.2 Namespace this thread Yes - -
304 Mutual exclusion Partial - -
304.1 Mutex requirements Yes - -
233

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Section Description Status Comments Ticket

304.1.1 In general Yes - -

30.4.1.2 Mutex types Yes - -

304.1.2.1 Class mutex Yes - -

30.4.1.2.2 Classrecursive mutex Yes - -

30.4.1.3 Timed mutex types Yes - -

304.1.31 Classtimed mutex Yes - -

304.1.3.1 Class recurs- Yes - -
ive_timed_mutex

30.4.2 Locks Yes - -

304.2.1 Class template Yes - -
lock_guard

30.4.2.2 Class template Yes - -
unique_lock

304.2.2.1 unique _lock construct- Yes - -
ors, destructor, and as-
signment

30.4.2.2.2 unigque_lock locking Yes - -

30.4.2.2.3 unique_lock modifiers ~ Yes - -

30.4.2.2.4 unique_lock observers Yes - -

30.4.3 Generic locking a- Partial variadic #6227
gorithms

30.4.4 Cadll once Yes - -

30441 Struct once flag Yes - -

30.4.4.2 Function call_once Yes - -

305 Condition variables Yes - -

30.5.1 Class condition vari- Yes - -
able

30.5.2 Class condition vari- Yes - -
able any

30.6 Futures Yes - -

30.6.1 Overview Partial - -

30.6.2 Error handling Yes - -

234

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Section Description Status Comments Ticket

30.6.3 Class future_error - - -

30.6.4 Shared state - - -

30.6.5 Classtemplate promise Yes - -

30.6.6 Class template future Yes - -

30.6.7 Class template Yes - -
shared_future

30.6.8 Function template Yes - -
async

30.6.9 Class template pack- Yes - -
aged task

Table 3. Extension

Section Description Comments
30.3.1.5.x interrupt -
30.3.2.x Interruption -
30.3.2y at_thread_exit -
30.4.3.x Generic locking algorithms begin/end -

C++14 standard Thread library - accepted changes

S Note
Working Draft, Standard for Programming Language C++

Table 4. [@http://isocpp.org/files/paper IN3659.html N3659 Shared locking in C++ revison 2]
Conformance

Section Description Status Comments
304.1.4 Shared L ockables Types Yes -
304.1.4.1 shared_mutex class Yes -
30.4.2.3 Class template shared_|lock Yes -
235

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

C++1y TS Concurrency - On going proposals

C++ Latches and Barriers

3 Note
N3600 C++ Latches and Barriers

S Note
N3817 C++ Latches and Barriers

Table 5. C++ Latchesand Barriers Conformance

Section Description Status
X.1 Classlatch Partial
X.2 Class barrier No

C++ Concurrent Queues

S Note
N3533 C++ Concurrent Queues

Comments

A new classlatch hasbeen ad-
ded. The interface is a super
set of the one of the proposal,
taking some of the functions
of the class barrier.

Even if Boost.Thread has a
class boost:barrier it doesn't
provides the same kind of ser-
vices. Thereisan experimental
completion_latch that could be
used instead.

236

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3600.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3817.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3533.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Table 6. C++ Concurrent Queues Conformance

Section Description Status Comments

X.1 Conceptual interface Partial The interface provided has
some differences respect to
thisproposal. All the functions
having a queue _op_status are
not provided. No lock-free
concrete classes

X.11 Basic Operations Partial -

X.111 push yes renamed push_back.

X.1.1.2 value _pop no renamed pull_front with two
flavors.

X.12 Non-waiting operations - -

X.121 try_push yes renamed try _push_back

X.1.2.2 try_pop yes renamed try_pull_back

X.1.3 Non-blocking operations - -

X.131 nonblocking_push Yes renamed nonblock-
ing_push_back

X.1.3.2 nonblocking_pop Yes renamed nonblock-
ing_pull_front

X.1.4 Push-front operations No -

X.15 Closed queues Partial -

X.151 close Yes -

X.15.2 is closed Yes renamed closed

X.15.3 wait_push Yes renamed wait_push_back

X.154 wait_pop Yes renamed wait_pull_front

X.155 wait_push front no -

X.1.5.6 wait_pop_back no -

X.1.5.6 open no -

X.1.6 Empty and Full Queues Yes -

X.16.1 is empty Yes -

X.1.6.2 is full Yes Added capacity

X.1.7 Queue Names No Not considered a must for the
time been.

237

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Section

X.18

X.1.9

X.1.10

X.111

X.2

X.21

X.21

X.3

X.31

X.3.2

X.3.3

X.34

X.34

Description

Element Type Requirements
Exception Handling

Queue Ordering

L ock-Free Implementations

Concrete queues

Locking Buffer Queue

L ock-Free Buffer Queue

Additional Conceptual Tools
Fronts and Backs

Streaming Iterators

Storage Iterators

Binary Interfaces

Managed Indirection

Asynchronous Executors

Status

Yes?

Yes?

Yes?

No

Partial

Partial

No

No

No

No

No

No

No

Comments

waiting to stabilize the lock-
based interface. Will use
Boost.LockFree once it is
Boost.Move aware.

classes sync queue and a
sync_bounded_queue.

waiting to stabilize the lock-
based interface. Will use
Boost.LockFree once it is
Boost.Move aware.

While Boost.Thread implementation of executors would not use dynamic polymorphism, it is worth comparing with the current
trend on the standard.

K

Note

N3785 Executors and Schedulers

238

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3785.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Table 7. Asynchronous Executors

Section

V.11

V.11

V.11

V.12

V.1.2

V.1.2

V.2

V.21

V.2.2

V.2.3

V.24

V.25

Improvements to std::future<T> and Related APIs

K
K

Note

Description
Class executor

add

num_of_pendin_closures
Class sceduled _executor

add_at

add_after

Concrete executor classes

thread pool

serial_executor

loop_executor

inline_executor

thread_executor

Status

Yes

Yes

No

No

No

No

No

Yes

yes

Yes

Yes

Yes

N3857-Improvements to std::future<T> and Related APIs

Note

Comments

renamed with a function tem-
plate submit

renamed with a function tem-
plate submit_at

renamed with a function tem-
plate submit_after

static version Ba-
sic_thread pool, dynamic one
execduler_adaptor<ba-
sic_thread pool>

static version loop_scheduler,
dynamic one execduler_ad-
aptor<loop_scheduler>

static version inline_executor,
dynamic one execduler_ad-
aptor<inline_executor>

static version thread_executor,
dynamic one execduler_ad-
aptor<thread_executor>

These functions are based on N3634 - mprovementsto std::future<T> and related APIs C++1y proposal by N.
Gustafsson, A. Laksberg, H. Sutter, S. Mithani.

239

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3634.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread 4.3.0

Table 8. Improvementsto std::future<T> and related API 5]

Section Description Status Comments

30.6.6 Class template future Partial -

30.6.6 unwrap constructor Yes -

30.6.6 then Yes -

30.6.6 unwrap Yes -

30.6.6 ready Partial is ready

30.6.7 Classtemplate shared future Partial -

30.6.6 unwrap constructor Yes -

30.6.7 then Yes -

30.6.7 unwrap No AXXXX

30.6.7 ready Partial is ready

30.6.X Function template when_all Partial interface not compl ete #7447
30.6.X Function template when_any Partial interface not complete #7446
30.6.X Function template No #XXXX

when_any swaped

30.6.X Function template Yes -
make ready future

30.6.8 Function template async Yes -

C++ Stream Mutexes - C++ Stream Guards

While Boost. Thread implementation of stream mutexes differ in the approach, it is worth comparing with the current trend on the
standard.

@ Note
These functions are based on N3535 - C++ Stream M utexes by Lawrence Crowl.

S Note
This proposal has been replaced already by N3678 - C++ Stream Guards, which has been replaced by N3665 - Un-
interleaved String Output Streaming and N3750 - C++ Ostream Buffers

240

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3535.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3678.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3678.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3678.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3678.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread 4.3.0

Table 9. C++ Stream M utexes Confor mance

Section Description Status Comments

X.1 Classtemplate stream _mutex Partial Renamed extern-
ally locked_stream<>

X.21 constructor Partial externally locked_stream
needs a mutex in addition as
argument.

X.2.2 lock yes -

X.2.3 unlock yes -

X.2.4 try_lock yes -

X.2.5 hold Yes -

X.2.6 bypass Yes -

X.2 Classtemplate stream_guard Yes -

X.21 stream_guard Yes -

X.2.2 ~stream_guard Yes -

X.2.3 bypass Yes -

X.3 Stream Operators Yes -

X.4 Predefined Objects No -

241

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Thread 4.3.0
	Table of Contents
	Overview
	Using and building the library
	Configuration
	Boost.Chrono
	Boost.Move
	Boost.DateTime
	Boost.Atomic
	boost::thread::operator== deprecated
	boost::condition deprecated
	Mutex nested lock types deprecated
	thread::id
	Shared Locking Generic
	Shared Locking Upwards Conversion
	Explicit Lock Conversion
	unique_future versus future
	promise lazy initialization
	promise Allocator constructor
	Call to terminate if joinable
	once_flag
	Signature parameter for packaged_task
	-var thread constructor with variadic rvalue parameters
	future<>::get() invalidates the future
	Interruptions
	Version

	Limitations
	SunPro
	VACPP
	WCE

	History
	Future
	Thread Management
	Synopsis
	Tutorial
	Launching threads
	Thread attributes
	Exceptions in thread functions
	Detaching thread
	Joining a thread
	Destructor V1
	Destructor V2
	Interruption
	Thread IDs
	Using native interfaces with Boost.Thread resources
	Using Boost.Thread interfaces in a native thread

	Class thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Thread Constructor
	Thread Attributes Constructor EXTENSION
	Thread Callable Move Constructor
	Thread Attributes Move Constructor EXTENSION
	Thread Constructor with arguments
	Thread Destructor
	Member function joinable()
	Member function join()
	Member function timed_join() DEPRECATED
	Member function try_join_for() EXTENSION
	Member function try_join_until() EXTENSION
	Member function detach()
	Member function get_id()
	Member function interrupt() EXTENSION
	Static member function hardware_concurrency()
	Static member function physical_concurrency()
	Member function native_handle()
	operator== DEPRECATED
	operator!= DEPRECATED
	Static member function sleep() DEPRECATED
	Static member function yield() DEPRECATED
	Member function swap()
	Non-member function swap()
	Class boost::thread::id
	Default constructor
	operator==
	operator!=
	operator<
	operator>
	operator<=
	operator>=
	Friend operator<<

	Class boost::thread::attributes EXTENSION
	Default constructor
	Member function set_stack_size()
	Member function get_stack_size()
	Member function native_handle()

	Namespace this_thread
	Non-member function get_id()
	Non-member function interruption_point() EXTENSION
	Non-member function interruption_requested() EXTENSION
	Non-member function interruption_enabled() EXTENSION
	Non-member function sleep() DEPRECATED
	Non-member function sleep_until()
	Non-member function sleep_for()
	Non-member function yield()
	Class disable_interruption EXTENSION
	Constructor
	Destructor

	Class restore_interruption EXTENSION
	Constructor
	Destructor

	Non-member function template at_thread_exit() EXTENSION

	Class thread_group EXTENSION
	Constructor
	Destructor
	Member function create_thread()
	Member function add_thread()
	Member function remove_thread()
	Member function join_all()
	Member function is_this_thread_in()
	Member function is_thread_in()
	Member function interrupt_all()
	Member function size()

	Scoped Threads
	Motivation
	Tutorial
	Free Thread Functors
	Functor detach
	Functor join_if_joinable
	Functor interrupt_and_join_if_joinable

	Class strict_scoped_thread
	Constructor from a thread
	Move Constructor from a Callable
	Destructor

	Class scoped_thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Move Constructor from a thread
	Move Constructor from a Callable
	Destructor
	Member function joinable()
	Member function join()
	Member function try_join_for()
	Member function try_join_until()
	Member function detach()
	Member function get_id()
	Member function interrupt()
	Static member function hardware_concurrency()
	Static member function physical_concurrency()
	Member function native_handle()
	Member function swap()

	Non-member function swap(scoped_thread&,scoped_thread&)

	Synchronization
	Tutorial
	Internal Locking
	Concurrent threads of execution
	Internal locking
	Internal and external locking

	External Locking -- strict_lock and externally_locked classes
	Locks as permits
	Improving External Locking
	Allowing other strict locks

	Executing Around a Function

	Mutex Concepts
	BasicLockable Concept
	m.lock();
	m.unlock();
	is_basic_lockable trait -- EXTENSION

	Lockable Concept
	m.try_lock()
	is_lockable trait -- EXTENSION

	Recursive Lockable Concept
	is_recursive_mutex_sur_parole trait -- EXTENSION
	is_recursive_basic_lockable trait -- EXTENSION
	is_recursive_lockable trait -- EXTENSION

	TimedLockable Concept
	m.try_lock_until(abs_time)
	m.try_lock_for(rel_time)
	m.timed_lock(abs_time)
	m.timed_lock(rel_time)

	SharedLockable Concept -- C++14
	m.lock_shared()
	m.try_lock_shared()
	m.try_lock_shared_for(rel_time)
	m.try_lock_shared_until(abs_time))
	m.unlock_shared()
	m.timed_lock_shared(abs_time)

	UpgradeLockable Concept -- EXTENSION
	m.lock_upgrade()
	m.unlock_upgrade()
	m.try_lock_upgrade()
	m.try_lock_upgrade_for(rel_time)
	m.try_lock_upgrade_until(abs_time)
	m.try_unlock_shared_and_lock()
	m.try_unlock_shared_and_lock_for(rel_time)
	m.try_unlock_shared_and_lock_until(abs_time)
	m.unlock_and_lock_shared()
	m.try_unlock_shared_and_lock_upgrade()
	m.try_unlock_shared_and_lock_upgrade_for(rel_time)
	m.try_unlock_shared_and_lock_upgrade_until(abs_time)
	m.unlock_and_lock_upgrade()
	m.unlock_upgrade_and_lock()
	m.try_unlock_upgrade_and_lock()
	m.try_unlock_upgrade_and_lock_for(rel_time)
	m.try_unlock_upgrade_and_lock_until(abs_time)
	m.unlock_upgrade_and_lock_shared()

	Lock Options
	Lock option tags

	Lock Guard
	Class template lock_guard
	lock_guard(Lockable & m)
	lock_guard(Lockable & m,boost::adopt_lock_t)
	~lock_guard()

	Non Member Function make_lock_guard
	Non Member Function make_lock_guard

	With Lock Guard
	Non Member Function with_lock_guard

	Lock Concepts
	StrictLock -- EXTENSION
	L::mutex_type
	is_strict_lock_sur_parole<L>
	cl.owns_lock(m);
	Models

	Lock Types
	Class template unique_lock
	unique_lock()
	unique_lock(Lockable & m)
	unique_lock(Lockable & m,boost::adopt_lock_t)
	unique_lock(Lockable & m,boost::defer_lock_t)
	unique_lock(Lockable & m,boost::try_to_lock_t)
	unique_lock(shared_lock<mutex_type>&& sl, try_to_lock_t)
	unique_lock(shared_lock<mutex_type>&&, const chrono::time_point<Clock, Duration>&)
	unique_lock(shared_lock<mutex_type>&&, const chrono::duration<Rep, Period>&)
	unique_lock(Lockable & m,boost::system_time const& abs_time)
	template <class Clock, class Duration> unique_lock(Lockable & m,const chrono::time_point<Clock, Duration>& abs_time)
	template <class Rep, class Period> unique_lock(Lockable & m,const chrono::duration<Rep, Period>& abs_time)
	~unique_lock()
	bool owns_lock() const
	Lockable* mutex() const noexcept
	explicit operator bool() const
	Lockable* release()

	Class template shared_lock - C++14
	shared_lock()
	shared_lock(Lockable & m)
	shared_lock(Lockable & m,boost::adopt_lock_t)
	shared_lock(Lockable & m,boost::defer_lock_t)
	shared_lock(Lockable & m,boost::try_to_lock_t)
	shared_lock(Lockable & m,boost::system_time const& abs_time)
	~shared_lock()
	bool owns_lock() const
	Lockable* mutex() const
	explicit operator bool() const
	Lockable* release()

	Class template upgrade_lock - EXTENSION
	Class template upgrade_to_unique_lock -- EXTENSION
	Mutex-specific class scoped_try_lock -- DEPRECATED

	Other Lock Types - EXTENSION
	Strict Locks
	Class template strict_lock
	strict_lock(Lockable & m)
	~strict_lock()

	Class template nested_strict_lock
	nested_strict_lock(Lock & lk)
	~nested_strict_lock() noexcept
	bool owns_lock(mutex_type const* l) const noexcept

	Non Member Function make_strict_lock
	Non Member Function make_nested_strict_lock

	Locking pointers
	Class template const_strict_lock_ptr
	const_strict_lock_ptr(T const&,Lockable&)
	const_strict_lock_ptr(T const&,Lockable&,adopt_lock_t)
	~const_strict_lock_ptr()
	operator->() const
	operator*() const

	Class template strict_lock_ptr
	strict_lock_ptr(T const&,Lockable&)
	strict_lock_ptr(T const&,Lockable&,adopt_lock_t)
	~strict_lock_ptr()
	operator->()
	operator*()

	Externally Locked
	Template Class externally_locked
	externally_locked(mutex_type&, const T&)
	externally_locked(mutex_type&, T&&)
	externally_locked(mutex_type&)
	externally_locked(externally_locked&&)
	externally_locked(externally_locked&)
	externally_locked(externally_locked&&)
	externally_locked(externally_locked&)
	get(strict_lock<mutex_type>&)
	get(strict_lock<nested_strict_lock<Lock>>&)
	get(strict_lock<nested_strict_lock<Lock>>&)

	Template Class externally_locked<T&>
	externally_locked<T&>(mutex_type&, T&)
	externally_locked<T&>(externally_locked&&)
	externally_locked(externally_locked&&)
	externally_locked(externally_locked&)
	get(strict_lock<mutex_type>&)
	get(strict_lock<nested_strict_lock<Lock>>&)
	get(strict_lock<nested_strict_lock<Lock>>&)

	swap(externally_locked&, externally_locked&)

	Class template shared_lock_guard
	shared_lock_guard(SharedLockable & m)
	shared_lock_guard(SharedLockable & m,boost::adopt_lock_t)
	~shared_lock_guard()

	Class template reverse_lock
	reverse_lock(Lock & m)
	~reverse_lock()

	Lock functions
	Non-member function lock(Lockable1,Lockable2,...)
	Non-member function lock(begin,end) // EXTENSION
	Non-member function try_lock(Lockable1,Lockable2,...)
	Non-member function try_lock(begin,end) // EXTENSION

	Lock Factories - EXTENSION
	Non Member Function make_unique_lock(Lockable&)
	Non Member Function make_unique_lock(Lockable&,tag)
	Non Member Function make_unique_locks(Lockable& ...)

	Mutex Types
	Class mutex
	Member function native_handle()

	Typedef try_mutex
	Class timed_mutex
	Member function native_handle()

	Class recursive_mutex
	Member function native_handle()

	Typedef recursive_try_mutex
	Class recursive_timed_mutex
	Member function native_handle()

	Class shared_mutex -- C++14
	Class upgrade_mutex -- EXTENSION
	Class null_mutex -- EXTENSION

	Condition Variables
	Class condition_variable
	condition_variable()
	~condition_variable()
	void notify_one()
	void notify_all()
	void wait(boost::unique_lock<boost::mutex>& lock)
	template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)
	bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)
	template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)
	template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)
	template <class Clock, class Duration> cv_status wait_until(boost::unique_lock<boost::mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time)
	template <class Rep, class Period> cv_status wait_for(boost::unique_lock<boost::mutex>& lock, const chrono::duration<Rep, Period>& rel_time)
	template <class Clock, class Duration, class Predicate> bool wait_until(boost::unique_lock<boost::mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)
	template <class Rep, class Period, class Predicate> bool wait_for(boost::unique_lock<boost::mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred)

	Class condition_variable_any
	condition_variable_any()
	~condition_variable_any()
	void notify_one()
	void notify_all()
	template<typename lock_type> void wait(lock_type& lock)
	template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)
	template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)
	template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)
	template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)
	template <class lock_type, class Clock, class Duration> cv_status wait_until(lock_type& lock, const chrono::time_point<Clock, Duration>& abs_time)
	template <class lock_type, class Rep, class Period> cv_status wait_for(lock_type& lock, const chrono::duration<Rep, Period>& rel_time)
	template <class lock_type, class Clock, class Duration, class Predicate> bool wait_until(lock_type& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)
	template <class lock_type, class Rep, class Period, class Predicate> bool wait_for(lock_type& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred)

	Typedef condition DEPRECATED V3
	Non-member Function notify_all_at_thread_exit()

	One-time Initialization
	Typedef once_flag
	Non-member function call_once

	Barriers -- EXTENSION
	Class barrier
	Constructor barrier(unsigned int)
	Constructor barrier(unsigned int, F&&)
	Destructor ~barrier()
	Member Function wait()
	Member Function count_down_and_wait()

	Latches -- EXPERIMENTAL
	Introdcution
	Examples
	Class latch
	Constructor latch(std::size_t)
	Destructor ~latch()
	Member Function wait()
	Member Function try_wait()
	Member Function wait_for()
	Member Function wait_until()
	Member Function count_down()
	Member Function count_down_and_wait()
	Member Function reset()

	Executors and Schedulers -- EXPERIMENTAL
	Introduction
	Examples
	Parallel Quick Sort

	Design Rationale
	Reference
	Concept Closure
	Concept Executor
	e.submit(lw);
	e.submit(rw);
	e.submit(lc);
	e.submit(lc);
	e.close();
	b = e.close();
	e.try_executing_one();
	e.reschedule_until(p);

	Class work
	Class executor
	Constructor executor()
	Destructor ~executor()

	Template Class executor_adaptor
	Constructor executor_adaptor(Args&& ...)
	Destructor ~executor_adaptor()
	Function member underlying_executor()

	Template Class serial_executor
	Constructor serial_executor(Executor&, chrono::duration<Rep, Period>)
	Destructor ~serial_executor()
	Function member underlying_executor()

	Class basic_thread_pool
	Constructor basic_thread_pool(unsigned const)
	Destructor ~basic_thread_pool()

	Class loop_executor
	Constructor loop_executor()
	Destructor ~loop_executor()
	Function member loop()
	Function member run_queued_closures()

	Futures
	Overview
	Creating asynchronous values
	Wait Callbacks and Lazy Futures
	Handling Detached Threads and Thread Specific Variables
	Executing asynchronously
	Shared Futures
	Making immediate futures easier
	Associating future continuations
	Futures Reference
	Enumeration state
	Enumeration future_errc
	Enumeration launch
	Specialization is_error_code_enum<future_errc>
	Non-member function make_error_code()
	Non-member function make_error_condition()
	Non-member function future_category()
	Class future_error
	Constructor
	Member function code()

	Enumeration future_status
	Class exceptional_ptr EXPERIMENTAL
	Constructor

	future class template
	Default Constructor
	Destructor
	Move Constructor
	Unwrap Move Constructor - EXTENSION
	Move Assignment Operator
	Member function swap()
	Member function get()
	Member function get_or() - EXTENSION
	Member function wait()
	Member function timed_wait() DEPRECATED SINCE V3.0.0
	Member function timed_wait() DEPRECATED SINCE V3.0.0
	Member function wait_for()
	Member function wait_until()
	Member function valid()
	Member function is_ready() EXTENSION
	Member function has_value() EXTENSION
	Member function has_exception() EXTENSION
	Member function get_exception_ptr() EXTENSION
	Member function get_state() EXTENSION
	Member function share()
	Member function then() - EXTENSION
	Member function unwrap() EXTENSION

	shared_future class template
	Default Constructor
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function wait_for()
	Member function wait_until()
	Member function valid()
	Member function is_ready() EXTENSION
	Member function has_value() EXTENSION
	Member function has_exception() EXTENSION
	Member function get_exception_ptr() EXTENSION
	Member function get_state() EXTENSION
	Member function then() EXTENSION

	promise class template
	Default Constructor
	Allocator Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function set_value()
	Member Function set_exception()
	Member Function set_value_at_thread_exit()
	Member Function set_exception_at_thread_exit()
	Member Function set_wait_callback() EXTENSION

	packaged_task class template
	Task Constructor
	Allocator Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function operator()()
	Member Function make_ready_at_thread_exit()
	Member Function reset()
	Member Function set_wait_callback() EXTENSION

	Non-member function decay_copy()
	Non-member function async()
	Non-member function wait_for_any() - EXTENSION
	Non-member function wait_for_all() - EXTENSION
	Non-member function make_ready_future() EXTENSION
	Non-member function make_exceptional() EXTENSION
	Non-member function make_future() DEPRECATED
	Non-member function make_shared_future() DEPRECATED

	Thread Local Storage
	Class thread_specific_ptr
	thread_specific_ptr();
	explicit thread_specific_ptr(void (*cleanup_function)(T*));
	~thread_specific_ptr();
	T* get() const;
	T* operator->() const;
	T& operator*() const;
	void reset(T* new_value=0);
	T* release();

	Synchronized Data Structures
	Synchronized Values - EXPERIMENTAL
	Tutorial
	The Problem with Mutexes
	Beyond Simple Accesses
	Operations Across Multiple Objects
	Value semantics

	Reference
	Class synchronized_value
	synchronized_value()
	synchronized_value(T const&)
	synchronized_value(synchronized_value const&)
	synchronized_value(T&&)
	synchronized_value(synchronized_value&&)
	operator=(synchronized_value const&)
	operator=(T const&)
	get() const
	operator T() const
	swap(synchronized_value&)
	swap(synchronized_value&)
	operator->()
	operator->() const
	synchronize()
	synchronize() const
	operator*()
	operator*() const

	Non-Member Function synchronize

	Synchronized Queues -- EXPERIMENTAL
	Introduction
	Tutorial
	Examples
	Reference
	Synchronized Queue Model
	Bounded-Unbounded Queues
	Locking/Lock-free Queues
	Closed Queue
	Concurrent Queues Throw specification
	Locking
	Allocation

	Basic Concurrent Queue Operations
	q.push_back(e);
	q.push_back(rve);
	q.pull_front(lve)
	e = q.pull_front()

	Non-waiting Concurrent Queue Operations
	s = q.try_push_back(e);
	s = q.try_push_back(rve());
	s = q.try_pull_front(lve)

	Non-blocking Concurrent Queue Operations
	s = q.nonblocking_push_back(e);
	s = q.nonblocking_push_back(rve());
	s = q.nonblocking_pull_front(lve)

	Bounded Concurrent Queue Operations
	b = q.full();
	b = q.capacity();

	Closed Concurrent Queue Operations
	q.close();
	b = q.closed();
	s = q.wait_push_back(e);
	s = q.wait_push_back(rve);
	s = q.wait_pull_front(lve)

	Synchronized Bounded Queue
	Class sync_queue_is_closed
	Class template sync_bounded_queue<>
	Constructor sync_bounded_queue(size_type)
	Template Constructor sync_bounded_queue(size_type, Range)

	Non-Member Function operator<<()
	Non-Member Function operator>>()

	Synchronized Unbounded Queue
	Class template sync_queue<>
	Constructor sync_bounded_queue(size_type)
	Template Constructor sync_bounded_queue(size_type, Range)
	Member Function full()
	Member Function underlying_queue()

	Non-Member Function operator<<()
	Non-Member Function operator>>()

	Time Requirements
	Deprecated
	Typedef system_time
	Non-member function get_system_time()

	Emulations
	=delete emulation
	Move semantics
	Deprecated Version 2 interface
	Helpers class and function
	Movable emulation

	Portable interface
	BOOST_THREAD_NO_COPYABLE(CLASS)
	BOOST_THREAD_MOVABLE(CLASS)
	BOOST_THREAD_MOVABLE_ONLY(CLASS)
	BOOST_THREAD_COPYABLE_AND_MOVABLE(CLASS)
	BOOST_THREAD_RV_REF(TYPE), BOOST_THREAD_RV_REF_BEG and BOOST_THREAD_RV_REF_END
	BOOST_THREAD_RV(V)
	BOOST_THREAD_MAKE_RV_REF(RVALUE)
	BOOST_THREAD_DCL_MOVABLE, BOOST_THREAD_DCL_MOVABLE_BEG(T1) and BOOST_THREAD_DCL_MOVABLE_END

	Bool explicit conversion
	operator unspecified-bool-type() const
	bool operator!() const

	Scoped Enums

	Acknowledgments
	Conformance and Extension
	C++11 standard Thread library
	C++14 standard Thread library - accepted changes
	C++1y TS Concurrency - On going proposals
	C++ Latches and Barriers
	C++ Concurrent Queues
	Asynchronous Executors
	Improvements to std::future<T> and Related APIs
	C++ Stream Mutexes - C++ Stream Guards

