render

Boost.Atomic

Helge Bahmann

Andrey Semashev

Copyright © 2011 Helge Bahmann
Copyright © 2012 Tim Blechmann
Copyright © 2013 Andrey Semashev

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

F g1 oTo (8 oi [l H PSPPI 2
Presenting BOOSEATOMIC ...ttt ettt e et e et ettt e ettt e et et et et et e e et e e e e e et ta e et et e e et e e et e eeanaaeennas 2
[U010 = TP UPTUPRPPRN 2
Thread coordination USING BOOSEATOMIC ... iuu ittt e et ettt e et et et e e et et et e e et e e et e e e ta e e eta e e et e aean e aetnaaeanaaennaaes 3
Enforcing happens-before through mutual @XCIUSIONoounii e 3
happens-before through r el ase aNd aCQUI T8iiei it e e e e e eanas 4
S 107> PP PRI 4
happens-before through r el ase @N0d CONSUME ... e eeaas 5
SEOUENETEBI CONSISLEINCY ...ttt etet et et ettt ettt e et e ettt ettt e et e ettt e et e ettt e et e e e ta e et eh e e ea e e e bt e e an e e e ba s e e et eeen e eebnaaeanaaetnnnns 6
ProgrammMing INEEITACESo e e e e e et ettt e ettt ettt et th e e et e e et e e et e e ean e e bn e e e e aeanaas 7
Configuration @and DUITAINGcc.uii e e ettt e e et e et e et e e et e e e e e et e e et e aeanaee 7
L= g (o YA o] (o L= PRSPPI 7
F N (o 4 Tol 0] o [o S PP UPTIN 8
S 107> S TP 10
FEALUIE TESHING MBETOS ... et ettt ettt et e ettt e et ettt e e et e e et e e et e e et e e ettt e e et e e et e aebn e eaneeennas 10
(02 ol oz o o =S PP UPTRPP 13
R (= = T =X ot 1N 1 1] oo PP 13
o] 1 oot PP 13
Singleton with double-checked 10CKING PAITEIT i e e e et e e e e e e e e eanaaees 14
WaT-TIEE FING DUFTEE ...t ettt et e et e et ettt e et e e et e e et e e e an e e et e aeanaeeanas 15
Wait-free MUILI-PIrOQUCEN QUEUE ettt ettt e e e et e ettt et et e e et e e et e e et e e ean e e e et e aeaneaeanns 17
(1001 (o TP SUPPPPRUPPPIN 19
L0411 oo PP 20
6 (= PSPPSR 20
TESLEA COMPIITENS ...ttt et et e ettt e et e e et e ettt e e et e e et e e et e e et e e e tn e ean e e et e aeanaaeennas 20
A CKNOWIEOGEIMENTS . ..ot ettt e et et oot e et e et ta e et et et et e e e et e e et e et ba e e e e e en e e ean e aean s 20
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Introduction

Presenting Boost.Atomic

Boost.Atomicisalibrary that providesat oni ¢ datatypesand operations on these datatypes, aswell asmemory ordering constraints
required for coordinating multiple threads through atomic variables. It implements the interface as defined by the C++11 standard,
but makes this feature available for platforms lacking system/compiler support for this particular C++11 feature.

Usersof thislibrary should already be familiar with concurrency in general, aswell as elementary concepts such as"mutual exclusion”.

Theimplementation makes use of processor-specific instructions where possible (viainline assembiler, platform libraries or compiler
intrinsics), and falls back to "emulating" atomic operations through locking.

Purpose

Operationson "ordinary" variables are not guaranteed to be atomic. Thismeansthat withi nt n=0 initially, two threads concurrently
executing

voi d function()

{
}

n ++;

might result in n==1 instead of 2: Each thread will read the old value into a processor register, increment it and write the result back.
Both threads may therefore write 1, unaware that the other thread is doing likewise.

Declaring at oni c<i nt > n=0 instead, the same operation on this variable will aways result in n==2 as each operation on this
variable is atomic: This means that each operation behaves asif it were strictly sequentialized with respect to the other.

Atomic variables are useful for two purposes:
» asameansfor coordinating multiple threads via custom coordination protocols
» asfaster alternativesto "locked" access to simple variables

Take alook at the examples section for common patterns.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Thread coordination using Boost.Atomic

The most common use of Boost.Atomic isto realize custom thread synchronization protocols: The goal is to coordinate accesses of
threads to shared variables in order to avoid "conflicts". The programmer must be aware of the fact that compilers, CPUs and the
cache hierarchies may generally reorder memory references at will. As a consequence a program such as:

int x =0, int y=0;

t hreadl:
X = 1;
y = 1

t hread2
if (y ==1) {
assert(x == 1);
}

might indeed fail asthereis no guarantee that the read of x by thread2 "sees" the write by threadl.

Boost.Atomic uses a synchronisation concept based on the happens-before rel ation to describe the guarantees under which situations
such as the above one cannot occur.

The remainder of this section will discuss happens-before in a "hands-on" way instead of giving a fully formalized definition. The
reader is encouraged to additionally have alook at the discussion of the correctness of afew of the examples afterwards.

Enforcing happens-before through mutual exclusion

As an introductory example to understand how arguing using happens-before works, consider two threads synchronizing using a
common mutex:

mut ex m

t hr eadl:
m | ock();
S A
m unl ock();

t hr ead2:
m | ock();
. 1* B */
m unl ock();

The "lockset-based intuition” would be to argue that A and B cannot be executed concurrently as the code paths require a common
lock to be held.

One can however also arrive at the same conclusion using happens-before; Either threadl or thread2 will succeed firstat m | ock() .
If thisis be threadl, then as a consequence, thread2 cannot succeed at m | ock() before threadl has executed m unl ock() , con-
sequently A happens-before B in this case. By symmetry, if thread2 succeedsat m | ock() first, we can conclude B happens-before
A.

Since this already exhausts al options, we can conclude that either A happens-before B or B happens-before A must always hold.
Obvioudly cannot state which of the two relationships holds, but either one is sufficient to conclude that A and B cannot conflict.

Compare the spinlock implementation to see how the mutual exclusion concept can be mapped to Boost.Atomic.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

happens-before through reiease and acquire

Themost basic pattern for coordinating threads viaBoost.Atomic usesr el ease andacqui r e onan atomic variablefor coordination:
If...

* ... threadl performs an operation A,
* ... threadl subsequently writes (or atomically modifies) an atomic variable with r el ease semantic,

« ... thread2 reads (or atomically reads-and-modifies) the value this value from the same atomic variable with acqui r e semantic
and

» ... thread2 subsequently performs an operation B,
... then A happens-before B.

Consider the following example

atom c<int> a(0);

t hr eadl:
[* A */
a.fetch_add(1, menory_order_rel ease);

t hr ead2:
int tnp = a.load(nenory_order_acquire);
it (tmp == 1) {
/* B */
} else {
oo I C
}

In this example, two avenues for execution are possible:

» The st or e operation by thread1 precedes the | oad by thread?: In this case thread2 will execute B and "A happens-before B"
holds as all of the criteria above are satisfied.

» Thel oad operation by thread2 precedes the st or e by threadl: In this case, thread2 will execute C, but "A happens-before C"
does not hold: thread2 does not read the value written by threadl through a.

Therefore, A and B cannot conflict, but A and C can conflict.

Fences

Ordering constraints are generally specified together with an accessto an atomic variable. It is however also possible to issue "fence"
operationsinisolation, in this case the fence operatesin conjunction with preceding (for acqui r e, consune or seq_cst operations)
or succeeding (for r el ease or seq_cst) atomic operations.

The example from the previous section could also be written in the following way:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

atom c<int> a(0);

t hr eadl:
[* A */
atom c_t hread_fence(nenory_order_rel ease);
a.fetch_add(1, nmenory_order_rel axed);

t hr ead2:
int tnp = a.load(nenory_order_rel axed) ;
if (tnmp == 1) {
atom c_thread_fence(nenory_order_acquire);

/* B */

} else {
/* C*/

}

This provides the same ordering guarantees as previoudly, but elides a (possibly expensive) memory ordering operation in the case
C is executed.

happens-befOl’e through rel ease and consune

The second pattern for coordinating threads via Boost.Atomic usesr el ease and consume on an atomic variable for coordination:
If ..

* ... threadl performs an operation A,
« ... threadl subsequently writes (or atomically modifies) an atomic variable with r el ease semantic,

o ... thread? reads (or atomically reads-and-modifies) the value this value from the same atomic variable with consune semantic
and

* ... thread2 subsequently performs an operation B that is computationally dependent on the value of the atomic variable,
... then A happens-before B.

Consider the following example

atom c<int> a(0);
conpl ex_data_structure datal 2];

t hr eadl:
data[l] = ...; /* A*/
a.store(1, nenory_order_rel ease);

t hread2:

int index = a.load(nenory_order_consune);
conpl ex_data_structure tnp = data[index]; /* B */

In this example, two avenues for execution are possible:

» Thest or e operation by thread1 precedes the | oad by thread2: In this case thread2 will read dat a[1] and "A happens-before
B" holds as all of the criteria above are satisfied.

* Thel oad operation by thread2 precedes the st or e by threadl: In this case thread2 will read dat a[0] and "A happens-before
B" does not hold: thread2 does not read the value written by threadl through a.

Here, the happens-before rel ationship hel ps ensure that any accesses (presumablewrites) todat a[1] by threadl happen before before
the accesses (presumably reads) to dat a[1] by thread2: Lacking this relationship, thread2 might see stale/inconsistent data.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Note that in this example, the fact that operation B is computationally dependent on the atomic variable, therefore the following
program would be erroneous:

atom c<int> a(0);
conpl ex_data_structure datal 2] ;

t hr eadl:
data[1] = ...; [* A*/
a.store(1, menory_order_rel ease);

t hr ead2:
int index = a.load(menory_order_consune);
conpl ex_data_structure tnp;
if (index == 0)

tnp = data[O0];
el se
tnp = data[1];

consune ismost commonly (and most safely! see limitations) used with pointers, compare for example the singleton with double-
checked locking.

Sequential consistency

The third pattern for coordinating threads via Boost.Atomic usesseq_cst for coordination: If ...
e ... threadl performs an operation A,

» ... threadl subsequently performs any operation with seq_cst ,

* ... threadl subsequently performs an operation B,

* ... thread2 performs an operation C,

* ... thread2 subsequently performs any operation with seq_cst ,

* ... thread2 subsequently performs an operation D,

then either "A happens-before D" or " C happens-before B" holds.

In this case it does not matter whether threadl and thread2 operate on the same or different atomic variables, or use a " stand-alone"
at omi c_t hread_f ence operation.

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Programming interfaces

Configuration and building

Thelibrary contains header-only and compiled parts. The library is header-only for lock-free cases but requires a separate binary to
implement the lock-based emulation. Users are ableto detect whether linking to the compiled part isrequired by checking the feature
macros.

The following macros affect library behavior:

Macro Description

BOOST_ATOM C_NO_CMPXCHGL6B Affects 64-bit x86 M SV C builds. When defined, the library as-
sumesthe target CPU does not support cnmpxchgl16b instruction
used to support 128-bit atomic operations. Thisisthe case with
someearly 64-bit AMD CPUs, all Intel CPUsand current AMD
CPUs support this instruction. The library does not perform
runtime detection of this instruction, so running the code that
uses 128-hit atomics on such CPUswill result in crashes, unless
this macro is defined. Note that the macro does not affect GCC
and compatible compilersbecause thelibrary infersthisinform-
ation from the compiler-defined macros.

BOOST_ATOM C_FORCE_FALLBACK When defined, all operations are implemented with locks. This
is mostly used for testing and should not be used in real world
projects.

BOOST_ATOM C _DYN LI NK and BOOST_ALL_DYN LI NK Control library linking. If defined, the library assumes dynamic

linking, otherwise static. The latter macro affects all Boost lib-
raries, not just Boost.Atomic.

BOOST_ATOM C_NO LI Band BOOST_ALL_NO LI B Control library auto-linking on Windows. When defined, dis-
ables auto-linking. The latter macro affects all Boost libraries,
not just Boost.Atomic.

Besides macros, it isimportant to specify the correct compiler options for the target CPU. With GCC and compatible compilersthis
affects whether particular atomic operations are lock-free or not.

Boost building process is described in the Getting Started guide. For example, you can build Boost.Atomic with the following
command line:

bjam --with-atom c vari ant=rel ease instruction-set=core2 stage

Memory order

#i ncl ude <boost/ nmenory_order. hpp>

The enumeration boost : : menor y_or der defines the following values to represent memory ordering constraints:

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/more/getting_started/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Constant Description

menory_order _rel axed No ordering constraint. Informally speaking, following opera-
tions may be reordered before, preceding operations may be
reordered after the atomic operation. This constraint is suitable
only when either a) further operations do not depend on the
outcome of the atomic operation or b) ordering is enforced
through stand-alone at oni ¢_t hr ead_f ence operations. The
operation on the atomic value itself is still atomic though.

menory_or der _rel ease Perform r el ease operation. Informally speaking, prevents all
preceding memory operations to be reordered past this point.

menory_or der _acquire Perform acqui re operation. Informally speaking, prevents
succeeding memory operationsto be reordered before this point.

menory_order_consume Perform consume operation. Morerelaxed (and on some archi-
tectures more efficient) than menory_order _acquire as it
only affects succeeding operations that are computationally-
dependent on the value retrieved from an atomic variable.

menmory_order _acq_rel Perform both r el ease and acqui r e operation
menory_or der _seq_cst Enforce sequential consistency. Implies menory_or -

der _acq_r el , but additionally enforces total order for all op-
erations such qualified.

See section happens-before for explanation of the various ordering constraints.
Atomic objects

#i ncl ude <boost/ atom c/atom c. hpp>

boost : : at omi c<T> provides methods for atomically accessing variables of a suitable type T. The type is suitable if it istrivially
copyable (3.9/9 [basic.types]). Following are examples of the types compatible with this requirement:

 ascalar type (e.g. integer, boolean, enum or pointer type)

» aclass orstruct that has no non-trivial copy or move constructors or assignment operators, has atrivial destructor, and that
is comparable viamentnp.

Note that classes with virtual functions or virtual base classes do not satisfy the requirements. Also be warned that structures with
"padding” between data members may compare non-equal viamencnp even though all members are equal.

boost : : at omi c<T> template class

All atomic objects supports the following operations:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Syntax
atom c()
atom c(T initial _val ue)
bool is_lock_free()

T | oad(nenory_order order)
void store(T val ue,

menory_order order)

T exchange(T new_val ue, nmenory_order order)

bool conpare_exchange_weak(T & expected, T de-
sired, nmenory_order order)

bool conpare_exchange weak(T & expected, T de-
sired, nenory_order success_order, nenory_order
failure_order)

bool conpare_exchange_strong(T & expected, T
desired, nenory_order order)

bool conpare_exchange_strong(T & expected, T
desired, nenory_order success_order, nenory_or-
der failure_order))

Description

Initialize to an unspecified value
Initializetoini ti al _val ue
Checksif the atomic object islock-free
Return current value

Write new value to atomic variable

Exchange current value with new_val ue, returning current
value

Compare current value with expect ed, changeit to desi r ed
if matches. Returnst r ue if an exchange has been performed,
and always writes the previous value back in expect ed. May
fail spuriously, so must generally beretried in aloop.

Compare current value with expect ed, changeit to desi red
if matches. Returnst r ue if an exchange has been performed,
and always writes the previous value back in expect ed. May
fail spuriously, so must generally beretried in aloop.

Compare current value with expect ed, change it to desi r ed
if matches. Returnst r ue if an exchange has been performed,
and always writes the previous value back in expect ed.

Compare current value with expect ed, changeit to desi r ed
if matches. Returnst r ue if an exchange has been performed,
and always writes the previous value back in expect ed.

or der awayshasnenory_order _seq_cst asdefault parameter.

The conpar e_exchange_weak/conpar e_exchange_st r ong variants taking four parameters differ from the three parameter
variantsin that they allow a different memory ordering constraint to be specified in case the operation fails.

In addition to these explicit operations, each at omi ¢c<T> object also supportsimplicit st or e and| oad through the use of "assignment”
and "conversion to T" operators. Avoid using these operators, as they do not allow explicit specification of a memory ordering con-

straint.

boost : : at oni c<i nt egr al > template class

In addition to the operations|listed in the previous section, boost : : at oni c<I > for integral types| supportsthefollowing operations:

Syntax

T fetch_add(T v, nmenory_order order)
T fetch_sub(T v, nmenory_order order)
T fetch_and(T v, nmenory_order order)
T fetch_or(T v, nmenory_order order)

T fetch_xor(T v, menory_order order)

Description

Add v to variable, returning previous value

Subtract v from variable, returning previous value

Apply bit-wise"and" with v to variable, returning previousvalue
Apply bit-wise"or" with v to variable, returning previous value

Apply bit-wise"xor" withv to variable, returning previousvalue

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

or der alwayshasnenory_order _seq_cst asdefault parameter.
In addition to these explicit operations, each boost : : at oni c<I > object also supportsimplicit pre-/post- increment/decrement, as

well as the operators +=, - =, &=, | = and ~=. Avoid using these operators, as they do not allow explicit specification of a memory
ordering constraint.

boost : : at omi c<poi nter > template class

In addition to the operations applicable to al atomic object, boost : : at oni c<P> for pointer types P (other than voi d pointers)
support the following operations:

Syntax Description
T fetch_add(ptrdiff_t v, menmory_order order) Add v to variable, returning previous value
T fetch_sub(ptrdiff_t v, menory_order order) Subtract v from variable, returning previous value

or der alwayshasnenory_order _seq_cst asdefault parameter.

In addition to these explicit operations, each boost : : at oni c<P> object also supports implicit pre-/post- increment/decrement, as
well asthe operators +=, - =. Avoid using these operators, asthey do not allow explicit specification of amemory ordering constraint.

Fences

#i ncl ude <boost/atom c/fences. hpp>

Syntax Description

void atomic_thread_fence(nenory_order order) Issue fence for coordination with other threads.

voi d atomi c_signal _fence(nenory_order order) Issue fence for coordination with signal handler (only in same
thread).

Feature testing macros

#i ncl ude <boost/atom c/capabilities. hpp>

Boost.Atomic defines anumber of macrosto allow compile-time detection whether an atomic datatype isimplemented using "true"
atomic operations, or whether aninternal "lock" is used to provide atomicity. The following macroswill be defined to 0 if operations
on the data type always require alock, to 1 if operations on the data type may sometimes require alock, and to 2 if they are aways
lock-free:

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Macro
BOOST_ATOM C_FLAG LOCK_FREE
BOOST_ATOM C_BOOL_LOCK_FREE

BOOST_ATOM C_CHAR LOCK_FREE

BOOST_ATOM C_CHAR16_T_LOCK_FREE

BOOST_ATOM C_CHAR32_T_LOCK_FREE

BOOST_ATOM C_ WCHAR T_LOCK_FREE

BOOST_ATOM C_SHORT_LOCK_FREE

BOOST_ATOM C_I NT_LOCK_FREE

BOOST_ATOM C_LONG_LOCK_FREE

BOOST_ATOM C_LLONG LOCK_FREE

BOOST_ATOM C_ADDRESS_LOCK_FREE oOr

| C_POl NTER_LOCK_FREE
BOOST_ATOM C_THREAD FENCE

BOOST_ATOM C_SI GNAL_FENCE

BOOST_ATOM

Description
Indicate whether at omi ¢_f | ag islock-free
Indicate whether at omi c<bool > islock-free

Indicate whether at oni c<char > (including signed/unsigned
variants) islock-free

Indicate whether at onmi c<char 16_t > (including signed/un-
signed variants) islock-free

Indicate whether at oni c<char 32_t > (including signed/un-
signed variants) is lock-free

Indicate whether at oni c<wchar _t > (including signed/unsigned
variants) islock-free

Indicate whether at omi c<shor t > (including signed/unsigned
variants) islock-free

Indicate whether at omi c<i nt > (including signed/unsigned
variants) islock-free

Indicate whether at oni c<l ong> (including signed/unsigned
variants) islock-free

Indicate whether at oni ¢c<l ong | ong> (including signed/un-
signed variants) islock-free

Indicate whether at onmi c<T *> islock-free

Indicatewhether at oni ¢_t hr ead_f ence functionislock-free

Indicate whether at omi c_si gnal _f ence functionislock-free

In addition to these standard macros, Boost.Atomic aso defines a number of extension macros, which can also be useful. Like the
standard ones, these macros are defined to values 0, 1 and 2 to indicate whether the corresponding operations are lock-free or not.

Macro

BOOST_ATOM C_| NT8_LOCK_FREE
BOOST_ATOM C | NT16_LOCK_FREE
BOOST_ATOM C_| NT32_LOCK_FREE
BOOST_ATOM C_| NT64_LOCK_FREE
BOOST_ATOM C_| NT128_LOCK_FREE

BOOST_ATOM C_NO ATOM C_FLAG I NI T

Description

Indicate whether at omi c<i nt 8_t ype> islock-free.

Indicate whether at oni c<i nt 16_t ype> islock-free.
Indicate whether at oni c<i nt 32_t ype> islock-free.
Indicate whether at oni c<i nt 64_t ype> islock-free.
Indicate whether at omi c<i nt 128_t ype> islock-free.
Defined after including at omi c_f | ag. hpp, if theimplementa-
tion does not support the BOOST_ATOM C_FLAG | NI T macro

for staticinitialization of at oni ¢_f | ag. Thismacroistypically
defined for pre-C++11 compilers.

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

In the table above, i nt N_t ype isatype that fits storage of contiguous N bits, suitably aligned for atomic operations.

12

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Usage examples

Reference counting

The purpose of areference counter isto count the number of pointersto an object. The object can be destroyed as soon asthe reference
counter reaches zero.

Implementation

#i ncl ude <boost/intrusive_ptr. hpp>
#i ncl ude <boost/atomni c. hpp>

class X {

public:
t ypedef boost::intrusive_ptr<X> pointer;
X() : refcount_(0) {}

private:
nmut abl e boost: :atonic<int> refcount_;
friend void intrusive_ptr_add_ref(const X * x)

{
x->refcount _. fetch_add(1, boost::nenory_order_rel axed);
}
friend void intrusive_ptr_rel ease(const X * x)
{
if (x->refcount_.fetch_sub(1, boost::menory_order_release) == 1) {
boost::atom c_t hread_f ence(boost:: menory_order_acquire);
del ete x;
}
}
H
Usage

X :pointer x = new X;

Discussion

Increasing the reference counter can always be donewith nermor y _or der _r el axed: New referencesto an object can only beformed
from an existing reference, and passing an existing reference from one thread to another must already provide any reguired synchron-
ization.

It is important to enforce any possible access to the object in one thread (through an existing reference) to happen before deleting
the object in adifferent thread. Thisis achieved by a"release” operation after dropping areference (any access to the object through
this reference must obviously happened before), and an "acquire" operation before deleting the object.

It would be possibletousenenory_or der _acq_r el forthef et ch_sub operation, but thisresultsin unneeded "acquire" operations
when the reference counter does not yet reach zero and may impose a performance penalty.

Spinlock

The purpose of aspin lock isto prevent multiple threads from concurrently accessing a shared data structure. In contrast to a mutex,
threads will busy-wait and waste CPU cycles instead of yielding the CPU to another thread. Do not use spinlocks unless you are
certain that you understand the consegquences.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Implementation

#i ncl ude <boost/atomni c. hpp>

cl ass spinlock {

private:
t ypedef enum {Locked, Unl ocked} LockState;
boost : : atom c<LockState> state_;

publi c:
spi nl ock() : state_(Unl ocked) {}
void | ock()
whil e (state_. exchange(Locked, boost::menory_order_acquire) == Locked) {
/* busy-wait */
}
voi d unl ock()
{
state_. store(Unl ocked, boost::nenory_order_rel ease)
}
b
Usage
spi nl ock s;
s.lock();
/| access data structure here
s. unl ock();
Discussion

The purpose of the spinlock is to make sure that one access to the shared data structure always strictly "happens before" another.
The usage of acquire/release in lock/unlock is required and sufficient to guarantee this ordering.

It would be correct to write the "lock™ operation in the following way:

I ock()
{
whil e (state_. exchange(Locked, boost::nmenory_order_rel axed) == Locked) {
/* busy-wait */
}
atom c_t hread_f ence(boost:: nenory_order_acquire)
}

This"optimization" is however a) useless and b) may in fact hurt: @) Since the thread will be busily spinning on a blocked spinlock,
it does not matter if it will waste the CPU cycles with just "exchange" operations or with both useless "exchange" and "acquire”
operations. b) A tight "exchange" loop without any memory-synchronizing instruction introduced through an "acquire" operation
will on some systems monopolize the memory subsystem and degrade the performance of other system components.

Singleton with double-checked locking pattern

The purpose of the Sngleton with double-checked |ocking patternisto ensure that at most oneinstance of a particular object iscreated.
If one instance has been created already, access to the existing object should be as light-weight as possible.

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Implementation

#i ncl ude <boost/atomni c. hpp>
#i ncl ude <boost/thread/ mut ex. hpp>

class X {
publi c:
static X * instance()
{
X * tnp = instance_.| oad(boost:: menory_order_consune);
if (rtmp) {
boost:: nutex: : scoped_| ock guard(instantiation_nutex);
tnp = instance_. | oad(boost:: menory_order_consune);
if (rtmp) {
tmp = new X
i nstance_. store(tnp, boost::nenory_order_rel ease);
}
}
return tnp;
;
private:

static boost::atom c<X *> instance_;
static boost::nutex instantiation_mutex;

I

boost::atom c<X *> X: :instance_ (0);

Usage

X * x = X :instance();
/1 dereference x

Discussion

The mutex makes sure that only oneinstance of the object isever created. Thei nst ance method must make surethat any dereference
of the object strictly "happens after” creating the instance in another thread. The use of nenor y_or der _r el ease after creating and
initializing the object and menor y_or der _consune before dereferencing the object provides this guarantee.

It would be permissibletouseenor y_or der _acqui r e instead of nenor y_or der _consunre, but this providesastronger guarantee
than is required since only operations depending on the value of the pointer need to be ordered.

Wait-free ring buffer

A wait-freering buffer provides a mechanism for relaying objects from one single "producer" thread to one single "consumer" thread
without any locks. The operations on this data structure are "wait-free" which means that each operation finishes within a constant
number of steps. This makes this data structure suitable for use in hard real-time systems or for communication with interrupt/signal
handlers.

15

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Implementation

#i ncl ude <boost/atomni c. hpp>

tenpl ate<typenane T, size_t Size>
class ringbuffer {
publi c:

ringbuffer() : head_(0), tail _(0) {}

bool push(const T & val ue)

{
size_t head = head_.| oad(boost:: menory_order_rel axed);
size_t next _head = next(head);
if (next_head == tail _.|oad(boost::nmenory_order_acquire))

return fal se;

ring_[head] = val ue;
head_. st ore(next _head, boost::menory_order_rel ease);
return true;

}

bool pop(T & val ue)
size_t tail = tail_.load(boost::menory_order_rel axed);
if (tail == head_.|oad(boost::nmenory_order_acquire))

return fal se;
value = ring_[tail];

tail_.store(next(tail), boost::menory_order_rel ease);

return true;

}
private:
size_t next(size_t current)

{

}
T ring_[Size];
boost::atom c<size t> head , tail _;

I

return (current + 1) % Si ze;

Usage

ringbuffer<int, 32> r;

/1 try to insert an el enent
if (r.push(42)) { /* succeeded */ }
else { /* buffer full */ }

/1l try to retrieve an el enent

int val ue;

if (r.pop(value)) { /* succeeded */ }
else { /* buffer enpty */ }

Discussion

The implementation makes sure that the ring indices do not "lap-around” each other to ensure that no elements are either lost or read

twice.

Furthermore it must guarantee that read-access to a particular object in pop "happens after” it has been written in push. Thisis
achieved by writing head_ with "release" and reading it with "acquire”. Conversely the implementation al so ensuresthat read access
to a particular ring element "happens before" before rewriting this element with a new value by accessing t ai | _ with appropriate

ordering constraints.

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Wait-free multi-producer queue

The purpose of the wait-free multi-producer queueisto alow an arbitrary number of producersto enqueue objectswhich areretrieved
and processed in FIFO order by a single consumer.

Implementation

t enpl at e<t ypenane T>
class waitfree_queue {
public:
struct node {
T dat a;
node * next;

voi d push(const T &data)
{
node * n = new node
n->data = data
node * stale_head = head_.| oad(boost:: menory_order_rel axed)
do {
n- >next = stal e_head;
} while (!head_. conpare_exchange_weak(stal e_head, n, boost::menory_order_rel ease))

}

node * pop_all (void)
{
T * last = pop_all _reverse(), * first =0
while(last) {
T* tnmp = last;
| ast = | ast->next;
tmp->next = first;
first = tnp;
}

return first;

}

waitfree_queue() : head_(0) {}

/1l alternative interface if ordering is of no inportance
node * pop_all _reverse(void)

{
return head_. exchange(0, boost::nmenory_order_consune)
}
private:
boost: : at om c<node *> head_;

I

17

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Usage

wai t free_queue<int> g

/1l insert elenents
q. push(42);
q. push(2);

/'l pop el enents
wai tfree_queue<int>::node * x = q.pop_all ()
whi | e(x) {
X* tnp = X,
X = X->next;
/'l process tnp->data, probably delete it afterwards
del ete tnp;

}

Discussion

The implementation guarantees that all objects enqueued are processed in the order they were enqueued by building asingly-linked
list of object in reverse processing order. The queue is atomically emptied by the consumer and brought into correct order.

It must be guaranteed that any access to an object to be enqueued by the producer "happens before" any access by the consumer.
This is assured by inserting objects into the list with release and dequeuing them with consume memory order. It is not necessary
to use acquire memory order inwai t f r ee_queue: : pop_al | because all operations involved depend on the value of the atomic
pointer through dereference

18

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Atomic

Limitations

While Boost.Atomic strives to implement the atomic operations from C++11 as faithfully as possible, there are a few limitations
that cannot be lifted without compiler support:

Using non-POD-classes as template par ameter to at oni c<T> resultsin undefined behavior: This meansthat any class con-
taining a constructor, destructor, virtual methods or access control specificationsis not avalid argument in C++98. C++11 relaxes
this dlightly by allowing "trivial" classes containing only empty constructors. Advise: Use only POD types.

C++98 compilers may transform computation- to control-dependency: Crucialy, nenmory_or der _consume only affects
computationally-dependent operations, but in general there is nothing preventing a compiler from transforming a computation
dependency into a control dependency. A C++11 compiler would be forbidden from such a transformation. Advise: Use
menory_or der _consune only in conjunction with pointer values, as the compiler cannot speculate and transform these into
control dependencies.

Fenceoper ationsenforce" too strong” compiler ordering: Semantically, menor y_or der _acqui r e/menory_or der _consune
and menor y_or der _r el ease need to restrain reordering of memory operations only in one direction. Since there is no way to
expressthis constraint to the compiler, these act as "full compiler barriers' in thisimplementation. In corner cases this may result
in aless efficient code than a C++11 compiler could generate.

No interprocess fallback: using at oni c<T> in shared memory only works correctly, if at omi c<T>::is_| ock_free() ==
true.

19

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Atomic

Porting

Unit tests

Boost.Atomic provides a unit test suite to verify that the implementation behaves as expected:

fallback _api.cpp verifies that the fallback-to-locking aspect of Boost.Atomic compiles and has correct value semantics.

native_api.cpp verifies that all atomic operations have correct value semantics (e.g. "fetch_add" really adds the desired value,
returning the previous). It is a rough "smoke-test" to help weed out the most obvious mistakes (for example width overflow,
signed/unsigned extension, ...).

lockfree.cpp verifies that the BOOST_ATOMIC_*_ L OCKFREE macros are set properly according to the expectations for a
given platform, and that they match up with theis_lock_free member functions of the atomic object instances.

atomicity.cpp lets two threads race against each other modifying a shared variable, verifying that the operations behave atomic
as appropriate. By nature, this test is necessarily stochastic, and the test self-calibrates to yield 99% confidence that a positive
result indicates absence of an error. Thistest is very useful on uni-processor systems with preemption already.

ordering.cpp lets two threads race against each other accessing multiple shared variables, verifying that the operations exhibit
the expected ordering behavior. By nature, this test is necessarily stochastic, and the test attempts to self-calibrate to yield 99%
confidence that a positive result indicates absence of an error. This only works on true multi-processor (or multi-core) systems.
It does not yield any result on uni-processor systems or emulators (due to there being no observable reordering even the order=rel axed
case) and will report that fact.

Tested compilers

Boost.Atomic has been tested on and is known to work on the following compilers/platforms:

» gcc4.x: 1386, x86_64, ppc32, ppc64, sparcv9, armve, alpha

* Visual Studio Express 2008/Windows XP, x86, x64, ARM

Acknowledgements

» Adam Wulkiewicz created the logo used on the GitHub project page. The logo was taken from his collection of Boost logos.

20

httpo://www.renderx.com/

https://github.com/boostorg/atomic
https://github.com/awulkiew/boost-logos
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Atomic
	Table of Contents
	Introduction
	Presenting Boost.Atomic
	Purpose

	Thread coordination using Boost.Atomic
	Enforcing happens-before through mutual exclusion
	happens-before through release and acquire
	Fences
	happens-before through release and consume
	Sequential consistency

	Programming interfaces
	Configuration and building
	Memory order
	Atomic objects
	boost::atomic<T> template class
	boost::atomic<integral> template class
	boost::atomic<pointer> template class

	Fences
	Feature testing macros

	Usage examples
	Reference counting
	Implementation
	Usage
	Discussion

	Spinlock
	Implementation
	Usage
	Discussion

	Singleton with double-checked locking pattern
	Implementation
	Usage
	Discussion

	Wait-free ring buffer
	Implementation
	Usage
	Discussion

	Wait-free multi-producer queue
	Implementation
	Usage
	Discussion

	Limitations
	Porting
	Unit tests
	Tested compilers
	Acknowledgements

