
Boost.StaticAssert
John Maddock

Steve Cleary
Copyright © 2000, 2005 Steve Cleary and John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview and Tutorial ... 2

Use at namespace scope. ... 2
Use at function scope .. 3
Use at class scope .. 3
Use in templates .. 4

How it works ... 5
Test Programs ... 6

This manual is also available in printer friendly PDF format.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://sourceforge.net/projects/boost/files/boost-docs/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview and Tutorial
The header <boost/static_assert.hpp> supplies two macros:

BOOST_STATIC_ASSERT(x)
BOOST_STATIC_ASSERT_MSG(x, msg)

Both generate a compile time error message if the integral-constant-expression x is not true. In other words, they are the compile
time equivalent of the assert macro; this is sometimes known as a "compile-time-assertion", but will be called a "static assertion"
throughout these docs. Note that if the condition is true, then the macros will generate neither code nor data - and the macros can
also be used at either namespace, class or function scope. When used in a template, the static assertion will be evaluated at the time
the template is instantiated; this is particularly useful for validating template parameters.

If the C++0x static_assert feature is available, both macros will use it. For BOOST_STATIC_ASSERT(x), the error message
will be a stringized version of x. For BOOST_STATIC_ASSERT_MSG(x, msg), the error message will be the msg string.

If the C++0x static_assert feature is not available, BOOST_STATIC_ASSERT_MSG(x, msg) will be treated as BOOST_STAT-
IC_ASSERT(x).

The material that follows assumes the C++0x static_assert feature is not available.

One of the aims of BOOST_STATIC_ASSERT is to generate readable error messages. These immediately tell the user that a library
is being used in a manner that is not supported. While error messages obviously differ from compiler to compiler, but you should
see something like:

Illegal use of STATIC_ASSERTION_FAILURE<false>

Which is intended to at least catch the eye!

You can use BOOST_STATIC_ASSERT at any place where you can place a declaration, that is at class, function or namespace scope,
this is illustrated by the following examples:

Use at namespace scope.
The macro can be used at namespace scope, if there is some requirement must always be true; generally this means some platform
specific requirement. Suppose we require that int be at least a 32-bit integral type, and that wchar_t be an unsigned type. We can
verify this at compile time as follows:

#include <climits>
#include <cwchar>
#include <limits>
#include <boost/static_assert.hpp>

namespace my_conditions {

BOOST_STATIC_ASSERT(std::numeric_limits<int>::digits >= 32);
BOOST_STATIC_ASSERT(WCHAR_MIN >= 0);

} // namespace my_conditions

The use of the namespace my_conditions here requires some comment. The macro BOOST_STATIC_ASSERT works by generating
an typedef declaration, and since the typedef must have a name, the macro generates one automatically by mangling a stub name
with the value of __LINE__. When BOOST_STATIC_ASSERT is used at either class or function scope then each use of
BOOST_STATIC_ASSERT is guaranteed to produce a name unique to that scope (provided you only use the macro once on each line).
However when used in a header at namespace scope, that namespace can be continued over multiple headers, each of which may
have their own static assertions, and on the "same" lines, thereby generating duplicate declarations. In theory the compiler should
silently ignore duplicate typedef declarations, however many do not do so (and even if they do they are entitled to emit warnings in

2

Boost.StaticAssert

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

such cases). To avoid potential problems, if you use BOOST_STATIC_ASSERT in a header and at namespace scope, then enclose
them in a namespace unique to that header.

Use at function scope
The macro is typically used at function scope inside template functions, when the template arguments need checking. Imagine that
we have an iterator-based algorithm that requires random access iterators. If the algorithm is instantiated with iterators that do not
meet our requirements then an error will be generated eventually, but this may be nested deep inside several templates, making it
hard for the user to determine what went wrong. One option is to add a static assertion at the top level of the template, in that case
if the condition is not met, then an error will be generated in a way that makes it reasonably obvious to the user that the template is
being misused.

#include <iterator>
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>

template <class RandomAccessIterator >
RandomAccessIterator foo(RandomAccessIterator from,

RandomAccessIterator to)
{

// this template can only be used with
// random access iterators...
typedef typename std::iterator_traits<

RandomAccessIterator >::iterator_category cat;
BOOST_STATIC_ASSERT(

(boost::is_convertible<
cat,
const std::random_access_iterator_tag&>::value));

//
// detail goes here...
return from;

}

A couple of footnotes are in order here: the extra set of parenthesis around the assert, is to prevent the comma inside the is_con-
vertible template being interpreted by the preprocessor as a macro argument separator; the target type for is_convertible is
a reference type, as some compilers have problems using is_convertible when the conversion is via a user defined constructor
(in any case there is no guarantee that the iterator tag classes are copy-constructible).

Use at class scope
The macro is typically used inside classes that are templates. Suppose we have a template-class that requires an unsigned integral
type with at least 16-bits of precision as a template argument, we can achieve this using something like this:

3

Boost.StaticAssert

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <limits>
#include <boost/static_assert.hpp>

template <class UnsignedInt>
class myclass
{
private:

BOOST_STATIC_ASSERT_MSG(std::numeric_limits<UnsignedInt>::is_specialized, "myclass can only ↵
be specialized for types with numeric_limits support.");

BOOST_STATIC_ASSERT_MSG(std::numeric_limits<UnsignedInt>::digits >= 16, "Template argument ↵
UnsignedInt must have at least 16 bits precision.")

BOOST_STATIC_ASSERT_MSG(std::numeric_limits<UnsignedInt>::is_integer, "Template argument Un↵
signedInt must be an integer.");

BOOST_STATIC_ASSERT_MSG(!std::numeric_limits<UnsignedInt>::is_signed, "Template argument Un↵
signedInt must not be signed.");
public:

/* details here */
};

Use in templates
Normally static assertions when used inside a class or function template, will not be instantiated until the template in which it is used
is instantiated. However, there is one potential problem to watch out for: if the static assertion is not dependent upon one or more
template parameters, then the compiler is permitted to evaluate the static assertion at the point it is first seen, irrespective of whether
the template is ever instantiated, for example:

template <class T>
struct must_not_be_instantiated
{

BOOST_STATIC_ASSERT(false);
};

Will produce a compiler error with some compilers (for example Intel 8.1 or gcc 3.4), regardless of whether the template is ever in-
stantiated. A workaround in cases like this is to force the assertion to be dependent upon a template parameter:

template <class T>
struct must_not_be_instantiated
{

// this will be triggered if this type is instantiated
BOOST_STATIC_ASSERT(sizeof(T) == 0);

};

4

Boost.StaticAssert

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

How it works
BOOST_STATIC_ASSERT works as follows. There is class STATIC_ASSERTION_FAILURE which is defined as:

namespace boost{

template <bool> struct STATIC_ASSERTION_FAILURE;

template <> struct STATIC_ASSERTION_FAILURE<true>{};

}

The key feature is that the error message triggered by the undefined expression sizeof(STATIC_ASSERTION_FAILURE<0>), tends
to be consistent across a wide variety of compilers. The rest of the machinery of BOOST_STATIC_ASSERT is just a way to feed the
sizeof expression into a typedef. The use of a macro here is somewhat ugly; however boost members have spent considerable
effort trying to invent a static assert that avoided macros, all to no avail. The general conclusion was that the good of a static assert
working at namespace, function, and class scope outweighed the ugliness of a macro.

5

Boost.StaticAssert

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Test Programs
Table 1. Test programs provided with static_assert

DescriptionExpected to CompileTest Program

Illustrates usage, and should always
compile, really just tests compiler compat-
ibility.

Yesstatic_assert_test.cpp

Namespace scope test program, may
compile depending upon the platform.

Platform dependent.static_assert_example_1.cpp

Function scope test program.Yesstatic_assert_example_2.cpp

Class scope test program.Yesstatic_assert_example_3.cpp

Illustrates failure at namespace scope.Nostatic_assert_test_fail_1.cpp

Illustrates failure at non-template function
scope.

Nostatic_assert_test_fail_2.cpp

Illustrates failure at non-template class
scope.

Nostatic_assert_test_fail_3.cpp

Illustrates failure at non-template class
scope.

Nostatic_assert_test_fail_4.cpp

Illustrates failure at template class scope.Nostatic_assert_test_fail_5.cpp

Illustrates failure at template class mem-
ber function scope.

Nostatic_assert_test_fail_6.cpp

Illustrates failure of class scope example.Nostatic_assert_test_fail_7.cpp

Illustrates failure of function scope ex-
ample.

Nostatic_assert_test_fail_8.cpp

Illustrates failure of function scope ex-
ample (part 2).

Nostatic_assert_test_fail_9.cpp

6

Boost.StaticAssert

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_1.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_2.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_example_3.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_1.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_2.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_3.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_4.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_5.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_6.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_7.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_8.cpp
http://www.boost.org/doc/libs/release/doc/html/../../libs/static_assert/static_assert_test_fail_9.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.StaticAssert
	Table of Contents
	Overview and Tutorial
	Use at namespace scope.
	Use at function scope
	Use at class scope
	Use in templates

	How it works
	Test Programs

