v

Boost.Build V2 User Manual

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Build V2 User Manual
Copyright © 2006-2009, 2014 Vladimir Prus

Distributed under the Boost Software License, Version 1.0. (See accompanying fileLI CENSE_1_0. t xt or copy at http://www.boost.org/LICENSE_1_0.txt)

render

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Table of Contents

HOW O USE tNIS HOCUIMENL ...ttt ettt e ettt e ettt o et et s et e e e e et e e b s et e et e e et ebe e et e naa e e e ennes 1
FgES = = o] o IO PSP TUPPPTTRPPPPN 2
BT Lo PP P TP UPPPTTRPUPPPPN 3
[L= 1 Lo Y. ¢ [PP 4
(0] 41 1 (1= ST UTPPTRSPPPTRR 5
PrOJECE HIGIAIChIES ... et ettt e et e e et et e e et et e e et e b e e e e et e e e e eba s 7
(D= oc 0l = o | R =T £ PP PPT TR SPPPTINN 8
Static aNd SNArEA [IDANESttt ettt e et e e 10
CoNAitioNS AN BITEINBLIVESeeeei ettt et et e ettt e et et e et et e et et r e e e e ebn e et etba e e eenanns 12
= o0 = o T PP PP PR 13
OVEBIVIBIN .ttt oottt oottt e ettt oo et et e et e hh 4o et e b h oo et e ket e et e hh e e et e Eh e e et e Eh e e et e e e et e e et e b e e e era s 14
10701001 o/ £ PP PPTPTTPTPIN 15
2 To ot = g g = o U o PP PT 16
1600011108 [T o o RSP PPTTPUPPPTR 19
Fg Ve Ter 1 o] o [P PPTR PP 21
DECIAINTNG TAIGELS ... et eeeeit ettt ettt et ettt ettt et e et oot ettt e ettt ettt et e b et e e e e a b e e naans 25
(0= v PP SPPPTRRPPPPIN 29
THE BUIIA PrOCESS ...ttt ettt e et e e ettt e et e e et et e e et et e e et et e e e e eba e 31
1600]07] 00T g I = L P T P TOPPTTOTSPPPTTR 33
010 = 1 0 PP PT 34
[0 = = T PP U PP TPPPTTR 35
E N L S PSP PP UPPRT 37
10 = T o ST SPPRT 38
== (] o PP PPPTTRO 40
CUSLOIM COMIMIBINGS ... eeete ettt ettt ettt ettt e ettt e et et e et et o e et et oo et e b oo et e bt e et e b e e et e b e e et et e e et st e e e e raa e 42
PreCcomMpPIlEO HEBOEN'Sot e et ettt ettt ettt et e e et e e enaans 43
GENEIAIEA NEBOETS ... ettt ettt e et e s 44
CrOSS-COMPITBIION ...ttt e ettt ettt e e et e e s et e et oo et ete e et e et e et e st e e e e nna e e e ennas 45
(RS 1= £ 0o T PRSPPI 46
€1 o Tc = T o1 o000 (oo EO TSP PPPPTTRPPPPIN 47
BUITTIN TUIES <.ttt ettt ettt ettt e ettt oot ettt e et et e e et et n et e eba e e e e et e e eeneans 48
BUITTIN FEAIUINES ... ettt ettt e e ettt e ettt e et et e et et b et ettt e et e e b e e e e ebr e e e enb e e eenanns 51
BUITTIN TOOIS ...ttt ettt ettt e ettt e et ettt e et e e e e et et r et e ebe e e e e ebaaeeennans 55
BUITTIN IMOQUIES ... e et et et e ettt e ettt e e et et e e et et e e e e e bet e e e eebenaeeenbn s aeeeees 66
BUITTIN ClASSES ..ttt e ettt e ettt e e e ettt oo et e bt e e et e bt e e et e bh e e et e nb e e eernaeeenn 73
210 o I ol o= S TSP PP UPPPTTRUPPIN 78
(D] ol (o g SO OPPPTRTPPPPTPRPPIN 80
EXEENAET IMANUAL ... ettt ettt e e et oo et e ettt e e et e e e et et e e et e e e et e et e b e e era s 84
Fg11 oo (¥ oi (oo H PP PT TR PPPPTT 85
o a0 o L (o T o T 0= = (o TSP PP UPPPTTRPUPPPN 87
L= 01 B8 1= PPN 88
TOOIS BNO GENEIGEOTS ... ettt ettt e ettt ettt e e ettt e e et e bt e e et e tt e e e et at oo et e bt e e e e e bt e e e eebb e e eee bt aeeeentaeeeens 90
S 0 (=TT UPT 93
[TR o = R T = PSP UPPPT T 96
TOOISEL MOUUIES ...t ettt e ettt e ettt e et ettt e e et et e e e et bt s e et ettt e e ee bt e e e eebbaeeenrbaeeenn 97
Frequently ASKEA QUESIIONS iieeii et ettt ettt ettt e et e s e et e b e e et e e et e bb e et e e et et e e e b 98
How do | get the current value of feature in JAMFITE? ... e 99
| am getting a "Duplicate name of actual target” error. What doesthat mean?ccooiiiiiiiiiiniiiiii e 100
ACCESSING ENVIFONMENT VAITADIESo ettt e et ettt e e e e et e e e enta e eeenes 102
HOW tO CONLIOl PrOPEITIES OFUEI? ... ittt ettt ettt e e et e et et e e e e et e e et et e e e e eba s 103
How to control the library lINKing order 0N UNIX? ...ooeueoi ettt 104
Can | get capture external program output using a Boost.Jam variabl€?ccooiiiiiiiiiiiii e 105
How to get the project root (ak.a JAMroot) IOCAHTONTuiiiiiiii e 106
How to change compilation flagS for ONEfilE?coeee i 107
Why arethedl | - pat h and har dcode- dl | - paths Properties USaful?coooiiiiiiiiiiiiii e 108
i

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Build V2 User Manud

LI (o[R LIRS R C=3Tero 1T U= o N 109
[(=720 (= o) A 1] o] = T == 110
What is the difference between Boost.Build, b2, bj amand Perforce Jam?cccoveviiiiiiiiiiiii i 111
YN =100l AN = T (B To oW [4 g = o] o P 112
2T o g = PP 113
=0 1= o = PP RPRPS 119
T ol T =T o PSPPSR 138
o o Y PP PP PPN 141
g0 1= PR 145
iv

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

List of Tables

1. Search paths for ConfigUIation filES oo et e et e e et e e e et e e eeae e eees 19

O P PR PPPPT 23

PP PPT TR PPPPT 30

AL SUPPOITEH TOOISELS ...ttt ettt sttt ettt ettt ettt ettt e e ettt e et e et et e e bkt et ettt et e eb e et e et e et e sba e e e e naa e e e eneas 114
v

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

How to use this document

If you've just found out about Boost.Build V2 and want to know if it will work for you, start with Tutorial. You can continue with
Overview. When you're ready to try Boost.Build in practice, go to Installation.

If you are about to use Boost.Build on your project, or aready using it and have a problem, look at Overview.
If you're trying to build a project which uses Boost.Build, see Installation and then read about the section called “Invocation”.

If you have questions, please post them to our mailing list (http://boost.org/more/mailing_lists.htm#amboost). The mailing list is
aso mirrored to the newsgroup news://news.gmane.org/gmane.comp.lib.boost.build.

render

httpo://www.renderx.com/

http://boost.org/more/mailing_lists.htm#jamboost
news://news.gmane.org/gmane.comp.lib.boost.build
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Installation

To install Boost.Build from an official release or anightly build, as available on the official web site, follow these steps:
1. Unpack the release. On the command line, go to the root of the unpacked tree.
2. Run either \bootstrap.bat (on Windows), or ./bootstrap.sh (on other operating systems).

3. Run
.Ib2 install --prefix=PREFIX

where PREFI X is a directory where you want Boost.Build to be installed.
4. Optionally, add PREFI X/ bi n to your PATH environment variable.

If you are not using aBoost.Build package, but rather the version bundled with the Boost C++ Libraries, the above commands should
beruninthet ool s/ bui | d/ v2 directory.

Now that Boost.Build isinstalled, you can try some of the examples. Copy PREFI X/ shar e/ boost - bui | d/ exanpl es/ hel | o to
adifferent directory, then change to that directory and run:

PREFI X/ bi n/ b2

A simple executable should be built.

render

httpo://www.renderx.com/

http://boost.org/boost-build2
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tutorial

This section will guide you though the most basic features of Boost.Build V2. We will start with the “Hello, world” example, learn
how to use libraries, and finish with testing and installing features.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Hello, world

The simplest project that Boost.Build can construct isstored in exanpl e/ hel | o/ directory. The project is described by afile called
Janr oot that contains:

exe hello : hello.cpp ;

Even with this simple setup, you can do some interesting things. First of all, just invoking b2 will build the hel | o executable by
compiling and linking hel | 0. cpp . By default, the debug variant is built. Now, to build the release variant of hel | o, invoke

b2 rel ease

Note that the debug and rel ease variants are created in different directories, so you can switch between variants or even build multiple
variants at once, without any unnecessary recompilation. Let us extend the example by adding another lineto our project'sJanr oot :

exe hello2 : hello.cpp

Now let us build both the debug and release variants of our project again:

b2 debug rel ease

Note that two variants of hel | 02 are linked. Since we have already built both variants of hel | o, hello.cpp will not be recompiled;
instead the existing object fileswill just belinked into the corresponding variants of hel | 02. Now let usremoveal the built products:

b2 --cl ean debug rel ease

Itisalso possibleto build or clean specific targets. The following two commands, respectively, build or clean only the debug version
of hel | 02.

b2 hell o2
b2 --clean hello2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Properties

To represent aspects of target configuration such as debug and release variants, or single- and multi-threaded builds portably,
Boost.Build uses features with associated values. For example, the debug- synbol s feature can have a value of on or of f. A
property isjust a (feature, value) pair. When a user initiates a build, Boost.Build automatically tranglates the requested properties
into appropriate command-line flags for invoking toolset components like compilers and linkers.

There are many built-in features that can be combined to produce arbitrary build configurations. The following command builds the
project'sr el ease variant with inlining disabled and debug symbols enabled:

b2 rel ease inlining=off debug-synbol s=on

Properties on the command-line are specified with the syntax:

f eat ur e- nane=f eat ur e- val ue

Ther el ease and debug that we have seen in b2 invocations are just a shorthand way to specify values of the vari ant feature.
For example, the command above could also have been written this way:

b2 variant=rel ease inlining=off debug-synbol s=on
O

vari ant isso commonly-used that it has been given special status as an implicit feature— Boost.Build will deduce itsidentity just
from the name of one of its values.

A complete description of features can be found in the section called “ Features and properties’.

Build Requests and Target Requirements

The set of properties specified on the command line constitutes a build request—a description of the desired properties for building
the requested targets (or, if no targets were explicitly requested, the project in the current directory). The actual properties used for
building targets are typically a combination of the build request and properties derived from the project's Janr oot (and its other
Jamfiles, as described in the section called “ Project Hierarchies'). For example, thelocations of #i ncl uded header filesare normally
not specified on the command-line, but described in Jamfiles astarget requirements and automatically combined with the build request
for those targets. Multithread-enabled compilation is another example of atypical target requirement. The Jamfile fragment below
illustrates how these requirements might be specified.

exe hello
hel | 0. cpp
<i ncl ude>boost <t hreadi ng>mul ti

When hel | o is built, the two requirements specified above will always be present. If the build request given on the b2 command-
line explictly contradicts a target's requirements, the target requirements usually override (or, in the case of “freg”” features like
<i ncl ude>, * augments) the build request.

1 See the section called “Feature Attributes’

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Tip

The value of the <i ncl ude> feature isrelative to the location of Janr oot whereit is used.

Project Attributes
If we want the same requirements for our other target, hel | 02, we could simply duplicate them. However, as projects grow, that

approach leads to a great deal of repeated boilerplate in Jamfiles. Fortunately, there's a better way. Each project can specify a set of
attributes, including requirements:

pr oj ect
requi renents <incl ude>/ hone/ ghost/Wr k/ boost <t hreadi ng>mul t

exe hello : hello.cpp
exe hello2 : hello.cpp

The effect would be as if we specified the same requirement for both hel | o and hel | 02.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Project Hierarchies

So far we have only considered examples with one project, with one user-written Boost.Jam file, Janr oot . A typical large codebase
would be composed of many projects organized into atree. The top of thetreeis called the project root. Every subproject is defined
by afile called Janfi | e in adescendant directory of the project root. The parent project of a subproject is defined by the nearest
Janfil e or Janr oot filein an ancestor directory. For example, in the following directory layout:

t op/
I

+-- Janr oot

+-- app/
I I
| +-- Janfile
[T-- app.cpp
I
To-outil/
I
+-- fool
I
+-- Janfile
“-- bar.cpp

the project root ist op/ . The projectsint op/ app/ andt op/ util/foo/ areimmediate children of the root project.

S Note
When werefer to a“ Jamfile,” setin normal type, we mean afile called either Janf i | e or Janr oot . When we need
to be more specific, the filename will be set as“Janfi | e” or “Janr oot .

Projectsinherit all attributes (such as requirements) from their parents. Inherited requirements are combined with any requirements
specified by the subproject. For example, if t op/ Janr oot has

<i ncl ude>/ hone/ ghost/ | ocal

in its requirements, then al of its subprojects will haveit in their requirements, too. Of course, any project can add include paths to
those specified by its parents. 2 More details can be found in the section called “ Projects’.

Invoking b2 without explicitly specifying any targets on the command line builds the project rooted in the current directory. Building
aproject does not automatically causeits subprojectsto be built unlessthe parent project's Jamfile explicitly requestsit. In our example,
t op/ Janr oot might contain:

bui | d- proj ect app ;

which would cause the project int op/ app/ to be built whenever the projectint op/ isbuilt. However, targetsint op/ uti | / f oo/
will be built only if they are needed by targetsint op/ ort op/ app/ .

2Many features will be overridden, rather than added-to, in subprojects. See the section called “ Feature Attributes” for more information

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Dependent Targets

When building atarget X that depends on first building another target Y (such as alibrary that must be linked with X), Y iscalled a
dependency of X and X istermed a dependent of Y.

To get afeeling of target dependencies, let's continue the above example and see how t op/ app/ Janfi | e can use libraries from
top/util/foo.Iftop/util/foo/Janfile contains

lib bar : bar.cpp ;

then to use thislibrary int op/ app/ Janf i | e, we can write:

exe app : app.cpp ../util/fool/bar ;

While app. cpp refersto aregular sourcefile, . . /uti |/ f oo/ / bar isareference to another target: alibrary bar declared in the
Jamfileat ../ util/foo.

Some other build system have specia syntax for listing dependent libraries, for example LI BS variable. In Boost.Build,
you just add the library to the list of sources.

Suppose we build app with:

b2 app optim zation=full define=USE_ASM
g

Which propertieswill be used to build f 00? The answer isthat some features are propagated—Boost.Build attempts to use depend-
encieswith the same value of propagated features. The<opt i mi zat i on> featureis propagated, so bothapp and f oo will be compiled
with full optimization. But <def i ne> isnot propagated: itsvalue will be added as-isto the compiler flagsfor a. cpp, but won't affect
f oo.

Let's improve this project further. The library probably has some headers that must be used when compiling app. cpp. We could
manually add the necessary #i ncl ude pathsto app's requirements as values of the <i ncl ude> feature, but then thiswork will be
repeated for all programsthat use f oo. A better solution isto modify uti | / f oo/ Janfi | e in thisway:

pr oj ect
usage-requirenments <include>.

lib foo : foo.cpp ;

Usage requirements are applied not to the target being declared but to its dependants. In this case, <i ncl ude>. will be applied to
all targetsthat directly depend on f oo.

Another improvement isusing symbolic identifiersto refer tothelibrary, asopposedto Janf i | e location. Inalarge project, alibrary
can be used by many targets, and if they all use Janfil e location, a change in directory organization entails much work. The
solution is to use project ids—symbolic names not tied to directory layout. First, we need to assign a project id by adding this code
to Janr oot :

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

use-project /library-exanple/foo : util/foo ;

Second, we modify app/ Janf i | e to usethe project id:

exe app : app.cpp /library-exanpl e/ foo//bar ;

The/ i brary-exanpl e/ f oo/ / bar syntax is used to refer to the target bar in the project withid /1i brary-exanpl e/ f oo.
We've achieved our goa—if the library is moved to a different directory, only Janr oot must be modified. Note that project ids
are global—two Jamfiles are not allowed to assign the same project id to different directories.

If you want all applications in some project to link to a certain library, you can avoid having to specify it directly
the sources of every target by using the <I i br ar y> property. For example, if / boost /fi |l esystem /fs should
be linked to all applications in your project, you can add <l i br ar y>/ boost /fi | esysteni /f s to the project's

requirements, like this:

pr oj ect
requi rements <library>/boost/filesystem/fs

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Static and shared libaries

Libraries can be either static, which meansthey areincluded in executable files that use them, or shared (a.k.a. dynamic), which are
only referred to from executables, and must be available at run time. Boost.Build can create and use both kinds.

Thekind of library produced from al i b target is determined by the value of thel i nk feature. Default valueisshar ed, and to build
adtatic library, the value should be st at i ¢. You can request a static build either on the command line;

b2 link=static
or inthe library's requirements:
lib1l : I.cpp : <link>static ;

We can also use the <I i nk> property to express linking requirements on a per-target basis. For example, if a particular executable
can be correctly built only with the static version of alibrary, we can qualify the executable's target reference [83] to the library as
follows:

exe inportant : main.cpp hel pers/<link>static ;

No matter what arguments are specified ontheb2 command line, i npor t ant will only be linked with the static version of hel pers.

Specifying propertiesin target referencesis especially useful if you use alibrary defined in some other project (one you can't change)
but you still want static (or dynamic) linking to that library in all cases. If that library is used by many targets, you could use target
references everywhere:

exe el : el.cpp /other_project//bar/<link>static ;
exe €10 : el0.cpp /other_project//bar/<link>static ;

but that's far from being convenient. A better approach isto introduce alevel of indirection. Create alocal alias target that refersto
the static (or dynamic) version of f oo:

alias foo : /other_project//bar/<link>static ;
exe el : el.cpp foo ;
exe el0 : el0.cpp foo ;

The dliasruleis specifically used to rename a reference to atarget and possibly change the properties.

@ Tip

When one library uses another, you put the second library in the source list of the first. For example:

lib utils : utils.cpp /boost/filesystem/fs ;
lib core : core.cpp utils ;
exe app : app.cpp core ;

Thisworks no matter what kind of linking is used. When cor e isbuilt asashared library, it islinked directly into
utils. Staticlibrariescan't link to other libraries, so when cor e isbuilt asastatic library, itsdependency onut i | s
is passed along to cor e's dependents, causing app to be linked with bothcore andutils .

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tutorid

Note

(Note for non-UNIX system). Typically, shared libraries must be installed to a directory in the dynamic linker's
search path. Otherwise, applications that use shared libraries can't be started. On Windows, the dynamic linker's
search path is given by the PATH environment variable. This restriction is lifted when you use Boost.Build testing
facilities—the PATH variable will be automatically adjusted before running the executable.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Conditions and alternatives

Sometimes, particular relationships need to be maintained among a target's build properties. For example, you might want to set
specific #def i ne when alibrary isbuilt as shared, or when atarget'sr el ease variant is built. This can be achieved using condi-
tional requirements.

lib network : network.cpp
<l i nk>shar ed: <def i ne>NEWORK_LI| B_SHARED
<vari ant >r el ease: <def i ne>EXTRA_FAST

In the example above, whenever net wor k isbuilt with <l i nk>shar ed, <def i ne>NEWORK_LI B_SHARED will beinitsproperties,
too. Also, whenever its release variant is built, <def i ne>EXTRA_FAST will appear in its properties.

Sometimesthewaysatarget isbuilt are so different that describing them using conditional requirementswould be hard. For example,
imaginethat alibrary actually uses different source files depending on the tool set used to build it. We can express this situation using
target alternatives:

l'ib denangl er : dunmy_demangl er. cpp ; # alternative 1
Iib demangl er : demangl er _gcc. cpp : <tool set>gcc ; # alternative 2
l'ib denangl er : demangl er_nsvc.cpp : <tool set>msvc ; # alternative 3

When building denangl er , Boost.Build will compare requirementsfor each alternative with build propertiesto find the best match.
For example, when building with <t ool set >gcc aternative 2, will be selected, and when building with <t ool set >nsvc aternative
3 will be selected. In all other cases, the most generic aternative 1 will be built.

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Tutorid

Prebuilt targets

To link to libraries whose build instructions aren't given in a Jamfile, you need to create | i b targets with an appropriate fi | e
property. Target alternatives can be used to associate multiple library files with a single conceptual target. For example:

util/lib2/Janfile
lib Iib2

<file>lib2_rel ease.a <vari ant >rel ease
lib Iib2

<file>lib2_debug.a <variant >debug

This example defines two aternativesfor | i b2, and for each one names a prebuilt file. Naturally, there are no sources. Instead, the
<fi | e> featureis used to specify the file name.

Once a prebuilt target has been declared, it can be used just like any other target:

exe app : app.cpp ../util/lib2//1ib2 ;

As with any target, the alternative selected depends on the properties propagated from | i b2's dependants. If we build the release
and debug versions of app will belinked with| i b2_r el ease. aand| i b2_debug. a , respectively.

System libraries—those that are automatically found by the toolset by searching through some set of predetermined paths—should
be declared almost like regular ones:

lib pythonlib : : <nane>python22 ;

We again don't specify any sources, but give a nane that should be passed to the compiler. If the gec toolset were used to link an
executable target to pyt honl i b, - | pyt hon22 would appear in the command line (other compilers may use different options).

We can also specify where the tool set should look for the library:

lib pythonlib : : <nanme>python22 <search>/opt/lib ;

And, of course, target alternatives can be used in the usual way:

lib pythonlib : : <nane>python22 <vari ant >rel ease ;
lib pythonlib : : <nane>python22_d <vari ant >debug ;

A more advanced use of prebuilt targets is described in the section called “ Targets in site-config.jam”.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

This section will provide the information necessary to create your own projects using Boost.Build. The information provided here
is relatively high-level, and Reference as well as the on-line help system must be used to obtain low-level documentation (see
- - hel p).

Boost.Build has two parts—a build engine with its own interpreted language, and Boost.Build itself, implemented in that language.
The chain of events when you type b2 on the command lineis as follows:

1. The Boost.Build executable tries to find Boost.Build modules and loads the top-level module. The exact process is described in
the section called “Initialization”

2. Thetop-level moduleloads user-defined configurationfiles, user - confi g. j amandsi t e- conf i g. j am which defineavailable
tool sets.

3. The Jamfilein the current directory isread. That in turn might cause reading of further Jamfiles. As aresult, atree of projectsis
created, with targetsinside projects.

4. Finaly, using the build request specified on the command line, Boost.Build decides which targets should be built and how. That
information is passed back to Boost.Jam, which takes care of actually running the scheduled build action commands.

S0, to be able to successfully use Boost.Build, you need to know only four things:
» How to configure Boost.Build

» How to declare targets in Jamfiles

» How the build process works

» Some Basics about the Boost.Jam language. See the section called “Boost.Jam Language’”.

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Concepts

Boost.Build has a few unique concepts that are introduced in this section. The best way to explain the concepts is by comparison
with more classical build tools.

When using any flavour of make, you directly specify targets and commands that are used to create them from other target. The
below example createsa. o from a. ¢ using a hardcoded compiler invocation command.

a.o: a.c
g++ -0 a.0 -g a.c

Thisisarather low-level description mechanism and it's hard to adjust commands, options, and sets of created targets depending on
the compiler and operating system used.

To improve portability, most modern build system provide a set of higher-level functions that can be used in build description files.
Consider this example:

add_program ("a", "a.c")

Thisisafunction call that createsthe targets necessary to create a executablefile from the sourcefile a. ¢. Depending on configured
properties, different command linesmay be used. However, add_pr ogr amishigher-level, but rather thinlevel. All targets are created
immediately when the build description is parsed, which makes it impossible to perform multi-variant builds. Often, change in any
build property requires a complete reconfiguration of the build tree.

In order to support true multivariant builds, Boost.Build introduces the concept of a metatarget—an object that is created when the
build description is parsed and can be called later with specific build properties to generate actua targets.

Consider an example:

exe a . a.cpp ;

When thisdeclaration isparsed, Boost.Build creates ametatarget, but does not yet decide what filesmust be created, or what commands
must be used. After all build files are parsed, Boost.Build considers the properties requested on the command line. Supposed you
have invoked Boost.Build with:

b2 tool set=gcc tool set=nsvC

In that case, the metatarget will be called twice, once with t ool set =gcc and once with t ool set =nmsvc. Both invocations will
produce concrete targets, that will have different extensions and use different command lines.

Another key concept is build property. A build property isavariable that affectsthe build process. It can be specified on the command
line, and is passed when calling a metatarget. While all build tools have a similar mechanism, Boost.Build differs by requiring that
all build properties are declared in advance, and providing alarge set of properties with portable semantics.

The final concept is property propagation. Boost.Build does not require that every metatarget is called with the same properties.
Instead, the "top-level" metatargets are called with the properties specified on the command line. Each metatarget can elect to augment
or override some properties (in particular, using the requirements mechanism, see the section called “Requirements’). Then, the
dependency metatargets are called with the modified properties and produce concrete targets that are then used in the build process.
Of course, dependency metatargets maybe in turn modify build properties and have dependencies of their own.

For a more in-depth treatment of the requirements and concepts, you may refer to SY RCoSE 2009 Boost.Build article.

15

httpo://www.renderx.com/

http://syrcose.ispras.ru/2009/files/04_paper.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Boost.Jam Language

This section will describe the basics of the Boost.Jam language—just enough for writing Jamfiles. For more information, please see
the Boost.Jam documentation.

Boost.Jam has an interpreted, procedural language. On the lowest level, a Boost.Jam program consists of variables and rules (the
Jam term for functions). They are grouped into modules—there is one global module and a number of named modules. Besides that,
a Boost.Jam program contains classes and class instances.

Syntantically, a Boost.Jam program consists of two kind of elements—keywords (which have a special meaning to Boost.Jam) and
literals. Consider this code:

a=>b;

which assignsthe value b to the variablea . Here, = and ; are keywords, whilea and b are literals.

O Warning
All syntax elements, even keywords, must be separated by spaces. For example, omitting the space character before
; will lead to a syntax error.

If you want to use aliteral value that is the same as some keyword, the value can be quoted:

All variables in Boost.Jam have the same type—list of strings. To define a variable one assigns a value to it, like in the previous
example. An undefined variable is the same as a variable with an empty value. Variables can be accessed using the $(var i abl e)
syntax. For example:

a = $(b) $(c)

Rules are defined by specifying the rule name, the parameter names, and the allowed value list size for each parameter.

rul e exanpl e

(

paraneterl :
paraneter2 ? :
paranmeter3 + :
paraneter4 *

)
{

rul e body
}
g
When thisruleis called, the list passed as the first argument must have exactly one value. The list passed as the second argument

can either have one value of be empty. The two remaining arguments can be arbitrarily long, but the third argument may not be
empty.

The overview of Boost.Jam language statementsiis given below:

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

helper 1 : 2 : 3 ;
x =[helper 1 : 2 : 3]

This code calls the named rule with the specified arguments. When the result of the call must be used inside some expression, you
need to add brackets around the call, like shown on the second line.

if cond { statenents } [else { statenents }]

Thisisaregular if-statement. The condition is composed of:

Literals (trueif at least one string is not empty)

» Comparisons: a operator b whereoperat or isoneof =, ! =, <, >, <= or >=. The comparison is done pairwise between each
string in the left and the right arguments.

e Logica operations;! a,a & b,a || b

» Grouping: (cond)

for var in list { statements }

Executes statements for each element in list, setting the variable var to the element value.

while cond { statenents }

Repeatedly execute statements while cond remains true upon entry.

return val ues ;

This statement should be used only inside arule and assigns val ues to the return value of the rule.

o Warning
Ther et ur n statement does not exit the rule. For example:

rule test ()

{
if 1 =1
{
return "reasonabl e" ;
}
return "strange" ;
}

will return st r ange, not r easonabl e.

i nport nodul e ;
i mport nodule : rule ;

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Thefirst formimportsthe specified module. All rulesfrom that modul e are made available using the qualified name: nodul e. rul e.
The second form imports the specified rules only, and they can be called using unqualified names.

Sometimes, you need to specify the actual command lines to be used when creating targets. In the jam language, you use named
actions to do this. For example:

actions create-file-from anot her

{
}

create-file-fromanother $(<) $(>)

This specifiesanamed action called create-fil e-from anot her. Thetext inside braces isthe command to invoke. The $(<)
variable will be expanded to alist of generated files, and the $(>) variable will be expanded to alist of sourcefiles.

To adjust the command line flexibly, you can define a rule with the same name as the action and taking three parameters—targets,
sources and properties. For example:

rule create-file-fromanother (targets * : sources * : properties *)

{

i f <variant>debug in $(properties)

{

OPTIONS on $(targets) = --debug

}
}
actions create-file-from another
{

create-file-fromanother $(OPTIONS) $(<) $(>)

}

In this example, the rule checksif acertain build property is specified. If so, it setsthe variable OPTI ONS that is then used inside the
action. Note that the variables set "on atarget" will be visible only inside actions building that target, not globally. Were they set
globally, using variable named OPTI ONS in two unrelated actions would be impossible.

More details can be found in the Jam reference, the section called “Rules’.

18

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Configuration

On startup, Boost.Build searches and reads two configuration files: si t e- confi g. j amand user - confi g. j am Thefirst oneis
usually installed and maintained by a system administrator, and the second isfor the user to modify. You can edit the one in the top-
level directory of your Boost.Build installation or create acopy inyour home directory and edit the copy. Thefollowing table explains
where both files are searched.

Table 1. Search pathsfor configuration files

site-config.jam user-config.jam
Linux letc $HOMVE
$HOVE $BOCST_BUI LD _PATH

$BOCST_BUI LD_PATH

Windows %8y st enRoot % %-OVEDRI VEY94HOVEPATHY%
%OVEDRI VE%®4HOVEPATH% %HOVEY%
%HOVEY 9%B0OCST_BUI LD_PATH%

9BOOST_BUI LD_PATH%

@ Tip

You can use the --debug-configur ation option to find which configuration files are actually loaded.

Usually, user - confi g. j amjust defines the available compilers and other tools (see the section called “ Targets in site-config.jam”
for more advanced usage). A tool is configured using the following syntax:

using tool-narme : ... ;

Theusi ng ruleis given the name of tool, and will make that tool available to Boost.Build. For example,

usi ng gcc ;

will make the GCC compiler available.

All the supported tools are documented in the section called “Builtin tools’, including the specific options they take. Some general
notes that apply to most C++ compilers are below.

For all the C++ compiler toolsets that Boost.Build supports out-of-the-box, the list of parametersto usi ng isthe same: t ool set -
name, ver si on, i nvocat i on- command, and opt i ons.

If you have a single compiler, and the compiler executable
* hasits“usua name” and isin the PATH, or
» wasinstalled in astandard “installation directory”, or

 can befound using a global system like the Windows registry.

19

httpo://www.renderx.com/

http://gcc.gnu.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

it can be configured by simply:

usi ng tool - nane ;

If the compiler isinstalled in a custom directory, you should provide the command that invokes the compiler, for example:

using gcc : : g++-3.2 ;
using nsvc : : "Z:/Prograns/M crosoft Visual Studio/vc98/bin/cl"

Some Boost.Build toolsetswill use that path to take additional actions required before invoking the compiler, such as calling vendor-
supplied scripts to set up its required environment variables. When the compiler executables for C and C++ are different, the path
tothe C++ compiler executable must be specified. The command can be any command allowed by the operating system. For example:

using nmsvc : : echo Conmpiling && fool/bar/baz/cl ;

will work.

To configure several versions of atoolset, smply invoke the usi ng rule multiple times:

using gcc : 3.3 ;
using gcc : 3.4 : g++-3.4 ;
using gcc : 3.2 g++- 3.2 ;

Notethat inthefirst call tousi ng, the compiler found inthe PATHwill be used, and thereis no need to explicitly specify the command.

Many of toolsets have an opt i ons parameter to fine-tune the configuration. All of Boost.Build's standard compiler tool sets accept
four options cf | ags, cxxf | ags, conpi | ef | ags and | i nkf | ags asopt i ons specifying flags that will be always passed to the
corresponding tools. Values of thecf | ags feature are passed directly to the C compiler, values of the cxxf | ags feature are passed
directly to the C++ compiler, and values of the conpi | ef | ags feature are passed to both. For example, to configure a gcc tool set
so that it always generates 64-bit code you could write:

using gcc : 3.4 : : <conpileflags>nbd <linkflags>-n64 ;

O Warning
Although the syntax used to specify toolset optionsisvery similar to syntax used to specify requirementsin Jamfiles,
the tool set options are not the same as features. Don't try to specify afeature value in toolset initialization.

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Invocation

To invoke Boost.Build, type b2 on the command line. Three kinds of command-line tokens are accepted, in any order:

options Options start with either one or two dashes. The standard options are listed below, and each project may add addi-
tional options

properties Properties specify details of what you want to build (e.g. debug or rel ease variant). Syntactically, all command line
tokens with an equal sign in them are considered to specify properties. In the ssmplest form, a property looks like
f eat ure=val ue

target All tokensthat are neither options nor properties specify what targetsto build. The available targets entirely depend
on the project you are building.

Examples

To build al targets defined in the Jamfile in the current directory with the default properties, run:

b2

To build specific targets, specify them on the command line:

b2 i bl subproject//lib2

To request a certain value for some property, add pr oper t y=val ue to the command line;

b2 tool set=gcc vari ant =debug opti m zati on=space

Options
Boost.Build recognizes the following command line options.

--help Invokes the online help system. This prints general information on how to use the help system
with additional --help* options.

--clean Cleansall targetsin the current directory and in any subprojects. Note that unlikethec! ean target
in make, you can use - - cl ean together with target names to clean specific targets.

--clean-all Cleans all targets, no matter where they are defined. In particular, it will clean targets in parent
Jamfiles, and targets defined under other project roots.

--build-dir Changes the build directories for all project roots being built. When this option is specified, all
Jamroot filesmust declare aproject name. The build directory for the project root will be computed
by concatanating the value of the - - bui | d- di r option, the project name specified in Jamroot,
and the build dir specified in Jamroot (or bi n, if none is specified).

The option is primarily useful when building from read-only media, when you can't modify Jamroot.

- - abbrevi at e- pat hs Compressestarget paths by abbreviating each component. This option is useful to keep pathsfrom
becoming longer than the filesystem supports. See aso the section called “ Target Paths’.

21

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

--hash

--version

- - debug- configuration
- - debug- bui | di ng

- -debug- generators
-do

-d N

-d +N
-o file

-s var=val ue

Properties

Compresses target paths using an MD5 hash. This option is useful to keep paths from becoming
longer than the filesystem supports. This option produces shorter paths than --abbreviate-paths
does, but at the cost of making them less understandable. See also the section called “ Target Paths’.

Prints information on the Boost.Build and Boost.Jam versions.

Causes al filesto be rebuilt.

Do no execute the commands, only print them.

Stop at thefirst error, as opposed to continuing to build targets that don't depend on the failed ones.
Run up to Ncommandsin parallel.

Produces debug information about the loading of Boost.Build and toolset files.
Prints what targets are being built and with what properties.

Produces debug output from the generator search process. Useful for debugging custom generators.
Supress all informational messages.

Enable cummulative debugging levels from 1 to n. Values are:

1. Show the actions taken for building targets, asthey are executed (the default).
2. Show "quiet" actions and display all action text, as they are executed.

3. Show dependency analysis, and target/source timestamps/paths.

4. Show arguments and timming of shell invocations.

5. Show ruleinvocations and variable expansions.

6. Show directory/header file/archive scans, and attempts at binding to targets.

7. Show variable settings.

8. Show variable fetches, variable expansions, and evaluation of ™if"' expressions.
9. Show variable manipulation, scanner tokens, and memory usage.

10 Show profile information for rules, both timing and memory.

11 Show parsing progress of Jamfiles.

12 Show graph of target dependencies.

13 Show change target status (fate).

Enable debugging level N.

Write the updating actions to the specified file instead of running them.

Set the variable var to val ue in the global scope of the jam language interpreter, overriding
variables imported from the environment.

In the simplest case, the build is performed with a single set of properties, that you specify on the command line with elementsin
the form f eat ur e=val ue. The complete list of features can be found in the section called “Builtin features’. The most common

features are summarized bel ow.

22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Table 2.

Feature Allowed values Notes

variant debug,release

link shared,static Determinesif Boost.Build creates shared
or static libraries

threading single multi Cause the produced binariesto be thread-
safe. This requires proper support in the
source code itself.

address-model 32,64 Explicitly request either 32-bit or 64-bit
code generation. This typically requires
that your compiler is appropriately con-
figured. Please refer to the section called
“C++ Compilers’ and your compiler
documentation in case of problems.

tool set (Depends on configuration) The C++ compiler to use. See the section
called” C++ Compilers’ for adetailedlist.

include (Arbitrary string) Additional include paths for C and C++
compilers.

define (Arbitrary string) Additional macro definitions for C and
C++ compilers. The string should be
either SYMBOL or SYMBOL=VALUE

cxxflags (Arbitrary string) Custom options to pass to the C++ com-
piler.

cflags (Arbitrary string) Custom optionsto passto the C compiler.

linkflags (Arbitrary string) Custom optionsto passto the C++ linker.

runtime-link shared,static Determines if shared or static version of

C and C++ runtimes should be used.

If you have more than one version of a given C++ toolset (e.g. configured inuser - conf i g. j am or autodetected, as happens with
msvc), you can request the specific version by passing t ool set - ver si on as the value of the t ool set feature, for example
t ool set =msvc-8. 0

If afeature has afixed set of valuesit can be specified more than once on the command line. In which case, everything will be built
severa times -- once for each specified value of afeature. For example, if you use

b2 link=static |ink=shared threadi ng=single threadi ng=mult

Then atotal of 4 buildswill be performed. For convenience, instead of specifying all requested values of afeaturein separate command
line elements, you can separate the values with commas, for example:

b2 link=static, shared threadi ng=single, nmul ti

The comma has this special meaning only if the feature has a fixed set of values, so

23

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

b2 include=static, shared
is not treated specialy.

Targets

All command line elements that are neither options nor properties are the names of the targetsto build. Seethe section called “ Target
identifiers and references’. If no target is specified, the project in the current directory is built.

24

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Declaring Targets

A Main target is a user-defined named entity that can be built, for example an executable file. Declaring a main target is usualy
done using one of the main target rules described in the section called “Builtin rules’. The user can aso declare custom main target
rules as shown in the section called “Main target rules’.

Most main target rules in Boost.Build have the same common signature;

rul e rul e-name (
mai n-t ar get - nane :
sources + :
requi rements * :
default-build * :
usage-requi renents *)

* mai n-t ar get - nane isthe name used to request the target on command line and to use it from other main targets. A main target
name may contain a phanumeric characters, dashes (‘- '), and underscores (* _’).

» sour ces isthelist of source files and other main targets that must be combined.
* requirenents isthelist of properties that must always be present when this main target is built.

» defaul t-buildisthelist of properties that will be used unless some other value of the same feature is already specified, e.g.
on the command line or by propagation from a dependent target.

* usage- requi renent s isthelist of propertiesthat will be propagated to all main targetsthat usethisone, i.e. to al its dependents.
Some main target rules have a different list of parameters as explicitly stated in their documentation.

The actual requirements for a target are obtained by refining the requirements of the project where the target is declared with the
explicitly specified requirements. The sameistrue for usage-requirements. More details can be found in the section called “ Property
refinement”

Name

The name of main target has two purposes. Firgt, it's used to refer to this target from other targets and from command line. Second,
it's used to compute the names of the generated files. Typically, filenames are obtained from main target name by appending system-
dependent suffixes and prefixes.

The name of a main target can contain al phanumeric characters, dashes, undescores and dots. The entire name is significant when
resolving references from other targets. For determining filenames, only the part before the first dot is taken. For example:

obj test.release : test.cpp : <variant>rel ease ;
obj test.debug : test.cpp : <variant>debug ;

will generate two files named t est . obj (in two different directories), not two filesnamed t est . r el ease. obj andt est . de-
bug. obj .

Sources

Thelist of sources specifies what should be processed to get the resulting targets. Most of thetime, it'sjust alist of files. Sometimes,
you'll want to automatically construct the list of source files rather than having to spell it out manually, in which case you can use
the glob rule. Here are two examples:

25

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

exe a : a.cpp ; # a.cpp is the only source file
exe b: [glob *.cpp] ; # all .cpp files in this directory are sources

Unless you specify afile with an absolute path, the name is considered relative to the source directory—which is typically the dir-
ectory where the Jamfile is located, but can be changed as described in the section called “Projects’ [29].

Thelist of sources can also refer to other main targets. Targets in the same project can be referred to by name, while targetsin other
projects must be qualified with adirectory or asymbolic project name. The directory/project name is separated from the target name
by a double forward slash. There is no special syntax to distinguish the directory name from the project name—the part before the
double dlash isfirst looked up as project name, and then as directory name. For example:

lib hel per : hel per.cpp ;

exe a : a.cpp hel per

Since all project ids start with slash, ".." is a directory nane.
exe b : b.cpp ..//utils ;

exe ¢ : c.cpp /boost/programoptions//programoptions ;

Thefirst exe usesthelibrary defined in the same project. The second one uses sometarget (most likely alibrary) defined by a Jamfile
onelevel higher. Finally, thethird target uses a C++ Boost library, referring to it using its absolute symbolic name. Moreinformation
about target references can befound in the section called “ Dependent Targets’ and the section called “ Target identifiersand references”.

Requirements

Requirements are the properties that should always be present when building atarget. Typically, they are includes and defines:

exe hello : hello.cpp : <include>/opt/boost <define>MY_DEBUG ;

Thereareanumber of other features, listed in the section called “ Builtin features’. For exampleif alibrary can only be built statically,
or afile can't be compiled with optimization due to a compiler bug, one can use

lib util : util.cpp : <link>static ;
obj main : main.cpp : <optimzation>off ;

Sometimes, particular relationships need to be maintained among a target's build properties. This can be achieved with conditional
requirements. For example, you might want to set specific #def i nes when alibrary isbuilt as shared, or when atarget'sr el ease
variant is built in release mode.

lib network : network.cpp
<l i nk>shar ed: <def i ne>NEWORK_LI| B_SHARED
<vari ant >r el ease: <def i ne>EXTRA_FAST

In the example above, whenever net wor k isbuilt with <l i nk>shar ed, <def i ne>NEWORK_L| B_SHARED will bein its properties,
too.

You can use several propertiesin the condition, for example:

lib network : network.cpp
<t ool set >gcc, <opti m zati on>speed: <defi ne>USE_I NLI NE_ASSEMBLER

26

render

httpo://www.renderx.com/

http://boost.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

A more powerful variant of conditional requirementsisindirect conditional requirements. You can provide arule that will be called
with the current build properties and can compute additional properties to be added. For example:

lib network : network.cpp
<condi ti onal >@ry-rul e

rule my-rule (properties *)

{
| ocal result ;
i f <tool set>gcc <optim zati on>speed in $(properties)
{
result += <define>USE | NLI NE_ASSEMBLER ;
}
return $(result) ;
}

This example is equivalent to the previous one, but for complex cases, indirect conditional requirements can be easier to write and
understand.

Requirements explicitly specified for atarget are usually combined with the requirements specified for the containing project. You
can cause atarget to completely ignore a specific project requirement using the syntax by adding a minus sign before the property,
for example:

exe main @ main.cpp @ -<define>UNNECESSARY_DEFI NE ;

This syntax is the only way to ignore free properties, such as defines, from a parent. It can be also useful for ordinary properties.
Consider this example:

project test : requirements <threading>nulti ;
exe testl : testl.cpp ;

exe test2 : test2.cpp : <threading>single ;
exe test3 : test3.cpp : -<threading>multi ;

Here, t est 1 inherits the project requirements and will always be built in multi-threaded mode. The t est 2 target overrides the
project's requirements and will always be built in single-threaded mode. In contrast, the t est 3 target removes a property from the
project requirements and will be built either in single-threaded or multi-threaded mode depending on which variant is requested by
the user.

Note that the removal of requirements is completely textual: you need to specify exactly the same property to remove it.

Default Build

Thedef aul t - bui | d parameter is a set of propertiesto be used if the build request does not otherwise specify a value for features
in the set. For example:

exe hello : hello.cpp : : <threading>multi ;

would build amulti-threaded target unless the user explicitly requests a single-threaded version. The difference between the require-
ments and the default-build is that the requirements cannot be overridden in any way.

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Additional Information

Thewaysatarget isbuilt can be so different that describing them using conditional requirementswould be hard. For example, imagine
that alibrary actually uses different source files depending on the toolset used to build it. We can express this situation using target
alternatives:

lib demangl er : dunmy_denangl er.cpp ; # alternative 1
Iib demangl er : denmangl er _gcc.cpp : <tool set>gcc ; # alternative 2
l'ib demangl er : demangl er_nsvc.cpp : <tool set>msvc ; # alternative 3

In the example above, when built with gcc or nsvc, demangl er will use a source file specific to the toolset. Otherwise, it will use
ageneric source file, dunmy_demangl er . cpp.

It is possible to declare atarget inling, i.e. the "sources" parameter may include callsto other main rules. For example:

exe hello : hello.cpp
[obj helpers : helpers.cpp : <optim zation>off] ;

Will cause "helpers.cpp” to be always compiled without optimization. When referring to an inline main target, its declared name
must be prefixed by its parent target's name and two dots. In the example above, to build only helpers, one should run b2
hel | o. . hel pers.

When no target is requested on the command line, all targets in the current project will be built. If atarget should be built only by
explicit request, this can be expressed by the explicit rule:

explicit install_prograns ;

28

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Projects

As mentioned before, targets are grouped into projects, and each Jamfileis a separate project. Projects are useful because they allow
us to group related targets together, define properties common to all those targets, and assign a symbolic name to the project that
can be used in referring to its targets.

Projects are named using the pr oj ect rule, which has the following syntax:

project id : attributes ;

Here, at t ri but es isasequence of rule arguments, each of which begins with an attribute-name and is followed by any number of
build properties. The list of attribute names along with its handling is also shown in the table below. For example, it is possible to
write:

project tennis
requi renents <threadi ng>nul ti
defaul t-build rel ease

The possible attributes are listed bel ow.

Project id is a short way to denote a project, as opposed to the Jamfile's pathname. It is a hierarchical path, unrelated to filesystem,
such as "boost/thread”. Target references make use of project ids to specify atarget.

Source location specifies the directory where sources for the project are located.
Project requirements are requirements that apply to all the targets in the projects as well as all subprojects.
Default build is the build request that should be used when no build request is specified explicitly.

The default values for those attributes are given in the table below.

29

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overv

iew

Table 3.

Attribute

Project id

Source location

Reqguirements

Default build

Build directory

Name

none

source-| ocation

requirements

defaul t-build

bui I d-dir

Default value

none

Thelocation of jamfile for the
project

The parent's requirements

none

Empty if the parent has no
build directory set. Otherwise,

Handling by the proj ect
rule

Assigned from the first para-
meter of the 'project’ rule. Itis
assumed to denote absolute
project id.

Sets to the passed value

The parent's requirements are
refined with the passed require-
ment and the result is used as
the project requirements.

Sets to the passed value

Setsto the passed value, inter-
preted as relative to the pro-

the parent's build directory ject'slocation.
with the relative path from

parent to the current project

appended to it.

Besides defining projects and main targets, Jamfiles often invoke various utility rules. For the full list of rules that can be directly
used in Jamfile see the section called “ Builtin rules’.

Each subproject inherits attributes, constants and rules from its parent project, which is defined by the nearest Jamfile in an ancestor
directory above the subproject. The top-level project is declared in afile called Janr oot rather than Janfi | e. When loading a
project, Boost.Build looks for either Janr oot or Janfi | e. They are handled identically, except that if thefileis called Janr oot ,
the search for a parent project is not performed.

Even when building in a subproject directory, parent project files are always loaded before those of their subprojects, so that every
definition made in a parent project is always available to its children. The loading order of any other projects is unspecified. Even
if one project refers to another viathe use- proj ect or atarget reference, no specific order should be assumed.

E I Note
Giving the root project the special name “Janr oot ” ensures that Boost.Build won't misinterpret a directory above
it as the project root just because the directory contains a Jamfile.

30

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

The Build Process

When you've described your targets, you want Boost.Build to run the right tools and create the needed targets. This section will describe
two things: how you specify what to build, and how the main targets are actually constructed.

The most important thing to noteisthat in Boost.Build, unlike other build tools, the targets you declare do not correspond to specific
files. What you declare in a Jamfile is more like a“ metatarget.” Depending on the properties you specify on the command line, each
metatarget will produce a set of real targets corresponding to the requested properties. It is quite possible that the same metatarget
isbuilt several times with different properties, producing different files.

@ Tip
This means that for Boost.Build, you cannot directly obtain a build variant from a Jamfile. There could be severa
variants requested by the user, and each target can be built with different properties.

Build Request

The command line specifies which targets to build and with which properties. For example:

b2 appl libl//1ibl tool set=gcc variant=debug optim zati on=full

would build two targets, "appl" and "lib1//lib1" with the specified properties. You can refer to any targets, using target id and specify
arbitrary properties. Some of the properties are very common, and for them the name of the property can be omitted. For example,
the above can be written as:

b2 appl libl//1ibl gcc debug optim zati on=full

The complete syntax, which has some additional shortcuts, is described in the section called “Invocation”.

Building a main target

When you request, directly or indirectly, a build of a main target with specific requirements, the following steps are done. Some
brief explanation is provided, and more details are given in the section called “Build process’.

1. Applying default build. If the default-build property of atarget specifiesavalue of afeaturethat isnot present in the build request,
that value is added.

2. Selecting the main target alternative to use. For each alternative we look how many properties are present both in aternative's
requirements, and in build request. The alternative with large number of matching propertiesis selected.

3. Determining "common" properties. Thebuild request isrefined with target's requirements. The conditiona propertiesin requirements
are handled as well. Finally, default values of features are added.

4. Building targets referred by the sources list and dependency properties. The list of sources and the properties can refer to other
target using target references. For each reference, we take all propagated properties, refine them by explicit properties specified
in the target reference, and pass the resulting properties as build request to the other target.

5. Adding the usage requirements produced when building dependencies to the "common" properties. When dependencies are built
in the previous step, they return both the set of created "real” targets, and usage requirements. The usage requirements are added
to the common properties and the resulting property set will be used for building the current target.

6. Building the target using generators. To convert the sources to the desired type, Boost.Build uses "generators' --- objects that
correspond to toolslike compilers and linkers. Each generator declareswhat type of targetsit can produce and what type of sources

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

it requires. Using thisinformation, Boost.Build determineswhich generators must be run to produce a specific target from specific
sources. When generators are run, they return the "rea" targets.

7. Computing the usage requirements to be returned. The conditional properties in usage requirements are expanded and the result
isreturned.

Building a Project

Often, a user builds a complete project, not just one main target. In fact, invoking b2 without arguments builds the project defined
in the current directory.

When aproject is built, the build request is passed without modification to all main targetsin that project. It'sis possible to prevent
implicit building of atarget in aproject with theexpl i ci t rule:

explicit hello_test ;

would causethe hel | o_t est target to be built only if explicitly requested by the user or by some other target.

The Jamfile for a project can include a number of bui | d- pr oj ect rule callsthat specify additional projects to be built.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common tasks

This section describes main targets types that Boost.Build supports out-of -the-box. Unless otherwise noted, all mentioned main target
rules have the common signature, described in the section called “ Declaring Targets”.

33

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Programs

Programs are created using the exe rule, which follows the common syntax. For example:

exe hello : hello.cpp sone_library.lib /sone_project//library
<t hreadi ng>nul ti

This will create an executable file from the sources—in this case, one C++ file, one library file present in the same directory, and
another library that is created by Boost.Build. Generally, sources can include C and C++ files, object filesand libraries. Boost.Build
will automatically try to convert targets of other types.

@ Tip
On Windows, if an application uses shared libraries, and both the application and the libraries are built using
Boost.Build, it is not possible to immediately run the application, because the PATH environment variable should
include the path to the libraries. It means you have to either add the paths manually, or have the build place the ap-

plication and the libraries into the same directory. See the section called “Installing”.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Libraries

Library targets are created using thel i b rule, which follows the common syntax . For example:

lib helpers : helpers.cpp ;

Thiswill define alibrary target named hel per s built from the hel per s. cpp sourcefile. It can be either astatic library or ashared
library, depending on the value of the <link> feature.

Library targets can represent:
« Librariesthat should be built from source, as in the example above.

* Prebuilt libraries which already exist on the system. Such libraries can be searched for by the tools using them (typically with the
linker's- 1 option) or their paths can be known in advance by the build system.

The syntax for prebuilt libraries is given below:

lib z : : <nane>z <search>/ home/ ghost ;
lib conpress : : <file>/opt/libs/conpress.a ;

Thenane property specifiesthe name of the library without the standard prefixes and suffixes. For example, depending on the system,
z could refer to afile called z.so, libz.a, or z.lib, etc. The sear ch feature specifies paths in which to search for the library in addition
to the default compiler paths. sear ch can be specified several times or it can be omitted, in which case only the default compiler
paths will be searched. Thefi | e property specifies the file location.

Thedifference between using thef i | e feature and using acombination of thenanme and sear ch featuresisthat f i | e ismore precise.

O Warning
Thevaue of thesear ch featureisjust added to the linker search path. When linking to multiple libraries, the paths
specified by sear ch are combined without regard to which | i b target each path came from. Thus, given

a <name>a <search>/pool/rel ease ;
b : : <name>b <search>/pool /debug ;

O T

If /pool/release/a.so, /pool/rel ease/b.so, /pool/debug/a.so, and /pool/release/b.so all exist, the linker will probably
take both a and b from the same directory, instead of finding a in /pool/release and b in /pool/debug. If you need
to distinguish between multiple libraries with the same name, it's safer tousefi | e.

For convenience, the following syntax is allowed:

lib gui db aux :

which has exactly the same effect as:

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

lib z :
l'ib gui

lib db :
lib aux

<nane>z ;
<name>gui
<nane>db ;
<npane>aux ;

When a library references another library you should put that other library in its list of sources. This will do the right thing in all
cases. For portability, you should specify library dependencies even for searched and prebuilt libraries, othewise, static linking on
Unix will not work. For example:

z : <nane>png ;

Note

When a library has a shared library as a source, or a static library has another static library as a source then any
target linking to thefirst library with automatically link to its source library as well.

On the other hand, when a shared library has a static library as a source then the first library will be built so that it
completely includes the second one.

If you do not want a shared library to include all the libraries specified in its sources (especialy statically linked
ones), you would need to use the following:

libb: acpp;
liba: a.cpp: <use>b : : <library>b ;

This specifies that library a uses library b, and causes all executables that link to a to link to b also. In this case,
even for shared linking, the a library will not refer to b.

Usage requirements are often very useful for defining library targets. For example, imagine that you want you build ahel per s library
and itsinterface is described in its hel per s. hpp header file located in the same directory as the hel per s. cpp source file. Then
you could add the following to the Jamfile located in that same directory:

lib helpers : helpers.cpp : : : <include>.

which would automatically add the directory where the target has been defined (and where the library's header file is located) to the
compiler'sinclude path for al targets using the hel per s library. This feature greatly simplifies Jamfiles.

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Alias

Theal i as rule gives an alternative name to agroup of targets. For example, to give the name cor e to agroup of three other targets
with the following code:

alias core : imreader witer ;

Using cor e on the command line, or in the source list of any other target isthe same asexplicitly usingi m , r eader ,andw i ter.

Another use of the al i as rule is to change build properties. For example, if you want to use link statically to the Boost Threads
library, you can write the following:

alias threads : /boost/thread//boost_thread : <link>static ;

and use only thet hr eads aliasin your Jamfiles.

You can also specify usage requirements for the al i as target. If you write the following:

alias header_only library : : : : <include>/usr/include/header_only_ library ;

then using header _onl y_I i brary in sources will only add an include path. Also note that when an alias has sources, their usage
requirements are propagated as well. For example:

lib libraryl : libraryl.cpp : : : <include>/library/includel ;
lib library2 : library2.cpp : : : <include>/library/include2 ;
alias static_libraries : libraryl library2 : <link>static ;

exe main : nmain.cpp static_libraries ;

will compile mai n. cpp with additional includes required for using the specified static libraries.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common tasks

Installing

This section describes various waysto install built target and arbitrary files.

Basic install

For installing a built target you should use thei nst al | rule, which followsthe common syntax. For example:

install dist : hello helpers

will cause the targets hel | o and hel per s to be moved to the di st directory, relative to the Jamfile's directory. The directory can
be changed using the | ocat i on property:

install dist : hello helpers : <location>/usr/bin ;

While you can achieve the same effect by changing thetarget nameto/ usr/ bi n, usingthel ocat i on property isbetter asit alows
you to use a mnemonic target name.

Thel ocat i on property isespecially handy when thelocation isnot fixed, but depends on the build variant or environment variables:

install dist : hello helpers
<vari ant >r el ease: <l ocati on>di st/rel ease
<vari ant >debug: <l ocat i on>di st/ debug ;
install dist2 : hello helpers : <location>$(Dl ST)

See also conditional properties and environment variables

Installing with all dependencies

Specifying the names of all librariestoinstall can be boring. Thei nst al | alowsyou to specify only thetop-level executabletargets
to install, and automatically install all dependencies:

install dist : hello
<i nstal | -dependenci es>on <install-type>EXE
<install-type>LIB

will find al targets that hel | o depends on, and install all of those which are either executables or libraries. More specificaly, for
each target, other targets that were specified as sources or as dependency properties, will be recursively found. One exception is that
targets referred with the use feature are not considered, as that feature is typically used to refer to header-only libraries. If the set
of target typesis specified, only targets of that type will be installed, otherwise, al found target will be installed.

Preserving Directory Hierarchy

By default, thei nst al | rule will strip paths from its sources. So, if sourcesinclude a/ b/ c. hpp, thea/ b part will beignored. To
makethei nst al | rule preserve the directory hierarchy you need to use the <i nst al | - sour ce- r oot > feature to specify the root
of the hierarchy you are installing. Relative paths from that root will be preserved. For example, if you write:

38

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

install headers
a/b/c.h
<l ocation>/tnp <install-source-root>a

theafilenamed/ t np/ b/ c. h will be created.

The glob-tree rule can be used to find all files below a given directory, making it easy to install an entire directory tree.

Installing into Several Directories

Theal i as rule can be used when targets need to be installed into several directories:

alias install : install-bin install-lib ;
install install-bin : applications : /usr/bin ;
install install-lib : helper : /usr/lib ;

Because thei nst al | rulejust copies targets, most free features ! have no effect when used in requirements of thei nstal | rule.
The only two that matter are dependency and, on Unix, dI | - pat h .

E Note
(Unix specific) On Unix, executables built using Boost.Build typically contain the list of paths to all used shared
libraries. For installing, thisis not desired, so Boost.Build relinks the executable with an empty list of paths. You
can also specify additional paths for installed executables using the dl | - pat h feature.

Lsee the definition of "free" in the section called “Feature Attributes’.

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Testing

Boost.Build has convenient support for running unit tests. The simplest way is the uni t -t est rule, which follows the common
syntax. For example:

unit-test helpers_test : hel pers_test.cpp helpers ;

The uni t -t est rule behaves like the exe rule, but after the executable is created it is also run. If the executable returns an error
code, the build system will also return an error and will try running the executable on the next invocation until it runs successfully.
This behaviour ensures that you can not miss a unit test failure.

There are few specialized testing rules, listed below:

rule conpile (sources : requirenents * : target-name ?)
rule conpile-fail (sources : requirenents * : target-nane ?)
rule link (sources + : requirements * : target-nane ?)
rule link-fail (sources + : requirenents * : target-name ?)

They are given alist of sources and requirements. If the target name is not provided, the name of thefirst sourcefileis used instead.
The conpi | e* teststry to compile the passed source. Thel i nk* rulestry to compile and link an application from all the passed
sources. Theconpi | e and! i nk rulesexpect that compilation/linking succeeds. The conpi | e-fail andl i nk-fail rulesexpect
that the compilation/linking fails.

There are two specialized rules for running applications, which are more powerful than the uni t - t est rule. Ther un rule has the
following signature:

rule run (sources + : args * : input-files * : requirenents * : target-nane ?
default-build *)

The rule builds application from the provided sources and runs it, passing ar gs and i nput - f i | es a command-line arguments.
The ar gs parameter is passed verbatim and the values of thei nput - fi | es parameter are treated as paths relative to containing
Jamfile, and are adjusted if b2 isinvoked from a different directory. Therun-fai | ruleisidentical to ther un rule, except that it
expects that the run fails.

All rules described in this section, if executed successfully, create a special manifest file to indicate that the test passed. For the
uni t-test rulethefilesisnamed target-nane. passed and for the other rulesit is called t ar get - nane. t est . The r un*
rules also capture all output from the program, and storeit in afilenamed t ar get - nane. out put .

If the preserve-test-targets feature has the value of f , then run and the run-f ai | rules will remove the executable after
running it. This somewhat decreases disk space requirements for continuous testing environments. The default value of pr eser ve-
test -targets featureison.

It is possible to print the list of all test targets (except for uni t - t est) declared in your project, by passing the --dunp-tests
command-line option. The output will consist of lines of the form:

boost-test(test-type) path : sources

It is possible to process the list of tests, Boost.Build output and the presense/absense of the *. t est files created when test passes
into human-readable status table of tests. Such processing utilities are not included in Boost.Build.

The following features adjust behaviour of the testing metatargets.

testing.arg Defines an argument to be passed to the target when it is executed before the list of input files.

40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common tasks

unit-test hel pers_test
hel pers_test.cpp hel pers
<testing.arg>"--foo bar"

testing.input-file Specifies afile to be passed to the executable on the command line after the arguments. All files must
be specified in alphabetical order due to constrainsts in the current implementation.

testing. | auncher By default, the executable is run directly. Sometimes, it is desirable to run the executable using some
helper command. You should use the this property to specify the name of the helper command. For
example, if you write:

unit-test hel pers_test
hel pers_test.cpp hel pers
<t esting. | auncher>val gri nd

The command used to run the executable will be:

val grind bi n/ $t ool set/ debug/ hel pers_t est

test-info A description of the test. Thisis displayed as part of the - - dunp- t est s command-line option.

41

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Custom commands

For most main target rules, Boost.Build automatically figures out the commands to run. When you want to use new file types or
support new tools, one approach is to extend Boost.Build to support them smoothly, as documented in Extender Manual. However,
if the new tool isonly used in asingle place, it might be easier just to specify the commands to run explicitly.

Three main target rules can be used for that. The make rule allows you to construct a single file from any number of source file,
by running a command you specify. The not fi | e rule allows you to run an arbitrary command, without creating any files. And
finaly, thegener at e rule alows you to describe a transformation using Boost.Build's virtual targets. Thisis higher-level than the
file namesthat the make rule operates with and allows you to create more than one target, create differently named targets depending
on properties or use more than one tool.

The nake ruleis used when you want to create one file from anumber of sources using some specific command. Thenotfil e is
used to unconditionally run a command.

Suppose you want to create thefilefi | e. out fromthefilefil e. i n by running the command in2out. Hereis how you would do
thisin Boost.Build:

meke file.out : file.in : @n2out ;
actions in2out

{
}

in2out $(<) $(>)

Ifyourunb2andfi | e. out doesnot exist, Boost.Build will run thein2out command to creste that file. For more details on specifying
actions, see the section called “ Boost.Jam Language” [18].

It could be that you just want to run some command unconditionally, and that command does not create any specific files. For that
you can usethenot fi | e rule. For example:

notfile echo_sonething : @cho ;
actions echo

{
}

echo "somet hi ng"

The only difference from the nake ruleisthat the name of the target is not considered a name of afile, so Boost.Build will uncondi-
tionally run the action.

Thegener at e ruleisused when you want to express transformations using Boost.Build's virtual targets, as opposed to just filenames.
The gener at e rule has the standard main target rule signature, but you are required to specify the gener at i ng- r ul e property.
The value of the property should beintheform @ ul e- nane, the named rule should have the following signature:

rule generating-rule (project name : property-set : sources *)

and will be called with an instance of the pr oj ect - t ar get class, the name of the main target, an instance of the pr operty- set
class containing build properties, and the list of instances of the vi rt ual - t ar get class corresponding to sources. The rule must
return a list of virtual -target instances. The interface of the virtual -target class can be learned by looking at the
bui I d/ virtual -t arget.jamfile. Thegener at e example contained in the Boost.Build distribution illustrates how thegener at e
rule can be used.

42

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Precompiled Headers

Precompiled headers is a mechanism to speed up compilation by creating a partially processed version of some header files, and
then using that version during compilations rather then repeatedly parsing the original headers. Boost.Build supports precompiled
headers with gcc and msvc tool sets.

To use precompiled headers, follow the following steps:

1. Create aheader that includes headers used by your project that you want precompiled. It is better to include only headersthat are
sufficiently stable — like headers from the compiler and external libraries. Please wrap the header in #if def
BOOST_BU LD_PCH_ENABLED, so that the potentially expensiveinclusion of headersisnot donewhen PCH isnot enabled. Include
the new header at the top of your sourcefiles.

2. Declare anew Boost.Build target for the precompiled header and add that precompiled header to the sources of the target whose
compilation you want to speed up:

cpp-pch pch : pch. hpp ;
exe nain : main.cpp pch ;

You can use the c- pch rule if you want to use the precompiled header in C programs.
The pch example in Boost.Build distribution can be used as reference.
Please note the following:
» Theinclusion of the precompiled header must be the first thing in a source file, before any code or preprocessor directives.

» Thebuild properties used to compile the source files and the precompiled header must be the same. Consider using project require-
ments to assure this.

 Precompiled headers must be used purely as away to improve compilation time, not to save the number of #i ncl ude statements.
If a source file needs to include some header, explicitly include it in the source file, even if the same header is included from the
precompiled header. This makes sure that your project will build even if precompiled headers are not supported.

» On the gcc compiler, the name of the header being precompiled must be equal to the name of the cpp- pch target. Thisisagcc
reguirement.

* Prior to version 4.2, the gcc compiler did not allow anonymous namespaces in precompiled headers, which limitstheir utility. See
the bug report for details.

43

httpo://www.renderx.com/

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=29085
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common tasks

Generated headers

Usually, Boost.Build handlesimplicit dependendies completely automatically. For example, for C++ files, all #i ncl ude statements
are found and handled. The only aspect where user help might be needed is implicit dependency on generated files.

By default, Boost.Build handles such dependencies within one main target. For example, assume that main target "app" has two
sources, "app.cpp” and "parser.y". Thelatter sourceisconverted into "parser.c” and "parser.h". Then, if "app.cpp” includes"parser.h",
Boost.Build will detect this dependency. Moreover, since "parser.h” will be generated into a build directory, the path to that directory
will automatically added to include path.

Making this mechanism work across main target boundaries is possible, but imposes certain overhead. For that reason, if thereis
implicit dependency on files from other main targets, the <i npl i ci t - dependency> feature must be used, for example:

lib parser : parser.y ;
exe app : app.cpp : <inplicit-dependency>parser ;

The above exampletellsthe build system that when scanning all sources of "app" for implicit-dependencies, it should consider targets
from "parser” as potential dependencies.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Common tasks

Cross-compilation

Boost.Build supports cross compilation with the gcc and msvc tool sets.

When using gcc, you first need to specify your cross compiler inuser - conf i g. j am(see the section called “Configuration™), for
example:

using gcc @ arm: armnone-|inux-gnueabi-g++ ;

After that, if the host and target os are the same, for example Linux, you can just request that this compiler version to be used:

b2 tool set=gcc-arm

If you want to target different operating system from the host, you need to additionally specify the valuefor thet ar get - os feature,
for example:

On w ndows box

b2 tool set=gcc-armtarget-os=linux

On Li nux box

b2 tool set =gcc-m ngw t arget - os=wi ndows

For the complete list of allowed opeating system names, please see the documentation for target-os feature.

When using the msvc compiler, it's only possible to cross-compiler to a 64-hit system on a 32-bit host. Please see the section called
“64-hit support” for details.

45

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

wi

Reference

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

General information

Initialization

Immediately upon starting, the Boost.Build engine (b2) loads the Jam code that implements the build system. To do this, it searches
for afile called boost - bui | d. j am first in the invocation directory, then in its parent and so forth up to the filesystem root, and
finally in the directories specified by the environment variable BOOST_BUILD_PATH. When found, the file is interpreted, and
should specify the build system location by calling the boost-build rule:

rul e boost-build (location ?)

If location is arelative path, it is treated as relative to the directory of boost - bui | d. j am The directory specified by that location
and the directoriesin BOOST_BUILD_PATH are then searched for afile called boot st r ap. j am which is expected to bootstrap
the build system. This arrangement allows the build system to work without any command-line or environment variable settings.
For example, if the build system files were located in a directory "build-system/" at your project root, you might place aboost -
bui | d. j amat the project root containing:

boost -build buil d-system ;

In this case, running b2 anywhere in the project tree will automatically find the build system.

The default boot st r ap. j am after loading some standard definitions, loadstwo si t e- confi g. j amand user - confi g. j am

47

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Builtin rules

This section contains the list of all rulesthat can be used in Jamfile—both rules that define new targets and auxiliary rules.

exe Creates an executable file. See the section called “ Programs”.

lib Creates an library file. See the section called “Libraries’.

install Installs built targets and other files. See the section called “Installing”.

alias Creates an dlias for other targets. See the section called “Alias’.

unit-test Creates an executable that will be automatically run. See the section called “ Testing”.
conpi | e,conpi l e-fail, Specialized rulesfor testing. See the section called “Testing”.
link,link-fail,run

run-fail

check-target-builds The check-t arget - bui | ds alows you to conditionally use different properties depending on
whether some metatarget builds, or not. Thisissimilar to functionality of configure script in autotools
projects. The function signature is:

rul e check-target-builds (target nessage ? : true-properties * : false-
properties *)

Thisfunction can only be used when passing requirements or usage requirementsto ametatarget rule.
For example, to make an application link to alibrary if it's avavailable, one has use the following:

exe app : app.cpp : [check-target-builds has_foo "Systemhas foo" : <lib0O
rary>foo : <define>FOO M SSI NG=1]
O

For another example, the alias rule can be used to consolidate configuraiton choices and make them
available to other metatargets, like so:

alias foobar : : : : [check-target-builds has_foo "Systemhas foo" : 0O
<library>foo : <library>bar] ;
|
obj Creates an object file. Useful when a single source file must be compiled with specia properties.
preprocessed Creates an preprocessed source file. The arguments follow the common syntax.
gl ob The gl ob rule takes a list shell pattern and returns the list of filesin the project's source directory

that match the pattern. For example:

libtools : [glob *.cpp] ;
O

Itispossibleto also pass a second argument—the list of exclude patterns. The result will then include
the list of files patching any of include patterns, and not matching any of the exclude patterns. For
example:

48

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

gl ob-tree

pr oj ect
use- proj ect

explicit

al ways

const ant

pat h- const ant

bui | d- pr oj ect

lib tools : [glob *.cpp : file_to_exclude.cpp bad*.cpp]
|

The gl ob-t ree issimilar to the gl ob except that it operates recursively from the directory of the
containing Jamfile. For example:

ECHO [glob-tree *.cpp : .svn]
|

will print the names of al C++ filesin your project. The . svn exclude pattern prevents the gl ob-
t r ee rule from entering administrative directories of the Subversion version control system.

Declares project id and attributes, including project requirements. See the section called “ Projects’.
Assigns a symboalic project ID to a project at agiven path. This rule must be better documented!

Theexpl i ci t ruletakesasingle parameter—alist of target names. The named targetswill be marked
explicit, and will be built only if they are explicitly requested on the command line, or if their depend-
ents are built. Compare thisto ordinary targets, that are built implicitly when their containing project
is built.

The al ways funciton takes a single parameter—a list of metatarget names. The top-level targets
produced by the named metatargets will be always considered out of date. Consider this example:

exe hello : hello.cpp ;
exe bye : bye.cpp ;
al ways hello ;

If abuild of hel | o isrequested, then the binary will always be relinked. The object fileswill not be
recompiled, though. Note that if abuild of hel | o isnot requested, for example you specify just bye
on the command line, hel | o will not be relinked.

Sets project-wide constant. Takes two parameters: variable name and a val ue and makes the specified
variable name accessible in this Jamfile and any child Jamfiles. For example:

constant VERSION : 1.34.0 ;
O

Same asconst ant except that the value is treated as path relative to Jamfile location. For example,
if b2 isinvoked in the current directory, and Jamfilein hel per subdirectory has:

pat h-const ant DATA : datal/a.txt ;
0

then the variable DATA will be set to hel per/ dat a/ a. t xt, and if b2 isinvoked from the hel per
directory, then the variable DATA will be set to dat a/ a. t xt .

Cause some other project to be built. This rule takes a single parameter—a directory name relative
to the containing Jamfile. When the containing Jamfile is built, the project located at that directory
will be built as well. At the moment, the parameter to this rule should be a directory name. Project
ID or general target references are not allowed.

render

49

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

test-suite Thisrule is deprecated and equivalentto al i as.

50

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Builtin features

This section documents the features that are built-in into Boost.Build. For features with a fixed set of values, that set is provided,

with the default value listed first.

vari ant

I'i nk

runtime-link

t hr eadi ng

source

A feature combining several low-level features, making it easy to request common build
configurations.

Allowed values: debug, r el ease, profil e.

The value debug expandsto

<opti m zati on>of f <debug- synbol s>on <inli ni ng>of f <runti ne-debugd
gi ng>on

Thevaluer el ease expandsto

<opti m zati on>speed <debug-synbol s>of f <inlining>full <runtine-deld
buggi ng>of f

Thevaluepr of i | e expandsto thesameasr el ease, plus:

<profiling>on <debug-synbol s>on

Users can define their own build variants using the var i ant rule from the common module.

Note: Runtime debugging is on in debug builds to suit the expectations of people used to
various IDEs.

Allowed values; shar ed, stati c
A feature controling how libraries are built.
Allowed values; shared, static

Controlsif astatic or shared C/C++ runtime should be used. There are some restrictions how
this feature can be used, for example on some compilers an application using static runtime
should not use shared libraries at all, and on some compilers, mixing static and shared runtime
reguires extreme care. Check your compiler documentation for more details.

Allowed values: si ngl e, nul ti

Controlsif the project should be built in multi-threaded mode. This feature does not necessary
change code generation in the compiler, but it causes the compiler to link to additional or
different runtime libraries, and define additional preprocessor symbols (for example, _Mr on
Windows and _ REENTRANT on Linux). How those symbols affect the compiled code depends
on the code itself.

The <sour ce>X feature has the same effect on building a target as putting X in the list of
sources. It is useful when you want to add the same source to all targets in the project (you
can put <source> in requirements) or to conditionally include a source (using conditional re-
quirements, see the section called “Conditions and alternatives’). See also the <l i brary>
feature.

51

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

library

dependency

implicit-dependency

use

dl | -path

har dcode-dl | - pat hs

cfl ags, cxxfl ags, | i nkfl ags

i ncl ude

define

war ni ngs

war ni ngs-as-errors

bui | d

Thisfeature is almost equivalent to the <sour ce> feature, except that it takes effect only for
linking. When youwant to link all targetsin aJamfileto certain library, the<l i br ar y> feature
is preferred over <sour ce>X—the latter will add the library to all targets, even those that
have nothing to do with libraries.

Introduces a dependency on the target named by the value of thisfeature (so it will be brought
up-to-date whenever the target being declared is). The dependency is not used in any other

way.

Indicatesthat the target named by the value of this feature may produce filesthat are included
by the sources of the target being declared. See the section called “Generated headers’ for
more information.

Introduces a dependency on the target named by the value of thisfeature (so it will be brought
up-to-date whenever the target being declared is), and adds its usage requirements to the build
properties of the target being declared. The dependency is not used in any other way. The
primary use case iswhen you want the usage requirements (such as#i ncl ude paths) of some
library to be applied, but do not want to link to it.

Specify an additional directory where the system should look for shared libraries when the
executable or shared library is run. This feature only affects Unix compilers. Plase see the
section called “ Why arethed! | - pat h and har dcode-dl | - pat hs properties useful?” in
Frequently Asked Questions for details.

Controls automatic generation of dll-path properties.

Allowed values: t r ue, f al se. This property is specific to Unix systems. If an executableis
built with <har dcode- dl | - pat hs>t r ue, the generated binary will contain thelist of all the
paths to the used shared libraries. As the result, the executable can be run without changing
system pathsto shared libraries or installing the libraries to system paths. Thisisvery conveni-
ent during development. Plase seethe FAQ entry for details. Note that on Mac OSX, the paths
are unconditionally hardcoded by the linker, and it is not possible to disable that behaviour.

The value of those features is passed without modification to the corresponding tools. For
cfl ags that is both the C and C++ compilers, for cxxf | ags that is the C++ compiler and
for | i nkf | ags that isthe linker. The features are handy when you are trying to do something
special that cannot be achieved by a higher-level feature in Boost.Build.

Specifies an additional include path that is to be passed to C and C++ compilers.

Specifies an preprocessor symbol that should be defined on the command line. You may either
specify just the symbol, which will be defined without any value, or both the symbol and the
value, separated by equal sign.

The <war ni ngs> feature controlsthe warning level of compilers. It hasthe following values:
e of f - disablesall warnings.
* on - enables default warning level for the toal.

e all -enablesall warnings.
Default valueisal | .

The<war ni ngs- as- er r or s> makesit possibleto treat warnings as errors and abort compil-
ation on awarning. The value on enables this behaviour. The default valueisof f .

Allowed values: no

The bui | d feature is used to conditionally disable build of a target. If <bui | d>no isin
properties when building a target, build of that target is skipped. Combined with conditional

52

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

t ag

debug- synbol s

runti me- debuggi ng

target-os

architecture

instruction-set

addr ess- nodel

requirements this allows you to skip building some target in configurations where the build
isknown to fail.

Thet ag feature is used to customize the name of the generated files. The value should have
the form:

@ ul enane
wherer ul ename should be a name of arule with the following signature:
rule tag (nane : type ? : property-set)

The rule will be called for each target with the default name computed by Boost.Build, the
type of the target, and property set. The rule can either return a string that must be used asthe
name of the target, or an empty string, in which case the default name will be used.

Most typical use of thet ag feature isto encode build properties, or library versionin library
target names. You should take care to return non-empty string from the tag rule only for types
you care about — otherwise, you might end up modifying names of object files, generated
header file and other targets for which changing names does not make sense.

Allowed values; on, of f .

The debug- synbol s feature specifies if produced object files, executables and libraries
should include debug information. Typically, the value of this feature isimplicitly set by the
vari ant feature, but it can be explicitly specified by the user. The most common usage isto
build rel ease variant with debugging information.

Allowed values; on, of f .

Ther unt i me- debuggi ng feature specifiesif produced object files, executablesand libraries
should include behaviour useful only for debugging, such as asserts. Typically, the value of
this feature isimplicitly set by thevari ant feature, but it can be explicitly specified by the
user. The most common usage is to build release variant with debugging output.

The operating system for which the code is to be generated. The compiler you used should
be the compiler for that operating system. This option causes Boost.Build to use naming
conventions suitable for that operating system, and adjust build process accordingly. For ex-
ample, with gcg, it controlsif import libraries are produced for shared libraries or not.

The completelist of possible valuesfor thisfeatureis: aix, bsd, cygwin, darwin, freebsd, hpux,
iphone, linux, netbsd, openbsd, osf, gnx, gnxnto, sgi, solaris, unix, unixware, windows.

See the section called “ Cross-compilation” for details of crosscompilation
Thear chi t ect ur e features specifies the general processor familty to generate code for.
Allowed values: depend on the used tool set.

Thei nstructi on- set specifiesfor which specific instruction set the code should be gener-
ated. The code in general might not run on processors with older/different instruction sets.

While Boost.Build allowsalarge set of possible valuesfor thisfeatures, whether agiven value
works depends on which compiler you use. Please see the section called “ C++ Compilers’
for details.

Allowed values: 32, 64.

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

c++-tenpl ate-depth

enbed- nani f est

The addr ess- nodel specifiesif 32-bit or 64-bit code should be generated by the compiler.
Whether this feature works depends on the used compiler, its version, how the compiler is
configured, and the values of the architecture i nstructi on-set features. Please see
the section called “C++ Compilers’ for details.

Allowed values: Any positive integer.

Thisfeature allows configuring a C++ compiler with the maximal templateinstantiation depth
parameter. Specific toolsets may or may not provide support for this feature depending on
whether their compilers provide a corresponding command-line option.

Note: Dueto someinternal detailsin the current Boost.Build implementationit isnot possible
to have features whose valid values are all positive integer. As a workaround a large set of
allowed values has been defined for this feature and, if a different one is needed, user can
easily add it by calling the feature.extend rule.

Allowed values: on, off.

This feature is specific to the msvc toolset (see the section called “Microsoft Visual C++”),
and controls whether the manifest files should be embedded inside executables and shared
libraries, or placed alongside them. This feature corresponds to the IDE option found in the
project settings dialog, under Configuration Properties —» Manifest Tool — Input and Output
— Embed manifest.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Builtin tools

Boost.Build comes with support for alarge number of C++ compilers, and other tools. This section documents how to use those
toals.

Before using any tool, you must declare your intention, and possibly specify additional information about the tool's configuration.
Thisisdone by calling the usi ng rule, typically in your user - conf i g. j am for example:

usi ng gcc ;

additional parameters can be passed just like for other rules, for example:

using gcc : 4.0 : g++-4.0 ;
The options that can be passed to each tool are documented in the subsequent sections.

C++ Compilers

This section lists all Boost.Build modules that support C++ compilers and documents how each one can be initialized. The name of
support module for compiler is aso the value for thet ool set feature that can be used to explicitly request that compiler.

GNU C++

Thegcc module supportsthe GNU C++ compiler on Linux, anumber of Unix-like system including SunOS and on Windows (either
Cygwin or MinGW). On Mac OSX, it is recommended to use system gcc, see the section called “Apple Darwin gec”.

The gcc moduleisinitialized using the following syntax:

using gcc : [version] : [c++-conpile-conmand] : [conpil er options]

This statement may be repeated several times, if you want to configure several versions of the compiler.

If the versionisnot explicitly specified, it will be automatically detected by running the compiler with the - v option. If the command
is not specified, the g++ binary will be searched in PATH.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.
I'i nkfl ags Specifies additional command line options that will be passed to the linker.

r oot Specifies root directory of the compiler installation. This option is necessary only if it is not possible to detect
thisinformation from the compiler command—for example if the specified compiler command is a user script.

rc Specifies the resource compiler command that will be used with the version of gcc that is being configured.
This setting makes sense only for Windows and only if you plan to use resource files. By default windres will
be used.

rc-type Specifies the type of resource compiler. The value can be either wi ndr es for msvc resource compiler, or r ¢

for borland's resource compiler.

55

httpo://www.renderx.com/

http://gcc.gnu.org
http://www.cygwin.com
http://www.mingw.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

In order to compile 64-hit applications, you have to specify addr ess- nodel =64, and thei nst ruct i on- set feature should refer
to a64 bit processor. Currently, those include nocona, opt er on, at hl on64 and at hl on- f x.

Apple Darwin gcc

The dar wi n module supports the version of gcc that is modified and provided by Apple. The configuration is essentially identical
to that of the gcc module.

The darwin tool set can generate so called "fat" binaries—binaries that can run support more than one architecture, or address mode.
To build a binary that can run both on Intel and PowerPC processors, specify ar chi t ect ur e=conbi ned. To build a binary that
can run both in 32-bit and 64-bit modes, specify addr ess- nodel =32_64. If you specify both of those properties, a "4-way" fat
binary will be generated.

Microsoft Visual C++

The msvc module supports the Microsoft Visual C++ command-line tools on Microsoft Windows. The supported products and
versions of command line tools are listed below:

* Visua Studio 2010—10.0

Visual Studio 2008—9.0
* Visua Studio 2005—8.0

* Visua Studio .NET 2003—7.1

Visua Studio NET—7.0
* Visua Studio 6.0, Service Pack 5—6.5

Themsvc moduleisinitialized using the following syntax:

using nsvc : [version] : [c++-conpil e-comrand] : [conpiler options] ;
O

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the version is not explicitly specified, the most recent version found in the registry will be used instead. If the specia value al |
is passed as the version, all versions found in the registry will be configured. If aversion is specified, but the command is not, the
compiler binary will be searched in standard installation paths for that version, followed by PATH.

The compiler command should be specified using forward slashes, and quoted.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

assenbl er The command that compiles assembler sources. If not specified, ml will be used. The command will be

invoked after the setup script was executed and adjusted the PATH variable.

conpi | er The command that compiles C and C++ sources. If not specified, ¢l will be used. The command will be
invoked after the setup script was executed and adjusted the PATH variable.

56

httpo://www.renderx.com/

http://msdn.microsoft.com/visualc/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

compi ler-filter Command through which to pipe the output of running the compiler. For example to pass the output to
STLfilt.
i dl-compiler The command that compiles Microsoft COM interface definition files. If not specified, midl will be

used. The command will be invoked after the setup script was executed and adjusted the PATH variable.

l'i nker The command that links executables and dynamic libraries. If not specified, link will be used. The
command will be invoked after the setup script was executed and adjusted the PATH variable.

nmc- conpi | er The command that compiles Microsoft message catalog files. If not specified, mc will be used. The
command will be invoked after the setup script was executed and adjusted the PATH variable.

resour ce-conpi | er The command that compilesresourcefiles. If not specified, rc will be used. The command will beinvoked
after the setup script was executed and adjusted the PATH variable.

set up The filename of the global environment setup script to run before invoking any of the tools defined in
thistoolset. Will not be used in case atarget platform specific script has been explicitly specified for the
current target platform. Used setup script will be passed the target platform identifier (x86, x86_amd64,
x86_iab4, amd64 or iab4) as a arameter. If not specified a default script is chosen based on the used
compiler binary, e.g. vevar s32.bat or vsvar s32.bat.

set up- amd64, setup- Thefilename of the target platform specific environment setup script to run before invoking any of the
i 386, set up-i a64 tools defined in thistoolset. If not specified the global environment setup script is used.

64-bit support

Starting with version 8.0, Microsoft Visual Studio can generate binariesfor 64-bit processor, both 64-bit flavours of x86 (codenamed
AMDG64/EM64T), and Itanium (codenamed |A64). In addition, compilersthat are itself run in 64-bit mode, for better performance,
are provided. The complete list of compiler configurations are as follows (we abbreviate AMDG64/EM64T to just AMDG64):

* 32-bit x86 host, 32-bit x86 target

32-bit x86 host, 64-bit AMD64 target

32-bit x86 host, 64-bit 1A64 target

64-bit AMD64 host, 64-bit AMD64 target
» 64-bit 1A64 host, 64-bit | A64 target

The 32-bit host compilers can be always used, even on 64-bit Windows. On the contrary, 64-bit host compilers require both 64-bit
host processor and 64-bit Windows, but can be faster. By default, only 32-bit host, 32-bit target compiler isinstalled, and additional
compilers need to be installed explicitly.

To use 64-hit compilation you should:

1. Configure you compiler as usual. If you provide a path to the compiler explicitly, provide the path to the 32-bit compiler. If you
try to specify the path to any of 64-bit compilers, configuration will not work.

2. When compiling, use addr ess- nodel =64, to generate AMDG64 code.
3. To generate IA64 code, use ar chi t ect ur e=i a64

The (AMDG64 host, AMD64 target) compiler will be used automatically when you are generating AM D64 code and are running 64-
bit Windows on AMD®64. The (IA64 host, |A64 target) compiler will never be used, since nobody has an |A64 machine to test.

Itisbelieved that AMD64 and EM 64T targetsare essentially compatible. The compiler options/ f avor : AMD64 and/ f avor : EMBAT,
which are accepted only by AMDG64 targeting compilers, cause the generated code to be tuned to a specific flavor of 64-bit x86.
Boost.Build will make use of those options depending on the value of thei nst ruct i on- set feature.

57

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Intel C++

Theintel -1inux andi ntel -wi n modules support the Intel C++ command-line compiler—the Linux and Windows versions
respectively.

The moduleisinitialized using the following syntax:

using intel-linux : [version] : [c++-conpile-command] : [conpiler options] ;
or

using intel-win : [version] : [c++-conpile-conmand] : [conpiler options] ;
respectively.

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If compiler command isnot specified, then Boost.Build will ook in PATHfor an executableicpc (on Linux), or icc.exe (on Windows).
The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

The Linux version supports the following additional options:

root Specifiesroot directory of the compiler installation. Thisoptionisnecessary only if it isnot possibleto detect thisinformation
from the compiler command—for example if the specified compiler command is a user script.

HP aC++ compiler
The acc module supports the HP aC++ compiler for the HP-UX operating system.

The moduleisinitialized using the following syntax:

using acc : [version] : [c++-conpile-conmand] : [conpiler options] ;

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the command is not specified, the aCC binary will be searched in PATH.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

58

render

httpo://www.renderx.com/

http://www.intel.com/software/products/compilers/clin/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284527.htm
http://h21007.www2.hp.com/dspp/tech/tech_TechSoftwareDetailPage_IDX/1,1703,1740,00.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Borland C++ Compiler

The bor | and module supports the command line C++ compiler included in C++ Builder 2006 product and earlier version of it,
running on Microsoft Windows.

The supported products are listed below. The version reported by the command lines toolsis also listed for reference.:
o C++ Builder 2006—5.8.2

» CBuilderX—5.6.5, 5.6.4 (depending on release)

» CBuilder6—5.6.4

* Free command linetools—5.5.1

The module isinitialized using the following syntax:

using borland : [version] : [c++-conpile-conmand] : [conpil er options]

This statement may be repeated several times, if you want to configure several versions of the compiler.

If the command is not specified, Boost.Build will search for abinary named bcc32 in PATH.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

Comeau C/C++ Compiler
The cono- | i nux and the conp- wi n modules supports the Comeau C/C++ Compiler on Linux and Windows respectively.

The module isinitialized using the following syntax:

using como-linux : [version] : [c++-conpile-conmand] : [conpiler options] ;

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the command is not specified, Boost.Build will search for a binary named como in PATH.

The following options can be provided, using <opt i on- name>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.
I'i nkfl ags Specifies additional command line options that will be passed to the linker.

Before using the Windows version of the compiler, you need to setup necessary environment variables per compiler's documentation.
In particular, the COMO_XXX_1 NCLUDE variable should be set, where XXX corresponds to the used backend C compiler.

59

httpo://www.renderx.com/

http://www.borland.com/us/products/cbuilder/index.html
http://www.comeaucomputing.com/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Code Warrior

The cwmodule support CodeWarrior compiler, originally produced by Metrowerks and presently developed by Freescale. Boost.Build
supportsonly the versions of the compiler that target x86 processors. All such versionswere rel eased by Metrowerks before aguisition
and are not sold any longer. The last version known to work is 9.4.

The moduleisinitialized using the following syntax:

using cw : [version] : [c++-conpil e-comuand] : [conpiler options] ;

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the command is not specified, Boost.Build will search for a binary named mwecc in default installation paths and in PATH.
The following options can be provided, using <opt i on- name>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

r oot Specifies root directory of the compiler installation. This option is necessary only if it is not possible to detect
this information from the compiler command—for example if the specified compiler command is auser script.

set up The command that sets up environment variables prior to invoking the compiler. If not specified, cwenv.bat
aongside the compiler binary will be used.

conpi | er The command that compiles C and C++ sources. If not specified, mwcc will be used. The command will bein-
voked after the setup script was executed and adjusted the PATH variable.

l'i nker The command that links executables and dynamic libraries. If not specified, mwld will be used. The command
will beinvoked after the setup script was executed and adjusted the PATH variable.

Digital Mars C/C++ Compiler
The dnt module supports the Digital Mars C++ compiler.

The module isinitialized using the following syntax:

using dnt : [version] : [c++-conpile-command] : [conpiler options]

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the command is not specified, Boost.Build will search for a binary named dmc in PATH.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

60

httpo://www.renderx.com/

http://www.digitalmars.com/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

HP C++ Compiler for Tru64 Unix

The hp_cxx modules supports the HP C++ Compiler for Tru64 Unix.

The moduleisinitialized using the following syntax:

using hp_cxx : [version] : [c++-conpile-comand] : [conpiler options] ;

This statement may be repeated severa times, if you want to configure several versions of the compiler.

If the command is not specified, Boost.Build will search for a binary named hp_cxx in PATH.

The following options can be provided, using <opt i on- name>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.

I'i nkfl ags Specifies additional command line options that will be passed to the linker.

Sun Studio

The sun module supportsthe Sun Studio C++ compilers for the Solaris OS.

The moduleisinitialized using the following syntax:

using sun : [version] : [c++-conpile-command] : [conpiler options] ;

This statement may be repeated several times, if you want to configure several versions of the compiler.
If the command is not specified, Boost.Build will search for abinary named CC in/ opt / SUNWépr o/ bi n and in PATH.

When using this compiler on complex C++ code, such asthe Boost C++ library, it is recommended to specify the following options
when intializing the sun module:

-library=stlport4 -features=tnplife -features=tnplrefstatic
g

Seethe Sun C++ Frontend Tales for details.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:

cfl ags Specifies additional compiler flags that will be used when compiling C sources.

cxxfl ags Specifies additional compiler flags that will be used when compiling C++ sources.

conpi | ef | ags Specifies additional compiler flags that will be used when compiling both C and C++ sources.
I'i nkfl ags Specifies additional command line options that will be passed to the linker.

Starting with Sun Studio 12, you can create 64-bit applications by using the addr ess- nodel =64 property.

61

render

httpo://www.renderx.com/

http://h30097.www3.hp.com/cplus/?jumpid=reg_R1002_USEN
http://developers.sun.com/sunstudio/index.jsp
http://boost.org
http://blogs.sun.com/sga/entry/command_line_options
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

IBM Visual Age

The vacpp module supports the IBM Visual Age C++ Compiler, for the AIX operating system. Versions 7.1 and 8.0 are known to
work.

The moduleisinitialized using the following syntax:

usi ng vacpp ;

The module does not accept any initialization options. The compiler should beinstalled inthe/ usr/ vacpp/ bi n directory.

Later versions of Visual Age are known as XL C/C++. They were not tested with the the vacpp module.

Third-party libraries
Boost.Build provides specia support for some third-party C++ libraries, documented bel ow.

STLport library

The STLport library is an aternative implementation of C++ runtime library. Boost.Build supports using that library on Windows
platfrom. Linux is hampered by different naming of librariesin each STLport version and is not officially supported.

Before using STLport, you need to configureit in user - conf i g. j amusing the following syntax:

using stlport : [version] : header-path : [library-path] ;

Wherever si on isthe version of STLport, for example 5. 1. 4, header s isthe location where STL port headers can be found, and
I'i brari es isthelocation where STL port libraries can be found. The version should always be provided, and thelibrary path should
be provided if you're using STL port's implementation of iostreams. Note that STL port 5.* always uses its own iostream implement-
ation, so the library path is required.

When STL port is configured, you can build with STL port by requesting st dl i b=st | port on the command line.
zlib
Provides support for the zlib library. zlib can be configured either to use precompiled binaries or to build the library from source.

Zlib can beinitialized using the following syntax

using zlib : [version] : [options] : [condition] : [is-default] ;
d

Options for using a prebuilt library:

sear ch The directory containing the zlib binaries.
name Overrides the default library name.

i nclude Thedirectory containing the zlib headers.

If none of these optionsis specified, then theenvironmental variablesZLI1B_LIBRARY_PATH, ZLIB_NAME, andZLI1B_INCLUDE
will be used instead.

Options for building zlib from source:

62

httpo://www.renderx.com/

http://www.ibm.com/software/ad/vacpp
http://stlport.org
http://www.zlib.net
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

sour ce The zlib source directory. Defaults to the environmental variable ZLIB_SOURCE.
tag Sets the tag property to adjust the file name of the library. Ignored when using precompiled binaries.
bui | d-name The base name to use for the compiled library. Ignored when using precompiled binaries.

Examples:

Find zlib in the default system | ocation

using zlib ;

Build zlib from source

using zlib : 1.2.7 : <source>/hone/steven/zlib-1.2.7

Find zlib in /usr/local

using zlib : 1.2.7 : <include>/usr/local/include <search>/usr/local/lib
Build zlib fromsource for nsvc and find

prebuilt binaries for gcc.

using zlib : 1.2.7 : <source>C:./Devel/src/zlib-1.2.7 : <tool set>nsvc
using zlib : 1.2.7 : : <tool set>gcc

Documentation tools

Boost.Build support for the Boost documentation tools is documented bel ow.

xsltproc

To use xdltproc, you first need to configure it using the following syntax:

using xsltproc : [xsltproc] ;

Wherexsl t pr oc isthexdtproc executable. If xsl t pr oc isnot specified, and the variable XSLTPROC is set, the value of XSLTPROC
will be used. Otherwise, xsltproc will be searched for in PATH.

The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:
xsl : param Values should have the form name=val ue

xsl : path Sets an additional search path for xi:include elements.

cat al og A catalog file used to rewrite remote URL's to alocal copy.

The xsltproc module provides the following rules. Note that these operate on jam targets and are intended to be used by another
toolset, such as boostbook, rather than directly by users.

xslt
rule xslt (target : source stylesheet : properties *)
Runs xsltproc to create a single output file.
xslt-dir

rule xslt-dir (target : source stylesheet : properties * : dirnanme)

Runsxsltproc to create multiple outputsin adirectory. di r nane isunused, but existsfor historical reasons. The output
directory is determined from the target.

63

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

boostbook

To use boostbook, you first need to configure it using the following syntax:

usi ng boost book : [dochook-xsl-dir] : [docbook-dtd-dir] : [boostbook-dir]

docbook- xsl - di r isthe DocBook XSL stylesheet directory. If not provided, we use DOCBOOK _XSL_DIR from the environment
(if available) or look in standard locations. Otherwise, we let the XML processor load the stylesheets remotely.

docbook- dt d- di r is the DocBook DTD directory. If not provided, we use DOCBOOK_DTD_DIR From the environment (if
available) or look in standard locations. Otherwise, we let the XML processor |oad the DTD remotely.

boost book- di r isthe BoostBook directory with the DTD and XSL subdirs.

The boostbook module depends on xsltproc. For pdf or ps output, it aso depends on fop.

The following options can be provided, using <opt i on- name>opt i on- val ue syntax:

format Allowed values: ht M , xht nl , ht nl hel p, oneht nl , man, pdf , ps, docbook, f o, tests.
Thef or mat feature determines the type of output produced by the boostbook rule.

The boostbook module defines arule for creating atarget following the common syntax.

boost book

rul e boostbook (target-name : sources * : requirements * : default-build *)

Creates a boostbook target.

doxygen

To use doxygen, you first need to configure it using the following syntax:

usi ng doxygen : [nane]

nane is the doxygen command. If it is not specified, it will be found in the PATH.

The doxygen module depends on the boostbook module when generating BoostBook XML.
The following options can be provided, using <opt i on- nane>opt i on- val ue syntax:
doxygen: param All the values of doxygen: par amare added to the doxyfile.

prefix Specifies the common prefix of all headers when generating BoostBook XML. Everything before
this will be stripped off.

reftitle Specifies thetitle of the library-reference section, when generating BoostBook XML.

doxygen: xni - i magedi r When generating BoostBook XML, specifies the directory in which to place the images generated
from LaTex formulae.

(:) Warning
The path is interpreted relative to the current working directory, not relative to the
Jamfile. Thisis necessary to match the behavior of BoostBook.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

The doxygen module defines arule for creating atarget following the common syntax.

doxygen
rul e doxygen (target : sources * : requirenents * : default-build * : usage-required
ments *)
Creates a doxygen target. If the target name ends with .html, then thiswill generate an html directory. Otherwiseit will
generate BoostBook XML.
quickbook

The quickbook module provides a generator to convert from Quickbook to BoostBook XML.

To use quickbook, you first need to configure it using the following syntax:

usi ng qui ckbook : [conmand]

comand isthe quickbook executable. If it isnot specified, Boost.Build will compileit from source. If it is unable to find the source
it will search for a quickbook executablein PATH.

fop
The fop module provides generators to convert from XSL formatting objects to Postscript and PDF.

To use fop, you first need to configure it using the following syntax:

using fop : [fop-command] : [java-hone] : [java]

f op- conmand is the command to run fop. If it is not specified, Boost.Build will search for it in PATH and FOP_HOME.

Either j ava- hone or j ava can be used to specify whereto find java.

65

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Builtin modules

This section describes the modules that are provided by Boost.Build. The import rule allows rules from one module to be used in
another module or Jamfile.

modules

The nodul es module defines basic functionality for handling modules.

A module defines a number of rules that can be used in other modules. Modules can contain code at the top level to initialize the
module. This code is executed the first time the module is loaded.

E I Note
A Jamfileisaspecia kind of modulewhichismanaged by the build system. Although they cannot beloaded directly
by users, the other features of modules are still useful for Jamfiles.

Each module has its own namespaces for variables and rules. If two modules A and B both use a variable named X, each one gets
its own copy of X. They won't interfere with each other in any way. Similarly, importing rules into one module has no effect on any
other module.

Every module has two specia variables. $(__file__) contains the name of the file that the module was loaded from and
$(__nanme__) containsthe name of the module.

S Note
$(__file__) doesnot contain the full path to thefile. If you need this, use modul es. bi ndi ng.

1. rul e binding (nodul e-nane)
Returns the filesystem binding of the given module.

For example, amodule can get its own location with:

me = [nodul es. binding $(__nane_) |

2. rule poke (nodule-nanme ? : variables + : value *)
Sets the module-local value of avariable.

For example, to set avariable in the global module:

nodul es. poke : ZLIB_INCLUDE : /usr/local/include ;

3. rule peek (nodul e-name ? : variables +)
Returns the module-local value of avariable.

For example, to read a variable from the global module:

local ZLIB_INCLUDE = [nodul es. peek : ZLIB_I NCLUDE |

66

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

4. rule call-in (nodule-name ? : rule-name args * : *)

Call the given rule locally in the given module. Use this for rules accepting rule names as arguments, so that the passed rule may
be invoked in the context of the rule's caller (for example, if the rule accesses module globals or isalocal rule).

S Note
rules called this way may accept at most 8 parameters.

Example:

rule filter (f : values *)

{
local m= [CALLER MODULE]|
| ocal result
for v in $(val ues)
{
if [nodules.call-in $(m : $(f) $(v)]
{
result += $(v)
}
}
return result
}

5.rule load (nodul e-nanme : filename ? : search *)

L oad the indicated module if it is not already |oaded.

modul e-name Name of moduleto load.

filename (partia) path to file; Defaultsto $(nodul e- nane) . j am

search Directoriesin which to search for filename. Defaults to $(BOOST_BUI LD_PATH) .
6. rule inmport (nodul e-nanes + : rules-opt * : renanme-opt *)

Load theindicated module and import rule namesinto the current module. Any membersof r ul es- opt will be available without
qudification in the caller's module. Any members of r ename- opt will be taken as the names of the rulesin the caller's module,
in place of the names they have in theimported module. If rul es-opt = ' *' , all rulesfrom the indicated modul e are imported
into the caller's module. If r enanme- opt issupplied, it must have the same number of elementsasr ul es- opt .

S Note
Thei nport ruleisavailable without qualification in all modules.

Examples:

i mport path ;

i mport path : * ;

i mport path : join ;

import path : native nmake : native-path make-path ;

7.rule clone-rules (source-nodule target-nodule)

67

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Define exported copiesin $(t ar get - nodul e) of al rules exported from $(sour ce- nodul e) . Also make them available in
the global module with qualification, so that it isjust as though the rules were defined originally in $(t ar get - nodul e) .

path

Performs various path manipulations. Paths are always in a'normalized' representation. In it, a path may be either:

o 't or

e[/ r ..t "I)* (token "/')* token]

In plain english, a path can berooted, ' . .* elements are alowed only at the beginning, and it never ends in slash, except for the
path consisting of slash only.

1. rule make (native)

Converts the native path into normalized form.

rule native (path)

Builds the native representation of the path.

rule is-rooted (path)

Testsif a path is rooted.

rul e has-parent (path)

Tests if apath has a parent.

rul e basenane (path)

Returns the path without any directory components.

rule parent (path)

Returns the parent directory of the path. If no parent exists, an error isissued.
rule reverse (path)

Returnspat h2 suchthat[join path path2] = ".".Thepath may not contain".." element or be rooted.
rule join (elenments +)

Concatenates the passed path elements. Generates an error if any element other than the first one is rooted. Skips any empty or
undefined path elements.

rule root (path root)

If pat h isrelative, it isrooted at r oot . Otherwise, it is unchanged.

0rule pwd ()

Returns the current working directory.

Trule glob (dirs * : patterns + : exclude-patterns *)

Returnsthelist of files matching the given pattern in the specified directory. Both directories and patterns are supplied as portable

paths. Each pattern should be a non-absolute path, and can't contain "." or ".." elements. Each slash separated element of a pattern
can contain the following special characters:

» '? matches any character

68

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

e "*'matches an arbitrary number of characters
A file $(d)/el/e2/e3 (where'd' isin $(dirs)) matches the pattern pl/p2/p3 if and only if €1 matches pl1, e2 matches p2 and so on.
For example:

[glob . : *.cpp]
[glob . : */build/Janfile |

2rule glob-tree (roots * : patterns + : exclude-patterns *)

Recursive version of glob. Builds the glob of files while also searching in the subdirectories of the given roots. An optional set
of exclusion patterns will filter out the matching entries from the result. The exclusions also apply to the subdirectory scanning,
such that directories that match the exclusion patterns will not be searched.

Brule exists (file)
Returnstrue if the specified file exists.
M rule all-parents (path : upper_limt ? : cwd ?)

Find out the absolute name of path and return the list of al the parents, starting with the immediate one. Parents are returned as
relative names. If upper _| i mi t isspecified, directories above it will be pruned.

Brule glob-in-parents (dir : patterns + : upper-linmt ?)

Search for pat t er ns in parent directories of di r , up to and including upper _I'i mi t, if it is specified, or till the filesystem root
otherwise.

Brule relative (child parent : no-error ?)
Assuming chi | d isasubdirectory of par ent , return the relative path from par ent tochi | d.
17.rule relative-to (pathl path2)
Returns the minimal path to path2 that is relative pathl.
Brule prograns-path ()
Returnsthe list of paths which are used by the operating system for looking up programs.
9 rule nmakedirs (path)

Creates adirectory and all parent directories that do not already exist.

regex
Containsrules for string processing using regular expressions.
e "x*" matchesthe pattern" x" zero or more times.

* "x+" matches" x" one or moretimes.

o "x?" matches" x" zero or onetime.

» "[abcd] " matches any of the characters, "a", "b","c", and "d". A character range such as"[a- z] " matches any character
between"a" and"z"."[”abc]" matchesany character whichisnot"a","b",or"c".

e "x|y" matcheseither pattern” x" or pattern"y"

* (x) matches" x" and capturesit.

69

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

" A" matches the beginning of the string.
"$" matchesthe end of the string.
"\<" matches the beginning of aword.

"\>" matches the end of aword.

.rule split (string separator)

Returns alist of the following substrings:
a. from beginning till the first occurrence of separ at or or till the end,
b. between each occurrence of separ at or and the next occurrence,

c. from thelast occurrence of separ at or till the end.
If no separator is present, the result will contain only one element.

.rule split-list (list * : separator)

Returns the concatenated results of applying regex.split to every element of the list using the separator pattern.

.rule match (pattern : string : indices *)

Match st ri ng against pat t er n, and return the elementsindicated by i ndi ces.

.rule transform(list * : pattern : indices *)

Matchesall elementsof | i st against thepat t er n and returnsalist of elementsindicated by i ndi ces of all successful matches.
If i ndi ces isomitted returns alist of first parenthesized groups of all successful matches.

.rule escape (string : synbols : escape-synbol)

Escapes al of the charactersin synbol s using the escape symbol escape- synbol for the given string, and returns the escaped
string.

.rule replace (string match repl acenent)

Replaces occurrences of a match string in a given string and returns the new string. The match string can be aregex expression.

.rule replace-list (list * : match : replacenent)

Replaces occurrences of amatch string in agiven list of strings and returns alist of new strings. The match string can be aregex
expression.

See also: MATCH

sequence

Various useful list functions. Note that algorithmsin this modul e execute largely in the caller's modul e namespace, so that local rules
can be used as function objects. Also note that most predicates can be multi-element lists. In that case, al but the first element are
prepended to the first argument which is passed to the rule named by the first element.

1

2.

rule filter (predicate + : sequence *)
Return the elements e of $(sequence) for which[$(predicate) e] hasanon-null value.
rule transform (function + : sequence *)

Return anew sequence consisting of [$(functi on) $(e)] for each element e of $(sequence).

70

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

3.rule reverse (s *)
Returns the elements of s in reverse order.
4. rule insertion-sort (s * : ordered *)
Insertion-sort s using the BinaryPredicate or der ed.
5 rule merge (s1 * : s2 * : ordered *)
Merge two ordered sequences using the BinaryPredicate or der ed.
6. rule join (s * : joint ?)
Join the elements of s into onelong string. If j oi nt issupplied, it isused as a separator.
7.rule length (s *)
Find the length of any sequence.
8. rule unique (list * : stable ?)
Removes duplicatesfrom | i st . If st abl e is passed, then the order of the elements will be unchanged.
9. rule max-elenent (elenments + : ordered ?)
Returns the maximum number in el ement s. Uses or der ed for comparisons or numbers.less if noneis provided.
10rul e sel ect-highest-ranked (elenents * : ranks *)

Returnsal of el ement s for which the corresponding element in the paralld list r ank is equal to the maximum valueinr ank.

type
Deals with target type declaration and defines target class which supports typed targets.
1 rule register (type : suffixes * : base-type ?)

Registers atarget type, possible derived from abase- t ype. Providing alist of suffixes here is a shortcut for separately calling
the register-suffixes rule with the given suffixes and the set-generated-target-suffix rule with the first given suffix.

2. rule register-suffixes (suffixes + : type)

Specifies that files with suffix from suf f i xes be recognized astargets of typet ype. Issuesan error if adifferent typeis already
specified for any of the suffixes.

3.rule registered (type)
Returns true iff type has been registered.
4. rule validate (type)
Issues an error if t ype isunknown.
5. rul e set-scanner (type : scanner)
Sets a scanner class that will be used for this type.
6. rul e get-scanner (type : property-set)

Returns a scanner instance appropriateto t ype and pr operty- set.

71

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

7. rule base (type)

Returns a base type for the given type or nothing in case the given type is not derived.
8. rule all-bases (type)

Returns the given type and all of its base typesin order of their distance from type.
9.rule all-derived (type)

Returns the given type and all of its derived typesin order of their distance from type.
0rule is-derived (type base)

Returnstrueif t ype isequal to base or hasbase asitsdirect or indirect base.
Tlrule set-generated-target-suffix (type : properties * : suffix)

Sets afile suffix to be used when generating atarget of t ype with the specified properties. Can be called with no propertiesif no
suffix has already been specified for thet ype. Thesuf f i x parameter can be an empty string (" ") to indicate that no suffix should
be used.

Note that this does not cause fileswith suf f i x to be automatically recognized as being of t ype. Two different types can use the
same suffix for their generated files but only onetype can be auto-detected for afile with that suffix. User should explicitly specify
which one using the register-suffixes rule.

12 rul e change-generated-target-suffix (type : properties * : suffix)

Change the suffix previously registered for this type/properties combination. If suffix is not yet specified, setsiit.
1Brule generated-target-suffix (type : property-set)

Returns the suffix used when generating afile of t ype with the given properties.
M rule set-generated-target-prefix (type : properties * : prefix)

Sets atarget prefix that should be used when generating targets of t ype with the specified properties. Can be called with empty
propertiesif no prefix for t ype has been specified yet.

Thepr ef i x parameter can be empty string (" ") to indicate that no prefix should be used.

Usage example: library names usethe” | i b" prefix on unix.
15 rul e change-generated-target-prefix (type : properties * : prefix)

Change the prefix previously registered for this type/properties combination. If prefix is not yet specified, setsit.
B6rule generated-target-prefix (type : property-set)

Returns the prefix used when generating afile of t ype with the given properties.
7.rule type (filenane)

Returnsfile type given its name. If there are several dotsin filename, tries each suffix. E.g. for name of "file.so.1.2" suffixes"2",
"1", and "so" will be tried.

72

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Builtin classes

Class abstract-target

Base classfor al abstract targets.

cl ass abstract-target {
rule __init__ (nane : project)
rule name ()
rule project ()
rule location ()
rule full-name ()
rule generate (property-set)

Classes derived from abstract-target:
* project-target

e main-target

* basic-target
lrule _init__ (nanme : project)
nane The name of the target in the Jamfile.

proj ect The project to which thistarget belongs.
2. rule nanme ()

Returns the name of thistarget.
3.rule project ()

Returns the project for this target.
4. rule location ()

Returns the location where the target was declared.
5.rule full-nanme ()

Returns a user-readable name for this target.
6. rule generate (property-set)

Generates virtual targets for this abstract target using the specified properties, unless a different value of some featureis required
by the target. Thisis an abstract method which must be overriden by derived classes.

On success, returns:
 aproperty-set with the usage requirements to be applied to dependents

* alist of produced virtual targets, which may be empty.
If property-set isempty, performs the default build of thistarget, in away specific to the derived class.

73

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Class project-target

class project-target : abstract-target {
rule generate (property-set)
rule build-dir ()
rule main-target (nane)
rul e has-main-target (nane)
rule find (id : no-error ?)
Met hods inherited from abstract-target
rule name ()
rule project ()
rule location ()
rule full-name ()

This class has the following responsibilities:
» Maintaining alist of main targetsin this project and building them.
1. rule generate (property-set)
Overrides abstract-target.generate. Generates virtual targets for all the targets contained in this project.
On success, returns:
» aproperty-set with the usage requirements to be applied to dependents
« alist of produced virtual targets, which may be empty.
2.rule build-dir ()
Returns the root build directory of the project.
3. rule main-target (nane)
Returns a main-target class instance corresponding to nane. Can only be called after the project has been fully loaded.
4. rule has-main-target (nane)
Returns whether a main-target with the specified name exists. Can only be called after the project has been fully loaded.
5.rule find (id: no-error ?)

Find and return the target with the specified id, treated relative to self. 1d may specify either atarget or afile name with the target
taking priority. May report an error or return nothing if the target is not found depending on the no- er r or parameter.

Class main-target

class main-target : abstract-target {
rule generate (property-set)

Met hods inherited from abstract-target
rule name ()

rule project ()

rule location ()

rule full-name ()

74

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

A main-target represents a named top-level target in a Jamfile.
1. rule generate (property-set)

Overrides abstract-target.generate. Select an aternative for this main target, by finding all alternatives whose requirements are
satisfied by pr oper t y- set and picking the one with the longest requirements set. Returns the result of calling generate on that
alternative.

On success, returns:
» aproperty-set with the usage requirements to be applied to dependents

* alist of produced virtual targets, which may be empty.

Class basic-target

cl ass basic-target : abstract-target {

rule __init__ (nane : project : sources * : requirenents * : default-build * : usage-requirel
ments *)

rule generate (property-set)

rule construct (name : source-targets * : property-set)

Met hods inherited from abstract-target

rule name ()

rule project ()

rule location ()

rule full-name ()

Implements the most standard way of constructing main target alternative from sources. Allows sources to be either files or other
main targets and handles generation of those dependency targets.

1l rule _init__ (nanme : project : sources * : requirements * : default-build * : usage-requirenents

*)

nane The name of the target

proj ect Theproject in which the target is declared.
2. rule generate (property-set)

Overrides abstract-target.generate. Determines final build properties, generates sources, and calls construct. This method should
not be overridden.

On success, returns:
» aproperty-set with the usage requirements to be applied to dependents
* alist of produced virtual targets, which may be empty.
3. rule construct (name : source-targets * : property-set)

Constructs virtual targets for this abstract target. Returns a usage-regquirements property-set and a list of virtual targets. Should
be overriden in derived classes.

75

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Class typed-target

class typed-target : basic-target {

rule __init__ (name : project : type : sources * : requirenents * : default-build * : usage-
requirenents *)

rule type ()

rule construct (name : source-targets * : property-set)

Met hods inherited from abstract-target

rule name ()

rule project ()

rule location ()

rule full-name ()

Met hods inherited from basic-target
rule generate (property-set)

typed-target is the most common kind of target alternative. Rules for creating typed targets are defined automatically for each type.

lrule __init__ (nane : project : type : sources * : requirements * : default-build * : usage-
requirements *)

nane The name of the target
proj ect Theproject in which the target is declared.
type The type of the target.
2.rule type ()
Returns the type of the target.
3. rule construct (nane : source-targets * : property-set)

Implements basic-target.construct. Attempts to create a target of the correct type using generators appropriate for the given
property-set. Returns a property-set containing the usage requirements and alist of virtual targets.

@ Note
This function isinvoked automatically by basic-target.generate and should not be called directly by users.

Class property-set

Class for storing a set of properties.

cl ass property-set {
rule raw ()
rule str ()
rul e propagated ()
rule add (ps)
rule add-raw (properties *)
rule refine (ps)
rule get (feature)

76

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

There is 1<->1 correspondence between identity and value. No two instances of the class are equal. To maintain this property, the
'property-set.create’ rule should be used to create new instances. Instances are immutable.

Lrule raw ()
Returns a Jam list of the stored properties.
2.rule str ()
Returns the string repesentation of the stored properties.
3. rule propagated ()
Returns a property-set containing all the propagated propertiesin this property-set.
4. rule add (ps)

Returnsanew property-set containing the union of the propertiesin this property-set andin ps.

S Note
If ps contains non-free properties that should override the values in this object, use refine instead.

5. rule add-raw (properties *)
Link add, except that it takes alist of propertiesinstead of a property-set.
6. rule refine (ps)

Refines properties by overriding any non-free and non-conditional propertiesfor which adifferent valueis specified in ps. Returns
the resulting property-set.

7.rule get (feature)

Returns all the values of f eat ur e.

77

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Build process

The general overview of the build process was given in the user documentation. This section provides additional details, and some
specific rules.

To recap, building a target with specific properties includes the following steps:

1. applying default build,

2. selecting the main target alternative to use,

3. determining "common" properties,

4. building targets referred by the sources list and dependency properties,

5. adding the usage requirements produces when building dependencies to the "common" properties,
6. building the target using generators,

7. computing the usage requirements to be returned.

Alternative selection

When there are several alternatives, one of them must be selected. The processis as follows:

1. For each aternative condition is defined as the set of base properties in requirements. [Note: it might be better to specify the
condition explicitly, asin conditional requirements].

2. Analternativeisviable only if al propertiesin condition are present in build request.

3. If there's one viable alternative, it's choosen. Otherwise, an attempt is made to find one best alternative. An alternative ais better
than another alternative b, iff the set of propertiesin b's condition is a strict subset of the set of properities of 'a's condition. If
there's one viable alternative, which is better than all others, it's selected. Otherwise, an error is reported.

Determining common properties

The "common" properties is a somewhat artificial term. Those are the intermediate property set from which both the build request
for dependencies and properties for building the target are derived.

Since default build and alternatives are already handled, we have only two inputs: build requests and requirements. Here are the
rules about common properties.

1. Non-free feature can have only one value
2. A non-conditional property in requirement in always present in common properties.
3. A property in build request is present in common properties, unless (2) tells otherwise.

4. If either build request, or requirements (hon-conditional or conditional) include an expandable property (either composite, or
property with specified subfeature value), the behaviour is equivalent to explicitly adding all expanded propertiesto build request
or requirements.

5. If requirements include a conditional property, and condiiton of this property is true in context of common properties, then the
conditional property should be in common properties as well.

6. If no value for afeature is given by other rules here, it has default value in common properties.

Those rules are declarative, they don't specify how to compute the common properties. However, they provide enough information
for the user. The important point is the handling of conditional requirements. The condition can be satisfied either by property in

78

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

build request, by non-conditional requirements, or even by another conditional property. For example, the following example works
as expected:

exe a : a.cpp
<t ool set >gcc: <vari ant >r el ease
<vari ant >r el ease: <defi ne>FQO

Target Paths

Severa factors determine the location of a concrete file target. All filesin a project are built under the directory bin unless thisis
overriden by the build-dir project attribute. Under bin is a path that depends on the properties used to build each target. Thispathis
uniquely determined by al non-free, non-incidental properties. For example, given a property set containing: <t ool set >gcc
<t ool set-gcc: version>4. 6.1 <vari ant >debug <war ni ngs>al | <defi ne>_DEBUG <i ncl ude>/ usr /| ocal /i ncl ude
<l i nk>st ati c, the path will be gcc-4.6.1/debug/link-static. <warnings> is an incidental feature and <define> and <include> are
free features, so they do not affect the path.

Sometimes the paths produced by Boost.Build can become excessively long. There are a couple of command line options that can
help with this. --abbreviate-paths reduces each element to no more than five characters. For example, link-static becomes Ink-sttc.
The --hash option reduces the path to a single directory using an MD5 hash.

There are two features that affect the build directory. The <location> feature completely overrides the default build directory. For
example,

exe a : a.cpp : <location>.

builds all the files produced by a in the directory of the Jamfile. Thisis generally discouraged, asit precludes variant builds.

The <location-prefix> feature adds a prefix to the path, under the project's build directory. For example,
exe a : a.cpp : <location-prefix>subdir

will create thefilesfor a in bin/subdir/gcc-4.6.1/debug

79

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Definitions

Features and properties

A featureis anormalized (tool set-independent) aspect of a build configuration, such as whether inlining is enabled. Feature names
may not contain the ">' character.

Each feature in abuild configuration has one or more associated values. Feature values for non-free features may not contain the '<’,
"', or '=' characters. Feature values for free features may not contain the '<' character.

A property is a (feature,value) pair, expressed as <feature>value.

A subfeature is a feature that only exists in the presence of its parent feature, and whose identity can be derived (in the context of
its parent) from its value. A subfeature's parent can never be another subfeature. Thus, features and their subfeatures form a two-
level hierarchy.

A value-string for afeature F isastring of theform val ue- subval uel- subval ue2...- subval ueN, whereval ue isalegal value
for F and subval uel...subval ueN are legal values of some of F's subfeatures. For example, the properties <t ool set >gcc
<t ool set - ver si on>3. 0. 1 can be expressed more conscisely using a vaue-string, as <t ool set >gcc- 3. 0. 1.

A property set isaset of properties (i.e. a collection without duplicates), for instance: <t ool set >gcc <runtime-1ink>static.

A property path is a property set whose elements have been joined into a single string separated by slashes. A property path repres-
entation of the previous example would be <t ool set >gcc/ <runti me-1i nk>stati c.

A build specification is a property set that fully describes the set of features used to build atarget.
Property Validity

For freefeatures, all values are valid. For all other features, the valid values are explicitly specified, and the build system will report
an error for the use of an invalid feature-value. Subproperty validity may be restricted so that certain values are valid only in the
presence of certain other subproperties. For example, it is possible to specify that the <gcc- t ar get >ni ngw property isonly valid
in the presence of <gcc- ver si on>2. 95. 2.

Feature Attributes

Each feature has a collection of zero or more of the following attributes. Feature attributes are low-level descriptions of how the
build system should interpret afeature's values when they appear in a build request. We also refer to the attributes of properties, so
that an incidental property, for example, is one whose feature has the incidental attribute.

 incidental

Incidental features are assumed not to affect build products at all. As a consequence, the build system may use the same file for
targets whose build specification differsonly inincidental features. A feature that controls acompiler'swarning level isone example
of alikely incidental feature.

Non-incidental features are assumed to affect build products, so thefilesfor targets whose build specification differsin non-incid-
ental features are placed in different directories as described in the section called “ Target Paths”.

 propagated

Features of this kind are propagated to dependencies. That is, if a main target [25] is built using a propagated property, the build
systems attempts to use the same property when building any of its dependencies as part of that main target. For instance, when
an optimized exectuable is requested, one usually wants it to be linked with optimized libraries. Thus, the <opti mi zati on>
feature is propagated.

o free

80

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Most features have afinite set of alowed values, and can only take on a single value from that set in a given build specification.
Free features, on the other hand, can have several values at a time and each value can be an arbitrary string. For example, it is
possible to have several preprocessor symbols defined simultaneously:

<def i ne>NDEBUG=1 <defi ne>HAS CONFI G H=1

 optional

An optional feature is a feature that is not required to appear in a build specification. Every non-optional non-free feature has a
default value that is used when a value for the feature is not otherwise specified, either in atarget's requirements or in the user's
build request. [A feature's default valueis given by thefirst value listed in the feature's declaration. -- move this elsewhere - dwa]

e symmetric

Normally afeature only generates a subvariant directory when its value differs from its default value, leading to an assymmetric
subvariant directory structure for certain values of the feature. A symmetric feature always generates a corresponding subvariant
directory.

* path

The value of a path feature specifies a path. The path is treated as relative to the directory of Jamfile where path feature is used
and is translated appropriately by the build system when the build is invoked from a different directory

o implicit

Values of implicit features alone identify the feature. For example, a user is not required to write "<toolset>gcc", but can simply
write "gec". Implicit feature names also don't appear in variant paths, although the values do. Thus: bin/gcc/... as opposed to
bin/toolset-gcc/.... There should typically be only afew such features, to avoid possible name clashes.

* composite

Composite features actually correspond to groups of properties. For example, abuild variant is a composite feature. When gener-
ating targets from a set of build properties, composite features are recursively expanded and added to the build property set, so
rules can find them if necessary. Non-composite non-free features override components of composite features in a build property
Set.

* dependency

The value of a dependency featureis atarget reference. When used for building of a main target, the value of dependency feature
istreated as additional dependency.

For example, dependency features allow to state that library A depends on library B. As the result, whenever an application will
link to A, it will also link to B. Specifying B as dependency of A is different from adding B to the sources of A.

Features that are neither free nor incidental are called base features.

Feature Declaration

The low-level feature declaration interface isthe f eat ur e rule from the f eat ur e module:

rule feature (nane : allowed-values * : attributes *)

A feature's allowed-values may be extended with the f eat ur e. ext end rule.

81

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Reference

Property refinement

When a target with certain properties is requested, and that target requires some set of properties, it is needed to find the set of
properties to use for building. This processis called property refinement and is performed by these rules

1. Each property in the required set is added to the original property set

2. If the original property set includes property with a different value of non free feature, that property is removed.

Conditional properties

Sometimeit's desirableto apply certain requirements only for a specific combination of other properties. For example, one of compilers
that you use issues a pointless warning that you want to suppress by passing a command line option to it. You would not want to
pass that option to other compilers. Conditional properties allow you to do just that. Their syntax is:

property ("," property) * ":" property
d
For example, the problem above would be solved by:

exe hello : hello.cpp : <tool set>yfc: <cxxfl ags>-di sabl e-poi ntl ess-warning ;

The syntax also allows several propertiesin the condition, for example:

exe hello : hello.cpp : <os>NT, <t ool set>gcc: <link>static

Target identifiers and references

Target identifier is used to denote atarget. The syntax is:

target-id -> (project-id | target-name | file-nane)
| (project-id | directory-nane) "//" target-nanme
project-id -> path
target-name -> path
file-name -> path
directory-nane -> path

This grammar allows some elements to be recognized as either

» project id (at thispoint, all project ids start with slash).

» name of target declared in current Jamfile (note that target names may include slash).
 aregular file, denoted by absolute name or name relative to project's sources location.

To determine the real meaning acheck ismadeif project-id by the specified name exists, and then if main target of that name exists.
For example, valid target ids might be:

82

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

a -- target in current project
libl/b.cpp -- regular file

/ boost/t hread -- project "/boost/thread"
/hone/ ghost/build/Ir_library//parser -- target in specific project

Rationale; Target is separated from project by special separator (not just lash), because:
* It emphasises that projects and targets are different things.
* It allowsto have main target names with slashes.

Target reference is used to specify a source target, and may additionally specify desired properties for that target. It has this syntax:

target-reference -> target-id ["/" requested-properties]
request ed- properties -> property-path

For example,

exe conpiler : conpiler.cpp |ibs/cndlinel/<optinzation>space ;
ad

would cause the version of cndl i ne library, optimized for space, to be linked in even if the conpi | er executable is build with
optimization for speed.

83

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

v

Extender Manual

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Introduction

This section explains how to extend Boost.Build to accomodate your local requirements—primarily to add support for non-standard
tools you have. Before we start, be sure you have read and understoon the concept of metatarget, the section called “ Concepts’,
which is critical to understanding the remaining material.

The current version of Boost.Build has three levels of targets, listed below.

metatarget Object that is created from declarationsin Jamfiles. May be called with aset of propertiesto produce concrete
targets.

concrete target Object that corresponds to afile or an action.

jam target Low-level concrete target that is specific to Boost.Jam build engine. Essentially a string—most often a
name of file.

In most cases, you will only haveto deal with concrete targets and the processthat creates concrete targets from metatargets. Extending
metatarget level israrely required. The jam targets are typically only used inside the command line patterns.

O Warning
All of the Boost.Jam target-related builtin functions, like DEPENDS or ALWAYS operate on jam targets. Applying
them to metatargets or concrete targets has no effect.

Metatargets

Metatarget is an object that records information specified in Jamfile, such as metatarget kind, name, sources and properties, and can
be called with specific properties to generate concrete targets. At the code level it isrepresented by an instance of class derived from
abstract-target.

The generate method takes the build properties (as an instance of the property-set class) and returns alist containing:
» Asfront element—Usage-requirements from thisinvocation (an instance of property-set)
 Assubsequent elements—created concrete targets (instances of thevi rt ual - t ar get class)

It's possible to lookup ametataget by target-id using thet ar get s. r esol ve-r ef er ence function, and thet ar get s. gener at e-
from r ef er ence function can both lookup and generate a metatarget.

The abstract-target class has three immediate derived classes:

* project-target that corresponds to a project and is not intended for further subclassing. The generate method of this class builds
al targetsin the project that are not marked as explicit.

* main-target correspondsto atarget in aproject and contains one or more target aternatives. This class also should not be subclassed.
The generate method of this class selects an aternative to build, and calls the generate method of that alternative.

* basic-target corresponds to a specific target alternative. Thisis base class, with anumber of derived classes. The generate method
processes the target requirements and requested build properties to determine final propertiesfor the target, builds all sources, and
finally calls the abstract construct method with the list of source virtual targets, and the final properties.

Theinstances of the project-target and main-target classes are created implicitly—when loading anew Jamfiles, or when anew target
alternative with as-yet unknown name is created. The instances of the classes derived from basic-target are typically created when
Jamfile calls a metatarget rule, such as such asexe.

4This name s historic, and will be eventuall changed to et at ar get

85

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Itit permissible to create a custom class derived from basic-target and create new metatarget rule that creates instance of such target.
However, in the majority of cases, a specific subclass of basic-target— typed-target is used. That classis associated with a type and
relays to generators to construct concrete targets of that type. This process will be explained below. When a new type is declared,
anew metatarget rule is automatically defined. That rule creates new instance of type-target, associated with that type.

Concrete targets

Concretetargetsare represented by instance of classesderived fromvi rt ual - t ar get . Themost commonly used subclassisfi | e-
t ar get . A filetarget is associated with an action that creates it— an instance of the act i on class. The action, in turn, hold alist of
source targets. It also holds the property-set instance with the build properties that should be used for the action.

Here's an example of creating atarget from another target, sour ce

[new action $(source) : comon.copy : $(property-set)]
[new file-target $(nane) : CPP : $(project) : $(a)]

| ocal a
| ocal t

Thefirst line creates an instance of the act i on class. Thefirst parameter isthelist of sources. The second parameter isthe name a
jam-level action [18]. The third parameter is the property-set applying to this action. The second line creates a target. We specifie
aname, atype and a project. We also pass the action object created earlier. If the action creates several targets, we can repeat the
second line several times.

In some cases, code that creates concrete targets may be invoked more than once with the same properties. Returning to different
instanceof fi | e-t ar get that correspond to the samefile clearly will result in problems. Therefore, whenever returning targetsyou
should pass them viathevi rt ual -t ar get . r egi st er function, besides allowing Boost.Build to track which virtual targets got
created for each metatarget, this will also replace targets with previously created identical ones, as nece%ary.2 Here are a couple of
examples:

return [virtual-target.register $(t)]
return [sequence.transformvirtual-target.register : $(targets)]

Generators

In theory, every kind of metatarget in Boost.Build (like exe, | i b or obj) could be implemented by writing a new metatarget class
that, independently of the other code, figureswhat filesto produce and what commandsto use. However, that would be rather inflexible.
For example, adding support for anew compiler would require editing several metatargets.

In practice, most files have specific types, and most tools consume and produce files of specific type. To take advantage of thisfact,
Boost.Build defines concept of target type and generators, and has special metatarget class typed-target. Target type is merely an
identifier. It is associated with a set of file extensions that correspond to that type. Generator is an abstraction of atool. It advertises
the types it produces and, if called with a set of input target, tries to construct output targets of the advertised types. Finaly, typed-
target is associated with specific target type, and relays the generator (or generators) for that type.

A generator is an instance of a class derived from gener at or . The gener at or classitself is suitable for common cases. You can
define derived classes for custom scenarios.

This create-then-register pattern is caused by limitations of the Boost.Jam language. Python port islikely to never create duplicate targets.

86

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Extender Manua

Example: 1-to-1 generator

Say you're writing an application that generates C++ code. If you ever did this, you know that it's not nice. Embedding large portions
of C++ codein string literalsis very awkward. A much better solution is:

1. Write the template of the code to be generated, |eaving placeholders at the points that will change
2. Access the template in your application and replace placeholders with appropriate text.
3. Writethe result.

It's quite easy to achieve. You write special verbatim files that are just C++, except that the very first line of the file contains the
name of avariable that should be generated. A simple tool is created that takes a verbatim file and creates a cpp file with asingle
char * variable whose name is taken from the first line of the verbatim file and whose value is the file's properly quoted content.

Let's see what Boost.Build can do.

First off, Boost.Build has no idea about "verbatim files'. So, you must register a new target type. The following code doesiit:

i mport type ;
type.register VERBATIM : verbatim;

Thefirst parameter to type.register gives the name of the declared type. By convention, it's uppercase. The second parameter isthe
suffix for files of thistype. So, if Boost.Build seescode. ver bat i min alist of sources, it knows that it's of type VERBATI M

Next, you tell Boost.Build that the verbatim files can be transformed into C++ filesin one build step. A generator is atemplate for
abuild step that transformstargets of one type (or set of types) into another. Our generator will becalledverbati minline-file;
it transforms VERBATI Mfilesinto CPP files:

i nport generators ;
generators.regi ster-standard verbatiminline-file : VERBATIM: CPP ;

Lastly, you have to inform Boost.Build about the shell commands used to make that transformation. That's done with an act i ons
declaration.

actions inline-file

{
}

“.linline-file.py" $(<) $(>)

Now, we're ready to tie it all together. Put all the code abovein filever bati m j am addi nport verbati m; toJanroot.jam
and it's possible to write the following in your Jamfile:

exe codegen : codegen. cpp class_tenpl ate. verbati musage. verbatim;

Thelisted verbatim files will be automatically converted into C++ source files, compiled and then linked to the codegen executable.

In subsequent sections, we will extend this example, and review all the mechanismsin detail. The complete code is available in the
exanpl e/ cust omi zat i on directory.

87

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Target types

The first thing we did in the intruduction was declaring a new target type:

i mport type ;
type.register VERBATIM : verbatim;

The type is the most important property of atarget. Boost.Build can automatically generate necessary build actions only because
you specify the desired type (using the different main target rules), and because Boost.Build can guess the type of sources from their
extensions.

Thefirst two parameters for thet ype. r egi st er rule are the name of new type and the list of extensions associated with it. A file
with an extension from the list will have the given target type. In the case where atarget of the declared type is generated from other
sources, the first specified extension will be used.

Sometimes you want to change the suffix used for generated targets depending on build properties, such as toolset. For example,
some compiler uses extension el f for executable files. You can usethet ype. set - gener at ed-t ar get - suf fi x rule:

type. set-generated-target-suffix EXE : <toolset>elf : elf

A new target type can be inherited from an existing one.

type.register PLUGAN : : SHARED LIB ;

The above code defines a new type derived from SHARED LI B. Initialy, the new type inherits all the properties of the base type -
in particular generators and suffix. Typically, you'll change the new typein some way. For example, usingt ype. set - gener at ed-
tar get - suf f i x you can set the suffix for the new type. Or you can write special agenerator for the new type. For example, it can
generate additional metainformation for the plugin. In either way, the PLUG N type can be used whenever SHARED LI B can. For
example, you can directly link plugins to an application.

A type can be defined as "main”, in which case Boost.Build will automatically declare amain target rule for building targets of that
type. More details can be found later [96].

Scanners

Sometimes, afile can refer to other files via some include system. To make Boost.Build track dependencies between included files,
you need to provide a scanner. The primary limitation is that only one scanner can be assigned to atarget type.

First, we need to declare anew class for the scanner:

cl ass verbati mscanner : conmpbn-scanner

{
rule pattern ()
{
return "//###include[]*\"([M\"]*)\""
}
}

All thecomplex logicisin thecommon- scanner class, and you only need to override the method that returnsthe regular expression
to be used for scanning. The parentheses in the regular expression indicate which part of the string is the name of the included file.
Only the first parenthesized group in the regular expression will be recognized; if you can't express everything you want that way,
you can return multiple regular expressions, each of which contains a parenthesized group to be matched.

88

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Extender Manua

After that, we need to register our scanner class:

scanner.regi ster verbati mscanner : include ;

The value of the second parameter, inthiscasei ncl ude, specifiesthe propertiesthat contain the list of pathsthat should be searched
for the included files.

Finally, we assign the new scanner to the VERBATI Mtarget type:

type. set-scanner VERBATIM : verbati m scanner ;

That's enough for scanning include dependencies.

89

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Extender Manua

Tools and generators

This section will describe how Boost.Build can be extended to support new tools.

For each additional tool, aBoost.Build object called generator must be created. That object has specific types of targetsthat it accepts
and produces. Using that information, Boost.Build is able to automatically invoke the generator. For example, if you declare agen-
erator that takes atarget of the type D and produces atarget of the type 0BJ, when placing afile with extention . d in alist of sources
will cause Boost.Build to invoke your generator, and then to link the resulting object file into an application. (Of course, thisrequires
that you specify that the . d extension corresponds to the D type.)

Each generator should be an instance of a class derived from the gener at or class. In the simplest case, you don't need to create a
derived class, but simply create an instance of the gener at or class. Let's review the example we've seen in the introduction.

i nport generators ;
generators.regi ster-standard verbatiminline-file : VERBATIM: CPP ;
actions inline-file

{
}

“linline-file.py" $(<) $(>)

We declare a standard generator, specifying its id, the source type and the target type. When invoked, the generator will create a
target of type CPP with a source target of type VERBATI Mas the only source. But what command will be used to actually generate
the file? In Boost.Build, actions are specified using named "actions" blocks and the name of the action block should be specified
when creating targets. By convention, generators use the same name of the action block as their own id. So, in above example, the
"inline-file" actions block will be used to convert the source into the target.

There are two primary kinds of generators. standard and composing, which are registered with the gener at ors. r egi st er -
st andar d and the gener at or s. r egi st er - conposi ng rules, respectively. For example:

generators.regi ster-standard verbatiminline-file : VERBATIM: CPP ;
generators.regi ster-conposing nmex.nex : CPP LIB : MEX ;

Thefirst (standard) generator takes a single source of type VERBATI Mand produces aresult. The second (composing) generator takes
any number of sources, which can have either the CPP or the LI B type. Composing generators are typically used for generating top-
level target type. For example, the first generator invoked when building an exe target is a composing generator corresponding to
the proper linker.

You should a so know about two specific functions for registering generators: gener at or s. r egi st er - c- conpi | er and gener -
ators. register-1inker. Thefirst sets up header dependecy scanning for C files, and the seconds handles various complexities
like searched libraries. For that reason, you should always use those functions when adding support for compilers and linkers.

(Need a note about UNIX)

Custom generator classes

The standard generators allows you to specify source and target types, an action, and a set of flags. If you need anything more complex,
you need to create anew generator classwith your own logic. Then, you have to create an instance of that class and register it. Here's
an example how you can create your own generator class:

90

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

cl ass customgenerator : generator

{
rule _init__ (*: *)
{
generator. __init__ $(1) : $(2) : $(3) : $(4) : $(5 : $(6) : B(7) : B8 : B9
}
}

generators.register
[new custom generator verbatiminline-file : VERBATIM: CPP]

This generator will work exactly like the ver bati m i nl i ne-fil e generator we've defined above, but it's possible to customize
the behaviour by overriding methods of the gener at or class.

There aretwo methods of interest. Ther un method isresponsible for the overall process- it takesanumber of sourcetargets, converts
them to the right types, and creates the result. The gener at ed- t ar get s method is called when all sources are converted to the
right typesto actually create the result.

The gener at ed- t ar get s method can be overridden when you want to add additional properties to the generated targets or use
additional sources. For area-life example, suppose you have aprogram analysistool that should be given aname of executable and
thelist of all sources. Naturally, you don't want to list all source files manually. Here's how the gener at ed- t ar get s method can
find the list of sources automatically:

class itrace-generator : generator {

rul e generated-targets (sources + : property-set : project name ?)

{
| ocal | eaves ;
local tenp = [virtual-target.traverse $(sources[1]) : : include-sources] ;
for local t in $(tenp)
if ! [$(t).action]
| eaves += $(t) ;
}
}
return [generator.generated-targets $(sources) $(leafs)
$(property-set) : $(project) $(name)] ;
}
}
generators.register [newitrace-generator nmitrace : EXE : I TRACE] ;

Thegener at ed- t ar get s method will be called with asingle source target of type EXE. Thecall tovi rt ual -t arget . t raver se
will return all targets the executable depends on, and we further find files that are not produced from anything. The found targets
are added to the sources.

Ther un method can be overriden to completely customize the way the generator works. In particular, the conversion of sourcesto
the desired types can be completely customized. Here's another real example. Tests for the Boost Python library usually consist of
two parts: a Python program and a C++ file. The C++ file is compiled to Python extension that is loaded by the Python program.
But in the likely case that both files have the same name, the created Python extension must be renamed. Otherwise, the Python
program will import itself, not the extension. Here's how it can be done;

91

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

rule run (project nane ? : property-set : sources *)

{
| ocal python
for local s in $(sources)
{
if [$(s).type] = PY
{
pyt hon = $(s)
}
}
local libs ;
for local s in $(sources)
{
if [type.is-derived [$(s).type] LIB]
{
libs += $(s)
}
}
| ocal new sources
for local s in $(sources)
{
if [type.is-derived [$(s).type] CPP]
{
local nane = [$(s).nane] ; # get the target's basenane
if $(nane) = [$(python).nane]
{
name = $(nane)_ext ; # rename the target
}
new sources += [generators.construct $(project) $(nanme)
PYTHON_EXTENSI ON : $(property-set) : $(s) $(libs)]
}
}
result = [construct-result $(python) $(new sources) : $(project) $(nane)
$(property-set) |
}

First, we separate all sourceinto python files, libraries and C++ sources. For each C++ source we create a separate Python extension
by calling gener at ors. construct and passing the C++ source and the libraries. At this point, we also change the extension's
name, if necessary.

92

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Features

Often, we need to control the options passed the invoked tools. Thisis done with features. Consider an example:

Declare a new free feature
inport feature : feature ;
feature verbatimoptions : : free ;

Cause the value of the 'verbatimoptions' feature to be

available as 'OPTIONS' variable inside verbatiminline-file
i mport toolset : flags ;

flags verbatiminline-file OPTIONS <verbatimoptions> ;

Use the "OPTIONS" vari abl e
actions inline-file

{
}

“.linline-file.py" $(OPTIONS) $(<) $(>)

We first define a new feature. Then, the f | ags invocation says that whenever verbatin.inline-file action is run, the value of the
ver bati m opt i ons feature will be added to the OPTI ONS variable, and can be used inside the action body. You'd need to consult
online help (--help) to find al the features of thet ool set . f | ags rule.

Although you can define any set of features and interpret their valuesin any way, Boost.Build suggests the following coding standard
for designing features.

Most features should have afixed set of valuesthat is portable (tool neutral) across the class of toolsthey are designed to work with.
The user does not have to adjust the values for a exact tool. For example, <opt i ni zat i on>speed has the same meaning for all
C++ compilers and the user does not have to worry about the exact options passed to the compiler's command line.

Besides such portable features there are specia 'raw' features that allow the user to pass any value to the command line parameters
for a particular tool, if so desired. For example, the <cxxf | ags> feature alows you to pass any command line options to a C++
compiler. The<i ncl ude> feature allowsyou to pass any string preceded by - | and theinterpretation i stool-specific. (Seethe section
caled“ Can| get capture external program output using a Boost.Jam variable?” for an example of very smart usage of that feature).
Of course one should always strive to use portabl e features, but these are still be provided as abackdoor just to make sure Boost.Build
does not take away any control from the user.

Using portable featuresis a good idea because:

» When a portable feature is given afixed set of values, you can build your project with two different settings of the feature and
Boost.Build will automatically use two different directories for generated files. Boost.Build does not try to separate targets built
with different raw options.

» Unlike with “raw” features, you don't need to use specific command-line flags in your Jamfile, and it will be more likely to work
with other tools.

Steps for adding a feauture

Adding afeature requires three steps:

1. Declaring afeature. For that, the "feature.feature” rule is used. You have to decide on the set of feature attributes:
« if youwant afeature value set for one target to automaticaly propagate to its dependant targets then make it “propagated” .
« if afeature does not have afixed list of values, it must be “free” For example, thei ncl ude featureisafree feature.

« if afeatureisused to refer to a path relative to the Jamfile, it must be a“path” feature. Such features will also get their values
automatically converted to Boost.Build'sinternal path representation. For example, i ncl ude is a path feature.

93

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Extender Manua

« if featureis used to refer to some target, it must be a“dependency” feature.

2. Representing the feature value in atarget-specific variable. Build actions are command templates modified by Boost.Jam variable
expansions. Thet ool set . f | ags rule sets atarget-specific variable to the value of afeature.

3. Using the variable. The variable set in step 2 can be used in a build action to form command parameters or files.

Another example

Here's another example. Let's see how we can make afeature that refersto atarget. For example, when linking dynamic libraries on
Windows, one sometimes needs to specify a"DEF file", telling what functions should be exported. It would be nice to use thisfile
like this:

lib a: a.cpp : <def-file>a.def ;

Actually, thisfeature is already supported, but anyway...

1. Sincethefeaturerefersto atarget, it must be "dependency”.
feature def-file : : free dependency ;

2. One of the toolsets that cares about DEF filesis msvc. The following line should be added to it.
flags msvc.link DEF_FILE <def-file> ;

3. Sincethe DEF_FILE variableis not used by the msvc.link action, we need to modify it to be:

actions |link bind DEF _FILE

$(.LD) /DEF: $(DEF_FILE)

Notethebi nd DEF_FI LE part. It tellsBoost.Build to translate the internal target namein DEF_FI LE to a corresponding filename
inthel i nk action. Without it the expansion of $(DEF_FI LE) would be a strange symbol that is not likely to make sense for the
linker.

We are amost done, except for adding the follwing codeto nmsvc. j am

rule link

{
}

DEPENDS $(<) : [on $(<) return $(DEF_FILE)] ;

Thisisaworkaround for abug in Boost.Build engine, which will hopefully be fixed one day.

Variants and composite features.

Sometimes you want to create a shortcut for some set of features. For example, r el ease isavaueof <vari ant > and is a shortcut
for a set of features.

94

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

It is possible to define your own build variants. For example:

variant crazy : <optim zation>speed <inlining>off
<debug- synbol s>on <profiling>on

will define a new variant with the specified set of properties. You can also extend an existing variant:

variant super_release : release : <define>USE_ASM ;

Inthis case, super _r el ease will expand to all properties specified by r el ease, and the additional one you've specified.

You are not restricted to using the var i ant feature only. Here's example that defines a brand new feature:

feature parallelism: npi fake none : conposite |ink-inconpatible
feature. conpose <parallelisnmenpi : <library>/npi//npi/<parallelisnrnone ;
feature. conpose <parallelisnmfake : <library>/npi//fakel/<parallelisnmnone ;

Thiswill allow you to specify the value of feature par al | el i sm which will expand to link to the necessary library.

95

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Main target rules

A main target rule (e.g “exe” Or “lib") creates atop-level target. It's quite likely that you'll want to declare your own and there are
two ways to do that.

The first way applies when your target rule should just produce atarget of specific type. In that case, arule is aready defined for
you! When you define a new type, Boost.Build automatically defines a corresponding rule. The name of the rule is obtained from
the name of the type, by downcasing all |etters and replacing underscores with dashes. For example, if you create a module obf us-
cat e. j amcontaining:

i mport type ;
type. regi ster OBFUSCATED CPP : ocpp ;

i nport generators ;
generators. regi ster-standard obfuscate.file : CPP : OBFUSCATED CPP ;

and import that module, you'll be able to use the rule "obfuscated-cpp” in Jamfiles, which will convert source to the OBFUS-
CATED_CPPtype.

The second way is to write a wrapper rule that calls any of the existing rules. For example, suppose you have only one library per
directory and want all cpp filesin the directory to be compiled into that library. You can achieve this effect using:

lib codegen : [glob *.cpp] ;

If you want to make it even simpler, you could add the following definition to the Janr oot . j amfile:

rule glib (nane : extra-sources * : requirenents *)

{
}

lib $(nane) : [glob *.cpp] $(extra-sources) : $(requirenents) ;

allowing you to reduce the Jamfile to just

glib codegen ;

Notethat because you can associate a custom generator with atarget type, the logic of building can be rather complicated. For example,
the boost book module declares atarget type BOOSTBOOK_MAI N and a custom generator for that type. You can use that as example
if your main target rule is non-trivial.

96

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Extender Manua

Toolset modules

If your extensionswill be used only on one project, they can be placed in aseparate . j amfile and imported by your Janr oot . j am
If the extensions will be used on many projects, users will thank you for afinishing touch.

Theusi ng rule provides astandard mechanism for loading and configuring extensions. To makeit work, your module should provide
aninit rule. Therule will be called with the same parameters that were passed to the usi ng rule. The set of allowed parameters
is determined by you. For example, you can allow the user to specify paths, tool versions, and other options.

Here are some guidelines that help to make Boost.Build more consistent:

* Thei nit ruleshould never fail. Evenif the user provided an incorrect path, you should emit awarning and go on. Configuration
may be shared between different machines, and wrong values on one machine can be OK on another.

 Prefer specifying the command to be executed to specifying the tool's installation path. First of all, this gives more contral: it's
possible to specify

/ usr/ bi n/ g++- snapshot
time g++

as the command. Second, while some tools have a logical "installation root", it's better if the user doesn't have to remember
whether a specific tool requires afull command or a path.

e Check for multipleinitialization. A user can try to initialize the module several times. You need to check for this and decide what
to do. Typically, unless you support several versions of atool, duplicate initialization is a user error. If the tool's version can be
specified during initialization, make surethe version is either always specified, or never specified (in which casethetool isinitiaied
only once). For example, if you allow:

using yfc ;
using yfc : 3.3 ;
using yfc : 3.4 ;

Then it's not clear if the first initialization corresponds to version 3.3 of the tool, version 3.4 of the tool, or some other version.
This can lead to building twice with the same version.

 If possible, i ni t must be callable with no parameters. In which case, it should try to autodetect all the necessary information, for
example, by looking for atool in PATH or in common installation locations. Often thisis possible and allows the user to simply
write:

using yfc ;

» Consider using facilities in the t ool s/ cormon module. You can take alook at how t ool s/ gcc. j amuses that module in the
init rule

97

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

v

Frequently Asked Questions

98

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

How do | get the current value of feature in Jamfile?

This is not possible, since Jamfile does not have "current” value of any feature, be it toolset, build variant or anything else. For a
single run of Boost.Build, any given main target can be built with several property sets. For example, user can request two build
variants on the command line. Or onelibrary isbuilt as shared when used from one application, and as static when used from another.
Each Jamfile is read only once so generally there is no single value of afeature you can accessin Jamfile.

A feature has a specific value only when building a target, and there are two ways you can use that value:
» Use conditional requirements or indirect conditional requirements. See the section called “Requirements’ [26].

* Define acustom generator and a custom main target type. The custom generator can do arbitrary processing or properties. Seethe
Extender Manual.

99

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Frequently Asked Questions

| am getting a "Duplicate name of actual target"” error.
What does that mean?

Themost likely caseisthat you aretrying to compile the samefiletwice, with almost the same, but differing properties. For example:

exe a : a.cpp : <include>/usr/local/include ;
exe b : a.cpp ;

The above snippet requires two different compilations of a. cpp, which differ only in their i ncl ude property. Sincethei ncl ude
featureis declared asf r ee Boost.Build does not create a separate build directory for each of its values and those two builds would
both produce object files generated in the same build directory. Ignoring this and compiling the file only once would be dangerous
as different includes could potentially cause completely different code to be compiled.

To solve thisissue, you need to decide if the file should be compiled once or twice.

1. To compile the file only once, make sure that properties are the same for both target requests:

exe a : a.cpp : <include>/usr/local/include ;
exe b : a.cpp : <include>/usr/local/include ;

or:

alias a-with-include : a.cpp : <include>/usr/local/include ;
exe a : a-w th-include ;
exe b : a-with-include ;

or if you want the i ncl udes property not to affect how any other sources added for the built a and b executables would be
compiled:

obj a-obj : a.cpp : <include>/usr/local/include ;
exe a : a-obj ;
exe b : a-obj ;

Note that in both of these casesthei ncl ude property will be applied only for building these object filesand not any other sources
that might be added for targetsa and b.

2. To compile thefile twice, you can tell Boost.Build to compile it to two separate object files like so:

obj a_obj : a.cpp : <include>/usr/local/include ;
obj b_obj : a.cpp ;

exe a : a_obj ;

exe b : b_obj ;

or you can make the object file targets local to the main target:

exe a : [obj a_obj : a.cpp : <include>/usr/local/include]
exe b : [obj a_obj : a.cpp]

which will cause Boost.Build to actually change the generated object file names a bit for you and thus avoid any conflicts.

100

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Note that in both of these casesthei ncl ude property will be applied only for building these object files and not any other sources
that might be added for targetsa and b.

A good question iswhy Boost.Build can not use some of the above approaches automatically. The problem isthat such magic would
only help in half of the cases, while in the other half it would be silently doing the wrong thing. It is simpler and safer to ask the user
to clarify hisintention in such cases.

101

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Accessing environment variables

Many users would like to use environment variables in Jamfiles, for example, to control the location of externa libraries. In many
casesit is better to declare those external libraries in the site-config.jam file, as documented in the recipes section. However, if the
users already have the environment variables set up, it may not be convenient for them to set up their site-config.jam files as well
and using the environment variables might be reasonable.

Boost.Jam automatically imports all environment variables into its built-in .ENVIRON module so user can read them from there
directly or by using the helper os.environ rule. For example:

i mport os ;
| ocal unga-unga = [o0s.environ UNGA UNGA] ;
ECHO $(unga-unga) ;

or abit moreredistic:
i mport os ;

| ocal SOVE_LI BRARY_PATH = [os.environ SOVE_LI BRARY_PATH] ;
exe a : a.cpp : <include>$(SOVE_LI BRARY_PATH) ;

102

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Frequently Asked Questions

How to control properties order?

For internal reasons, Boost.Build sorts all the properties alphabetically. This means that if you write:

exe a : a.cpp : <include>b <include>a ;
then the command line with first mention the a include directory, and then b, even though they are specified in the opposite order.

In most cases, the user does not care. But sometimes the order of includes, or other properties, isimportant. For such cases, aspecial
syntax is provided:

exe a : a.cpp : <include>a&&bh ;

The && symbols separate property values and specify that their order should be preserved. You are advised to use this feature only
when the order of propertiesreally matters and not as a convenient shortcut. Using it everywhere might negatively affect performance.

103

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Frequently Asked Questions

How to control the library linking order on Unix?

On Unix-like operating systems, the order in which static libraries are specified when invoking the linker is important, because by
default, the linker uses one pass though the libraries list. Passing the libraries in the incorrect order will lead to alink error. Further,
this behaviour is often used to make onelibrary override symbols from another. So, sometimesit is necessary to force specific library
linking order.

Boost.Build tries to automatically compute the right order. The primary rule isthat if library a "uses' library b, then library a will
appear on the command line before library b. Library a is considered to use b if b is present either in the a library's sources or its
usage is listed in its requirements. To explicitly specify the use relationship one can use the <use> feature. For example, both of
the following lines will cause a to appear before b on the command line:

liba: a.cpp b ;
lib a: a.cpp : <use>b ;

The same approach works for searched libraries as well:

lib z ;
lib png : : <use>z ;
exe viewer : viewer png z ;

104

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Can | get capture external program output using a
Boost.Jam variable?

The SHELL builtin rule may be used for this purpose:

local gtk_includes = [SHELL "gtk-config --cflags"] ;

105

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

How to get the project root (a.k.a. Jamroot) location?

You might want to use your project's root location in your Jamfiles. To access it just declare a path constant in your Jamroot.jam
file using:

pat h-constant TOP :

After that, the TOP variable can be used in every Jamfile.

106

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

How to change compilation flags for one file?

If one file must be compiled with specia options, you need to explicitly declare an obj target for that file and then use that target
inyour exe or | i b target:

exe a : a.cpp b ;
obj b : b.cpp : <optimzation>off ;

Of course you can use other properties, for example to specify specific C/C++ compiler options:

exe a : a.cpp b ;
obj b : b.cpp : <cflags>g ;

You can also use conditional propertiesfor finer control:

exe a : a.cpp b ;
obj b : b.cpp : <variant>rel ease: <optim zati on>of f ;

107

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Why are the ai-parn @NA haracose-aii-patns Properties useful?

E I Note
Thisentry is specific to Unix systems.

Before answering the questions, let usrecall afew points about shared libraries. Shared libraries can be used by several applications,
or other libraries, without physically including the library in the application which can greatly decrease the total application size. It
isalso possible to upgrade a shared library when the application is aready installed.

However, in order for application depending on shared libraries to be started the OS may need to find the shared library when the
application is started. The dynamic linker will search in a system-defined list of paths, load the library and resolve the symbols.
Which meansthat you should either change the system-defined list, given by theLD_LI BRARY_PATH environment variable, or install
the libraries to a system location. This can be inconvenient when developing, since the libraries are not yet ready to beinstalled, and
cluttering system paths may be undesirable. Luckily, on Unix there is another way.

An executable can include alist of additional library paths, which will be searched before system paths. Thisis excellent for devel-
opment because the build system knows the paths to all libraries and can include them in the executables. That is done when the
hardcode- dl | - pat hs feature hasthet r ue value, which is the default. When the executables should be installed, the story is
different.

Obvioudly, installed executabl e should not contain hardcoded paths to your development tree. (Thei nst al | rule explicitly disables
the har dcode- dI | - pat hs feature for that reason.) However, you can use the dl | - pat h feature to add explicit paths manually.
For example:

install installed : application : <dll-path>/usr/lib/snake
<l ocation>/usr/bin ;

will allow the application to find libraries placed inthe /usr/1i b/ snake directory.

If you install libraries to a nonstandard location and add an explicit path, you get more control over libraries which will be used. A
library of the same name in a system location will not be inadvertently used. If you install libraries to a system location and do not
add any paths, the system administrator will have more control. Each library can be individually upgraded, and all applications will
use the new library.

Which approach isbest depends on your situation. If thelibraries arerelatively standalone and can be used by third party applications,
they should be installed in the system location. If you have lots of libraries which can be used only by your application, it makes
sensetoinstall them to anonstandard directory and add an explicit path, like the exampl e above shows. Please also note that guidelines
for different systems differ in this respect. For example, the Debian GNU guidelines prohibit any additional search paths while Sol-
aris guidelines suggest that they should always be used.

108

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Targets in site-config.jam

It isdesirableto declare standard libraries available on agiven system. Putting target declaration in a specific project's Jamfileis not
really good, sincelocations of the libraries can vary between different devel opment machines and then such declarations would need
to be duplicated in different projects. The solution isto declare the targetsin Boost.Build's si t e- conf i g. j amconfiguration file:

project site-config ;
lib zlib : : <nanme>z

Recall that both si t e- confi g. j amand user - confi g. j amare projects, and everything you can do in a Jamfile you can do in
those files as well. So, you declare a project id and a target. Now, one can write;

exe hello : hello.cpp /site-config//zlib ;

in any Jamfile.

109

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

Header-only libraries

In modern C++, libraries often consist of just header files, without any source files to compile. To use such libraries, you need to
add proper includes and possibly defines to your project. But with a large number of external libraries it becomes problematic to
remember which libraries are header only, and which ones you have to link to. However, with Boost.Build a header-only library can
be declared as Boost.Build target and all dependents can use such library without having to remeber whether it isaheader-only library
or not.

Header-only libraries may be declared using the al i as rule, specifying their include path as a part of its usage requirements, for
example:

alias ny-lib
. # no sources
no build requirenents
no default build
<i ncl ude>what ever ;

The includes specified in usage requirements of ny- 1 i b are automatically added to all of its dependants build properties. The de-
pendants need not care if ny-1i b is a header-only or not, and it is possible to later make ny- 1 i b into a regular compiled library
without having to that its dependants declarations.

If you already have proper usage requirements declared for a project where a header-only library is defined, you do not need to du-
plicate them for the al i as target:

project ny : usage-requirenents <include>whatever ;
alias nylib ;

110

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently Asked Questions

What is the difference between Boost.Build, s, ,.»and
Perforce Jam?

Boost.Buildisthe name of the complete build system. The executable that runsitisb2. That executableiswritten in C and implements
performance-critical algorithms, like traversal of dependency graph and executing commands. It also implements an interpreted
language used to implement the rest of Boost.Build. This executable isformally called "Boost.Build engine".

The Boost.Build engine is derived from an earlier build tool called Perforce Jam. Originally, there were just minor changes, and the
filename was bj am Later on, with more and more changes, the similarity of names because a disservice to users, and as of Boost
1.47.0, the official name of the executable was changed to b2. A copy named bj amis still created for compatibility, but you are
encouraged to use the new namein all cases.

Perforce Jam was an important foundation, and we gratefully acknowledge its influence, but for users today, these tools share only
some basics of the interpreted language.

111

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

v

Appendix A. Boost.Jam Documentation

112

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Building B2

Installing B2 after building it is simply a matter of copying the generated executables someplace in your PATH. For building the ex-
ecutables there are a set of bui | d bootstrap scripts to accomodate particular environments. The scripts take one optional argument,
the name of the toolset to build with. When the toolset is not given an attempt is made to detect an available toolset and use that.
The build scripts accept these arguments:

build [tool set]

Running the scripts without arguments will give you the best chance of success. On Windows platforms from a command console
do:

cd jam source |l ocation
.\ bui |l d. bat

On Unix type platforms do:

cd jam source | ocation
sh ./build.sh

For the Boost.Jam source included with the Boost distribution the jam sourcelocation isBOOST_ROOT/ t ool s/ bui | d/ v2/ engi ne.

If the scripts fail to detect an appropriate toolset to build with your particular toolset may not be auto-detectable. In that case, you
can specify the toolset as the first argument, this assumes that the toolset is readily available in the PATH.

E I Note
Thetoolset used to build Boost.Jam isindependent of the tool sets used for Boost.Build. Only oneversion of Boost.Jam
is needed to use Boost.Build.

The supported toolsets, and whether they are auto-detected, are:

113

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

TableA.1. Supported Toolsets

Script

bui | d. bat

Platform

Windows NT, 2000, and XP

Tool set

bor| and
Borland C++Builder (BCC
5.5)

cono
Comeau Computing C/C++

gcc
GNU GCC

gcc- nocygwi n
GNU GCC

intel-w n32
Intel C++ Compiler for Win-
dows

met r oner ks
Metrowerks CodeWarrior
C/C++ 7., 8., 9.X

m ngw
GNU GCC as the MinGW
configuration

nsvce
Microsoft Visual C++ 6.x

Detection and Notes

¢ Common install location:
"C: \ Bor | and\ BCC55"

e BCC32. EXE in PATH

e | CL. EXEinPATH

¢ CWFol der variable con-
figured

e MACC. EXE in PATH

¢ Common install location:
"C:\M nGW

e VCVARS32. BAT aready
configured

e 9VBVCDI r % is present in
environment

¢ Common install locations:
"0ProgranFil esA M -
crosoft Visual Stu-
di o", "o%r ogr am
Files% Microsoft
Vi sual C++"

e CL. EXEin PATH

114

httpo://www.renderx.com/

http://www.codegear.com/downloads/free/cppbuilder
http://www.borland.com/
http://www.comeaucomputing.com/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.intel.com/software/products/compilers/c60
http://www.metrowerks.com/
http://www.mingw.org/
http://gcc.gnu.org/
http://www.mingw.org/
http://msdn.microsoft.com/visualc/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Script

Platform

Tool set

vc7
Microsoft Visual C++ 7.x

Detection and Notes

VCVARS32. BAT or VS-
VARS32. BAT dready con-
figured

%/S71COMNTOOL S% is
present in environment

%/Cl NSTALLDI R% is
present in environment

Common install locations:
"0ProgranFil esA M -
crosoft Visual Studio
. NET", "or ogr am
Files% Microsoft
Visual Studio .NET
2003"

CL. EXE in PATH

115

httpo://www.renderx.com/

http://msdn.microsoft.com/visualc/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Script

buil d. sh

Platform

Unix, Linux, Cygwin, etc.

Tool set

vc8 andvc9

Microsoft Visual C++ 8.x and

9.x

acc
HP-UX aCC

cono
Comeau Computing C/C++

gcc
GNU GCC

Detection and Notes

Detection:

e VCVARSALL. BAT already
configured

* %/S90COVNTOOLS% is
present in environment

¢ Common install location:
"0ProgranFil esA M -
crosoft Visual Studio
9"

¢ %/S80COVNTOOLS% is
present in environment

¢ Common install location:
"%ProgranFil es®d M -
crosoft Visual Studio
g"

e CL. EXEin PATH
Notes:

e |f VCVARSALL. BAT iscaled
to set up the toolset, it is
passed all the extra argu-
ments, see below for what
those arguments are. This
can be used to build, for ex-
ample, a Win64 specific
version of b2. Consult the
Visua Studio documentation
for what the possible argu-
ment valuesto the VCVARS-
ALL. BAT are.

e aCCinPATH

e unane is"HP-UX"

e comoin PATH

e gccin PATH

116

httpo://www.renderx.com/

http://msdn.microsoft.com/visualc/
http://www.hp.com/go/c++
http://www.comeaucomputing.com/
http://gcc.gnu.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

Platform

MacOS X

Windows NT, 2000, and XP

Tool set

intel -11inux
Intel C++ for Linux

kcc
Intel KAl C++

kyli x
Borland C++Builder

m pspro
SGI MIPSpro C

sunpro
Sun Workshop 6 C++

qcc
QNX Neutrino

true64cxx
Compaq C++ Compiler for
True64 UNIX

vacpp
IBM VisualAge C++

darwi n
Apple MacOS X GCC

m ngw

GNU GCC as the MinGW
configuration with the MSY S
shell

Detection and Notes

e jiccinPATH

e Common install locations:
"/opt/intel/cc/9.0",
"/opt/intel _cc_80",
"/lopt/intel/com-
pi l er70", "/ opt/in-
tel/compiler60",
"/lopt/intel/com-
pi | er 50"

e KCCinPATH

¢ bc++in PATH

e unane is "IRIX" or
"I Rl X64"

e Standard install location:
"/ opt / SUNWpr o"

e unane is"QNX" and gqcc in
PATH

e unane is"OSF1"

¢ x|l cinPATH

e unane is"Darwi n"

¢ Common install location:
"/ mi ngw'

The built executables are placed in asubdirectory specific to your platform. For example, in Linux running on an Intel x86 compatible
chip, the executables are placed in: "bi n. | i nuxx86". The =b2[.exe]= executable can be used to invoke Boost.Build.

The build scripts support additional invocation arguments for use by devel opers of Boost.Jam and for additional setup of the tool set.
The extra arguments come after the tool set:

» Arguments not in the form of an option, before option arguments, are used for extra setup to toolset configuration scripts.
» Arguments of the form "- - opt i on", which are passed to the bui | d. j ambuild script.

» Arguments not in the form of an option, after the options, which are targets for the bui | d. j amscript.

117

render

httpo://www.renderx.com/

http://www.intel.com/software/products/compilers/c60l/
http://www.codegear.com/downloads/free/cppbuilder
http://www.borland.com/
http://www.sgi.com/developers/devtools/languages/mipspro.html
http://www.qnx.com/
http://www.tru64unix.compaq.com/cplus/
http://www.ibm.com/software/awdtools/vacpp/
http://developer.apple.com/tools/compilers.html
http://www.mingw.org/
http://gcc.gnu.org/
http://www.mingw.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

build [tool set] [setup*] [--option+ target*]

The arguments immediately after the tool set are passed directly to the setup script of the toolset, if available and if it needsto bein-
voked. This allows one to configure the toolset ass needed to do non-default builds of b2. For example to build a Win64 version
with vc8. See the toolset descriptiona above for when particular toolsets support this.

The arguments starting with the "- - opt i on" forms are passed to the bui | d. j amscript and are used to further customize what gets
built. Options and targets supported by the bui | d. j amscript:

--rel ease

- - debug

--grammar

--wi t h- pyt hon=path

__gc

--duna

--tool set-root=path

--show-| ocat e-t ar get

--noassert

di st

cl ean

Empty option when one wantsto only specify atarget.
The default, builds the optimized executable.
Builds debugging versions of the executable. When built they are placed in their own directory

"bin./platfornm .debug".

Normally the Jam language grammar parsing files are not regenerated. This forces building of the
grammar, although it may not force the regeneration of the grammar parser. If the parser is out of
date it will be regenerated and subsequently built.

Enables Python integration, given a path to the Python libraries.
Enables use of the Boehm Garbage Collector. The build will look for the Boehm-GC source in a
"boehm_gc" subdirectory from the b2 sources.

Enables use of the DUMA (Detect Uintended Memory Access) debugging memory alocator. The
build expects to find the DUMA sourcefilesin a"duma" subdirectory from the b2 sources.

Indicates where the toolset used to build is located. This option is passed in by the bootstrap
(bui | d. bat or bui | d. sh) script.

For information, prints out where it will put the built executable.

Disable debug assertions, even if building the debug version of the executable.

Generate packages (compressed archives) as appropriate for distribution in the platform, if possible.

Remove all the built executables and objects.

118

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

Language

B2 has an interpreted, procedural language. Statements in b2 are rule (procedure) definitions, rule invocations, flow-of-control
structures, variable assignments, and sundry language support.

Lexical Features

B2 treats its input files as whitespace-separated tokens, with two exceptions. double quotes (") can enclose whitespace to embed it
into atoken, and everything between the matching curly braces ({}) in the definition of arule action is treated as asingle string. A
backslash (\) can escape a double quote, or any single whitespace character.

B2 requires whitespace (blanks, tabs, or newlines) to surround al tokens, including the colon (:) and semicolon (;) tokens.

B2 keywords (an mentioned in thisdocument) are reserved and generally must be quoted with double quotes () to be used asarbitrary
tokens, such as variable or target names.

Comments start with the # character and extend until the end of line.

Targets

The essential b2 data entity isatarget. Build targets arefiles to be updated. Source targets are the files used in updating built targets.
Built targets and source targets are collectively referred to asfile targets, and frequently built targets are source targets for other built
targets. Pseudotargets are symbol s representing dependencies on other targets, but which are not themsel ves associated with any real
file.

A file target's identifier is generally the file's name, which can be absolutely rooted, relative to the directory of b2's invocation, or
simply loca (no directory). Most often it is the last case, and the actual file path is bound using the $(SEARCH) and $(LOCATE)
special variables. See SEARCH and LOCATE Variables below. A local filename is optionally qualified with grist, a string value
used to assure uniqueness. A file target with an identifier of the form file(member) isalibrary member (usually an ar (1) archive on
Unix).

Binding Detection

Whenever atarget is bound to alocation in the filesystem, Boost Jam will look for avariable called Bl NDRULE (first "on" the target
being bound, then in the global module). If non-empty, =$(BINDRUL E[1])= namesarule which is called with the name of the target
and the path it is being bound to. The signature of the rule named by =$(BINDRULE[1])= should match the following:

rule bind-rule (target : path)

This facility is useful for correct header file scanning, since many compilers will search for #i ncl ude filesfirst in the directory
containing the file doing the #i ncl ude directive. $(Bl NDRULE) can be used to make arecord of that directory.

Rules

The basic b2 language entity is called arule. A rule is defined in two parts: the procedure and the actions. The procedure is a body
of jam statementsto be run when theruleisinvoked; the actions are the OS shell commands to execute when updating the built targets
of therule.

Rules can return values, which can be expanded into alist with "[rule args ...]". A rul€'s value is the value of its last statement,
though only the following statements have values: 'if' (value of the leg chosen), 'switch' (value of the case chosen), set (value of the
resulting variable), and 'return’ (value of its arguments). Note that 'return’ doesn't actually cause areturn, i.e., isano-op unlessit is
the last statement of the last block executed within rule body.

The b2 statements for defining and invoking rules are as follows:

Define arul€'s procedure, replacing any previous definition.

119

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

rule rulenanme { statenents }
Define arul€'s updating actions, replacing any previous definition.
actions [nodifiers] rulenanme { conmands }

Invoke arule.

rulename fieldl : field2 : ... : fieldN;

Invoke arule under the influence of target's specific variables..

on target rulenane fieldl : field2 : ... : fieldN;
Used as an argument, expands to the return value of the rule invoked.

[rulenane fieldl : field2 : ... : fieldN]
[on target rulenane fieldl : field2 : ... : fieldN]

A ruleisinvoked with valuesin field1 through fieldN. They may be referenced in the procedure's statementsas $(1) through $(N)
(9 max), and the first two only may be referenced in the action's commands as $(1) and $(2) . $(<) and $(>) are synonymous
with$(1) and $(2) .

Rulesfall into two categories: updating rules (with actions), and pure procedure rules (without actions). Updating rulestreat arguments
$(1) and $(2) as built targets and sources, respectively, while pure procedure rules can take arbitrary arguments.

When an updating rule is invoked, its updating actions are added to those associated with its built targets ($(1)) before the rule's
procedure is run. Later, to build the targets in the updating phase, commands are passed to the OS command shell, with $(1) and
$(2) replaced by bound versions of the target names. See Binding above.

Rule invocation may be indirected through a variable:

$(var) fieldl : field2 : ... : fieldN;

on target $(var) fieldl : field2 : ... : fieldN;

[$(var) fieldl : field2 : ... : fieldN]

[on target $(var) fieldl : field2 : ... : fieldN]

The variable's value names the rule (or rules) to be invoked. A rule isinvoked for each element in the list of $(var) 'svalues. The
fieldsfieldl : field2 : ... arepassed asarguments for each invokation. For the[...] forms, the return value is the concat-
enation of the return values for all of the invocations.

Action Modifiers
The following action modifiers are understood:

actions bind vars $(vars) will be replaced with bound values.

actions existing $(>) includes only source targets currently existing.
actions ignore The return status of the commands isignored.
actions pieceneal commands are repeatedly invoked with a subset of $(>) small enough to fit in the command buffer on
this OS.
120

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

actions quietly The action is not echoed to the standard outpui.
actions toget her The $(>) from multiple invocations of the same action on the same built target are glommed together.
actions updat ed $(>) includes only source targets themselves marked for updating.

Argument lists

You can describe the arguments accepted by a rule, and refer to them by name within the rule. For example, the following prints
"I'm sorry, Dave" to the console:

rule report (pronoun index ? : state : nanes +)

{

| ocal he.suffix she.suffix it.suffix = s ;

local I.suffix = m;

| ocal they.suffix you.suffix =re ;

ECHO $(pronoun)' $($(pronoun).suffix) $(state), $(nanmes[$(index)])
}

report | 2 : sorry : Joe Dave Pete ;

Each namein alist of formal arguments (separated by ": " in the rule declaration) is bound to a single element of the corresponding
actual argument unless followed by one of these modifiers:

Symbol Semantics of preceding symbol
? optional
* Bind to zero or more unbound elements of the actual argument.

When * appears where an argument name is expected, any
number of additional arguments are accepted. This feature can
be used to implement "varargs' rules.

+ Bind to one or more unbound el ements of the actual argument.

The actua and formal arguments are checked for inconsistencies, which cause b2 to exit with an error code:

ar gument error

rule report (pronoun index ? : state : nanes +)
called with: (I 2 foo : sorry : Joe Dave Pete)
extra argunment foo

ar gument error

rule report (pronoun index ? : state : nanes +)
called with: (I 2 : sorry)

m ssing argunent nanes

If you omit the list of formal arguments, all checking is bypassed asin "classic" Jam. Argument lists drastically improve the reliab-
ility and readability of your rules, however, and are strongly recommended for any new Jam code you write.

Built-in Rules

B2 has a growing set of built-in rules, al of which are pure procedure rules without updating actions. They are in three groups: the
first builds the dependency graph; the second modifiesit; and the third are just utility rules.

121

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Dependency Building

DEPENDS

rule DEPENDS (targetsl * : targets2 *)

Builds a direct dependency: makes each of targetsl depend on each of targets2. Generally, targetsl will be rebuilt if targets2 are
themselves rebuilt or are newer than targetsl.

I NCLUDES

rule INCLUDES (targetsl * : targets2 *)

Builds a sibling dependency: makes any target that depends on any of targetsl also depend on each of targets2. This reflects the
dependencies that arise when one source file includes another: the object built from the source file depends both on the original and
included sourcefile, but the two sources files don't depend on each other. For example:

DEPENDS foo.0 : foo.c ;
| NCLUDES foo.c : foo.h ;

"f 0o. 0" dependson "f oo. ¢" and "f oo. h" in thisexample.
Modifying Binding

The six rules ALWAYS, LEAVES, NOCARE, NOTFI LE, NOUPDATE, and TEMPORARY modify the dependency graph so that b2 treats the
targets differently during its target binding phase. See Binding above. Normally, b2 updates atarget if it ismissing, if itsfilesystem
modification timeis older than any of its dependencies (recursively), or if any of its dependencies are being updated. This basic be-
havior can be changed by invoking the following rules:

ALVAYS

rule ALWAYS (targets *)

Causes targets to be rebuilt regardless of whether they are up-to-date (they must still be in the dependency graph). Thisis used for
the clean and uninstall targets, as they have no dependencies and would otherwise appear never to need building. It is best applied
to targets that are also NOTFI LE targets, but it can also be used to force areal file to be updated as well.

LEAVES

rule LEAVES (targets *)

Makes each of targets depend only onitsleaf sources, and not on any intermediate targets. This makesit immuneto its dependencies
being updated, as the "leaf" dependencies are those without their own dependencies and without updating actions. This alows a
target to be updated only if original source files change.

NOCARE

rule NOCARE (targets *)

Causes b2 to ignore targets that neither can be found nor have updating actions to build them. Normally for such targets b2 issues
awarning and then skips other targets that depend on these missing targets. The Hdr Rul e in Janbase uses NOCARE on the header
file names found during header file scanning, to let b2 know that the included files may not exist. For example, if an #i ncl ude is
within an #i f def , the included file may not actually be around.

122

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

O Warning
For targets with build actions: if their build actions exit with a nonzero return code, dependent targets will still be
built.

NOTFI LE
rule NOTFILE (targets *)

Marks targets as pseudotargets and not real files. No timestamp is checked, and so the actions on such atarget are only executed if
the target's dependencies are updated, or if the target is also marked with ALWAYS. The default b2 target "al | " is a pseudotarget. In
Janmbase, NOTFI LE is used to define several addition convenient pseudotargets.

NOUPDATE
rul e NOUPDATE (targets *)

Causes the timestamps on targets to be ignored. This has two effects: first, once the target has been created it will never be updated;
second, manually updating target will not cause other targets to be updated. In Janbase, for example, thisrule is applied to direct-
oriesby the MkDi r rule, because MkDi r only cares that the target directory exists, not when it has last been updated.

TEMPORARY
rule TEMPORARY (targets *)

Markstargets astemporary, allowing them to be removed after other targets that depend upon them have been updated. If a TEMPORARY
target ismissing, b2 uses the timestamp of the target's parent. Janbase uses TEMPORARY to mark object filesthat are archived in a
library after they are built, so that they can be deleted after they are archived.

FAI L_EXPECTED

rule FAIL_EXPECTED (targets *)

For handling targets whose build actions are expected to fail (e.g. when testing that assertions or compile-time type checking work
properly), Boost Jam supplies the FAI L_EXPECTED rule in the same style as NOCARE, et. al. During target updating, the return code
of the build actions for arguments to FAI L_EXPECTED is inverted: if it fails, building of dependent targets continues as though it
succeeded. If it succeeds, dependent targets are skipped.

RMOLD
rule RMOLD (targets *)

B2 removes any target filesthat may exist on disk when the rule used to build those targetsfail s. However, targets whose dependencies
fail to build are not removed by default. The RMOLD rule causes its arguments to be removed if any of their dependenciesfail to build.

| SFI LE
rule | SFILE (targets *)

I SFI LE marks targets as required to be files. This changes the way b2 searches for the target such that it ignores matches for file
system items that are not files, like directories. This makesit possible to avoid #i ncl ude "excepti on" matching if one happens
to have adirectory named exception in the header search path.

123

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

O Warning
Thisis currently not fully implemented.

Utility

The two rules ECHOand EXI T are utility rules, used only in b2's parsing phase.

ECHO
rule ECHO (args *)

Blurts out the message args to stdout.

EXIT

rule EXIT (nmessage * : result-value ?)

Blurts out the message to stdout and then exitswith afailure statusif no result-valueis given, otherwise it exits with the given result-
value.

"Echo", "echo", "Exi t ", and "exi t " are accepted as aliases for ECHOand EXI T, since it is hard to tell that these are built-in rules
and not part of the language, like "i ncl ude".

G.0B

The GLOB rule does filename globbing.
rule GLOB (directories * : patterns * : downcase-opt ?)

Using the same wildcards as for the patternsin the switch statement. It isinvoked by being used as an argument to a rule invocation
insideof "=[]=". For example: "FILES = [GLOB dirl dir2 : *.c *.h]" setsFl LEStothelist of C source and header files
indi r 1 and di r 2. The resulting filenames are the full pathnames, including the directory, but the pattern is applied only to the file
name without the directory.

If downcase-opt is supplied, filenames are converted to all-lowercase before matching against the pattern; you can use this to do
case-insensitive matching using lowercase patterns. The paths returned will still have mixed caseif the OS suppliesthem. OnWindows
NT and Cygwin, filenames are always downcased before matching.

MATCH

The MATCH rule does pattern matching.
rule MATCH (regexps + : list *)

Matchesthe egr ep(1) style regular expressions regexps against the stringsin list. The result isalist of matching () subexpressions
for each string in list, and for each regular expression in regexps.

BACKTRACE
rul e BACKTRACE ()

Returns a list of quadruples: filename line module rulename..., describing each shallower level of the call stack. This rule can be
used to generate useful diagnostic messages from Jam rules.

124

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

UPDATE

rul e UPDATE (targets *)

Classic jam treats any non-option element of command line as a name of target to be updated. This prevented more sophisticated
handling of command line. This is now enabled again but with additional changes to the UPDATE rule to alow for the flexibility of
changing the list of targets to update. The UPDATE rule has two effects:

1. It clearsthelist of targets to update, and
2. Causes the specified targets to be updated.

If no target was specified with the UPDATE rule, no targets will be updated. To support changing of the update list in more useful
ways, the rule also returns the targets previously in the update list. This makes it possible to add targets as such:

| ocal previous-updates = [UPDATE]
UPDATE $(previ ous-updat es) a-new-t arget

VB2_GETREG
rule WB2_CETREG (path : data ?)

Defined only for win32 platform. It reads the registry of Windows. 'path’ is the location of the information, and 'data’ is the name
of the value which we want to get. If 'data’ is omitted, the default value of "path’ will be returned. The 'path’ value must conform to
MS key path format and must be prefixed with one of the predefined root keys. As usual,

e 'HKLM isequivalent to 'HKEY_LOCAL_NMACHI NE'.
 'HKCU is equivalent to 'HKEY CURRENT_USER.

* 'HKCR isequivalent to 'HKEY_CLASSES ROOT'.
Other predefined root keys are not supported.

Currently supported datatypes: 'REG_ DWORD', 'REG _SZ','REG_EXPAND_SZ','REG MJULTI _SZ'. The datawith 'REG_DWORD' type will
be turned into astring, 'REG_ MULTI _SZ'into alist of strings, and for those with 'REG_EXPAND_SZ' type environment variablesin it
will be replaced with their defined values. The datawith 'REG_SZ' type and other unsupported typeswill be put into a string without
modification. If it can't receive the value of the data, it just return an empty list. For example,

| ocal PSDK-1ocation =
[WB2_GETREG HKEY_LOCAL_MACHI NE\\ SOFTWARE\\ M crosoft\\ M crosoft SDK\\Directories : "lInstall O
Dr"] ;
W\B2_CGETREGNAMES

rule WB2_CETREGNAMES (path : result-type)

Defined only for win32 platform. It reads the registry of Windows. 'path'’ is the location of the information, and 'result-type' is either
'subkeys' or 'val ues'. For moreinformation on 'path’ format and constraints, please see WB2_ GETREG.

Depending on 'result-type', the rule returns one of the following:
subkeys Namesof al direct subkeys of 'path'.

val ues Names of values contained in registry key given by 'path’. The "default" value of the key appears in the returned list
only if its value has been set in the registry.

125

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

If 'result-type' is not recognized, or requested data cannot be retrieved, the rule returns an empty list. Example:

| ocal key = "HKEY_LOCAL_MACHI NE\\ SOFTWARE\ \ M cr osof t \\ W ndows\ \ Cur r ent Ver si on\\ App Pat hs" ;
| ocal subkeys = [WB2_GETREGNAMES "$(key)" : subkeys] ;
for local subkey in $(subkeys)

{
[ocal values = [WB2_GETREGNAMES "$(key)\\$(subkey)" : values] ;

for local value in $(val ues)

{
| ocal data = [WB2_GETREG "$(key)\\$(subkey)" : "$(value)"] ;

ECHO "Regi stry path: " $(key)\\$(subkey) ":" $(value) "=" $(data) ;

SHELL

rule SHELL (conmand : *)

SHELL executes command, and then returns the standard output of command. SHELL only works on platforms with a popen()
function in the C library. On platforms without a working popen() function, SHELL is implemented as a no-op. SHELL works on
Unix, MacOS X, and most Windows compilers. SHELL is a no-op on Metrowerks compilers under Windows. Thereis avariable set
of alowed options as additional arguments:

exit-status Inaddition to the output the result status of the executed command is returned as a second element of the resullt.

no- out put Don't capture the output of the command. Instead an empty (") string value is returned in place of the output.

Because the Perforce/Jambase defines a SHELL rule which hides the builtin rule, COMVAND can be used as an alias for SHELL in such
acase.

MD5

rule MD5 (string)

MD5 computes the MD5 hash of the string passed as paramater and returns it.

SPLI T_BY_CHARACTERS

rule SPLI T_BY_CHARACTERS (string : delinmters)

SPLI T_BY_CHARACTERS splits the specified string on any delimiter character present in delimiters and returns the resulting list.

PRECI QUS

rule PRECIOUS (targets *)

The PRECI OUS rule specifies that each of the targets passed as the arguments should not be removed even if the command updating
that target fails.

PAD
rule PAD (string : width)

If string is shorter than width characters, pads it with whitespace characters on the right, and returns the result. Otherwise, returns
string unmodified.

126

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

FI LE_CPEN

rule FILE OPEN (filename : node)

The FI LE_OPEN rule opens the specified file and returns a file descriptor. The mode parameter can be either "w" or "r". Note that
at present, only the UPDATE_NOWrule can use the resulting file descriptor number.

UPDATE_NOW
rule UPDATE_NOW (targets * : log ? : ignore-mnus-n ?)

The UPDATE_NOWCcaused the specified targets to be updated immediately. If update was successfull, non-empty string is returned.
The log parameter, if present, specifies a descriptor of a file where all output from building is redirected. If the ignore-minus-n
parameter is specified, the targets are updated even if the - n parameter is specified on the command line.

Flow-of-Control

B2 has several simple flow-of-control statements:
for var in list { statements }
Executes statements for each element in list, setting the variable var to the element value.

if cond { statenments }
[else { statenents }]

Doesthe obvious; theel se clauseis optional. cond is built of:

a trueif any a element is a non-zero-length string

a==>b list a matcheslist b string-for-string

al=b list a does not match list b

a<b ali] string islessthan b[i] string, wherei isfirst mismatched element in listsaand b
a<=b every a string isless than or equal to its b counterpart

a>bh ali] string is greater than b[i] string, wherei isfirst mismatched element

a>h every a string is greater than or equal to its b counterpart

ainb trueif all elements of a can be found in b, or if a has no elements

! cond condition not true

cond & cond conjunction
cond || cond disunction

(cond) precedence grouping
include file ;

Causes b2 to read the named file. The file is bound like a regular target (see Binding above) but unlike a regular target the include
file cannot be built.

127

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

The include file is inserted into the input stream during the parsing phase. The primary input file and al the included file(s) are
treated as asinglefile; that is, b2 infers no scope boundaries from included files.

local vars [= values] ;

Creates new varsinside to the enclosing {} block, obscuring any previous values they might have. The previous values for vars are
restored when the current block ends. Any rule called or file included will seethelocal and not the previous value (thisis sometimes
called Dynamic Scoping). The local statement may appear anywhere, even outside of a block (in which case the previous value is
restored when the input ends). The vars areinitialized to values if present, or left uninitialized otherwise.

return val ues ;

Within arule body, the return statement setsthe return value for an invocation of therule. It does not cause theruleto return; arule's
valueisactually the value of the last statement executed, so areturn should be the last statement executed before the rule "naturally"
returns.

switch val ue

{

case patternl : statenents ;
case pattern2 : statenents ;

The switch statement executes zero or one of the enclosed statements, depending on which, if any, is the first case whose pattern
matches value. The pattern values are not variable-expanded. The pattern values may include the following wildcards:

? match any single character
* match zero or more characters
[chars] match any single character in chars

[~chars] match any single character not in chars

\ X match x (escapes the other wildcards)
while cond { statenents }

Repeatedly execute statements while cond remains true upon entry. (See the description of cond expression syntax under if, above).

Variables

B2 variables are lists of zero or more elements, with each element being a string value. An undefined variable is indistinguishable
from a variable with an empty list, however, a defined variable may have one more elements which are null strings. All variables
arereferenced as$(vari abl e) .

Variables are either global or target-specific. In the latter case, the variable takes on the given value only during the updating of the
specific target.

A variable is defined with:

128

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

variable = el enents ;

variabl e += el enents ;

vari able on targets = elenents ;
variable on targets += el enents ;
variabl e default = elenents ;
variable ?= el enents ;

Thefirst two forms set variable globally. The third and forth forms set atarget-specific variable. The = operator replaces any previous
elements of variable with elements; the += operation adds elementsto variable€'slist of elements. Thefina two formsare synonymous:
they set variable globally, but only if it was previously unset.

Variables referenced in updating commands will be replaced with their values; target-specific values take precedence over global
values. Variables passed as arguments ($(1) and $(2)) to actions are replaced with their bound values; the "bi nd" modifier can
be used on actions to cause other variables to be replaced with bound values. See Action Modifiers above.

B2 variables are not re-exported to the environment of the shell that executes the updating actions, but the updating actions can ref-
erence b2 variableswith $(vari abl e) .

Variable Expansion

During parsing, b2 performs variable expansion on each token that is not a keyword or rule name. Such tokens with embedded
variable references are replaced with zero or more tokens. Variable references are of theform $(v) or $(vm) , wherevisthevariable
name, and m are optiona modifiers.

Variable expansion in a rule's actions is similar to variable expansion in statements, except that the action string is tokenized at
whitespace regardless of quoting.

Theresult of atoken after variable expansion isthe product of the components of the token, where each component isaliteral substring
or alist substituting a variable reference. For example:

$(X) ->abc

t$(X) ->tatb tc

$(X)z -> az bz cz

$(X)-$(X) -> a-a a-b a-c b-a b-b b-c c-a c-b c-c

The variable name and modifiers can themselves contain a variable reference, and this partakes of the product as well:

$(X) ->abec
$(Y) ->12
$(2) -> XY

$($(2)) ->abcl2

Because of this product expansion, if any variable reference in atoken is undefined, the result of the expansion is an empty list. If
any variable element isanull string, the result propagates the non-null elements:

$(X) ->a""

$(V) -> " 1

$(2) ->

-(X)(Y)- -> -a- -al- -- -1-
-(X)(2)- ->

A variable element's string value can be parsed into grist and filename-related components. Modifiersto avariable are used to select
elements, select components, and replace components. The modifiers are:

[n] Select element number n (starting at 1). If the variable contains fewer than n elements, the result is a zero-element
list. n can be negative in which case the element number n from the last leftward is returned.

129

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

:chars

1 G=gri st
: D=pat h

: B=base

: S=suf

: MEmem

. R=r oot

: E=val ue

:J=j oi nval

Select elements number n through m. n and m can be negative in which case they refer to elements counting from
the last leftward.

Select elements number n through the last. n can be negative in which case it refers to the element counting from
the last leftward.

Select filename base.

Select (last) filename suffix.

Select archive member name.

Select directory path.

Select parent directory.

Select grist.

Replace lowercase characters with uppercase.
Replace uppercase characters with lowercase.

Converts all back-dashes ("\") to forward slashes ("/"). For example
x = "C\\Program Fi | es\\ Borl and" ; ECHO $(x:T)

prints” C: / Progr am Fi | es/ Bor | and"
When invoking Windows-based tools from Cygwin it can beimportant to pass them true windows-style paths. The

: Wmodifier, under Cygwin only, turnsacygwin path into aWin32 path usingthecygwi n_conv_t o_wi n32_pat h
function. On other platforms, the string is unchanged. For example

x = "/cygdrivel/c/Program Fil es/Borland" ; ECHO $(x:W ;

prints” C: \ Pr ogr am Fi | es\ Bor | and" on Cygwin
Select the components listed in chars.

Replace grist with grist.

Replace directory with path.

Replace the base part of file name with base.

Replace the suffix of file name with suf.

Replace the archive member name with mem.

Prepend root to the whole file name, if not already rooted.
Assign value to the variableif it is unset.

Concatentate list elements into single element, separated by joinval'.

OnVMS, $(var: P) isthe parent directory of $(var: D).

Local For Loop Variables

Boost Jam allows you to declare alocal for loop control variable right in the loop:

130

httpo://www.renderx.com/

http://www.cygwin.com/
http://www.cygwin.com/cygwin-api/func-cygwin-conv-to-win32-path.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

x =123,
y =456 ;
for local y in $(x)
{
ECHO $(y) ; # pl’lnts "1", "2"’ or "3"
}
ECHO $(y) ; # prints "4 5 6"

Generated File Expansion

During expansion of expressions b2 a so looks for subexpressions of the form @ f i | ename: E=fi | econt ent s) and replaces the
expression with f i | enane after creating the given file with the contentssettof i | econt ent s. Thisisuseful for creating compiler
responsefiles, and other "internal" files. The expansion works both during parsing and action execution. Henceit is possibleto create
files during any of the three build phases.

Built-in Variables

This section discusses variables that have special meaning to b2. All of these must be defined or used in the global module -- using
those variables inside a named module will not have the desired effect. See Modules.

SEARCH and LOCATE

These two variables control the binding of file target names to locations in the file system. Generally, $(SEARCH) is used to find
existing sources while $(LOCATE) is used to fix the location for built targets.

Rooted (absolute path) file targets are bound as is. Unrooted file target names are also normally bound asis, and thus relative to the
current directory, but the settings of $(LOCATE) and $(SEARCH) alter this:

» If $(LOCATE) isset thenthetarget isbound relativeto thefirst directory in $(LOCATE) . Only thefirst element isused for binding.
* If $(SEARCH) isset then thetarget is bound to the first directory in $(SEARCH) where the target file already exists.
* |If the $(SEARCH) search fails, the target is bound relative to the current directory anyhow.

Both $(SEARCH) and $(LOCATE) should be set target-specific and not globally. If they were set globally, b2 would use the same
paths for al file binding, which is not likely to produce sane results. When writing your own rules, especially ones not built upon
thosein Jambase, you may need to set $(SEARCH) or $(LOCATE) directly. Almost all of therulesdefined in Jambase set $(SEARCH)
and $(LOCATE) to sensible values for sources they are looking for and targets they create, respectively.

HDRSCAN and HDRRULE

These two variables control header file scanning. $(HDRSCAN) isanegr ep(1) pattern, with ()'s surrounding the file name, used to
find file inclusion statements in source files. Janbase uses $(HDRPATTERN) as the pattern for $(HDRSCAN) . $(HDRRULE) isthe
name of arule to invoke with the results of the scan: the scanned file is the target, the found files are the sources. Thisis the only
place where b2 invokes a rule through a variable setting.

Both $(HDRSCAN) and $(HDRRULE) must be set for header file scanning to take place, and they should be set target-specific and
not globally. If they were set globally, all files, including executablesand libraries, would be scanned for header fileinclude statements.

The scanning for header file inclusions is not exact, but it is at least dynamic, so there is no need to run something like mak-
edepend(G\U) to create a static dependency file. The scanning mechanism errs on the side of inclusion (i.e., it is more likely to
return filenamesthat are not actually used by the compiler than to missincludefiles) becauseit can't tell if #i ncl ude linesareinside
#i f def s or other conditional logic. In Janbase, Hdr Rul e applies the NOCARE rule to each header file found during scanning so
that if the file isn't present yet doesn't cause the compilation to fail, b2 won't care.

Also, scanning for regular expressions only workswheretheincluded file nameisliterally in the sourcefile. It can't handle languages
that allow including files using variable names (as the Jamlanguage itself does).

131

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Semaphores

It is sometimes desirable to disallow parallel execution of some actions. For example:

» Old versions of yacc use files with fixed names. So, running two yacc actionsis dangerous.

» One might want to perform parallel compiling, but not do parallel linking, because linking isi/o bound and only gets slower.
Craig McPeeters has extended Perforce Jam to solve such problems, and that extension was integrated in Boost.Jam.

Any target can be assigned a semaphore, by setting a variable called SEMAPHORE on that target. The value of the variable is the
semaphore name. It must be different from names of any declared target, but is arbitrary otherwise.

The semantic of semaphoresis that in a group of targets which have the same semaphore, only one can be updated at the moment,
regardless of "-j " option.

Platform Identifier
A number of Jam built-in variables can be used to identify runtime platform:
os OS identifier string

OSPLAT Underlying architecture, when applicable

MAC true on MAC platform
NT true on NT platform
0s2 true on OS2 platform
UNI X true on Unix platforms
VB true on VMS platform

Jam Version

JANDATE Time and date at b2 start-up as an 1SO-8601 UTC value.
J AMUNAMVE Ouput of uname(1) command (Unix only)
JAWERSI ON b2 version, currently "3.1.19"

JAM VERSI ON A predefined global variable with two elements indicates the version number of Boost Jam. Boost Jam versions
start at "03" "00". Earlier versions of Jamdo not automatically define JAM VERSI ON.

JAMSHELL

When b2 executesarul€'s action block, it forks and execs ashell, passing the action block as an argument to the shell. Theinvocation
of the shell can be controlled by $(JAMSHELL) . The default on Unix is, for example:

JAMSHELL = /bin/sh -¢c %;

The %is replaced with the text of the action block.

B2 does not directly support building in parallel across multiple hosts, since that is heavily dependent on the local environment. To
build in parallel across multiple hosts, you need to write your own shell that provides access to the multiple hosts. You then reset
$(JAVBHELL) to referenceit.

132

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

Just as b2 expands a %to be the text of the rul€'s action block, it expandsa! to be the multi-process slot number. The slot number
varies between 1 and the number of concurrent jobs permitted by the - j flag given on the command line. Armed with this, it is
possible to write a multiple host shell. For example:

#!/ bi n/ sh

Thi s sanmpl e JAMSHELL uses the SunCS on(1) conmand to execute a
conmand string with an identical environment on another host.

H* 3

Set JAVSHELL = janshell ! %
where janmshell is the name of this shell file.

This version handles up to -j6; after that they get executed

#
#
#
#
#
locally.

case $1 in
1| 4) on winken sh -c "$2";;
2| 5) on blinken sh -¢c "$2";;
3| 6) on nod sh -c "$2";;
*) eval "$2";;
esac
__TIM NG RULE__ and __ACTI ON_RULE__

The__TIM NG RULE__and__ACTI ON_RULE__ canbesettothe nameof arulefor b2 to call after an action completesfor atarget.
They both give diagnostic information about the action that completed. For __ TI M NG RULE__ theruleiscaled as:

rule timng-rule (args * : target : start end user system)
And__ACTI ON_RULE _ iscalled as:
rule action-rule (args * : target : command status start end user system: output ?)

The arguments for both are:

args Any valuesfollowing therulenameinthe __TIM NG RULE__ or __ACTI ON_RULE _ are passed along here.
tar get The b2 target that was built.
command Thetext of the executed command in the action body.

st at us The integer result of the executed command.

start The starting timestamp of the executed command as a 1SO-8601 UTC value.
end The completion timestamp of the executed command as a 1SO-8601 UTC value.
user The number of user CPU seconds the executed command spent as a floating point value.

system Thenumber of system CPU seconds the executed command spent as a floating point value.

out put The output of the command as a single string. The content of the output reflects the use of the - pX option.

S Note
If both variables are set for atarget both are called, first __ TI M NG_RULE__ then __ ACTI ON_RULE__.

133

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Modules

Boost Jam introduces support for modules, which provide some rudimentary namespace protection for rules and variables. A new
keyword, "modul e" wasalso introduced. The features described in this section are primitives, meaning that they are meant to provide
the operations needed to write Jam rules which provide a more elegant module interface.

Declaration
nodul e expression { ... }
Codewithinthe{ ... } executeswithinthe module named by evaluating expression. Rule definitions can be found in the module's

own namespace, and in the namespace of the global module as module-name.rule-name, so within a module, other rules in that
module may always be invoked without qualification:

nodul e ny_nodul e

{
rule salute (x) { ECHO $(x), world ; }
rule greet () { salute hello ; }
greet ;

}

ny_nodul e. sal ute goodbye ;

When an invoked rule is not found in the current module's namespace, it is looked up in the namespace of the global module, so
qualified calls work across modules:

nodul e your _nodul e

{
}

rule bedtine () { my_nodul e. sal ute goodni ght ; }

Variable Scope

Each module has its own set of dynamically nested variable scopes. When execution passes from module A to module B, al the
variable bindings from A become unavailable, and are replaced by the bindings that belong to B. This applies equally to local and
global variables:

134

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

nodul e A
{
x =1,
rule f ()
{
local y = 999 ; # beconmes visible again when B.f calls A g
B.f ;
}
rule g ()
{
ECHO $(y) ; # prints "999"
}
}
nodul e B
{
y =2
rule f ()
{
ECHO $(y) ; # always prints "2"
Ag;
}
}

The only way to access another modul€'s variables is by entering that module:

rule peek (nodul e-nane ? : variables +)

modul e $(modul e- nane)

{
}

return $(3$(>)) ;

Note that because existing variabl e bindings change whenever anew module scopeis entered, argument bindings become unavailable.
That explainsthe use of "$(>) " in the peek rule above.

Local Rules

| ocal rule rulenane...

The rule is declared locally to the current module. It is not entered in the global module with qualification, and its name will not
appear in the result of:

[RULENAMES nodul e- nane]

The ruenanves Rule
rule RULENAMES (nodule ?)

Returns a list of the names of all non-local rules in the given module. If module is omitted, the names of all non-local rulesin the
global module are returned.

The varnaves Rule

rule VARNAMES (nodule ?)

135

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

Returns alist of the names of all variable bindings in the given module. If module is omitted, the names of all variable bindingsin
the global module are returned.

S Note
Thisincludes any local variablesin rules from the call stack which have not returned at the time of the VARNAMES
invocation.

The i worr Rule

I MPORT allows rule name aliasing across modul es:

rule | MPORT (source_nodule ? : source_rules *
target _nodule ? : target_rules *)

Thel MPORT rule copiesrulesfrom the source_moduleinto thetarget module aslocal rules. If either source_module or target_module
is not supplied, it refers to the global module. source_rules specifies which rules from the source_module to import; target_rules
specifies the names to give those rules in target_ module. If source rules contains a name which doesn't correspond to a rule in
source_module, or if it contains a different number of items than target_rules, an error isissued. For example,

import nl.rulel into n2 as local rule ml-rul el.
IMPORT mlL : rulel : n2 : ml-rulel ;

import all non-local rules fromml into n2

IMPORT mL : [RULENAMES nl] : nR : [RULENAMES nml] ;

The exprort RUle

EXPORT allows rule name aliasing across modul es:
rule EXPORT (nodule ? : rules *)

The EXPORT rule marks rules from the sour ce_nobdul e asnon-local (and thus exportable). If an element of rules does not name a
rule in module, an error isissued. For example,

nodul e X {
local ruler { ECHO X.r ; }

}

IMPORT X : r : . r ; #error - r is local in X
EXPORT X : r ;

IMPORT X : r @ :r ; # K

The caLLer mouLe Rule
rule CALLER_MODULE (levels ?)

CALLER_MODULE returns the name of the module scope enclosing the call to its caller (if levelsis supplied, it is interpreted as an
integer number of additional levels of call stack to traverse to locate the module). If the scope belongsto the global module, or if no
such module exists, returns the empty list. For example, the following prints"{ Y} {X}":

136

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

nodul e X {
rule get-caller { return [CALLER MODULE] ; }
rule get-caller's-caller { return [CALLER MODULE 1] ; }
rule call-Y { return Y.call-X2 ; }

}
nodul e Y {

rule call-X { return X get-caller ; }

rule call-X2 { return X get-caller's-caller ; }
}

callers = [X get-caller] [Y.call-X] [Xcall-Y]
ECHO {$(call ers)}

The peLere_mooue Rule
rul e DELETE_MODULE (nodule ?)

DELETE_MODULE removesall of the variable bindings and otherwise-unreferenced rules from the given module (or the global module,
if no module is supplied), and returns their memory to the system.

S Note
Though it won't affect rulesthat are currently executing until they complete, DELETE_MODULE should be used with
extreme care because it will wipe out any others and al variable (including locals in that module) immediately.
Because of the way dynamic binding works, variables which are shadowed by locals will not be destroyed, so the
results can be really unpredictable.

137

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

Miscellaneous

Diagnostics

In addition to generic error messages, b2 may emit one of the following:
war ni ng: unknown rule X

A rule was invoked that has not been defined with an "act i ons" or "r ul e" statement.
using N tenp target(s)

Targets marked as being temporary (but nonethel ess present) have been found.
updating N target(s)

Targets are out-of-date and will be updated.
can't find N target(s)

Source files can't be found and there are no actions to create them.
can't nake N target(s)

Due to sources not being found, other targets cannot be made.
war ni ng: X depends on itself

A target depends on itself either directly or through its sources.
don't know how to make X

A target is not present and no actions have been defined to create it.
X skipped for lack of Y

A source failed to build, and thus atarget cannot be built.
war ni ng: using i ndependent target X

A target that is not a dependency of any other target is being referenced with $(<) or $(>) .
X renoved

B2 removed a partially built target after being interrupted.

Bugs, Limitations

For parallel building to be successful, the dependencies among files must be properly spelled out, as targets tend to get built in a
quickest-first ordering. Also, beware of un-parallelizable commands that drop fixed-named files into the current directory, like
yacc(1) does.

138

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

A poorly set $(JAMBHELL) islikely to result in silent failure.

Fundamentals

This section is derived from the official Jam documentation and from experience using it and reading the Jambase rules. We repeat
the information here mostly because it is essential to understanding and using Jam, but is not consolidated in a single place. Some
of itismissing from the official documentation altogether. We hope it will be useful to anyone wishing to become familiar with Jam
and the Boost build system.

Jam "r ul es" are actually simple procedural entities. Think of them as functions. Arguments are separated by colons.

A Jam target is an abstract entity identified by an arbitrary string. The build-in DEPENDS rule creates a link in the dependency
graph between the named targets.

Notethat the original Jam documentation for the built-in1 NCLUDES ruleisincorrect: | NCLUDES t ar get s1 : tar get s2 causes
everything that depends on a member of targetsl to depend on all members of targets2. It does thisin an odd way, by tacking
targets2 onto aspecial tail sectioninthe dependency list of everythingin targetsl. It seemsto be OK to create circular dependencies
thisway; in fact, it appears to be the "right thing to do" when a single build action produces both targetsl and targets2.

When aruleisinvoked, if thereareact i ons declared with the same name asthe rule, the actions are added to the updating actions
for the target identified by the rule's first argument. It is actually possible to invoke an undeclared rule if corresponding actions
are declared: theruleistreated as empty.

Targets (other than NOTFI LE targets) are associated with paths in the file system through a process called binding. Binding is a
process of searching for afile with the same name as the target (sans grist), based on the settings of the target-specific SEARCH
and LOCATE variables.

In addition to local and global variables, jam allows you to set a variable on atarget. Target-specific variable values can usually
not be read, and take effect only in the following contexts:

« In updating actions, variable values are first looked up on the target named by the first argument (the target being updated).
Because Jam builds its entire dependency tree before executing actions, Jam rules make target-specific variable settings as a
way of supplying parametersto the corresponding actions.

¢ Binding is controlled entirely by the target-specific setting of the SEARCH and LOCATE variables, as described here.

« Inthe specia rule used for header file scanning, variable values arefirst looked up on thetarget named by the rule'sfirst argument
(the source file being scanned).

The"bound value" of avariableisthe path associated with the target named by the variable. In build actions, thefirst two arguments
are automatically replaced with their bound values. Target-specific variables can be selectively replaced by their bound values
using the bi nd action modifier.

Note that the term "binding” as used in the Jam documentation indicates a phase of processing that includes three sub-phases:
binding (yes!), update determination, and header file scanning. The repetition of the term "binding” can lead to some confusion.
In particular, the M odifying Binding section in the Jam documentation should probably betitled "M odifying Update Determination”.

"Grist" isjust astring prefix of the form <characters>. It is used in Jam to create unique target names based on simpler names.
For example, the file name "t est . exe" may be used by targets in separate subprojects, or for the debug and release variants of
the "same" abstract target. Each distinct target bound to afile called "test.exe" has its own unique grist prefix. The Boost build
system also takes full advantage of Jam's ability to divide strings on grist boundaries, sometimes concatenating multiple gristed
elements at the beginning of astring. Grist is used instead of identifying targets with absolute paths for two reasons:

1. The location of targets cannot always be derived solely from what the user puts in a Jamfile, but sometimes depends also on
the binding process. Some mechanism to distinctly identify targets with the same name s still needed.

2. Grist allows usto use auniform abstract identifier for each built target, regardless of target file location (as allowed by setting
ALL_LOCATE_TARGET).

139

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

» When grist is extracted from a name with $(var:G), the result includes the leading and trailing angle brackets. When grist is added
to a name with $(var:G=expr), existing grist is first stripped. Then, if expr is non-empty, leading <s and trailing >s are added if
necessary to form an expression of the form <expr2>; <expr2> is then prepended.

» When Jam is invoked it imports all environment variable settings into corresponding Jam variables, followed by all command-
line (-s...) variable settings. Variables whose name ends in PATH, Path, or path are split into string lists on OS-specific path-list
separator boundaries (e.g. ":" for UNIX and ;" for Windows). All other variables are split on space (" ") boundaries. Boost Jam
modifies that behavior by allowing variables to be quoted.

» A variablewhosevalueisan empty list or which consists entirely of empty strings has a negative logical value. Thus, for example,
code like the following allows a sensible non-empty default which can easily be overridden by the user:

MESSACE ?\ = starting jam.. ;
if $(MESSAGE) { ECHO The nessage is: $(MESSAGE) ; }

If the user wants a specific message, he invokes jam with " - sSMESSAGE=nessage t ext". If he wants no message, he invokes
jam with - sMESSAGE= and nothing at all is printed.

» The parsing of command line optionsin Jam can be rather unintuitive, with regards to how other Unix programs accept options.
There are two variants accepted as valid for an option:

1. - xval ue, and

2. -x val ue.

140

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

History

3.1.18 After years of bjam developments.. This is going to be the last unbundlied release of the 3.1.x series. From this point
forward bjam will only be bundled as part of the larger Boost Build system. And hence will likely change name at some
point. As aside effect of this move people will get more frequent release of bjam (or whatever it ends up being called).

New built-ins, MD5, SPLIT_BY_CHARACTERS, PRECIOUS, PAD, FILE_OPEN, and UPDATE_NOW. -- Vladimir
P.

Ensure all file descriptors are closed when executing actions complete on *nix. -- Noel B.

Fix warnings, patch from Mateusz Loskot. -- Vladimir P.

Add KEEP_GOING var to programatically override the-q' option. -- Vladimir P.

Add more parameters, up to 19 from 9, to rule invocations. Patch from Jonathan Biggar. -- Vladimir P.
Print failed command output even if the normally quite '-d0' option. -- Vladimir P.

Build of bjam with vc10, akaVisual Studio 2010. -- Vladimir P.

More macros for detection of OSPLAT, patch from John W. Bito. -- Vladimir P.

Add PARALLELISM var to programatically override the '-j' option. -- Viadimir P.

Tweak doc building to allow for PDF generation of docs. -- John M.

3.1.17 A year in the making this release has many stability improvements and various performance improvements. And because
of the efforts of Jurko the code is considerably more readabl el

Reflect the results of calling bjam from Python. -- Rene R.

For building on Windows: Rework how arguments are parsed and tested to fix handling of quoted arguments, options
arguments, and arguments with "=". -- Rene R.

Try to work around at least one compiler bug with GCC and variable aliasing that causes crashes with hashing file
cache entries. -- Rene R.

Add-Wc,-fno-strict-aliasing for QCC/QNX to avoid the samealiasing crashesasin the general GCC 4.x series (thanks
to Niklas Angare for thefix). -- Rene R.

On Windows | et the child bjam commands inherit stdin, as some commands assume it's available. -- Rene R.
On Windows don't limit bjam output to ASCII as some tools output charactersin extended character sets. -- Rene R.

Isolate running of bjam tests to individual bjam instances to prevent possible spillover errors from one test affecting
another test. Separate the bjam used to run the tests vs. the bjam being tested. And add automatic re-building of the
bjam being tested. -- Rene R.

Fix some possible overrun issues revealed by Fortify build. Thanks to Steven Robbins for pointing out the issues. --
ReneR.

Handle \n and \r escape sequences. -- Vladimir P.
Minor edits to remove -Wall warnings. -- Rene R.

Dynamically adjust pwd buffer query sizeto allow for when PATH_MAX is default defined instead of being provided
by the system C library. -- ReneR.

render

141

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Jam Documentation

Minor perf improvement for bjam by replacing hash function with faster version. Only 1% diff for Boost tree. -- Rene
R

Updated Boost Jam's error |ocation reporting when parsing Jamfiles. Now it reports the correct error location inform-
ation when encountering an unexpected EOF. It now al so reportswhere an invalid lexical token being read started instead
of finished which makes it much easier to find errors like unclosed quotes or curly braces. -- Jurko G.

Removed the -xarch=generic architecture from build.jam as this option is unknown so the Sun compilers on Linux. -
- Noel B.

Fixed a bug with T_FATE _ISTMP getting reported as T_FATE ISTMP & T_FATE NEEDTMP at the same time
due to amissing break in a switch statement. -- Jurko G.

Fixed a Boost Jam bug causing it to sometimes trigger actions depending on targets that have not been built yet. --
Jurko G.

Added missing documentation for Boost Jam's : T variable expansion modifier which converts all back-slashes ('\') to
forward dlashed (/). -- Jurko G.

Added Boost Jam support for executing command lines longer than 2047 characters (up to 8191) characters when
running on Windows XP or later OS version. -- Jurko G.

Fixed aBoost Jam bug on Windows causing its SHEL L command not to work correctly with some commands containing
quotes. -- Jurko G.

Corrected a potential memory leak in Boost Jam's builtin_shell() function that would appear should Boost Jam ever
start to release its allocated string objects. -- Jurko G.

Made all Boost Jam's ECHO commands automatically flush the standard output to make that output more promptly
displayed to the user. -- Jurko G.

Made Boost Jam tests quote their bjam executable name when calling it allowing those executables to contain spaces
in their name and/or path. -- Jurko G.

Change execunix.c to always use fork() instead of vfork() on the Mac. Thisworks around known issues with bjam on
PPC under Tiger and a problem reported by Rene with bjam on x86 under Leopard. -- Noel B.

Corrected abug in Boost Jam's base Jambase script causing it to trim the error message displayed when its boost-build
rule gets called multiple times. -- Jurko G.

When importing from Python into an module with empty string as name, import into root module. -- Viadimir P.

Patch for the NORMALIZE_PATH builtin Boost Jam rule as well as an appropriate update for the path.jam Boost
Build module where that rule was being used to implement path join and related operations. -- Jurko G.

Fixed a bug causing Boost Jam not to handle target file names specified as both short and long file names correctly. -
- Jurko G.

Relaxed test, ignoring case of drive letter. -- Roland S

Implemented a patch contributed by Igor Nazarenko reimplementing thelist_sort() function to use a C gsort() function
instead of a hand-crafted merge-sort algorithm. Makes some list sortings (e.g. 1,2,1,2,1,2,1,2, ...) extremely faster, in
turn significantly speeding up some project builds. -- Jurko G.

Fixed abug with bjam not handling the " root Windows path correctly without its drive letter being specified. -- Jurko
G.

Solved the problem with child process returning the value 259 (Windows constant STILL_ACTIVE) causing bjam
never to detect that it exited and therefore keep running in an endless loop. -- Jurko G.

142

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

» Solved the problem with bjam going into an active wait state, hogging up processor resources, when waiting for one
of its child processes to terminate while not all of its available child process slots are being used. -- Jurko G.

« Solved a race condition between bjam's output reading/child process termination detection and the child process's
output generation/termination which could have caused bjam not to collect the terminated process's final output. --
Jurko G.

« Change from vfork to fork for executing actions on Darwin to improve stability. -- Noel B.
» Code reformatting and cleanups. -- Jurko G.
e Implement ISFILE built-in. -- Viadimir P.
3.1.16 Thisis mostly abug fix release.
» Work around some Windows CMD.EXE programs that will fail executing atotally empty batch file. -- Rene R.
e Add support for detection and building with vc9. -- John P.
« Plug memory leak when closing out actions. Thanks to Martin Kortmann for finding this. -- Rene R.
e Variousimprovementsto _ TIM NG RULE__ and __ ACTI ON_RULE__ target variable hooks. -- Rene R.
¢ Change JAMDATE to use common | SO date format. -- Rene R.
¢ Add test for result status values of simple actions, i.e. empty actions. -- Rene R.
 Fix buffer overrun bug in expanding @) subexpressions. -- Rene R.

e Check empty string invariants, instead of assuming all strings are allocated. And reset strings when they are freed. --
ReneR.

¢ Add OSPLAT=PARI SCfor HP-UX PA-RISC. -- Boris G.

» Makequietly actionsreally quiet by not printing the command output. The output for the quietly actionsis till available
through __ ACTI ON_RULE__.-- ReneR.

» Switch intel-win32 to use static multi thread runtime since the single thread static runtime is no longer available. --
Rene R.

¢ When setting OSPLAT, check __i a64 macro. -- Boris G.

» Get the unix timing working correctly. -- Noel B.

e Add-fno-strict-aliasingtocompilation with gcc. Which works around GCC-4.2 crash problems. -- Boris G.
* Increased support for Python integration. -- Vladimir P., Daniel W.

 Allow specifying optionswith quotes, i.e. - - wi t h- pyt hon=xyz, to work around the CM D shell using = asan argument
separator. -- Rene R.

* Add values of variables specified with -s to .EVNRION module, so that we can override environment on command
line. -- Viadimir P.

« Make NORMALIZE_PATH convert\to/. -- Vladimir P.

3.1.15 Thisrelease sees avariety of fixesfor long standing Perforce/Jam problems. Most of them relating to running actionsin
parallel with the-jN option. The end result of the changesisthat running parallel actionsisnow reliably possiblein Unix
and Windows environments. Many thanks to Noel for joining the effort, to implement and fix the Unix side of stuff.

e Add support for building bjam with pgi and pathscal e tool sets. -- Noel B.

143

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Jam Documentation

« Implement running action commands through pipes (-p option) to fix jumbled output when using parallel execution
with -j option. Thisisimplemented for Unix variants, and Windows (Win32/NT). -- Rene R., Noel B.

e Add"sun" as aliasto Sun Workshop compiler tools. -- Rene R.

e Set MAXLINE in jam.h to 23k bytes for AlX. The piecemeal archive action was broken with the default MAXLINE
of 102400. Because the Al X shell uses some of the 24k default buffer size for its own use, | reduced it to 23k. -- Noel
B.

» Make use of output dir options of msvc to not polute src dir with compiled files. -- Rene R.

e A small fix, so-d+2 will always show the"real" commands being executed instead of casually the name of atemporary
batch file. -- Roland S.

¢ Add test to check 'bjam -n'. -- Rene R.
» Add test to check 'bjam -d2'. -- Rene R.

* Bring back missing output of -n option. The -0 option continuesto be broken asit has been for along time now because
of the @ file feature. -- Rene R.

» Update GC support to work with Boehm GC 7.0. -- Rene R.

» Revert theBOOST BUILD_PATH change, since the directory passed to boost-build should befirst in searched paths,
else project local build system will not be picked correctly. The order had been changed to allow searching of alternate
user-config.jam files from boost build. This better should be done with --user-config= switch or similar. -- Roland S.

« Initial support for defining action body from Python. -- Viadimir P.

+ Implement @() expansion during parse phase. -- Rene R.

» Define OSPLAT var unconditionally, and more generically, when possible. -- Rene R.
¢ Fix undeclared INT_MAX on some platforms, i.e. Linux. -- Rene R.

« Modified execunix.c to add support for terminating processes that consume too much cpu or that hang and fail to
consume cpu at all. Thisin support of the bjam -Ix option. -- Noel B.

« Add internal dependencies for multi-file generating actions to indicate that the targets all only appear when the first
target appears. This fixes the long standing problem Perforce/Jam has with multi-file actions and parallel execution (-
iN). -- ReneR.

e Add test of -l limit option now that it'simplemented on windows and unix. -- Rene R.

* Add test for no-op @() expansion. -- Rene R.

» Handleinvalid formats of @() as doing a straight substitution instead of erroring out. -- Rene R.
« Various fixes to compile on SGI/Irix. -- Noel B.

« Add output for when actions timeout with -IN option. -- Rene R., Noel B.

* Add needed include (according to XOPEN) for definition of WIFEXITED and WEXITSTATUS. -- Markus S.

144

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Index
Symbols

64-bit compilation,
gcc, 56
Microsoft Visual Studio, 57
Sun Studio, 61

A
abstract-target, 73
add
Property Set Method, 77
add-raw
Property Set Method, 77
all-bases, 72
all-derived, 72
all-parents, 69
always building a metatarget,

B
base, 72
basename, 68
basic-target, 75
binding, 66
boostbook
module, 64
rule,
build-dir
Project Target Method, 74

C
cal-in, 67
catalog,
change-generated-target-prefix, 72
change-generated-target-suffix, 72
check-target-builds,
clone-rules, 67
common signature, 25
construct
Basic Target Method, 75
Typed Target Method, 76
cross compilation, 45

escape
regex, 70

exe, 34

exists, 69

F

fat binaries, 56
features
builtin, 51
filter
sequence, 70
find
Project Target Method, 74
fo,
fop, 65
format,
full-name
Abstract Target, 73

G

generate
Abstract Target, 73
Basic Target Method, 75
Main Target Method, 75
Project Target, 74
generated-target-prefix, 72
generated-target-suffix, 72
generators, 86
get
Property Set Method, 77
get-scanner, 71
glob, 68
glob-in-parents, 69
glob-tree, 69

H

hardcode-dll-paths,
has-main-target

Project Target Method, 74
has-parent, 68
html,
htmlhelp,

I
implicit-dependency,

D . import, 67
define, include,
dependency, insertion-sort
dil-path, sequence, 71
docbook, install-source-root, 38
doxygen, 64 instruction-set,

rule, is-derived, 72
doxygen:param, is-rooted, 68
doxygen:xml-imagedir,

J
E join, 68
embed-manifest, 54
145

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Index

sequence, 71

L

length
sequence, 71
library,
target, 35
link,
load, 67
location
Abstract Target, 73

M
main target (See metataget)
declaration syntax, 25
main-target, 74
Project Target Method, 74
make
path, 68
man,
manifest file
embedding, 54
match
regex, 70
max-element
sequence, 71
merge
sequence, 71
metatarget
definition, 15
mkdirs, 69
modules, 66

N

name
Abstract Target, 73
native, 68

O

onehtml,

P

parent, 68
path
for targets, 79
module, 68
paf,
peek, 66
poke, 66
prefix,
preprocessed,
preserve-test-targets, 40
programs-path, 69
project
Abstract Target, 73
project-target, 74

propagated
Property Set Method, 77
property
definition, 15
propagation, 15
property-set, 76
ps,
pwd, 68

Q

quickbook, 65

R

raw
Property Set Method, 77
refine
Property Set Method, 77
reftitle,
regex
module, 69
register
type, 71
register-suffixes, 71
registered, 71
relative, 69
relative-to, 69
replace
regex, 70
replace-list
regex, 70
requirements, 26
conditional, 26
indirect, 27
reverse, 68
sequence, 71
root, 68
rule, 16
runtime linking,

S

select-highest-ranked
sequence, 71
sequence
module, 70
set-generated-target-prefix, 72
set-generated-target-suffix, 72
set-scanner, 71
source,
split
regex, 70
split-list
regex, 70
STLport, 62
str
Property Set Method, 77

146

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Index

T
test-info,
testing.arg,
testing.input-file,
testing.launcher,
tests,
threading,
transform

regex, 70

sequence, 70
type

module, 71

rule, 72

Typed Target Method, 76
typed-target, 76

U

unique
sequence, 71
use,

V
validate, 71
variant,

X

xhtml,
xsl:param,
xdl:path,
xdlt,
xslt-dir,
xdltproc, 63

Z
zlib, 62

147

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Build V2 User Manual
	Table of Contents
	How to use this document
	Installation
	Tutorial
	Hello, world
	Properties
	Build Requests and Target Requirements
	Project Attributes

	Project Hierarchies
	Dependent Targets
	Static and shared libaries
	Conditions and alternatives
	Prebuilt targets

	Overview
	Concepts
	Boost.Jam Language
	Configuration
	Invocation
	Examples
	Options
	Properties
	Targets

	Declaring Targets
	Name
	Sources
	Requirements
	Default Build
	Additional Information

	Projects
	The Build Process
	Build Request
	Building a main target
	Building a Project

	Common tasks
	Programs
	Libraries
	Alias
	Installing
	Testing
	Custom commands
	Precompiled Headers
	Generated headers
	Cross-compilation

	Reference
	General information
	Initialization

	Builtin rules
	Builtin features
	Builtin tools
	C++ Compilers
	GNU C++
	Apple Darwin gcc
	Microsoft Visual C++
	64-bit support

	Intel C++
	HP aC++ compiler
	Borland C++ Compiler
	Comeau C/C++ Compiler
	Code Warrior
	Digital Mars C/C++ Compiler
	HP C++ Compiler for Tru64 Unix
	Sun Studio
	IBM Visual Age

	Third-party libraries
	STLport library
	zlib

	Documentation tools
	xsltproc
	boostbook
	doxygen
	quickbook
	fop

	Builtin modules
	modules
	path
	regex
	sequence
	type

	Builtin classes
	Class abstract-target
	Class project-target
	Class main-target
	Class basic-target
	Class typed-target
	Class property-set

	Build process
	Alternative selection
	Determining common properties
	Target Paths

	Definitions
	Features and properties
	Property Validity
	Feature Attributes
	Feature Declaration

	Property refinement
	Conditional properties
	Target identifiers and references

	Extender Manual
	Introduction
	Metatargets
	Concrete targets
	Generators

	Example: 1-to-1 generator
	Target types
	Scanners

	Tools and generators
	Features
	Main target rules
	Toolset modules

	Frequently Asked Questions
	How do I get the current value of feature in Jamfile?
	I am getting a "Duplicate name of actual target" error. What does that mean?
	Accessing environment variables
	How to control properties order?
	How to control the library linking order on Unix?
	Can I get capture external program output using a Boost.Jam variable?
	How to get the project root (a.k.a. Jamroot) location?
	How to change compilation flags for one file?
	Why are the dll-path and hardcode-dll-paths properties useful?
	Targets in site-config.jam
	Header-only libraries
	What is the difference between Boost.Build, b2, bjam and Perforce Jam?

	Appendix A. Boost.Jam Documentation
	Building B2
	Language
	Lexical Features
	Targets
	Binding Detection

	Rules
	Action Modifiers
	Argument lists
	Built-in Rules
	Dependency Building
	DEPENDS
	INCLUDES

	Modifying Binding
	ALWAYS
	LEAVES
	NOCARE
	NOTFILE
	NOUPDATE
	TEMPORARY
	FAIL_EXPECTED
	RMOLD
	ISFILE

	Utility
	ECHO
	EXIT
	GLOB
	MATCH
	BACKTRACE
	UPDATE
	W32_GETREG
	W32_GETREGNAMES
	SHELL
	MD5
	SPLIT_BY_CHARACTERS
	PRECIOUS
	PAD
	FILE_OPEN
	UPDATE_NOW

	Flow-of-Control
	Variables
	Variable Expansion
	Local For Loop Variables
	Generated File Expansion
	Built-in Variables
	SEARCH and LOCATE
	HDRSCAN and HDRRULE
	Semaphores
	Platform Identifier
	Jam Version
	JAMSHELL
	__TIMING_RULE__ and __ACTION_RULE__

	Modules
	Declaration
	Variable Scope
	Local Rules
	The RULENAMES Rule
	The VARNAMES Rule
	The IMPORT Rule
	The EXPORT Rule
	The CALLER_MODULE Rule
	The DELETE_MODULE Rule

	Miscellaneous
	Diagnostics
	Bugs, Limitations
	Fundamentals

	History

	Index

