Concept reference

Copyright © 2001, 2002 Indiana University

Copyright © 2000, 2001 University of Notre Dame du Lac
Copyright © 2000 Jeremy Siek, Lie-Quan Lee, Andrew Lumsdaine
Copyright © 1996-1999 Silicon Graphics Computer Systems, Inc.
Copyright © 1994 Hewlett-Packard Company

Distributed under the Boost Software License, Version 1.0. (See accompanying file LI CENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1 0.txt)

This product includes software devel oped at the University of Notre Dame and the Pervasive Technology Labs at IndianaUniversity.
For technical information contact Andrew Lumsdaine at the Pervasive Technology Labs at Indiana University. For administrative
and license questions contact the Advanced Research and Technology Institute at 351 West 10th Street. Indianapolis, Indiana 46202,
phone 317-278-4100, fax 317-274-5902.

Some concepts based on versions from the MTL draft manual and Boost Graph and Property Map documentation, the SGI Standard
Template Library documentation and the Hewlett-Packard STL, under the following license:

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation. Silicon Graphics makes no representations
about the suitability of this software for any purpose. It is provided "asis" without express or implied warranty.

Concepts

» Assignable

* |nputlterator

» Outputlterator

» Forwardlterator

* Bidirectionallterator
» RandomA ccesslterator
» DefaultConstructible
» CopyConstructible

» EqualityComparable

» LessThanComparable

SignedIinteger

Concept Assignable

Assignable

Description

Assignable types must have copy constructors, oper at or = for assignment, and the swap() function defined.

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Refinement of

» CopyConstructible

Notation

X A type playing the role of assignable-type in the Assignable concept.

x,y Objectsof type X

Valid expressions

Name Expression Type
Assignment X=y X &
Swap swap(x, y) void

Models

o int

See also

» CopyConstructible

Concept Inputlterator

Inputlterator

Description

Semantics
Require oper at or =

Require swap() function

Aninput iterator is an iterator that can read through a sequence of values. It is single-pass (old values of the iterator cannot be re-

used), and read-only.

An input iterator represents a position in a sequence. Therefore, the iterator can point into the sequence (returning a value when
dereferenced and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of
» Assignable
o DefaultConstructible

» EqualityComparable

Associated types

» value type
std::iterator_traits<lter>::value_type

The value type of the iterator (not necessarily what *i returns)

« difference _type

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

std::iterator_traits<lter>::difference_type

The difference type of the iterator

* category
std::iterator_traits<lter>::iterator_category

The category of theiterator

Notation
Iter A type playing the role of iterator-type in the Inputlterator concept.
i,j Objects of type Iter

X Object of type value type
Type expressions

Category tag
amodel of CopyConstructible.

Value type copy constructibility

Difference type properties

Valid expressions

Name Expression Type Precondition
Dereference *j Convertible to i isincrementable
value_type (not off-the-end)
Preincrement ++i Iter & i isincrementable
(not off-the-end)
Postincrement i++ i isincrementable
(not off-the-end)
Postincrement and *i++ Convertible to i isincrementable

dereference

Complexity

value type

All iterator operations must take amortized constant time.

Models

 std::istream iterator

See also

o DefaultConstructible

(not off-the-end)

value type must be amodel of CopyConstructible.

difference_type must be amodel of Signedinteger.

Semantics

Equivalent to
(voi d) (++i)

Equivalent to
{value_type t
++i; re-
turn t;}

= *i;

category must be derived from std::input_iterator_tag, a model of DefaultConstructible, and

Postcondition

i is dereference-
able or off-the-end

i is dereference-
able or off-the-end

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

» EqualityComparable
» Forwardlterator

» Outputlterator

Concept Outputlterator

Outputlterator

Description

An output iterator is an iterator that can write a sequence of values. It is single-pass (old values of the iterator cannot be re-used),
and write-only.

An output iterator represents aposition in a(possibly infinite) sequence. Therefore, theiterator can point into the sequence (returning
avalue when dereferenced and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Associated types
 value type
std::iterator_traits<lter>::value_type
The stated value type of the iterator (should be voi d for an output iterator that does not model some other iterator concept).
« difference type

std::iterator_traits<liter>: :difference_type

The difference type of the iterator

* category
std::iterator_traits<lter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the Outputlterator concept.
ValueType A type playing the role of value-type in the Outputlterator concept.
i,j Objects of type Iter

X Object of type ValueType

Type expressions
The type Iter must be amodel of Assignable.
The type VaueType must be amodel of Assignable.
The type Iter must be amodel of DefaultConstructible.

The type Iter must be amodel of EqualityComparable.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Category tag category must be derived from std::output_iterator_tag, amodel of DefaultConstructible, and
amodel of CopyConstructible.

Difference type properties difference_type must be amodel of Signedinteger.

Valid expressions

Name Expression Type Precondition Semantics Postcondition

Dereference *j i isincrementable
(not off-the-end)

Dereference and *i=x i isincrementable *i may not be
assign (not off-the-end) written to again un-
til it hasbeenincre-
mented.
Preincrement ++i Iter & i isincrementable

(not off-the-end)

Postincrement i++ i isincrementable Equivaent to i is dereference-
(not off-the-end) (voi d) (++i) able or off-the-end
Postincrement, *i++=x i isincrementable Equivaent to {*i i is dereference-
dereference, and (not off-the-end) =t; ++;} able or off-the-end
assign
Complexity

All iterator operations must take amortized constant time.

Models

* std::ostream_iterator, ...

e std::insert_iterator, ...
 std::front_insert_iterator, ...

» std::back _insert_iterator, ...

Concept Forwardlterator

Forwardlterator

Description

A forward iterator isan iterator that can read through a sequence of values. It is multi-pass (old values of the iterator can be re-used),
and can be either mutable (data pointed to by it can be changed) or not mutable.

Aniterator represents a position in asequence. Therefore, theiterator can point into the sequence (returning avalue when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

* |nputlterator

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

¢ OQutputlterator

Associated types

» value type

std::iterator_traits<lter>::value_type

The value type of the iterator

* category

std::iterator_traits<lter>::iterator_category

The category of the iterator

Notation

Iter A type playing the role of iterator-type in the Forwardlterator concept.

i, Objects of type Iter

X Object of type value type

Type expressions

Category tag

Valid expressions

Name

Dereference

Member access

Expression

*

i->{ member-name}
(return type is
pointer-to-object
type)

Type

const-if-not-mut-
ablevalue type &

const-if-not-mut-
ablevalue type*

Iter &

Iter

Preincrement ++i
Postincrement i++
Complexity
All iterator operations must take amortized constant time.
Invariants
Predecrement must return object &i

= &(++)

category must be derived from std::forward_iterator_tag.

Precondition

i isincrementable
(not off-the-end)

i isincrementable
(not off-the-end)

i isincrementable
(not off-the-end)

i isincrementable
(not off-the-end)

Semantics

Equivalent to
{Iter j = i;
++i return

i}

Postcondition

i is dereference-
able or off-the-end

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Unique path through sequence i == implies++i == ++j
Models

« T*

 std::hash_set<T>::iterator

See also

» Bidirectionallterator

Concept Bidirectionallterator
Bidirectional lterator

Description

A bidirectional iterator isan iterator that can read through a sequence of values. It can movein either direction through the sequence,
and can be either mutable (data pointed to by it can be changed) or not mutable.

Aniterator represents a position in asequence. Therefore, theiterator can point into the sequence (returning aval ue when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of

 Forwardlterator
Associated types
 value type
std::iterator_traits<lter>::value_type
The value type of the iterator
 category
std::iterator_traits<lter>::iterator_category
The category of the iterator

Notation

Iter A type playing the role of iterator-type in the Bidirectional I terator concept.
i,j Objects of type Iter

X Object of type value type

Type expressions

Category tag category must be derived from std::bidirectional_iterator_tag.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Valid expressions

Name Expression Type Precondition Semantics Postcondition

Predecrement i Iter & i isincrementable
(not off-the-end)
and some derefer-
enceable iterator |

exists such that i
== 44
Postdecrement i-- Iter Same as for pre- Equivaent to i is dereference-
decrement {Iter j =1i; - ableor off-the-end
-i; return j;}

Complexity

All iterator operations must take amortized constant time.

Invariants

Predecrement must return object & = &(--i)

Unique path through sequence i ==j implies--i == --j

Increment and decrement are in- ++i; --i; and--i; ++i; must end up with the value of i unmodified, if i both of the

verses operations in the pair are valid.

Models

o T*

e std::list<T>::iterator
See also

» RandomA ccesslterator

Concept RandomAccesslterator

RandomA ccesslterator

Description

A random accessiterator isan iterator that can read through a sequence of values. It can movein either direction through the sequence
(by any amount in constant time), and can be either mutable (data pointed to by it can be changed) or not mutable.

Aniterator represents aposition in asequence. Therefore, theiterator can point into the sequence (returning aval ue when dereferenced
and being incrementable), or be off-the-end (and not dereferenceable or incrementable).

Refinement of
» Bidirectionallterator

» LessThanComparable

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Associated types

 value type
std::iterator_traits<lter>::value_type

The value type of the iterator

» category
std::iterator_traits<lter>::iterator_category
The category of the iterator
« difference type

std::iterator_traits<lter>::difference_type

The difference type of the iterator (measure of the number of steps between two iterators)

Notation

Iter A type playing the role of iterator-type in the RandomA ccesslterator concept.
i,j Objects of type Iter

X Object of type value _type

n Object of type difference_type

int_off Object of typeint

Type expressions

Category tag category must be derived from std::random_access iterator_tag.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Concept reference

Valid expressions

Name Expression Type Semantics
Motion i+=n Iter & Equivalent to applying i ++ n
timesif n is positive, applying
i -- -ntimesif nisnegative,
and to a null operation if n is
zero.
Motion (with integer offset) i +=int_off Iter & Equivalent to applying i ++ n
timesif n ispositive, applying
i -- -ntimesif n is negative,
and to a null operation if n is
zero.
Subtractive motion i-=n Iter & Equivaenttoi +=(-n)
Subtractive motion (with in- i -=int_off Iter & Equivaenttoi +=(-n)
teger offset)
Addition i+n Iter Equivaentto{lter j =i;
j +=n; return j;}
Addition with integer i +int_off Iter Equivaentto{lter j =i;
j t=n; return j;}
Addition (count first) n+i Iter Equivaenttoi + n
Addition with integer (count int_off +i Iter Equivaenttoi + n
first)
Subtraction i-n Iter Equivaenttoi + (-n)
Subtraction with integer i -int_off Iter Equivalenttoi + (-n)
Distance i-] difference_type The number of timesi must
be incremented (or decremen-
ted if the result is negative) to
reachj . Not definedif j isnot
reachable fromi .
Element access i[n] const-if-not-mutable Equivaentto*(i + n)
value type &
Element access with integer i[int_off] const-if-not-mutable Equivaentto*(i + n)
index value type &
Complexity
All iterator operations must take amortized constant time.
Models
« T*
o std::vector<T>::iterator
10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

* std::vector<T>::const_iterator
* std::deque<T>::iterator

* std::deque<T>::const_iterator
See also

» LessThanComparable

Concept DefaultConstructible

DefaultConstructible

Description

DefaultConstructible objects only need to have a default constructor.

Notation

X A type playing the role of default-constructible-type in the DefaultConstructible concept.

Valid expressions

Name Expression Type Semantics
Construction X() X Construct an instance of the
type with default parameters.
Models
e int

 std::vector<double>

Concept CopyConstructible

CopyConstructible

Description

Copy constructible types must be able to be constructed from another member of the type.
Notation

X A type playing the role of copy-constructible-type in the CopyConstructible concept.

X,y Objectsof type X

Valid expressions

Name Expression Type Semantics

Copy construction X(X) X Require copy constructor.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Models

e int

Concept EqualityComparable

EqualityComparable

Description

Equality Comparable types must have == and ! = operators.

Notation

X A type playing the role of comparable-type in the EqualityComparable concept.

X,y Objectsof type X

Valid expressions

Name Expression Type

Equality test X == Convertible to bool

Inequality test xl=y Convertible to bool
Models

e int

e std::vector<int>

Concept LessThanComparable
LessThanComparable
Description

LessThanComparable types must have <, >, <=, and >= operators.

Notation
X A type playing the role of comparable-type in the LessThanComparable concept.

X,y Objects of type X

12

> http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Valid expressions

Name

Lessthan
Less than or equal
Greater than

Greater than or equal to

Models

e int

Expression

X<y

X<=y

X>y

X>=y

Concept Signedinteger

Signedinteger
Refinement of

» CopyConstructible

» Assignable

DefaultConstructible

EqualityComparable

» LessThanComparable

Notation

Type

Convertible to bool

Convertible to bool

Convertible to bool

Convertible to bool

T A type playing the role of integral-type in the Signedinteger concept.

X,y, Objectsof typeT
z

a,b Objectsof typeint

Type expressions

Conversion to int

T must be convertible to int.

Semantics

Determine if one valueis less
than another.

Determine if one valueisless
than or equal to another.

Determine if one vaue is
greater than another.

Determine if one vaue is
greater than or equal to anoth-
er.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Concept reference

Valid expressions

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Concept reference

Name

Conversion from int
Preincrement

Predecrement

Postincrement

Postdecrement

Sum

Sum with int

Sum-assignment
Sum-assignment with int
Difference

Difference with int

Product

Product with int
Product-assignment with int
Product with int on left

Quotient

Quotient with int

Right-shift

Right-shift with int
Right-shift-assignment with int
Less-than comparison

L ess-than comparison with int

L ess-than comparison with size t
Greater-than comparison
Greater-than comparison with int
L ess-than-or-equal comparison

L ess-than-or-equal comparison with int

Greater-than-or-equal comparison

Expression

T(@

++X

X+a
X+=y

X+=a

X*a
X*=a
a*x

xly

X>>y

X>>a

Xx>>=a

X<y

x<a

X < boost::sample_value < std::size_t >()
X>y

X>a

Type

T&

T&

T&

T&

T
T&

Convertible to bool
Convertible to bool
Convertible to bool
Convertible to bool
Convertible to bool
Convertible to bool
Convertible to bool

Convertible to bool

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Concept reference

Name

Greater-than-or-equal comparison with
int

Greater-than-or-equal comparison with
int on left

Equality comparison

Equality comparison with int

Expression

X>=a

a>=Xx

X ==

X==a

Type

Convertible to bool

Convertible to bool

Convertible to bool

Convertible to bool

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Concept reference
	Table of Contents
	Concepts
	Concept Assignable
	Description
	Refinement of
	Notation
	Valid expressions
	Models
	See also

	Concept InputIterator
	Description
	Refinement of
	Associated types
	Notation
	Type expressions
	Valid expressions
	Complexity
	Models
	See also

	Concept OutputIterator
	Description
	Associated types
	Notation
	Type expressions
	Valid expressions
	Complexity
	Models

	Concept ForwardIterator
	Description
	Refinement of
	Associated types
	Notation
	Type expressions
	Valid expressions
	Complexity
	Invariants
	Models
	See also

	Concept BidirectionalIterator
	Description
	Refinement of
	Associated types
	Notation
	Type expressions
	Valid expressions
	Complexity
	Invariants
	Models
	See also

	Concept RandomAccessIterator
	Description
	Refinement of
	Associated types
	Notation
	Type expressions
	Valid expressions
	Complexity
	Models
	See also

	Concept DefaultConstructible
	Description
	Notation
	Valid expressions
	Models

	Concept CopyConstructible
	Description
	Notation
	Valid expressions
	Models

	Concept EqualityComparable
	Description
	Notation
	Valid expressions
	Models

	Concept LessThanComparable
	Description
	Notation
	Valid expressions
	Models

	Concept SignedInteger
	Refinement of
	Notation
	Type expressions
	Valid expressions

