
Base_From_Member
Daryle Walker

Copyright © 2001, 2003, 2004, 2012 Daryle Walker

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Rationale .. 2
Synopsis ... 4
Usage .. 6
Example ... 7
Acknowledgments .. 9

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rationale
When developing a class, sometimes a base class needs to be initialized with a member of the current class. As a naïve example:

#include <streambuf> /* for std::streambuf */
#include <ostream> /* for std::ostream */

class fdoutbuf
: public std::streambuf

{
public:

explicit fdoutbuf(int fd);
//...

};

class fdostream
: public std::ostream

{
protected:

fdoutbuf buf;
public:

explicit fdostream(int fd)
: buf(fd), std::ostream(&buf) {}

//...
};

This is undefined because C++'s initialization order mandates that the base class is initialized before the member it uses. R. Samuel
Klatchko developed a way around this by using the initialization order in his favor. Base classes are intialized in order of declaration,
so moving the desired member to another base class, that is initialized before the desired base class, can ensure proper initialization.

A custom base class can be made for this idiom:

2

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.moocat.org
http://www.moocat.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <streambuf> /* for std::streambuf */
#include <ostream> /* for std::ostream */

class fdoutbuf
: public std::streambuf

{
public:

explicit fdoutbuf(int fd);
//...

};

struct fdostream_pbase
{

fdoutbuf sbuffer;

explicit fdostream_pbase(int fd)
: sbuffer(fd) {}

};

class fdostream
: private fdostream_pbase
, public std::ostream

{
typedef fdostream_pbase pbase_type;
typedef std::ostream base_type;

public:
explicit fdostream(int fd)
: pbase_type(fd), base_type(&sbuffer) {}

//...
};

Other projects can use similar custom base classes. The technique is basic enough to make a template, with a sample template class
in this library. The main template parameter is the type of the enclosed member. The template class has several (explicit) constructor
member templates, which implicitly type the constructor arguments and pass them to the member. The template class uses implicit
copy construction and assignment, cancelling them if the enclosed member is non-copyable.

Manually coding a base class may be better if the construction and/or copying needs are too complex for the supplied template class,
or if the compiler is not advanced enough to use it.

Since base classes are unnamed, a class cannot have multiple (direct) base classes of the same type. The supplied template class has
an extra template parameter, an integer, that exists solely to provide type differentiation. This parameter has a default value so a
single use of a particular member type does not need to concern itself with the integer.

3

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis
#include <type_traits> /* exposition only */

#ifndef BOOST_BASE_FROM_MEMBER_MAX_ARITY
#define BOOST_BASE_FROM_MEMBER_MAX_ARITY 10
#endif

template < typename MemberType, int UniqueID = 0 >
class boost::base_from_member
{
protected:

MemberType member;

#if C++11 is in use
template< typename ...T >
explicit constexpr base_from_member(T&& ...x)
noexcept(std::is_nothrow_constructible<MemberType, T...>::value);

#else
base_from_member();

template< typename T1 >
explicit base_from_member(T1 x1);

template< typename T1, typename T2 >
base_from_member(T1 x1, T2 x2);

//...

template< typename T1, typename T2, typename T3, typename T4,
typename T5, typename T6, typename T7, typename T8, typename T9,
typename T10 >
base_from_member(T1 x1, T2 x2, T3 x3, T4 x4, T5 x5, T6 x6, T7 x7,
T8 x8, T9 x9, T10 x10);

#endif
};

template < typename MemberType, int UniqueID >
class base_from_member<MemberType&, UniqueID>
{
protected:

MemberType& member;

explicit constexpr base_from_member(MemberType& x)
noexcept;

};

The class template has a first template parameter MemberType representing the type of the based-member. It has a last template
parameter UniqueID, that is an int, to differentiate between multiple base classes that use the same based-member type. The last
template parameter has a default value of zero if it is omitted. The class template has a protected data member called member that
the derived class can use for later base classes (or itself).

If the appropriate features of C++11 are present, there will be a single constructor template. It implements perfect forwarding to the
best constructor call of member (if any). The constructor template is marked both constexpr and explicit. The former will be
ignored if the corresponding inner constructor call (of member) does not have the marker. The latter binds the other way; always
taking effect, even when the inner constructor call does not have the marker. The constructor template propagates the noexcept
status of the inner constructor call. (The constructor template has a trailing parameter with a default value that disables the template
when its signature is too close to the signatures of the automatically-defined non-template copy- and/or move-constructors of
base_from_member.)

4

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

On earlier-standard compilers, there is a default constructor and several constructor member templates. These constructor templates
can take as many arguments (currently up to ten) as possible and pass them to a constructor of the data member.

A specialization for member references offers a single constructor taking a MemberType&, which is the only way to initialize a ref-
erence.

Since C++ does not allow any way to explicitly state the template parameters of a templated constructor, make sure that the arguments
are already close as possible to the actual type used in the data member's desired constructor. Explicit conversions may be necessary.

The BOOST_BASE_FROM_MEMBER_MAX_ARITY macro constant specifies the maximum argument length for the constructor templates.
The constant may be overridden if more (or less) argument configurations are needed. The constant may be read for code that is
expandable like the class template and needs to maintain the same maximum size. (Example code would be a class that uses this
class template as a base class for a member with a flexible set of constructors.) This constant is ignored when C++11 features are
present.

5

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Usage
With the starting example, the fdoutbuf sub-object needs to be encapsulated in a base class that is inheirited before std::ostream.

#include <boost/utility/base_from_member.hpp>

#include <streambuf> // for std::streambuf
#include <ostream> // for std::ostream

class fdoutbuf
: public std::streambuf

{
public:

explicit fdoutbuf(int fd);
//...

};

class fdostream
: private boost::base_from_member<fdoutbuf>
, public std::ostream

{
// Helper typedef's
typedef boost::base_from_member<fdoutbuf> pbase_type;
typedef std::ostream base_type;

public:
explicit fdostream(int fd)
: pbase_type(fd), base_type(&member){}

//...
};

The base-from-member idiom is an implementation detail, so it should not be visible to the clients (or any derived classes) of
fdostream. Due to the initialization order, the fdoutbuf sub-object will get initialized before the std::ostream sub-object does,
making the former sub-object safe to use in the latter sub-object's construction. Since the fdoutbuf sub-object of the final type is
the only sub-object with the name member that name can be used unqualified within the final class.

6

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example
The base-from-member class templates should commonly involve only one base-from-member sub-object, usually for attaching a
stream-buffer to an I/O stream. The next example demonstrates how to use multiple base-from-member sub-objects and the resulting
qualification issues.

#include <boost/utility/base_from_member.hpp>

#include <cstddef> /* for NULL */

struct an_int
{

int y;

an_int(float yf);
};

class switcher
{
public:

switcher();
switcher(double, int *);
//...

};

class flow_regulator
{
public:

flow_regulator(switcher &, switcher &);
//...

};

template < unsigned Size >
class fan
{
public:

explicit fan(switcher);
//...

};

class system
: private boost::base_from_member<an_int>
, private boost::base_from_member<switcher>
, private boost::base_from_member<switcher, 1>
, private boost::base_from_member<switcher, 2>
, protected flow_regulator
, public fan<6>

{
// Helper typedef's
typedef boost::base_from_member<an_int> pbase0_type;
typedef boost::base_from_member<switcher> pbase1_type;
typedef boost::base_from_member<switcher, 1> pbase2_type;
typedef boost::base_from_member<switcher, 2> pbase3_type;

typedef flow_regulator base1_type;
typedef fan<6> base2_type;

public:
system(double x);
//...

};

7

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

system::system(double x)
: pbase0_type(0.2)
, pbase1_type()
, pbase2_type(-16, &this->pbase0_type::member.y)
, pbase3_type(x, static_cast<int *>(NULL))
, base1_type(pbase3_type::member, pbase1_type::member)
, base2_type(pbase2_type::member)

{
//...

}

The final class has multiple sub-objects with the name member, so any use of that name needs qualification by a name of the appro-
priate base type. (Using typedefs ease mentioning the base types.) However, the fix introduces a new problem when a pointer is
needed. Using the address operator with a sub-object qualified with its class's name results in a pointer-to-member (here, having a
type of an_int boost::base_from_member< an_int, 0> :: *) instead of a pointer to the member (having a type of an_int
*). The new problem is fixed by qualifying the sub-object with this-> and is needed just for pointers, and not for references or
values.

There are some argument conversions in the initialization. The constructor argument for pbase0_type is converted from double
to float. The first constructor argument for pbase2_type is converted from int to double. The second constructor argument
for pbase3_type is a special case of necessary conversion; all forms of the null-pointer literal in C++ (except nullptr from
C++11) also look like compile-time integral expressions, so C++ always interprets such code as an integer when it has overloads
that can take either an integer or a pointer. The last conversion is necessary for the compiler to call a constructor form with the exact
pointer type used in switcher's constructor. (If C++11's nullptr is used, it still needs a conversion if multiple pointer types can
be accepted in a constructor call but std::nullptr_t cannot.)

8

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgments
• Ed Brey suggested some interface changes.

• R. Samuel Klatchko (rsk@moocat.org, rsk@brightmail.com) invented the idiom of how to use a class member for initializing a
base class.

• Dietmar Kuehl popularized the base-from-member idiom in his IOStream example classes.

• Jonathan Turkanis supplied an implementation of generating the constructor templates that can be controlled and automated with
macros. The implementation uses the Preprocessor library.

• Walker started the library. Contributed the test file base_from_member_test.cpp.

9

Base_From_Member

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/people/ed_brey.htm
http://www.moocat.org
mailto:rsk%40moocat.org
mailto:rsk%40brightmail.com
http://www.boost.org/people/dietmar_kuehl.htm
http://www.informatik.uni-konstanz.de/~kuehl/c++/iostream/
http://www.boost.org/doc/libs/release/libs/utility/doc/html/../../../preprocessor/index.html
http://www.boost.org/people/daryle_walker.html%22%3eDaryle
http://www.boost.org/doc/libs/release/libs/utility/doc/html/../../base_from_member_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Base_From_Member
	Table of Contents
	Rationale
	Synopsis
	Usage
	Example
	Acknowledgments

