python 2.0

Joel de Guzman

David Abrahams
Copyright © 2002-2005 Joel de Guzman, David Abrahams

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1 0.txt)

Table of Contents

L@ Lot 14 7o PP RPPRPIN 2
=10 o g o T o IMY.Y o g Lo IO TP PPPPTPI 3
EXPOSING ClBSSES ... vtueeteiti ettt ettt e et oo ettt oottt oo et E et E e et e et b e et e et e b e et et e e eba s 5
L0700 1 (1 (o PP PP 5
ClassS DAIA MEMIETS ... et ettt ettt e e e et et e et et e e e e e eaa s 6
O oy (o]0 1= 4 (]SSP UPPPTTRUPPPIN 7
Fg 0TS 1= Lo UP PP RPSPPPTTRUPPIN 7
ClaSS VITTUA FUNCLIONS ...ttt e et e ettt e e ettt e et e b r e et et e e e e e nb e e e e na s 8
Virtual Functions with Default IMpPlemENtatioNSuuiiiii e e 9
Class Operators/SPECIAl FUNCLIONSuu ittt ettt ettt e e et e e et et e e et et e e ettt e e et et s e e e estereeeesbnaeeeestnaaaeens 11
[0o (o0 PSP POPPPPPN 13
100 | o ol = PP TP PPTPTOPPPTRTPPPN 13
@1/ 1 [07=s] oo E TP PP TUPPPTRRPPPPTN 16
DEFBUIT ATGUITIENES ...ttt ettt e e ettt e ettt e et e et 4o et e th e et e e et oo et e be e e e e e bh e e e eebe e e e eebe e eeeebtaeeenns 16
LI (e Tl @Y= g o= o 1 o PO PSPPSRI 18
10 o] o B 1= o = ol PP P TR PPPPPP 20
BaSIC INEEI AR ...ttt 20
DErTVEA ODJECE TYPES ...ttt ettt ettt ettt oottt ettt e e et et e et e et e e e et e ba e et e e hh e e et e e e e e et e e eebaaeaee 21
EXEraCting Ct OIJECES ... ettt oottt e et ettt e et e et e et e e 22
U e et et et 23
Creating boost : : pyt hon: : obj ect frOmM Py Qbj ECT % .ouuiiii i e e e e e e een s 24
(=001 o [0 14 o PP UPPPPPRUPPPIN 25
USING the INEEIPIELEE ...ttt ettt e et ettt e et e e e et et b e et e bb e e e e bb e e e ena s 26
10 = 0] £ PP 28
EXCEPLION TrANSIAION ...ttt ettt e e ettt oottt h e et ettt e et e be e e et e te e e e e e be e e e eebb e e e eeba e eeenn 30
GENEIAl TECHNIGUES ... eeeetie ettt ettt ettt ettt ettt ootttk e e et e oo et h bt et e e b e e et e b e et e bh e et et e e et e b e e e e ban s 31
CrEaliNg PACKBOES ceeeti ettt ettt ettt e et e e e e et e e a e 31
Extending Wrapped ObjeCtS iN PYLhONccouueiii e e ettt e e e a e e eees 33
RedUCING COMPITING TIME ...ttt ettt ettt e e et e e et e e et e et et e et e et e et e e et bb e e e e aaa s 35
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

QuickStart

The Boost Python Library is a framework for interfacing Python and C++. It allows you to quickly and seamlessly expose C++
classes functions and objects to Python, and vice-versa, using no specia tools -- just your C++ compiler. It is designed to wrap C++
interfaces non-intrusively, so that you should not have to change the C++ code at all in order to wrap it, making Boost.Python ideal
for exposing 3rd-party librariesto Python. Thelibrary's use of advanced metaprogramming techniques simplifiesits syntax for users,
so that wrapping code takes on the look of akind of declarative interface definition language (IDL).

Hello World

Following C/C++ tradition, let's start with the "hello, world". A C++ Function:

char const* greet()

{
}

return "hello, world"

can be exposed to Python by writing a Boost.Python wrapper:

#i ncl ude <boost/ pyt hon. hpp>

BOOST_PYTHON_MODULE(hel | o_ext)
{

usi ng nanespace boost: : pyt hon;
def ("greet", greet);

That'sit. We're done. We can now build this as ashared library. The resulting DLL is now visible to Python. Here's a sample Python
session:

>>> jnport hell o_ext
>>> print hello_ext.greet()
hel l o, world

Next stop... Building your Hello World module from start to finish...

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Building Hello World
From Start To Finish

Now the first thing you'd want to do is to build the Hello World module and try it for yourself in Python. In this section, we will
outline the steps necessary to achieve that. We will use the build tool that comes bundled with every boost distribution: bjam.

S Note
Building without bjam

Besides bjam, there are of course other ways to get your module built. What's written here should not be taken as
"the one and only way". There are of course other build tools apart from bj am

Take note however that the preferred build tool for Boost.Python is bjam. There are so many ways to set up the
build incorrectly. Experience shows that 90% of the "I can't build Boost.Python" problems come from people who
had to use a different tool.

We will skip over the details. Our objective will be to ssimply create the hello world module and run it in Python. For a complete
reference to building Boost.Python, check out: building.html. After this brief bjam tutorial, we should have built the DLLs and run
a python program using the extension.

Thetutorial example can be found in the directory: | i bs/ pyt hon/ exanpl e/ t ut ori al . There, you can find:
* hello.cpp

* hello.py

* Jamroot

Thehel | 0. cpp fileisour C++ hello world example. The Janr oot isaminimalist bjam script that buildsthe DLLsfor us. Finally,
hel | 0. py isour Python program that uses the extension in hel | o. cpp.

Before anything else, you should have the bjam executable in your boost directory or somewhere in your path such that bj amcan
be executed in the command line. Pre-built Boost.Jam executables are available for most platforms. The complete list of Bjam ex-
ecutables can be found here.

Let's Jam!

Hereisour minimalist Jamroot file. Simply copy thefile and tweak use- pr oj ect boost towhereyour boost root directory isand
your OK.

The comments contained in the Jamrules file above should be sufficient to get you going.
Running bjam
bjamisrun using your operating system's command line interpreter.

Start it up.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../building.html
http://sourceforge.net/project/showfiles.php?group_id=7586
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../../example/tutorial/Jamroot
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

A file called user-config.jam in your home directory is used to configure your tools. In Windows, your home directory can be found
by typing:

ECHO %HOVEDRI VEYRAHOVEPATHY

into a command prompt window. Your file should at |east have the rules for your compiler and your python installation. A specific
example of this on Windows would be:

MBVC configuration
using nsvc : 8.0 ;

Python configuration
using python : 2.4 : C: dev/tools/Python ;

The first rule tells Bjam to use the MSVC 8.0 compiler and associated tools. The second rule provides information on Python, its
version and whereit islocated. The above assumes that the Python installationisin C: dev/ t ool s\ / Pyt hon. If you have onefairly
"standard" python installation for your platform, you might not need to do this.

Now we are ready... Be sureto cd to | i bs/ pyt hon/ exanpl e/ t ut ori al where the tutorial " hel | 0. cpp" and the" Janr oot "
is situated.

Finally:
bj am
It should be building now:

cd C \dev\boost\!Iibs\python\exanpl e\tutorial
bj am

...patience...

...found 1101 targets...

...updating 35 targets...

And soon... Finally:

Creating library path-to-boost_python.dll
Creating library /path-to-hello_ext.exp/

passed ... hello.test

...updated 35 targets...

Or something similar. If all iswell, you should now have built the DLLs and run the Python program.

Thereyou go... Have fun!

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Exposing Classes

Now let's expose a C++ class to Python.

Consider a C++ class/struct that we want to expose to Python:

struct World

{
void set(std::string nsg) { this->msg = nsg; }
std::string greet() { return msg; }
std::string nsg;

b

We can expose thisto Python by writing a corresponding Boost.Python C++ Wrapper:

#i ncl ude <boost/ python. hpp>
usi ng nanmespace boost: : pyt hon;

BOOST_PYTHON_MODULE(hel | o)

{
class_<Worl d>("World")
.def("greet", &World::greet)
.def ("set", &World: :set)
}

Here, we wrote a C++ class wrapper that exposes the member functionsgr eet and set . Now, after building our module as a shared
library, we may use our class VWr | d in Python. Here's a sample Python session:

>>> jnport hello

>>> planet = hello. Wrld()
>>> pl anet . set (' howdy")
>>> pl anet . greet ()

" howdy"

Constructors

Our previous example didn't have any explicit constructors. Since Wor | d is declared as a plain struct, it has an implicit default con-
structor. Boost.Python exposes the default constructor by default, which is why we were able to write

>>> planet = hello. Wrld()
We may wish to wrap a class with a non-default constructor. Let us build on our previous example:

struct World

{
Worl d(std: :string nmsg): nsg(nmsg) {} // added constructor
void set(std::string msg) { this->nmsg = nsQg; }
std::string greet() { return nsg; }
std::string nsg;

b

Thistime Wor | d has no default constructor; our previous wrapping code would fail to compile when the library tried to expose it.
We havetotell cl ass_<Wor | d> about the constructor we want to expose instead.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

#i ncl ude <boost/ pyt hon. hpp>
usi ng nanespace boost: : pyt hon;

BOOST_PYTHON_MODULE(hel | 0)

{
class_<World>("World", init<std::string>())
.def ("greet", &Wbrld::greet)
.def ("set", &World: :set)
}
init<std::string>() exposesthe constructor takinginastd: : stri ng (in Python, constructorsare spelled™ __init__"").

We can expose additional constructors by passing morei ni t <. .. >sto the def () member function. Say for example we have an-
other World constructor taking in two doubles:

class_<World>("World", init<std::string>())
.def (i nit<double, double>())
.def ("greet", &Wbrld::greet)
.def ("set", &World::set)

On the other hand, if we do not wish to expose any constructors at all, we may useno_i ni t instead:

cl ass_<Abstract>("Abstract", no_init)

Thisactualy addsan __i ni t __ method which always raises a Python RuntimeError exception.
Class Data Members

Data members may also be exposed to Python so that they can be accessed as attributes of the corresponding Python class. Each
data member that we wish to be exposed may be regarded as read-only or read-write. Consider this class Var :

struct Var

{

Var (std::string nane) : name(nane), value() {}
std::string const nane;
fl oat val ue;

Our C++ Var class and its data members can be exposed to Python:

class_<Var>("Var", init<std::string>())
. def _readonl y("nane", &Var::nane)
.def _readwrite("value", &Var::value);

Then, in Python, assuming we have placed our Var class inside the namespace hello as we did before:

>>> x = hello. Var('pi")
>>> x.value = 3.14

>>> print x.name, 'is around', Xx.value
pi is around 3.14

Note that nane is exposed as read-only whileval ue isexposed asread-write.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

>>> x.nane = 'e' # can't change nane
Traceback (nost recent call last):
File "<stdin>", line 1, in ?

AttributeError: can't set attribute

Class Properties

In C++, classes with public data members are usually frowned upon. Well designed classes that take advantage of encapsulation
hide the class datamembers. The only way to accessthe class dataisthrough access (getter/setter) functions. Accessfunctions expose
class properties. Here's an example:

struct Num

{

Num() ;

float get() const;

voi d set(fl oat val ue);
b

However, in Python attribute accessisfine; it doesn't neccessarily break encapsulation to let users handle attributes directly, because
the attributes can just be a different syntax for a method call. Wrapping our Numclass using Boost.Python:

cl ass_<Nunw(" Nuni')
.add_property("roval ue", &Num : get)
.add_property("value", &Num :get, &Num :set);

And at last, in Python:

>>> x = Num()

>>> x.value = 3.14

>>> x.val ue, x.rovalue

(3.14, 3.14)

>>> x.rovalue = 2. 17 # error!

Take note that the class property r oval ue isexposed as read-only since ther oval ue setter member function is not passed in:

.add_property("roval ue", &Num : get)

Inheritance

In the previous examples, we dealt with classes that are not polymorphic. Thisis not often the case. Much of the time, we will be
wrapping polymorphic classes and class hierarchies related by inheritance. We will often have to write Boost.Python wrappers for
classes that are derived from abstract base classes.

Consider thistrivial inheritance structure:

struct Base { virtual ~Base(); };
struct Derived : Base {};

And a set of C++ functions operating on Base and Der i ved object instances:

voi d b(Base*);
voi d d(Derived*);
Base* factory() { return new Derived; }

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

We've seen how we can wrap the base class Base:

cl ass_<Base>("Base")
[*. . %]

Now we can inform Boost.Python of the inheritance relationship between Der i ved and its base class Base. Thus:

cl ass_<Derived, bases<Base> >("Derived")
[*000%]

Doing so, we get some things for free:
1. Derived automatically inherits al of Base's Python methods (wrapped C++ member functions)

2. If Base is polymorphic, Der i ved objects which have been passed to Python via a pointer or reference to Base can be passed
where a pointer or reference to Der i ved is expected.

Now, we will expose the C++ free functionsb and d and f act or y:

def ("b", b);
def ("d", d);
def ("factory", factory);

Note that free function factory is being used to generate new instances of class Derived. In such cases, we use re-
turn_val ue_pol i cy<manage_new_obj ect > toinstruct Python to adopt the pointer to Base and hold theinstancein anew Python
Base object until the the Python object is destroyed. We will see more of Boost.Python call policies later.

/1 Tell Python to take ownership of factory's result
def ("factory", factory,
return_val ue_pol i cy<manage_new_obj ect >());

Class Virtual Functions

In this section, we will learn how to make functions behave polymorphically through virtua functions. Continuing our example, let
us add a virtual function to our Base class:

struct Base

{

virtual ~Base() {}
virtual int f() = 0;

One of the goals of Boost.Python isto be minimally intrusive on an existing C++ design. In principle, it should be possible to expose
theinterface for a3rd party library without changing it. It isnot ideal to add anything to our class Base. Yet, when you have a virtual
function that's going to be overridden in Python and called polymorphically from C++, we'll need to add some scaffoldings to make
things work properly. What we'll do is write a class wrapper that derives from Base that will unintrusively hook into the virtual
functions so that a Python override may be called:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

struct BaseWap : Base, w apper<Base>

{
int f()

{
}

return this->get_override("f")();

Notice too that in addition to inheriting from Base, we also multiply- inherited wr apper <Base> (See Wrapper). The wr apper
template makes the job of wrapping classes that are meant to overridden in Python, easier.

& M SV C6/7 Wor karound

If you are using Microsoft Visual C++ 6 or 7, you have to writef as:

return call<int>(this->get_override("f").ptr());.

BaseWrap's overridden virtual member function f in effect calls the corresponding method of the Python object through
get _overri de.

Finally, exposing Base:
cl ass_<BaseW ap, boost::noncopyabl e>("Base")

.def ("f", pure_virtual (&Base: :f))

pur e_vi rtual signals Boost.Python that the function f isapure virtual function.

S Note
member function and methods

Python, like many object oriented languages uses the term methods. M ethods correspond roughly to C++'smember
functions

Virtual Functions with Default Implementations

We've seen in the previous section how classes with pure virtual functions are wrapped using Boost.Python's class wrapper facilities.
If we wish to wrap non-pure-virtual functions instead, the mechanism is a bit different.

Recall that in the previous section, we wrapped a class with a pure virtual function that we then implemented in C++, or Python
classes derived from it. Our base class:

struct Base

{
I

virtual int f() = 0;

had a pure virtual function f . If, however, its member function f was not declared as pure virtual:

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/wrapper.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/wrapper.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

struct Base

{

virtual ~Base() {}
virtual int f() { return 0; }

We wrap it thisway:

struct BaseWap : Base, w apper<Base>

int f()
{

if (override f = this->get_override("f"))
return f(); // *note*
return Base::f();

}

int default f() { return this->Base::f(); }

Notice how we implemented BaseW ap: : f . Now, we have to check if thereis an overridefor f . If none, then we call Base: : f () .

A&. M SV C6/7 Wor karound

If you are using Microsoft Visual C++ 6 or 7, you have to rewrite the line with the * not e* as:

return call <char const*>(f.ptr());.

Finally, exposing:

cl ass_<BaseW ap, boost::noncopyabl e>("Base")
.def ("f", &Base::f, &BaseWap:: :default f)

Take note that we expose both &Base: : f and &BaseW ap: : def aul t _f . Boost.Python needs to keep track of 1) the dispatch
functionf and 2) the forwarding function to its default implementation def aul t _f . There'saspecial def function for this purpose.

In Python, the results would be as expected:

>>> bhase = Base()
>>> cl ass Derived(Base):
def f(self):
return 42

S>> derived = Derived()
Calling base. f () :

>>> base. f ()
0

Cdling derived. f():

>>> derived. f ()
42

10

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Class Operators/Special Functions

Python Operators

C iswell known for the abundance of operators. C++ extends this to the extremes by allowing operator overloading. Boost.Python
takes advantage of this and makes it easy to wrap C++ operator-powered classes.

Consider afile position class Fi | ePos and a set of operators that take on FilePos instances:

class FilePos { /*...*] };

Fi | ePos operator+(FilePos, int);
Fi | ePos operator+(int, FilePos);
i nt operator-(FilePos, FilePos);
Fi | ePos operator-(FilePos, int);

Fi | ePos& oper ator +=(Fi | ePos&, int);
Fi | ePos& operator-=(FilePos& int);
bool operator <(Fil ePos, FilePos);

The class and the various operators can be mapped to Python rather easily and intuitively:

cl ass_<Fi |l ePos>("Fi | ePos")

.def(self + int()) /] __add__
.def(int() + self) /'l __radd__
.def (self - self) /'l __sub__
.def(self - int()) /'l __sub__
.def(self +=int()) /] __iadd__
.def(self -= other<int>())

.def (self < self); It

The code snippet above is very clear and needs almost no explanation at all. It is virtually the same as the operators' signatures. Just
take note that sel f refers to FilePos object. Also, not every class T that you might need to interact with in an operator expression
is (cheaply) default-constructible. You can use ot her <T>() in place of an actual T instance when writing "self expressions”.

Special Methods

Python has a few more Special Methods. Boost.Python supports all of the standard special method names supported by real Python
classinstances. A similar set of intuitive interfaces can also be used to wrap C++ functions that correspond to these Python special
functions. Example:

cl ass Rational
{ public: operator double() const; };

Rational pow(Rational, Rational);
Rational abs(Rational);
ostreanm& operat or <<(ostreamt, Rational);

cl ass_<Rational >("Rational ")
.def (float _(self)) Il __float__
. def (pow(sel f, other<Rational >)) Il __pow__

.def (abs(self)) /'l __abs__
.def (str(self)) Il __str__
Need we say more?
11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

S Note
What isthe business of oper at or <<?Well, themethod st r requiresthe oper at or << to doitswork (i.e. oper at -
or << isused by the method defined by def (str(sel f)).

12

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Functions

In this chapter, we'll look at Boost.Python powered functions in closer detail. We will see some facilities to make exposing C++
functions to Python safe from potential pifalls such as dangling pointers and references. We will also see facilities that will make it
even easier for us to expose C++ functions that take advantage of C++ features such as overloading and default arguments.

Read on...

But before you do, you might want to fire up Python 2.2 or later and type>>> i nport this.

>>> inport this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than inplicit.

Sinple is better than conpl ex.

Conplex is better than conplicated.

Flat is better than nested.

Sparse is better than dense.

Readabi l ity counts.

Speci al cases aren't special enough to break the rules.

Al t hough practicality beats purity.

Errors shoul d never pass silently.

Unl ess explicitly silenced.

In the face of anmbiguity, refuse the tenptation to guess.

There shoul d be one-- and preferably only one --obvious way to do it
Al t hough that way may not be obvious at first unless you're Dutch.
Now i s better than never.

Al t hough never is often better than right now

If the inplenentation is hard to explain, it's a bad idea.

If the inplenentation is easy to explain, it may be a good idea.
Nanmespaces are one honking great idea -- let's do nore of those!

Call Policies

In C++, we often deal with arguments and return types such as pointers and references. Such primitive types are rather, ummmm,
low level and they really don't tell us much. At the very least, we don't know the owner of the pointer or the referenced object. No
wonder languages such as Java and Python never deal with such low level entities. In C++, it's usually considered a good practice
to use smart pointers which exactly describe ownership semantics. Still, even good C++ interfaces use raw references and pointers
sometimes, so Boost.Python must deal with them. To do this, it may need your help. Consider the following C++ function:

X& f(Y&y, Z* z);

How should the library wrap this function? A naive approach builds a Python X object around result reference. This strategy might
or might not work out. Here's an example where it didn't

>>> x = f(y, z) # x refers to some C++ X
>>> del y
>>> x.some_net hod() # CRASH!

What's the problem?

Well, what if f() was implemented as shown below:

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

X& f(Y&y, Z* z)
{

y.z = z;
return y.x;

Theproblemisthat thelifetime of result X& istied to thelifetime of y, becausethef() returns areferenceto amember of they object.
Thisidiom isis not uncommon and perfectly acceptable in the context of C++. However, Python users should not be able to crash
the system just by using our C++ interface. In this case deleting y will invalidate the reference to X. We have a dangling reference.

Here'swhat's happening:

1. f iscalled passing in areferencetoy and a pointer to z
2. A referencetoy. x isreturned

3. y isdeleted. x isadangling reference

4. x. some_net hod() iscalled

5. BOOM!

We could copy result into a new object:

>>> f(y, z).set(42) # Result disappears
>>> y. Xx.get() # No crash, but still bad
3.14

Thisisnot really our intent of our C++ interface. We've broken our promise that the Python interface should reflect the C++ interface
asclosely aspossible.

Our problems do not end there. SupposeY isimplemented as follows:

struct Y

{
X x; Z* z;
int z value() { return z->value(); }

Notice that the data member z is held by classY using araw pointer. Now we have a potential dangling pointer problem insideY:

>>> x = f(y, z) # y refers to z
>>> del z # Kill the z object
>>> y.z value() # CRASH

For reference, here's the implementation of f again:

X& f(Y&y, Z* z)
{

y.z = z;
return y. x;

Here's what's happening:
1. f iscaled passing in areferencetoy and a pointer to z

2. A pointertoz isheld by y

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

3. A referencetoy. x isreturned

4. z isdeleted. y. z isadangling pointer
5. y.z_val ue() iscaled

6. z- >val ue() iscaled

7. BOOM!

Call Policies

Call Policies may be used in situations such as the example detailed above. In our example, r et ur n_i nt er nal _r ef er ence and
wi t h_cust odi an_and_war d are our friends:

def ("f", f,
return_internal _reference<l,
Wi t h_cust odi an_and_war d<1, 2> >());

What arethe 1 and 2 parameters, you ask?

return_internal reference<l

Informs Boost.Python that the first argument, in our case Y& vy, isthe owner of the returned reference: X& The"1" simply specifies
the first argument. In short: "return an internal reference X& owned by the 1st argument Y& y".

wi t h_cust odi an_and_ward<1, 2>

Informs Boost.Python that the lifetime of the argument indicated by ward (i.e. the 2nd argument: Z* z) is dependent on the lifetime
of the argument indicated by custodian (i.e. the 1st argument: Y& vy).

It is also important to note that we have defined two policies above. Two or more policies can be composed by chaining. Here'sthe
general syntax:

policyl<args. ..,
pol i cy2<args. . .,
policy3<args...> > >

Hereisthelist of predefined call policies. A complete reference detailing these can be found here.
» with_custodian_and_ward: Tieslifetimes of the arguments
e with_custodian_and_ward_postcall: Ties lifetimes of the arguments and results
 return_internal_reference: Tieslifetime of one argument to that of result
» return_value policy<T> with T one of:

» reference existing_object: naive (dangerous) approach

e copy_const_reference: Boost.Python v1 approach

* copy_non_const_reference:

* manage _new_object: Adopt a pointer and hold the instance

15

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/reference.html#models_of_call_policies
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

@ Remember the Zen, L uke:

"Explicit is better than implicit"

"In the face of ambiguity, refuse the temptation to guess'

Overloading

The following illustrates a scheme for manually wrapping an overloaded member functions. Of course, the same technique can be
applied to wrapping overloaded non-member functions.

We have here our C++ class:

struct X
{
bool f(int a)
{
return true;
}
bool f(int a, double b)
{
return true;
}
bool f(int a, double b, char c)
{
return true;
}
int f(int a, int b, int ¢)
{
return a + b + c;
}

Class X has 4 overloaded functions. We will start by introducing some member function pointer variables:

bool (X::*fx1)(int) = &X: i f;
bool (X::*fx2)(int, double) = &X: i f;
bool (X::*fx3)(int, double, char)= &X :f;
i nt (Xo:*fx4)(int, int, int) = &X: i f;

With these in hand, we can proceed to define and wrap this for Python:

def ("f", fx1)
def ("f", fx2)
def ("f", fx3)
def ("f", fx4)

Default Arguments

Boost.Python wraps (member) function pointers. Unfortunately, C++ function pointers carry no default argument info. Take a
function f with default arguments:

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

int f(int, double = 3.14, char const* = "hello0");

But the type of a pointer to the function f has no information about its default arguments;

int(*g)(int,double, char const*) = f; /1 defaults |ost!

When we pass this function pointer to the def function, there is no way to retrieve the default arguments:
def ("f", f); /1 defaults |ost!

Because of this, when wrapping C++ code, we had to resort to manual wrapping as outlined in the previous section, or writing thin
wrappers.

/1 wite "thin w appers”
int f1(int x) { return f(x); }
int f2(int x, double y) { return f(x,y); }
[*. 0%
/1 in nodule init
def ("f", f); // all argunents

def ("f", f2); // two argunents
def ("f", f1); // one argunent

When you want to wrap functions (or member functions) that either:
* have default arguments, or

* are overloaded with a common sequence of initial arguments

BOOST_PYTHON_FUNCTION_OVERLOADS

Boost.Python now has away to make it easier. For instance, given a function:

int foo(int a, char b = 1, unsigned ¢ = 2, double d = 3)

{
}

[*. 0 %]

The macro invocation:

BOOST_PYTHON_FUNCTI ON_OVERLQADS(f oo_over | oads, foo, 1, 4)

will automatically create the thin wrappersfor us. Thismacrowill createaclassf oo_over | oads that can bepassedontodef (...).
The third and fourth macro argument are the minimum arguments and maximum arguments, respectively. In our f oo function the
minimum number of arguments is 1 and the maximum number of argumentsis 4. Thedef (. ..) function will automatically add
all the foo variantsfor us:

def ("foo", foo, foo_overloads());

17

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

BOOST _PYTHON_MEMBER_FUNCTION_OVERLOADS

Objects here, objectsthere, objects here there everywhere. More frequently than anything else, we need to expose member functions
of our classesto Python. Then again, we have the same inconveniences as before when default arguments or overl oads with acommon
sequence of initial arguments come into play. Another macro is provided to make this a breeze.

Like BOOST_PYTHON_FUNCTI ON_OVERLQADS, BOOST_PYTHON_MEMBER _FUNCTI ON_OVERLOADS may be used to automatically
create the thin wrappers for wrapping member functions. Let's have an example:

struct george

{
voi d
wack_em(int a, int b =0, char ¢ = "x")
{
[*.000%]
}
};

The macro invocation:
BOOST_PYTHON_MEMBER _FUNCTI ON_OVERLQADS(geor ge_over | oads, wack_em 1, 3)

will generate aset of thin wrappersfor george'swack_emmember function accepting aminimum of 1 and amaximum of 3 arguments
(i.e. the third and fourth macro argument). The thin wrappers are all enclosed in a class named geor ge_over | oads that can then
be used asan argumenttodef (...):

.def ("wack_enl', &george::wack_em george_overl oads());

See the overloads reference for details.

init and optional

A similar facility is provided for class constructors, again, with default arguments or asequence of overloads. Rememberi nit <. .. >?
For example, given aclass X with a constructor:

struct X

{
X(int a, char b = 'D, std::string ¢ = "constructor”, double d = 0.0);
[*.000%]

}

You can easily add this constructor to Boost.Python in one shot:
.def (init<int, optional <char, std::string, double> >())
Noticetheuseof i nit<...>andopti onal <. .. >tosignify the default (optional arguments).

Auto-Overloading

It was mentioned in passing in the previous section that BOOST_PYTHON_FUNCTI ON_OVERL QADS and BOOST_PYTHON_MEMBER_FUNC-
TI ON_OVERLQADS can also be used for overloaded functions and member functions with a common sequence of initial arguments.
Hereisan example:

18

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/overloads.html#BOOST_PYTHON_FUNCTION_OVERLOADS-spec
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

voi d foo()
{
[*.0. 0%
}
voi d foo(bool a)
{
[*.0. 0%
}
void foo(bool a, int b)
{
[*.0. 0%
}
void foo(bool a, int b, char c¢)
{
[*.0. 0%
}

Like in the previous section, we can generate thin wrappers for these overloaded functions in one-shot:
BOOST_PYTHON_FUNCTI ON_OVERLOADS(f oo_overl oads, foo, 0, 3)

Then...
.def ("foo", (void(*)(bool, int, char))0, foo_overloads());

Notice though that we have a situation now where we have a minimum of zero (0) arguments and a maximum of 3 arguments.

Manual Wrapping

It isimportant to emphasize however that the over loaded functionsmust have a common sequenceof initial arguments. Otherwise,
our scheme above will not work. If thisis not the case, we have to wrap our functions manually.

Actually, we can mix and match manual wrapping of overloaded functions and automatic wrapping through BOOST_PYTHON MEM
BER_FUNCTI ON_OVERLQADS and its sister, BOOST_PYTHON_FUNCTI ON_OVERLOADS. Following up on our example presented in
the section on overloading, since the first 4 overload functins have a common sequence of initial arguments, we can use
BOOST_PYTHON_MEMBER _FUNCTI ON_OVERL QADS to automatically wrap thefirst three of the def sand manually wrap just the last.
Here's how well do this:

BOOST_PYTHON_MEMBER _FUNCTI ON_OVERLOADS(xf overl oads, f, 1, 4)

Create amember function pointers as above for both X::f overloads:

bool (X::*fx1)(int, double, char) = &X i f;
i nt (X :*fx2)(int, int, int) = &X i f;
Then...
.def("f", fx1, xf _overloads());
def ("f", fx2)

19

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

vi

python 2.0

Object Interface

Python is dynamically typed, unlike C++ which is statically typed. Python variables may hold an integer, afloat, list, dict, tuple, str,
long etc., among other things. In the viewpoint of Boost.Python and C++, these Pythonic variablesarejust instances of classobj ect .

We will seein this chapter how to deal with Python objects.

As mentioned, one of the goals of Boost.Python is to provide a bidirectional mapping between C++ and Python while maintaining
the Python feel. Boost.Python C++ obj ect sareasclose as possible to Python. This should minimize thelearning curve significantly.

Basic Interface

Classobj ect wraps PyQoj ect *. All the intricacies of dealing with PyQbj ect s such as managing reference counting are handled
by the obj ect class. C++ object interoperability is seamless. Boost.Python C++ obj ect scan in fact be explicitly constructed from

any C++ object.

To illustrate, this Python code snippet:

def f(x, y):
if (y == "'foo"):
x[3:7] = "bar'
el se:
X.items += y(3, Xx)
return x

def getfunc():
return f;

Can be rewritten in C++ using Boost.Python facilities this way:

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

obj ect f(object x, object y) {

if (y == "foo")

x.slice(3,7) = "bar";
el se

x.attr("itenms") += y(3, X);
return x;

}
obj ect getfunc() {
return object(f);

}

Apart from cosmetic differences dueto the fact that we are writing the codein C++, thelook and feel should beimmediately apparent
to the Python coder.

Derived Object types

Boost.Python comes with a set of derived obj ect types corresponding to that of Python's:
e list

* dict

» tuple

o dir

e long_

e enum

These derived obj ect typesact like real Python types. For instance:
str(1) ==>"1"

Wherever appropriate, a particular derived obj ect has corresponding Python type's methods. For instance, di ct has akeys()
method:

d. keys()
make_t upl e isprovided for declaring tuple literals. Example:
make_tuple(123, 'D, "Hello, Wrld", 0.0);

In C++, when Boost.Python obj ect sare used as argumentsto functions, subtype matching isrequired. For example, when afunction
f, asdeclared below, iswrapped, it will only accept instances of Python's st r type and subtypes.

void f(str name)

{
obj ect n2 = nane.attr("upper")(); /1 NAME = nane. upper ()
str NAME = nane. upper(); /1 better
object nmeg = "% is bigger than %" % nake_t upl e(NAME, nane) ;
}
In finer detail:

str NAME = name. upper();

21

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Illustrates that we provide versions of the str type's methods as C++ member functions.
object msg = "% is bigger than %" % nake_t upl e(NAME, nane)

Demonstrates that you can write the C++ equivalent of " f or mat " % x, y, z in Python, which is useful since there's no easy way
to do that in std C++.

i Bewar e the common pitfall of forgetting that the constructors of most of Python's mutable types make copies, just as
in Python.

Python:

>>> d = dict(x. __dict_) # copies x.__dict__
>>> d['whatever'] = 3 # nodi fies the copy
C++:

dict d(x.attr("__dict__")); // copies x.__dict__
d[' whatever'] = 3; /1 nodifies the copy

class_<T> as objects

Due to the dynamic nature of Boost.Python objects, any cl ass_<T> may also be one of these types! The following code snippet
wraps the class (type) object.

We can use this to create wrapped instances. Example:

obj ect vec345 = (
cl ass_<Vec2>("Vec2", init<double, double>())
.def _readonly("length", &Point::|ength)
.def _readonly("angle", &Point::angle)
)(3.0, 4.0);

assert(vec345. attr("length") == 5.0);

Extracting C++ objects

At some point, wewill need to get C++ values out of object instances. Thiscan be achieved with theext r act <T> function. Consider
the following:

double x = o.attr("length"); // conpile error

In the code above, we got a compiler error because Boost.Python obj ect can't be implicitly converted to doubl es. Instead, what
we wanted to do above can be achieved by writing:

doubl e | = extract<double>(o.attr("length"));
Vec2& v = extract <Vec2&>(0);
assert(l == v.length());

The first line attempts to extract the "length” attribute of the Boost.Python obj ect . The second line attempts to extract the Vec2
object from held by the Boost.Python obj ect .

22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Take note that we said "attempt to" above. What if the Boost.Python obj ect does not really hold a Vec2 type? Thisis certainly a
possibility considering the dynamic nature of Python obj ect s. To be on the safe side, if the C++ type can't be extracted, an appro-
priate exception is thrown. To avoid an exception, we need to test for extractibility:

extract <Vec2&> x(o);
if (x.check()) {
Vec2& v = x()

The astute reader might have noticed that the ext r act <T> facility in fact solves the mutable copying problem:

dict d = extract<dict>(x.attr("__dict__"));
d["whatever"] = 3; /1 nodifies x.__dict__ !

Enums

Boost.Python has a nifty facility to capture and wrap C++ enums. While Python has no enumtype, we'll often want to expose our
C++ enums to Python as an i nt . Boost.Python's enum facility makes this easy while taking care of the proper conversions from
Python's dynamic typing to C++'s strong static typing (in C++, ints cannot be implicitly converted to enums). To illustrate, given a
C++ enum:

enum choice { red, blue }

the construct:

enum <choi ce>("choi ce")
.value("red", red)
.val ue("blue", blue)

can be used to expose to Python. The new enum type is created in the current scope() , which is usually the current module. The
snippet above creates a Python class derived from Python'si nt type which is associated with the C++ type passed asitsfirst para-
meter.

S Note
what is a scope?

The scopeisaclassthat has an associated global Python object which controls the Python namespace in which new
extension classes and wrapped functions will be defined as attributes. Details can be found here.

You can access those valuesin Python as

>>> my_nodul e. choi ce. red
ny_nodul e. choi ce. red

where my_module is the module where the enum is declared. You can also create a new scope around a class:

23

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/scope.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

scope in_X = class_<X>("X")
.def(...)
. def ()

/'l Expose X :nested as X nested
enum <X: : nest ed>("nested")
.value("red", red)
.val ue("bl ue", blue)

C:rEBEitir1g} boost : : pyt hon: : obj ect ff()fT] Pybj ect *

When you want aboost : : pyt hon: : obj ect to manage a pointer to Py Cbj ect * pyobj one does:

boost : : pyt hon: : obj ect o(boost: : python:: handl e<>(pyobj));

In this case, the o object, manages the pyobj , it won’t increase the reference count on construction.

Otherwise, to use a borrowed reference:

boost : : pyt hon: : obj ect o(boost: : python:: handl e<>(boost: : pyt hon: : borr owed(pyobj)));

In this case, Py_| NCREF iscalled, so pyobj isnot destructed when object o goes out of scope.

24

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Embedding

By now you should know how to use Boost.Python to call your C++ code from Python. However, sometimes you may need to do
the reverse: call Python code from the C++-side. This reguires you to embed the Python interpreter into your C++ program.

Currently, Boost.Python does not directly support everything you'll need when embedding. Therefore you'll need to use the Python/C
API tofill in the gaps. However, Boost.Python already makes embedding alot easier and, in a future version, it may become unne-

cessary to touch the Python/C API at all. So stay tuned... @

Building embedded programs

To be able to embed python into your programs, you have to link to both Boost.Python's as well as Python's own runtime library.

Boost.Python's library comes in two variants. Both are located in Boost's / | i bs/ pyt hon/ bui | d/ bi n- st age subdirectory. On
Windows, thevariantsare called boost _pyt hon. | i b (for release builds) and boost _pyt hon_debug. | i b (for debugging). If you
can't find the libraries, you probably haven't built Boost.Python yet. See Building and Testing on how to do this.

Python'slibrary can befoundinthe/ | i bs subdirectory of your Python directory. On Windowsit is called pythonXY.lib where X.Y
isyour major Python version number.

Additionally, Python's/ i ncl ude subdirectory has to be added to your include path.

In aJamfile, all the above boils down to:

proj ectroot c:\projects\enbedded_program; # |ocation of the program

bring in the rules for python
SEARCH on pyt hon. jam = $(BOOST_BU LD_PATH) ;
i ncl ude python.jam;

exe enbedded_program # name of the executable
#sour ces
enbedded_pr ogram cpp
requirements
<find-I1ibrary>boost_python <library-path>c:\boost\!|ibs\python
$(PYTHON_PROPERTI ES)
<l'i brary-pat h>$(PYTHON LI B_PATH)
<find-1ibrary>$(PYTHON_EVMBEDDED LI BRARY) ;

Getting started

Being ableto build isnice, but thereis nothing to build yet. Embedding the Python interpreter into one of your C++ programs requires
these 4 steps:

1. #include <boost / pyt hon. hpp>
2. Call Py_Initialize() to start the interpreter and create the __nai n__ module.

3. Cdll other Python C API routines to use the interpreter.

S Note
Note that at thistime you must not call Py_Finalize() to stop the interpreter. This may be fixed in a future
version of boost.python.

(Of course, there can be other C++ code between all of these steps.)

25

httpo://www.renderx.com/

http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/api/api.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../building.html
http://www.python.org/doc/current/api/initialization.html#l2h-652
http://www.python.org/doc/current/api/initialization.html#l2h-656
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

Now that we can embed the interpreter in our programs, lets see how to put it to use...

Using the interpreter

As you probably already know, objects in Python are reference-counted. Naturally, the Pybj ect s of the Python C APl are aso
reference-counted. Thereisadifference however. While the reference-counting isfully automatic in Python, the Python CAPI requires
you to do it by hand. Thisis messy and especialy hard to get right in the presence of C++ exceptions. Fortunately Boost.Python
provides the handle and object class templates to automate the process.

Running Python code

Boost.python provides three related functions to run Python code from C++.

obj ect eval (str expression, object globals = object(), object locals = object())
obj ect exec(str code, object globals = object(), object locals = object())
obj ect exec_file(str filenane, object globals = object(), object locals = object())

eval evaluates the given expression and returns the resulting value. exec executes the given code (typically a set of statements) re-
turning the result, and exec_file executes the code contained in the given file.

Thegl obal s and | ocal s parameters are Python dictionaries containing the globals and locals of the context in which to run the
code. For most intents and purposes you can use the namespace dictionary of the __mai n__ module for both parameters.

Boost.python provides a function to import a module:
obj ect inmport(str nane)

import imports a python module (potentially loading it into the running process first), and returnsit.

Let'simport the__mai n__ module and run some Python code in its namespace:

object main_nodule = inport("_nmain_");
obj ect mmi n_namespace = nain_nodule.attr("__dict__");

obj ect ignored = exec("hello = file("hello.txt', "w)\n"
"hello.wite('Hello world!")\n"
"hel l 0. cl ose()",
mai n_nanespace) ;

This should create afile called 'hello.txt' in the current directory containing a phrase that iswell-known in programming circles.

Manipulating Python objects

Often we'd liketo have aclassto manipul ate Python objects. But we have already seen such aclassabove, and in the previous section:
the aptly named obj ect class and its derivatives. We've already seen that they can be constructed from a handl e. The following
examples should further illustrate this fact:

object main_nodule = inport("_nmain_");

obj ect mmi n_namespace = nain_nodule.attr("__dict__");
object ignored = exec("result =5 ** 2" pmai n_nanespace);
int five_squared = extract<int>(nmain_nanespace["result"]);

Here we create a dictionary object for the __mai n__ modul€'s namespace. Then we assign 5 squared to the result variable and read
this variable from the dictionary. Another way to achieve the same result isto use eval instead, which returns the result directly:

26

render

httpo://www.renderx.com/

http://www.python.org/doc/current/c-api/refcounting.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/handle.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/object.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/python/object.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

object result = eval ("5 ** 2");
int five_squared = extract<int>(result);

Exception handling

If an exception occurs in the evaluation of the python expression, error_already _set is thrown:

try
{
object result = eval ("5/0");
/1 execution will never get here:
int five_divided_by zero = extract<int>(result);
}
catch(error_al ready_set const &)
{
/'l handl e the exception in sone way
}

Theerror_al ready_set exception class doesn't carry any information in itself. To find out more about the Python exception that
occurred, you need to use the exception handling functions of the Python C API in your catch-statement. This can be as smple as
calling PyErr_Print() to print the exception's traceback to the console, or comparing the type of the exception with those of the
standard exceptions:

catch(error_al ready_set const &)

: i f (PyErr_Excepti onMat ches(PyExc_ZeroDivi sionError))
/'l handl e ZeroDi vi si onError specially
}
el se
{
/1 print all other errors to stderr
PyErr_Print();
}
}

(To retrieve even more information from the exception you can use some of the other exception handling functions listed here.)

27

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/errors.html#error_already_set-spec
http://www.python.org/doc/api/exceptionHandling.html
http://www.python.org/doc/api/exceptionHandling.html#l2h-70
http://www.python.org/doc/api/standardExceptions.html
http://www.python.org/doc/api/exceptionHandling.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

lterators

In C++, and STL in particular, we seeiterators everywhere. Python also hasiterators, but these are two very different beasts.
C++iterators:

» C++ has 5 type categories (random-access, bidirectional, forward, input, output)

» There are 2 Operation categories: reposition, access

« A pair of iteratorsis needed to represent a (first/last) range.

Python Iterators:

* 1 category (forward)

1 operation category (next())

 Raises Stoplteration exception at end

The typical Python iteration protocol: for y in x... isasfollows:

iter = x.__iter__() # get iterator
try
while 1:
y = iter.next() # get each item
S # process y
except Stoplteration: pass # iterator exhausted

Boost.Python provides some mechanisms to make C++ iterators play along nicely as Python iterators. What we need to do is to
produce appropriate __i t er __ function from C++ iterators that is compatible with the Python iteration protocol. For example:

obj ect get_iterator = iterator<vector<int> >();
object iter = get_iterator(v);
object first = iter.next();

Or for usein class <>:

.def("__iter__", iterator<vector<int> >())

range

We can create a Python savvy iterator using the range function:
* range(start, finish)

* range<Policies, Target>(start, finish)

Here, start/finish may be one of:

» member data pointers

» member function pointers

« adaptable function object (use Target parameter)

iterator

o iterator<T, Policies>()

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

Given acontainer T, iterator is a shortcut that simply callsr ange with & T::begin, & T::end.

Let's put thisinto action... Here's an example from some hypothetical bogon Particle accelerator code:

f = Field()

for x in f.pions:
smash(x)

for y in f.bogons:
count (y)

Now, our C++ Wrapper:

class_<F>("Field")
. property("pions", range(&F::p_begin, &F: :p_end))
. property("bogons", range(&F::b_begin, &F::b_end))

stl_input_iterator

So far, we have seen how to expose C++ iterators and ranges to Python. Sometimes we wish to go the other way, though: we'd like
to pass a Python sequence to an STL algorithm or useit to initialize an STL container. We need to make a Python iterator look like
an STL iterator. For that, we use st _i nput _iterator<>. Consider how we might implement a function that exposes

std::list<int>: :assign() toPython:

t enpl at e<t ypenane T>

void list_assign(std::list<T>& |, object o) {
/1 Turn a Python sequence into an STL input range
stl _input_iterator<T> begin(o), end,
| . assign(begin, end);

}

/1 Part of the wrapper for list<int>

class_<std::list<int> >("list_int")
.def ("assign", &ist_assign<int>)

I

Now in Python, we can assign any integer sequencetol i st _i nt objects:

x = list_int();
x.assign([1,2,3,4,5])

29

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

Exception Translation

All C++ exceptions must be caught at the boundary with Python code. This boundary is the point where C++ meets Python.
Boost.Python provides a default exception handler that translates selected standard exceptions, then gives up:

rai se RuntimeError, 'unidentifiable Ct+ Exception'
Users may provide custom translation. Here's an example:

struct PodBayDoor Excepti on;
voi d transl at or (PodBayDoor Excepti on const& x) {
PyErr_Set String(PyExc_UserWarning, "I'msorry Dave...");
}
BOOST_PYTHON_MODULE(kubri ck) {
regi ster_exception_translator<
PodBayDoor Excepti on>(transl ator);

30

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

General Techniques

Here are presented some useful techniques that you can use while wrapping code with Boost.Python.

Creating Packages

A Python package is a collection of modules that provide to the user a certain functionality. If you're not familiar on how to create
packages, a good introduction to them is provided in the Python Tutorial.

But we are wrapping C++ code, using Boost.Python. How can we provide a nice package interface to our users? To better explain
some concepts, let's work with an example.

We have a C++ library that works with sounds: reading and writing various formats, applying filters to the sound data, etc. It is
named (conveniently) sounds. Our library already has a neat C++ namespace hierarchy, like so:

sounds: : core
sounds::io
sounds: :filters

We would like to present this same hierarchy to the Python user, allowing him to write code like this:

i mport sounds.filters
sounds.filters.echo(...) # echo is a C++ function

Thefirst step is to write the wrapping code. We have to export each modul e separately with Boost.Python, like this:

/* file core.cpp */
BOOST_PYTHON_MODULE(cor e)

{

/* export everything in the sounds::core namespace */

}

/* file io.cpp */
BOOST_PYTHON_ MODULE(i 0)
{

/* export everything in the sounds::io nanespace */

}

/* file filters.cpp */
BOOST_PYTHON MODULE(filters)

{

/* export everything in the sounds::filters nanespace */

Compiling these files will generate the following Python extensions: cor e. pyd, i 0. pyd andfil ters. pyd.

@ Note
The extension . pyd is used for python extension modules, which are just shared libraries. Using the default for
your system, like. so for Unix and . dI | for Windows, works just as well.

Now, we create this directory structure for our Python package:

31

httpo://www.renderx.com/

http://www.python.org/doc/current/tut/node8.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

sounds/
_init__.py
core. pyd
filters. pyd
i 0. pyd

Thefile__init__. py iswhat tells Python that the directory sounds/ isactually a Python package. It can be aempty file, but can
also perform some magic, that will be shown later.

Now our package is ready. All the user hasto do is put sounds into his PY THONPATH and fire up the interpreter:

>>> jnport sounds.io

>>> jnport sounds.filters

>>> sound = sounds.io.open('file.nmp3")

>>> new_sound = sounds.filters.echo(sound, 1.0)

Nice heh?

Thisisthe simplest way to create hierarchies of packages, but it is not very flexible. What if we want to add a pure Python function
to the filters package, for instance, one that applies 3 filters in a sound object at once? Sure, you can do thisin C++ and export it,
but why not do so in Python?You don't have to recompile the extension modules, plusit will be easier to write it.

If we want this flexibility, we will have to complicate our package hierarchy alittle. First, we will have to change the name of the
extension modules:

/* file core.cpp */
BOOST_PYTHON_MODULE(_cor e)

{

/* export everything in the sounds::core nanespace */

Note that we added an underscore to the module name. The filename will have to be changed to _cor e. pyd aswell, and we do the
same to the other extension modules. Now, we change our package hierarchy like so:

sounds/

_init__.py

core/
_init__.py
core. pyd

filters/
_init__.py
filters. pyd

iol
_init__.py
_io.pyd

Note that we created a directory for each extension module, and added a__init__.py to each one. But if we leave it that way, the
user will have to access the functionsin the core module with this syntax:

>>> jnport sounds.core._core
>>> sounds. core. _core.foo(...)

which is not what we want. But here entersthe __i nit __. py magic: everything that is brought tothe __i nit __. py namespace
can be accessed directly by the user. So, al we have to do is bring the entire namespace from _core. pydtocore/ __init__. py.
So add thisline of codeto sounds/ core/ __init__. py:

32

render

httpo://www.renderx.com/

http://www.python.org/doc/current/tut/node8.html#SECTION008110000000000000000
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

python 2.0

from _core inport *

We do the same for the other packages. Now the user accesses the functions and classes in the extension modules like before;

>>> jnport sounds.filters
>>> sounds. filters.echo(...)

with the additional benefit that we can easily add pure Python functions to any module, in away that the user can't tell the difference
between a C++ function and a Python function. Let's add a pure Python function, echo_noi se, to the fi | t er s package. This
function applies both the echo and noi se filters in sequence in the given sound object. We create a file named sounds/ fi | -
t er s/ echo_noi se. py and code our function:

inmport _filters
def echo_noi se(sound):

s = _filters. echo(sound)
s = _filters.noi se(sound)
return s

Next, we add thislineto sounds/filters/__init__. py:
from echo_noi se inport echo_noi se
And that's it. The user now accesses this function like any other function fromthefi | t er s package:

>>> jnport sounds.filters
>>> sounds. filters.echo_noise(...)

Extending Wrapped Objects in Python

Thanks to Python's flexibility, you can easily add new methods to a class, even after it was aready created:

>>> cl ass C(object): pass

>>>

>>> # a regular function

>>> def C_str(self): return "A Cinstance!’

>>>

>>> # now we turn it in a nenber function
>>> C __ str__ = C_str

>>>

>>> ¢ = ()

>>> print ¢

A C instance!
>>> C_str(c)
A C instance!

Yes, Python rox. @

We can do the same with classes that were wrapped with Boost.Python. Suppose we have aclass poi nt in C++:

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

class point {...};

BOOST_PYTHON_MODULE(_geom
{

}

class_<point>("point")...;

If we are using the technique from the previous session, Creating Packages, we can code directly into geond __init _

from _geominport *
a regul ar function
def point_str(self):
return str((self.x, self.y))

now we turn it into a nenber function
point.__str__ = point_str

All point instances created from C++ will also have this member function! This technique has several advantages:
 Cut down compile times to zero for these additional functions

 Reduce the memory footprint to virtually zero

» Minimize the need to recompile

 Rapid prototyping (you can move the code to C++ if required without changing the interface)

_- py:

You can even add alittle syntactic sugar with the use of metaclasses. Let's create a special metaclass that "injects' methods in other

classes.

The one Boost. Python uses for all wapped cl asses.
You can use here any class exported by Boost instead of "point"
Boost Pyt honMet acl ass = point. __class__

cl ass injector(object):
class __ _nmetacl ass__(Boost Pyt honMet acl ass) :
def __init__ (self, name, bases, dict):
for b in bases:
if type(b) not in (self, type):
for k,vindict.itens():
setattr(b, k, v)

return type. __init__ (self, name, bases, dict)

inject sone nethods in the point foo
class nore_point(injector, point):
def __repr__(self):
return 'Point(x=%, y=%)' % (self.x, self.y)
def foo(self):
print 'foo!’

Now let's see how it got:

>>> print point()
Poi nt (x=10, y=10)
>>> point().foo()
f oo!

Another useful ideaisto replace constructors with factory functions:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

_point = point

def point (x=0, y=0):
return _point(x, vy)

In this simple case thereis not much gained, but for constructurs with many overloads and/or arguments this is often a great simpli-
fication, again with virtually zero memory footprint and zero compile-time overhead for the keyword support.

Reducing Compiling Time

If you have ever exported alot of classes, you know that it takes quite a good time to compile the Boost.Python wrappers. Plus the
memory consumption can easily become too high. If thisis causing you problems, you can split the class _ definitions in multiple
files:

/* file point.cpp */

#i ncl ude <point. h>

#i ncl ude <boost/ pyt hon. hpp>

voi d export_point()

{
}

class_<point>("point")...;

/* file triangle.cpp */
#i nclude <triangle. h>
#i ncl ude <boost/ pyt hon. hpp>

voi d export_triangle()

{
}

class_<triangle>("triangle")...

Now you create afile mai n. cpp, which contains the BOOST_PYTHON_MODUL E macro, and call the various export functions inside
it.

voi d export_point ()
voi d export_triangle();

BOOST_PYTHON_MODULE(_geom)
{

export_point();
export _triangle();

Compiling and linking together al this files produces the same result as the usual approach:

#i ncl ude <boost/ python. hpp>
#i ncl ude <point. h>
#i nclude <triangle.h>

BOOST_PYTHON_MODULE(_geom
{

class_<point>("point")...;
class_<triangle>("triangle")...

but the memory is kept under control.

35

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

python 2.0

This method is recommended too if you are developing the C++ library and exporting it to Python at the same time: changesin a
classwill only demand the compilation of a single cpp, instead of the entire wrapper code.

S Note
If you're exporting your classes with Pyste, take alook at the - - mul ti pl e option, that generates the wrappersin
various files as demonstrated here.

! I Note
This method is useful too if you are getting the error message "fatal error C1204: Compiler limit:internal structure
overflow" when compiling alarge source file, as explained in the FAQ.

36

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../../pyste/index.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/faq.html#c1204
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	python 2.0
	Table of Contents
	QuickStart
	Building Hello World
	Exposing Classes
	Constructors
	Class Data Members
	Class Properties
	Inheritance
	Class Virtual Functions
	Virtual Functions with Default Implementations
	Class Operators/Special Functions

	Functions
	Call Policies
	Overloading
	Default Arguments
	Auto-Overloading

	Object Interface
	Basic Interface
	Derived Object types
	Extracting C++ objects
	Enums
	Creating boost::python::object from PyObject*

	Embedding
	Using the interpreter

	Iterators
	Exception Translation
	General Techniques
	Creating Packages
	Extending Wrapped Objects in Python
	Reducing Compiling Time

