
String_Ref
Marshall Clow

Copyright © 2012 Marshall Clow

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 2
Examples ... 3
Reference .. 4
History ... 6

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Boost.StringRef is an implementation of Jeffrey Yaskin's N3442: string_ref: a non-owning reference to a string.

When you are parsing/processing strings from some external source, frequently you want to pass a piece of text to a procedure for
specialized processing. The canonical way to do this is as a std::string, but that has certain drawbacks:

1) If you are processing a buffer of text (say a HTTP response or the contents of a file), then you have to create the string from the
text you want to pass, which involves memory allocation and copying of data.

2) if a routine receives a constant std::string and wants to pass a portion of that string to another routine, then it must create a
new string of that substring.

3) A routine receives a constant std::string and wants to return a portion of the string, then it must create a new string to return.

string_ref is designed to solve these efficiency problems. A string_ref is a read-only reference to a contiguous sequence of
characters, and provides much of the functionality of std::string. A string_ref is cheap to create, copy and pass by value,
because it does not actually own the storage that it points to.

A string_ref is implemented as a small struct that contains a pointer to the start of the character data and a count. A string_ref
is cheap to create and cheap to copy.

string_ref acts as a container; it includes all the methods that you would expect in a container, including iteration support, oper-
ator [], at and size. It can be used with any of the iterator-based algorithms in the STL - as long as you don't need to change
the underlying data (sort and remove, for example, will not work)

Besides generic container functionality, string_ref provides a subset of the interface of std::string. This makes it easy to replace
parameters of type const std::string & with boost::string_ref. Like std::string, string_ref has a static member
variable named npos to denote the result of failed searches, and to mean "the end".

Because a string_ref does not own the data that it "points to", it introduces lifetime issues into code that uses it. The programmer
must ensure that the data that a string_ref refers to exists as long as the string_ref does.

2

String_Ref

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples
Integrating string_ref into your code is fairly simple. Wherever you pass a const std::string & or std::string as a
parameter, that's a candidate for passing a boost::string_ref.

std::string extract_part (const std::string &bar) {
return bar.substr (2, 3);
}

if (extract_part ("ABCDEFG").front() == 'C') { /* do something */ }

Let's figure out what happens in this (contrived) example.

First, a temporary string is created from the string literal "ABCDEFG", and it is passed (by reference) to the routine extract_part.
Then a second string is created in the call std::string::substr and returned to extract_part (this copy may be elided by
RVO). Then extract_part returns that string back to the caller (again this copy may be elided). The first temporary string is
deallocated, and front is called on the second string, and then it is deallocated as well.

Two std::strings are created, and two copy operations. That's (potentially) four memory allocations and deallocations, and the
associated copying of data.

Now let's look at the same code with string_ref:

boost::string_ref extract_part (boost::string_ref bar) {
return bar.substr (2, 3);
}

if (extract_part ("ABCDEFG").front() == "C") { /* do something */ }

No memory allocations. No copying of character data. No changes to the code other than the types. There are two string_refs
created, and two string_refs copied, but those are cheap operations.

3

String_Ref

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference
The header file "string_ref.hpp" defines a template boost::basic_string_ref, and four specializations - for char / wchar_t /
char16_t / char32_t .

#include <boost/utility/string_ref.hpp>

Construction and copying:

BOOST_CONSTEXPR basic_string_ref (); // Constructs an empty string_ref
BOOST_CONSTEXPR basic_string_ref(const charT* str); // Constructs from a NULL-terminated string
BOOST_CONSTEXPR basic_string_ref(const charT* str, size_type len); // Constructs from a point↵
er, length pair
template<typename Allocator>
basic_string_ref(const std::basic_string<charT, traits, Allocator>& str); // Constructs from a ↵
std::string
basic_string_ref (const basic_string_ref &rhs);
basic_string_ref& operator=(const basic_string_ref &rhs);

string_ref does not define a move constructor nor a move-assignment operator because copying a string_ref is just a cheap
as moving one.

Basic container-like functions:

BOOST_CONSTEXPR size_type size() const ;
BOOST_CONSTEXPR size_type length() const ;
BOOST_CONSTEXPR size_type max_size() const ;
BOOST_CONSTEXPR bool empty() const ;

// All iterators are const_iterators
BOOST_CONSTEXPR const_iterator begin() const ;
BOOST_CONSTEXPR const_iterator cbegin() const ;
BOOST_CONSTEXPR const_iterator end() const ;
BOOST_CONSTEXPR const_iterator cend() const ;
const_reverse_iterator rbegin() const ;
const_reverse_iterator crbegin() const ;
const_reverse_iterator rend() const ;
const_reverse_iterator crend() const ;

Access to the individual elements (all of which are const):

BOOST_CONSTEXPR const charT& operator[](size_type pos) const ;
const charT& at(size_t pos) const ;
BOOST_CONSTEXPR const charT& front() const ;
BOOST_CONSTEXPR const charT& back() const ;
BOOST_CONSTEXPR const charT* data() const ;

Modifying the string_ref (but not the underlying data):

void clear();
void remove_prefix(size_type n);
void remove_suffix(size_type n);

Searching:

4

String_Ref

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

size_type find(basic_string_ref s) const ;
size_type find(charT c) const ;
size_type rfind(basic_string_ref s) const ;
size_type rfind(charT c) const ;
size_type find_first_of(charT c) const ;
size_type find_last_of (charT c) const ;

size_type find_first_of(basic_string_ref s) const ;
size_type find_last_of(basic_string_ref s) const ;
size_type find_first_not_of(basic_string_ref s) const ;
size_type find_first_not_of(charT c) const ;
size_type find_last_not_of(basic_string_ref s) const ;
size_type find_last_not_of(charT c) const ;

String-like operations:

BOOST_CONSTEXPR basic_string_ref substr(size_type pos, size_type n=npos) const ; // Creates a ↵
new string_ref
bool starts_with(charT c) const ;
bool starts_with(basic_string_ref x) const ;
bool ends_with(charT c) const ;
bool ends_with(basic_string_ref x) const ;

5

String_Ref

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

History
boost 1.53

• Introduced

6

String_Ref

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	String_Ref
	Table of Contents
	Overview
	Examples
	Reference
	History

