
Boost.Config
Vesa Karvonen, John Maddock Beman Dawes

Copyright © 2001-2007 Beman Dawes, Vesa Karvonen, John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Configuring Boost for Your Platform ... 2

Using the default boost configuration ... 2
The <boost/config.hpp> header ... 2
Using the configure script .. 2
User settable options ... 3
Advanced configuration usage .. 6
Testing the boost configuration ... 7

Boost Macro Reference ... 9
Macros that describe C++03 defects .. 9
Macros that describe optional features .. 16
Macros that describe possible C++ future features .. 22
Macros that describe C++11 features not supported ... 22
Macros that allow use of C++11 features with C++03 compilers .. 25
Boost Helper Macros .. 29
Boost Informational Macros ... 35
Boost Deprecated Macros .. 37
Macros for libraries with separate source code ... 40

Standard Integer Types .. 45
Overview .. 45
Rationale .. 45
Caveat emptor ... 45
Exact-width integer types ... 45
Minimum-width integer types ... 45
Fastest minimum-width integer types ... 46
Greatest-width integer types ... 46
Integer Constant Macros .. 46

Guidelines for Boost Authors .. 48
Disabling Compiler Warnings ... 48
Adding New Defect Macros ... 49
Adding New Feature Test Macros .. 50
Modifying the Boost Configuration Headers .. 50

Rationale .. 51
The problem .. 51
The solution .. 51

Acknowledgements ... 52

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Configuring Boost for Your Platform

Using the default boost configuration
Boost comes already configured for most common compilers and platforms; you should be able to use boost "as is". Since the compiler
is configured separately from the standard library, the default configuration should work even if you replace the compiler's standard
library with a third-party standard library (like STLport).

Using boost "as is" without trying to reconfigure is the recommended method for using boost. You can, however, run the configure
script if you want to, and there are regression tests provided that allow you to test the current boost configuration with your particular
compiler setup.

Boost library users can request support for additional compilers or platforms by visiting our Trac and submitting a support request.

The <boost/config.hpp> header
Boost library implementations access configuration macros via

#include <boost/config.hpp>

While Boost library users are not required to include that file directly, or use those configuration macros, such use is acceptable. The
configuration macros are documented as to their purpose, usage, and limitations which makes them usable by both Boost library and
user code.

Boost informational or helper macros are designed for use by Boost users as well as for our own internal use. Note however, that
the feature test and defect test macros were designed for internal use by Boost libraries, not user code, so they can change at any
time (though no gratuitous changes are made to them). Boost library problems resulting from changes to the configuration macros
are caught by the Boost regression tests, so the Boost libraries are updated to account for those changes. By contrast, Boost library
user code can be adversely affected by changes to the macros without warning. The best way to keep abreast of changes to the
macros used in user code is to monitor the discussions on the Boost developers list.

Using the configure script

Important

This configure script only sets up the Boost headers for use with a particular compiler. It has no effect on Boost.Build,
or how the libraries are built.

If you know that boost is incorrectly configured for your particular setup, and you are on a UNIX like platform, then you may want
to try and improve things by running the boost configure script. From a shell command prompt you will need to cd into <boost-
root>/libs/config/ and type:

sh ./configure

you will see a list of the items being checked as the script works its way through the regression tests. Note that the configure script
only really auto-detects your compiler if it's called g++, c++ or CC. If you are using some other compiler you will need to set one
or more of the following environment variables:

2

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://stlport.sourceforge.net
https://svn.boost.org/trac/boost/newticket
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionVariable

The name of the compiler, for example c++.CXX

The compiler flags to use, for example -O2.CXXFLAGS

The linker flags to use, for example -L/mypath.LDFLAGS

Any libraries to link in, for example -lpthread.LIBS

For example to run the configure script with HP aCC, you might use something like:

export CXX="aCC"
export CXXFLAGS="-Aa -DAportable -D__HPACC_THREAD_SAFE_RB_TREE \
 -DRWSTD_MULTI_THREAD -DRW_MULTI_THREAD -D_REENTRANT -D_THREAD_SAFE"
export LDFLAGS="-DAportable"
export LIBS="-lpthread"
sh ./configure

However you run the configure script, when it finishes you will find a new header -user.hpp- located in the <boost-
root>/libs/config/ directory. Note that configure does not install this header into your boost include path by default. This
header contains all the options generated by the configure script, plus a header-section that contains the user settable options from
the default version of <boost/config/user.hpp> (located under <boost-root>/boost/config/). There are two ways you can use
this header:

• Option 1: copy the header into <boost-root>/boost/config/ so that it replaces the default user.hpp provided by boost. This
option allows only one configure-generated setup; boost developers should avoid this option, as it incurs the danger of accidentally
committing a configure-modified <boost/config/user.hpp> to the svn repository (something you will not be thanked for!).

• Option 2: give the header a more memorable name, and place it somewhere convenient; then, define the macro
BOOST_USER_CONFIG to point to it. For example create a new sub-directory <boost-root>/boost/config/ user/, and copy
the header there; for example as multithread-gcc-config.hpp. Then, when compiling add the command line option:
-DBOOST_USER_CONFIG="<boost/config/user/multithread-gcc-config.hpp>", and boost will use the new configur-
ation header. This option allows you to generate more than one configuration header, and to keep them separate from the boost
source - so that updates to the source do not interfere with your configuration.

User settable options
There are some configuration-options that represent user choices, rather than compiler defects or platform specific options. These
are listed in <boost/config/user.hpp> and at the start of a configure-generated user.hpp header. You can define these on the
command line, or by editing <boost/config/user.hpp>, they are listed in the following table:

3

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

When defined, it should point to the name of the user configur-
ation file to include prior to any boost configuration files. When
not defined, defaults to <boost/config/user.hpp>.

BOOST_USER_CONFIG

When defined, it should point to the name of the compiler con-
figuration file to use. Defining this cuts out the compiler selec-

BOOST_COMPILER_CONFIG

tion logic, and eliminates the dependency on the header contain-
ing that logic. For example if you are using gcc, then you could
define BOOST_COMPILER_CONFIG to <boost/config/com-
piler/gcc.hpp>.

When defined, it should point to the name of the standard library
configuration file to use. Defining this cuts out the standard

BOOST_STDLIB_CONFIG

library selection logic, and eliminates the dependency on the
header containing that logic. For example if you are using
STLport, then you could define BOOST_STDLIB_CONFIG to
<boost/config/stdlib/stlport.hpp>.

When defined, it should point to the name of the platform con-
figuration file to use. Defining this cuts out the platform selection

BOOST_PLATFORM_CONFIG

logic, and eliminates the dependency on the header containing
that logic. For example if you are compiling on linux, then you
could define BOOST_PLATFORM_CONFIG to <boost/con-
fig/platform/linux.hpp>.

When defined, no compiler configuration file is selected or in-
cluded, define when the compiler is fully conformant with the

BOOST_NO_COMPILER_CONFIG

standard, or where the user header (see BOOST_USER_CONFIG),
has had any options necessary added to it, for example by an
autoconf generated configure script.

When defined, no standard library configuration file is selected
or included, define when the standard library is fully conformant

BOOST_NO_STDLIB_CONFIG

with the standard, or where the user header (see
BOOST_USER_CONFIG), has had any options necessary added
to it, for example by an autoconf generated configure script.

When defined, no platform configuration file is selected or in-
cluded, define when the platform is fully conformant with the

BOOST_NO_PLATFORM_CONFIG

standard (and has no useful extra features), or where the user
header (see BOOST_USER_CONFIG), has had any options neces-
sary added to it, for example by an autoconf generated configure
script.

Equivalent to defining all of BOOST_NO_COMPILER_CONFIG,
BOOST_NO_STDLIB_CONFIG and BOOST_NO_PLATFORM_CON-
FIG.

BOOST_NO_CONFIG

The normal behavior for compiler versions that are newer than
the last known version, is to assume that they have all the same

BOOST_STRICT_CONFIG

defects as the last known version. By setting this define, then
compiler versions that are newer than the last known version
are assumed to be fully conforming with the standard. This is
probably most useful for boost developers or testers, and for
those who want to use boost to test beta compiler versions.

4

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/gcc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/gcc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/linux.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/linux.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

When this flag is set, if the config finds anything unknown, then
it will stop with a #error rather than continue. Boost regression
testers should set this define, as should anyone who wants to
quickly check whether boost is supported on their platform.

BOOST_ASSERT_CONFIG

When defined, disables threading support, even if the compiler
in its current translation mode supports multiple threads.

BOOST_DISABLE_THREADS

When defined, disables the use of Win32 specific API's, even
when these are available. Also has the effect of setting
BOOST_DISABLE_THREADS unless BOOST_HAS_PTHREADS is
set. This option may be set automatically by the config system
when it detects that the compiler is in "strict mode".

BOOST_DISABLE_WIN32

Stops boost headers from including any prefix/suffix headers
that normally control things like struct packing and alignment.

BOOST_DISABLE_ABI_HEADERS

A prefix header to include in place of whatever boost.config
would normally select, any replacement should set up struct
packing and alignment options as required.

BOOST_ABI_PREFIX

A suffix header to include in place of whatever boost.config
would normally select, any replacement should undo the effects
of the prefix header.

BOOST_ABI_SUFFIX

Forces all libraries that have separate source, to be linked as
dll's rather than static libraries on Microsoft Windows (this
macro is used to turn on __declspec(dllimport) modifiers,
so that the compiler knows which symbols to look for in a dll
rather than in a static library). Note that there may be some lib-
raries that can only be statically linked (Boost.Test for example)
and others which may only be dynamically linked (Boost.Thread
for example), in these cases this macro has no effect.

BOOST_ALL_DYN_LINK

Forces library "whatever" to be linked as a dll rather than a
static library on Microsoft Windows: replace the WHATEVER
part of the macro name with the name of the library that you
want to dynamically link to, for example use
BOOST_DATE_TIME_DYN_LINK or BOOST_REGEX_DYN_LINK
etc (this macro is used to turn on __declspec(dllimport)
modifiers, so that the compiler knows which symbols to look
for in a dll rather than in a static library). Note that there may
be some libraries that can only be statically linked (Boost.Test
for example) and others which may only be dynamically linked
(Boost.Thread for example), in these cases this macro is unsup-
ported.

BOOST_WHATEVER_DYN_LINK

Tells the config system not to automatically select which librar-
ies to link against. Normally if a compiler supports #pragma lib,
then the correct library build variant will be automatically selec-
ted and linked against, simply by the act of including one of that
library's headers. This macro turns that feature off.

BOOST_ALL_NO_LIB

5

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Tells the config system not to automatically select which library
to link against for library "whatever", replace WHATEVER in
the macro name with the name of the library; for example
BOOST_DATE_TIME_NO_LIB or BOOST_REGEX_NO_LIB. Nor-
mally if a compiler supports #pragma lib, then the correct
library build variant will be automatically selected and linked
against, simply by the act of including one of that library's
headers. This macro turns that feature off.

BOOST_WHATEVER_NO_LIB

Causes the auto-linking code to output diagnostic messages in-
dicating the name of the library that is selected for linking.

BOOST_LIB_DIAGNOSTIC

Overrides the name of the toolset part of the name of library
being linked to; note if defined this must be defined to a quoted
string literal, for example "abc".

BOOST_LIB_TOOLSET

Advanced configuration usage
By setting various macros on the compiler command line or by editing <boost/config/user.hpp>, the boost configuration setup can
be optimised in a variety of ways.

Boost's configuration is structured so that the user-configuration is included first (defaulting to <boost/config/user.hpp> if
BOOST_USER_CONFIG is not defined). This sets up any user-defined policies, and gives the user-configuration a chance to influence
what happens next.

Next the compiler, standard library, and platform configuration files are included. These are included via macros (BOOST_COM-
PILER_CONFIG etc, see user settable macros), and if the corresponding macro is undefined then a separate header that detects which
compiler/standard library/platform is in use is included in order to set these. The config can be told to ignore these headers altogether
if the corresponding BOOST_NO_XXX macro is set (for example BOOST_NO_COMPILER_CONFIG to disable including any compiler
configuration file - see user settable macros).

Finally the boost configuration header, includes <boost/config/suffix.hpp>; this header contains any boiler plate configuration code
- for example where one boost macro being set implies that another must be set also.

The following usage examples represent just a few of the possibilities:

Example 1: creating our own frozen configuration

Lets suppose that we're building boost with Visual C++ 6, and STLport 4.0. Lets suppose also that we don't intend to update our
compiler or standard library any time soon. In order to avoid breaking dependencies when we update boost, we may want to "freeze"
our configuration headers, so that we only have to rebuild our project if the boost code itself has changed, and not because the boost
config has been updated for more recent versions of Visual C++ or STLport. We'll start by realising that the configuration files in
use are: <boost/config/compiler/visualc.hpp> for the compiler, <boost/config/stdlib/stlport.hpp> for the
standard library, and <boost/config/platform/win32.hpp> for the platform. Next we'll create our own private configuration
directory: boost/config/mysetup/, and copy the configuration files into there. Finally, open up <boost/config/user.hpp> and
edit the following defines:

#define BOOST_COMPILER_CONFIG "boost/config/mysetup/visualc.hpp"
#define BOOST_STDLIB_CONFIG "boost/config/mysetup/stlport.hpp"
#define BOOST_USER_CONFIG "boost/config/mysetup/win32.hpp"

Now when you use boost, its configuration header will go straight to our "frozen" versions, and ignore the default versions, you will
now be insulated from any configuration changes when you update boost. This technique is also useful if you want to modify some
of the boost configuration files; for example if you are working with a beta compiler release not yet supported by boost.

6

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/compiler/visualc.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/stdlib/stlport.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/platform/win32.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example 2: skipping files that you don't need

Lets suppose that you're using boost with a compiler that is fully conformant with the standard; you're not interested in the fact that
older versions of your compiler may have had bugs, because you know that your current version does not need any configuration
macros setting. In a case like this, you can define BOOST_NO_COMPILER_CONFIG either on the command line, or in <boost/con-
fig/user.hpp>, and miss out the compiler configuration header altogether (actually you miss out two headers, one which works out
what the compiler is, and one that configures boost for it). This has two consequences: the first is that less code has to be compiled,
and the second that you have removed a dependency on two boost headers.

Example 3: using configure script to freeze the boost configuration

If you are working on a unix-like platform then you can use the configure script to generate a "frozen" configuration based on your
current compiler setup - see using the configure script for more details.

Testing the boost configuration
The boost configuration library provides a full set of regression test programs under the <boost-root>/boost/config/ test/

sub-directory:

DescriptionFile

Prints out a detailed description of your compiler/standard lib-
rary/platform setup, plus your current boost configuration. The
information provided by this program is useful in setting up the
boost configuration files. If you report that boost is incorrectly
configured for your compiler/library/platform then please include
the output from this program when reporting the changes re-
quired.

config_info.cpp

A monolithic test program that includes most of the individual
test cases. This provides a quick check to see if boost is correctly
configured for your compiler/library/platform.

config_test.cpp

Tests your standard library's std::numeric_limits imple-
mentation (or its boost provided replacement if
BOOST_NO_LIMITS is defined). This test file fails with most
versions of numeric_limits, mainly due to the way that some
compilers treat NAN's and infinity.

limits_test.cpp

Individual compiler defect test files. Each of these should com-
pile, if one does not then the corresponding BOOST_NO_XXX
macro needs to be defined - see each test file for specific details.

no_*pass.cpp

Individual compiler defect test files. Each of these should not
compile, if one does then the corresponding BOOST_NO_XXX
macro is defined when it need not be - see each test file for
specific details.

no_*fail.cpp

Individual feature test files. If one of these does not compile
then the corresponding BOOST_HAS_XXX macro is defined when
it should not be - see each test file for specific details.

has_*pass.cpp

Individual feature test files. If one of these does compile then
the corresponding BOOST_HAS_XXX macro can be safely defined
- see each test file for specific details.

has_*fail.cpp

7

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Although you can run the configuration regression tests as individual test files, there are rather a lot of them, so there are a couple
of shortcuts to help you out:

If you have built the boost regression test driver, then you can use this to produce a nice html formatted report of the results using
the supplied test file.

Alternatively you can run the configure script like this:

./configure --enable-test

in which case the script will test the current configuration rather than creating a new one from scratch.

If you are reporting the results of these tests for a new platform/library/compiler then please include a log of the full compiler output,
the output from config_info.cpp, and the pass/fail test results.

8

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../tools/regression/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost Macro Reference

Macros that describe C++03 defects
The following macros all describe features that are required by the C++03 standard, if one of the following macros is defined, then
it represents a defect in the compiler's conformance with the 2003 standard.

9

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler exhibits certain partial spe-
cialisation bug - probably Borland C++
Builder specific.

CompilerBOOST_BCB_PARTIAL_SPECIALIZA-

TION_BUG

Argument dependent lookup fails if there
is a using declaration for the symbol being

CompilerBOOST_FUNCTION_SCOPE_USING_DE-

CLARATION_BREAKS_ADL

looked up in the current scope. For ex-
ample, using boost::get_pointer;
prevents ADL from finding overloads of
get_pointer in namespaces nested in-
side boost (but not elsewhere). Probably
Borland specific.

The compiler locates and searches
namespaces that it should *not* in fact

CompilerBOOST_NO_ADL_BARRIER

search when performing argument depend-
ent lookup.

Compiler does not implement argument-
dependent lookup (also named Koenig

CompilerBOOST_NO_ARGUMENT_DEPEND-

ENT_LOOKUP

lookup); see std::3.4.2 [basic.koenig.look-
up]

If the compiler / library supplies non-
standard or broken std::auto_ptr.

Standard libraryBOOST_NO_AUTO_PTR

Compiler has not completely implemented
value-initialization. See also The Util-
ity/Value Init docs

CompilerBOOST_NO_COMPLETE_VALUE_INITIAL-

IZATION

The Platform does not provide functions
for the character-classifying operations
<ctype.h> and <cctype>, only macros.

PlatformBOOST_NO_CTYPE_FUNCTIONS

If template specialisations for cv-qualified
types conflict with a specialisation for a
cv-unqualififed type.

CompilerBOOST_NO_CV_SPECIALIZATIONS

If template specialisations for cv-void
types conflict with a specialisation for
void.

CompilerBOOST_NO_CV_VOID_SPECIALIZA-

TIONS

The Platform does not provide
<wchar.h> and <cwchar>.

PlatformBOOST_NO_CWCHAR

The Platform does not provide <wc-
type.h> and <cwctype>.

PlatformBOOST_NO_CWCTYPE

The C standard library doesn't provide
<fenv.h> . <boost/de-

Platform, Standard libraryBOOST_NO_FENV_H

tail/fenv.hpp> should be included
instead of <fenv.h> for maximum port-
ability on platforms which do provide
<fenv.h>.

10

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../utility/value_init.htm#compiler_issues
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../utility/value_init.htm#compiler_issues
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/fenv.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/fenv.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler fails to compile a nested
class that has a dependent base class:

template<typename T>
struct foo : {

template<typename U>
struct bar : public U {};

};

CompilerBOOST_NO_DEPENDENT_NESTED_DERIV-

ATIONS

Template value parameters cannot have
a dependent type, for example:

template<class T, type↵
name T::type value>
class X { ... };

CompilerBOOST_NO_DEPENDENT_TYPES_IN_TEM-

PLATE_VALUE_PARAMETERS

The standard library does not put some or
all of the contents of <exception> in
namespace std.

Standard LibraryB O O S T _ N O _ E X C E P -

TION_STD_NAMESPACE

The compiler does not support exception
handling (this setting is typically required
by many C++ compilers for embedded
platforms). Note that there is no require-
ment for boost libraries to honor this
configuration setting - indeed doing so
may be impossible in some cases. Those
libraries that do honor this will typically
abort if a critical error occurs - you have
been warned!

CompilerBOOST_NO_EXCEPTIONS

The compiler does not perform function
template ordering or its function template
ordering is incorrect.

// #1
template<class T> void f(T);

// #2
tem↵
plate<class T,class U> void f(T(*)(U));

void bar(int);

f(&bar); // should choose #2.

CompilerBOOST_NO_FUNCTION_TEMPLATE_OR-

DERING

Compiler violates std::9.4.2/4.CompilerBOOST_NO_INCLASS_MEMBER_INITIAL-

IZATION

11

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The C++ implementation does not provide
wchar_t, or it is really a synonym for
another integral type. Use this symbol to
decide whether it is appropriate to expli-
citly specialize a template on wchar_t if
there is already a specialization for other
integer types.

CompilerBOOST_NO_INTRINSIC_WCHAR_T

The standard library lacks <iosfwd>.std libBOOST_NO_IOSFWD

The standard library lacks <iostream>,
<istream> or <ostream>.

std libBOOST_NO_IOSTREAM

The C++ compiler does not support
SFINAE with abstract types, this is
covered by Core Language DR337, but is
not part of the current standard. Fortu-
nately most compilers that support
SFINAE also support this DR.

CompilerBOOST_NO_IS_ABSTRACT

The C++ implementation does not provide
the <limits> header. Never check for
this symbol in library code; always in-
clude <boost/limits.hpp>, which
guarantees to provide std::numer-

ic_limits.

Standard libraryBOOST_NO_LIMITS

C++11 additions to std::numeric_lim-
its are not available for use. static
function numeric_limits<T>::low-

est() the lowest finite value represent-
able by the numeric type. static int

const max_digits10 the number of
decimal digits that are required to make
sure that two distinct values of the type
have distinct decimal representations.
template<> class numeric_lim-

its<char16_t>;, see also
BOOST_NO_CXX11_CHAR16_T, tem-

plate<> class numeric_lim-

its<char32_t>; see also
BOOST_NO_CXX11_CHAR32_T. Replaces
BOOST_NO_NUMERIC_LIMITS_LOW-
EST.

Standard libraryBOOST_NO_CXX11_NUMERIC_LIMITS

Constants such as numeric_lim-

its<T>::is_signed are not available
for use at compile-time.

Standard libraryB O O S T _ N O _ L I M I T S _ C O M -

PILE_TIME_CONSTANTS

12

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#337
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

There is no specialization for numer-
ic_limits<long long> and numer-
ic_limits<unsigned long long>.
<boost/limits.hpp> will then add
these specializations as a standard library
"fix" only if the compiler supports the
long long datatype.

Standard libraryBOOST_NO_LONG_LONG_NUMERIC_LIM-

ITS

The compiler does not support the special-
ization of individual member functions of
template classes.

CompilerBOOST_NO_MEMBER_FUNCTION_SPE-

CIALIZATIONS

If the compiler supports member tem-
plates, but not the template keyword when
accessing member template classes.

CompilerB O O S T _ N O _ M E M B E R _ T E M -

PLATE_KEYWORD

Member template friend syntax (tem-
plate<class P> friend class

frd;) described in the C++ Standard,
14.5.3, not supported.

CompilerB O O S T _ N O _ M E M B E R _ T E M -

PLATE_FRIENDS

Member template functions not fully
supported.

CompilerBOOST_NO_MEMBER_TEMPLATES

There is no specialization for numer-
ic_limits<__int64> and numer-

ic_limits<unsigned __int64>.
<boost/limits.hpp> will then add
these specializations as a standard library
"fix", only if the compiler supports the
__int64 datatype.

Standard libraryBOOST_NO_MS_INT64_NUMERIC_LIM-

ITS

Compiler doesn't allow a nested class to
access private members of its containing
class. Probably Borland/CodeGear specif-
ic.

CompilerBOOST_NO_NESTED_FRIENDSHIP

Compiler requires inherited operator
friend functions to be defined at
namespace scope, then using'ed to boost.
Probably GCC specific. See
<boost/operators.hpp> for example.

CompilerBOOST_NO_OPERATORS_IN_NAMESPACE

The compiler does not correctly handle
partial specializations which depend upon
default arguments in the primary template.

CompilerBOOST_NO_PARTIAL_SPECIALIZA-

TION_IMPLICIT_DEFAULT_ARGS

The compiler does not correctly handle
pointers to const member functions, pre-
venting use of these in overloaded func-
tion templates. See <boost/function-
al.hpp> for example.

CompilerBOOST_NO_POINTER_TO_MEM-

BER_CONST

Pointers to members don't work when
used as template parameters.

CompilerBOOST_NO_POINTER_TO_MEMBER_TEM-

PLATE_PARAMETERS

13

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/functional.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/functional.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler misreads 8.5.1, treating
classes as non-aggregate if they contain
private or protected member functions.

CompilerBOOST_NO_PRIVATE_IN_AGGREGATE

The compiler may (or may not) have the
typeid operator, but RTTI on the dynamic
type of an object is not supported.

CompilerBOOST_NO_RTTI

The compiler does not support the "Sub-
stitution Failure Is Not An Error" meta-
programming idiom.

CompilerBOOST_NO_SFINAE

The compiler does not support usage of
SFINAE with arbitrary expressions.

CompilerBOOST_NO_SFINAE_EXPR

The C++ standard library does not provide
a standards conforming std::allocat-
or.

Standard libraryBOOST_NO_STD_ALLOCATOR

The platform does not have a conforming
version of std::distance.

Standard libraryBOOST_NO_STD_DISTANCE

The C++ implementation fails to provide
the std::iterator class.

Standard libraryBOOST_NO_STD_ITERATOR

The compiler does not provide a standard
compliant implementation of
std::iterator_traits. Note that the
compiler may still have a non-standard
implementation.

Standard libraryBOOST_NO_STD_ITERATOR_TRAITS

The standard library lacks std::locale.Standard libraryBOOST_NO_STD_LOCALE

The standard library lacks a conforming
std::messages facet.

Standard libraryBOOST_NO_STD_MESSAGES

The C++ standard library does not provide
the min() and max() template functions
that should be in <algorithm>.

Standard libraryBOOST_NO_STD_MIN_MAX

Defined if the standard library's output
iterators are not assignable.

Standard libraryBOOST_NO_STD_OUTPUT_ITERATOR_AS-

SIGN

The <typeinfo> header declares
type_info in the global namespace in-
stead of namespace std.

Standard libraryBOOST_NO_STD_TYPEINFO

The standard library lacks a conforming
std::use_facet.

Standard libraryBOOST_NO_STD_USE_FACET

The standard library's implementation of
std::basic_streambuf<wchar_t> is
either missing, incomplete, or buggy.

Standard libraryBOOST_NO_STD_WSTREAMBUF

14

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The standard library lacks
std::wstring.

Standard libraryBOOST_NO_STD_WSTRING

The contents of C++ standard headers for
C library functions (the <c...> headers)
have not been placed in namespace std.
This test is difficult - some libraries "fake"
the std C functions by adding using declar-
ations to import them into namespace std,
unfortunately they don't necessarily catch
all of them...

Compiler, PlatformBOOST_NO_STDC_NAMESPACE

The C++ implementation does not provide
the <sstream> header.

Standard libraryBOOST_NO_STRINGSTREAM

The platform does not have a conforming
version of swprintf.

PlatformBOOST_NO_SWPRINTF

Class template partial specialization
(14.5.4 [temp.class.spec]) not supported.

CompilerBOOST_NO_TEMPLATE_PARTIAL_SPE-

CIALIZATION

The standard library does not provide
templated iostream classes.

Standard libraryBOOST_NO_TEMPLATED_IOSTREAMS

The standard library does not provide
templated iterator constructors for its
containers.

Standard libraryBOOST_NO_TEMPLATED_ITERATOR_CON-

STRUCTORS

The compiler does not support template
template parameters.

CompilerBOOST_NO_TEMPLATE_TEMPLATES

The compiler does not support the typeid
operator at all.

CompilerBOOST_NO_TYPEID

The typename keyword cannot be used
when creating a temporary of a Dependent
type.

CompilerBOOST_NO_TYPENAME_WITH_CTOR

If a return is unreachable, then no return
statement should be required, however
some compilers insist on it, while other
issue a bunch of warnings if it is in fact
present.

CompilerBOOST_NO_UNREACHABLE_RETURN_DE-

TECTION

The compiler will not accept a using de-
claration that brings a function from a
typename used as a base class into a de-
rived class if functions of the same name
are present in the derived class.

CompilerBOOST_NO_USING_DECLARATION_OVER-

LOADS_FROM_TYPENAME_BASE

15

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The compiler will not accept a using de-
claration that imports a template class or
function from another namespace. Origin-
ally a Borland specific problem with im-
ports to/from the global namespace, exten-
ded to MSVC6 which has a specific issue
with importing template classes (but not
functions).

CompilerBOOST_NO_USING_TEMPLATE

The compiler does not allow a void func-
tion to return the result of calling another
void function.

void f() {}
void g() { return f(); }

CompilerBOOST_NO_VOID_RETURNS

Macros that describe optional features
The following macros describe features that are not required by the C++ standard. The macro is only defined if the feature is present.

16

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The platform supports BeOS style threads.PlatformBOOST_HAS_BETHREADS

The platform has the POSIX API
clock_gettime.

PlatformBOOST_HAS_CLOCK_GETTIME

The platform has the POSIX header
<dirent.h>.

PlatformBOOST_HAS_DIRENT_H

The platform has the functions expm1,
expm1f and expm1l in <math.h>

PlatformBOOST_HAS_EXPM1

The platform has the Win32 API type
FTIME.

PlatformBOOST_HAS_FTIME

The platform has the Win32 API GetSys-
temTimeAsFileTime.

PlatformBOOST_HAS_GETSYSTEMTIMEASFILE-

TIME

The platform has the POSIX API get-
timeofday.

PlatformBOOST_HAS_GETTIMEOFDAY

The C++ implementation provides the
(SGI) hash_set and hash_map classes.

Standard libraryBOOST_HAS_HASH

W h e n d e fi n e d ,
BOOST_HASH_SET_HEADER and
BOOST_HASH_LIST_HEADER will contain
the names of the header needed to access
hash_se t and hash_map ;
BOOST_STD_EXTENSION_NAMESPACE

will provide the namespace in which the
two class templates reside.

The compiler has __int128 and un-
signed __int128 as native types which

CompilerBOOST_HAS_INT128

are distinct from all the regular C++ in-
teger types.

The platform has the functions log1p,
log1pf and log1pl in <math.h>.

PlatformBOOST_HAS_LOG1P

The standard library lacks a conforming
std::use_facet, but has a macro

Standard libraryBOOST_HAS_MACRO_USE_FACET

_USE(loc, Type) that does the job.
This is primarily for the Dinkumware std
lib.

The compiler supports the __int64 data
type.

CompilerBOOST_HAS_MS_INT64

The platform has the POSIX API
nanosleep.

PlatformBOOST_HAS_NANOSLEEP

The platform has an <nl_types.h>.PlatformBOOST_HAS_NL_TYPES_H

17

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

Indicated that the compiler supports the
named return value optimization (NRVO).
Used to select the most efficient imple-
mentation for some function. See
<boost/operators.hpp> for example.

CompilerBOOST_HAS_NRVO

The standard library has a partially con-
forming std::allocator class, but
without any of the member templates.

Standard LibraryBOOST_HAS_PARTIAL_STD_ALLOCATOR

The compiler recognizes the #pragma
once directive which tells that the contain-
ing header should be included only once
while preprocessing the current translation
unit. The pragma may improve compile
times of large projects with some com-
pilers.

CompilerBOOST_HAS_PRAGMA_ONCE

The platform has the POSIX API
pthread_delay_np.

PlatformBOOST_HAS_PTHREAD_DELAY_NP

The platform has the POSIX API
pthread_mutexattr_settype.

PlatformBOOST_HAS_PTHREAD_MUTEXATTR_SET-

TYPE

The platform has the POSIX API
pthread_yield.

PlatformBOOST_HAS_PTHREAD_YIELD

The platform support POSIX style
threads.

PlatformBOOST_HAS_PTHREADS

The platform has the POSIX API
sched_yield.

PlatformBOOST_HAS_SCHED_YIELD

The compiler has native support for SGI
style type traits.

Compiler, Standard libraryBOOST_HAS_SGI_TYPE_TRAITS

The platform has a <stdint.h>PlatformBOOST_HAS_STDINT_H

The C++ implementation provides the
(SGI) slist class. When defined,
BOOST_SLIST_HEADER will contain the
name of the header needed to access
slist and BOOST_STD_EXTEN-

SION_NAMESPACE will provide the
namespace in which slist resides.

Standard libraryBOOST_HAS_SLIST

The standard library lacks a conforming
std::use_facet, but has a workaround
class-version that does the job. This is
primarily for the STLport std lib.

Standard libraryBOOST_HAS_STLP_USE_FACET

18

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/operators.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The library has a TR1 conforming version
of <array>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_HDR_ARRAY.

Standard libraryBOOST_HAS_TR1_ARRAY

The library has a version of <complex>
that supports passing scalars to the com-
plex number algorithms.

Standard libraryBOOST_HAS_TR1_COMPLEX_OVERLOADS

The library has a version of <complex>
that includes the new inverse trig func-
tions from TR1.

Standard libraryBOOST_HAS_TR1_COMPLEX_IN-

VERSE_TRIG

The library has TR1 conforming reference
wrappers in <functional>. This macro
is only guaranteed to be defined after in-
cluding one of the headers from
Boost.TR1. Further this macro is now
d e p r e c a t e d i n f avo u r o f
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_REFERENCE_WRAPPER

The library has a TR1 conforming res-
ult_of template in <functional>. This
macro is only guaranteed to be defined
after including one of the headers from
Boost.TR1. Further this macro is now
d e p r e c a t e d i n f avo u r o f
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_RESULT_OF

The library has a TR1 conforming
mem_fn function template in <function-
al>. This macro is only guaranteed to be
defined after including one of the headers
from Boost.TR1. Further this macro is
now deprecated in favour of
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_MEM_FN

The library has a TR1 conforming bind
function template in <functional>. This
macro is only guaranteed to be defined
after including one of the headers from
Boost.TR1. Further this macro is now
d e p r e c a t e d i n f avo u r o f
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_BIND

19

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The library has a TR1 conforming func-
tion class template in <functional>.
This macro is only guaranteed to be
defined after including one of the headers
from Boost.TR1. Further this macro is
now deprecated in favour of
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_FUNCTION

The library has a TR1 conforming hash
function template in <functional>. This
macro is only guaranteed to be defined
after including one of the headers from
Boost.TR1. Further this macro is now
d e p r e c a t e d i n f avo u r o f
BOOST_NO_CXX11_HDR_FUNCTION-
AL.

Standard libraryBOOST_HAS_TR1_HASH

The library has a TR1 conforming
shared_ptr class template in
<memory>. This macro is only guaranteed
to be defined after including one of the
headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_SMART_PTR.

Standard libraryBOOST_HAS_TR1_SHARED_PTR

The library has a TR1 conforming version
of <random>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_HDR_RANDOM.

Standard libraryBOOST_HAS_TR1_RANDOM

The library has a TR1 conforming version
of <regex>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_HDR_REGEX.

Standard libraryBOOST_HAS_TR1_REGEX

The library has a TR1 conforming version
of <tuple>. This macro is only guaran-
teed to be defined after including one of
the headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_HDR_TUPLE.

Standard libraryBOOST_HAS_TR1_TUPLE

The library has a TR1 conforming version
of <type_traits>. This macro is only
guaranteed to be defined after including
one of the headers from Boost.TR1. Fur-
ther this macro is now deprecated in fa-
v o u r o f
BOOST_NO_CXX11_HDR_TYPE_TRAITS.

Standard libraryBOOST_HAS_TR1_TYPE_TRAITS

20

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

The library has the TR1 additions to
<utility> (tuple interface to
std::pair). This macro is only guaran-
teed to be defined after including one of
the headers from Boost.TR1. Further this
macro is now deprecated in favour of
BOOST_NO_CXX11_HDR_TUPLE.

Standard libraryBOOST_HAS_TR1_UTILITY

The library has a TR1 conforming version
of <unordered_map>. This macro is
only guaranteed to be defined after includ-
ing one of the headers from Boost.TR1.
Further this macro is now deprecated in
f a v o u r o f
BOOST_NO_CXX11_HDR_UN-
ORDERED_MAP.

Standard libraryBOOST_HAS_TR1_UNORDERED_MAP

The library has a TR1 conforming version
of <unordered_set>. This macro is
only guaranteed to be defined after includ-
ing one of the headers from Boost.TR1.
Further this macro is now deprecated in
f a v o u r o f
BOOST_NO_CXX11_HDR_UN-
ORDERED_SET.

Standard libraryBOOST_HAS_TR1_UNORDERED_SET

Implies all the other BOOST_HAS_TR1_*
macros should be set.

Standard libraryBOOST_HAS_TR1

Defined if the compiler, in its current
translation mode, supports multiple
threads of execution.

Platform, CompilerBOOST_HAS_THREADS

The standard library lacks a conforming
std::use_facet, but has a two argument
version that does the job. This is primarily
for the Rogue Wave std lib.

Standard libraryBOOST_HAS_TWO_ARG_USE_FACET

The Platform provides <unistd.h>.PlatformBOOST_HAS_UNISTD_H

The platform supports MS Windows style
threads.

PlatformBOOST_HAS_WINTHREADS

Microsoft's broken version of
std::iterator is being used. This im-
plies that std::iterator takes no more
than two template parameters.

Standard libraryBOOST_MSVC_STD_ITERATOR

21

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSectionMacro

Microsoft Visual C++ 6.0 has enough
member template idiosyncrasies (being
polite) that BOOST_NO_MEMBER_TEM-
PLATES is defined for this compiler.
BOOST_MSVC6_MEMBER_TEMPLATES is
defined to allow compiler specific work-
arounds. This macro gets defined automat-
ically if BOOST_NO_MEMBER_TEMPLATES
is not defined - in other words this is
treated as a strict subset of the features
required by the standard.

CompilerBOOST_MSVC6_MEMBER_TEMPLATES

There are no 1998 C++ Standard headers
<stdint.h> or <cstdint>, although
the 1999 C Standard does include
<stdint.h>. If <stdint.h> is present,
<boost/stdint.h> can make good use
of it, so a flag is supplied (signalling
presence; thus the default is not present,
conforming to the current C++ standard).

PlatformBOOST_HAS_STDINT_H

Macros that describe possible C++ future features
The following macros describe features that may be included in some future ISO C++ standard, but have not yet been approved for
inclusion in the language.

DescriptionMacro

The compiler supports concepts.BOOST_HAS_CONCEPTS

Macros that describe C++11 features not supported
The following macros describe features in the 2011 ISO C++ standard, formerly known as C++0x, that are not yet supported by a
particular compiler or library.

22

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The standard library header <memory> has no working
std::addressof.

BOOST_NO_CXX11_ADDRESSOF

The compiler does not support the alignas keyword.BOOST_NO_CXX11_ALIGNAS

The standard library does not provide a C++11 version of
std::allocator in <memory>.

BOOST_NO_CXX11_ALLOCATOR

The standard library <memory> does not support atomic smart
pointer operations.

BOOST_NO_CXX11_ATOMIC_SMART_PTR

The standard library does not provide header <atomic>.BOOST_NO_CXX11_HDR_ATOMIC

The standard library does not provide header <array>.BOOST_NO_CXX11_HDR_ARRAY

The standard library does not provide header <chrono>.BOOST_NO_CXX11_HDR_CHRONO

The standard library does not provide header <codecvt>.BOOST_NO_CXX11_HDR_CODECVT

The standard library does not provide header <condition_vari-
able>.

BOOST_NO_CXX11_HDR_CONDITION_VARIABLE

The standard library does not provide header <forward_list>.BOOST_NO_CXX11_HDR_FORWARD_LIST

The standard library does not provide a C++11 compatible ver-
sion of <functional>.

BOOST_NO_CXX11_HDR_FUNCTIONAL

The standard library does not provide header <future>.BOOST_NO_CXX11_HDR_FUTURE

The standard library does not provide header <initializer_list>.BOOST_NO_CXX11_HDR_INITIALIZER_LIST

The standard library does not provide header <mutex>.BOOST_NO_CXX11_HDR_MUTEX

The standard library does not provide header <random>.BOOST_NO_CXX11_HDR_RANDOM

The standard library does not provide header <ratio>.BOOST_NO_CXX11_HDR_RATIO

The standard library does not provide header <regex>.BOOST_NO_CXX11_HDR_REGEX

The standard library does not provide header <system_error>.BOOST_NO_CXX11_HDR_SYSTEM_ERROR

The standard library does not provide header <thread>.BOOST_NO_CXX11_HDR_THREAD

The standard library does not provide header <tuple>.BOOST_NO_CXX11_HDR_TUPLE

The standard library does not provide header <typeindex>.BOOST_NO_CXX11_HDR_TYPEINDEX

The standard library does not provide header <type_traits>.BOOST_NO_CXX11_HDR_TYPE_TRAITS

The standard library does not provide header <unordered_map>.BOOST_NO_CXX11_HDR_UNORDERED_MAP

The standard library does not provide header <unordered_set>.BOOST_NO_CXX11_HDR_UNORDERED_SET

The compiler does not support inline namespaces.BOOST_NO_CXX11_INLINE_NAMESPACES

23

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The standard library header <memory> has no shared_ptr and
unique_ptr.

BOOST_NO_CXX11_SMART_PTR

The standard library header <memory> has no working
std::align.

BOOST_NO_CXX11_STD_ALIGN

The compiler does not support type deduction for variables de-
clared with the auto keyword (auto var = ...;).

BOOST_NO_CXX11_AUTO_DECLARATIONS

The compiler does not support type deduction for multiple
variables declared with the auto keyword (auto var = ...,

*ptr = ...;).

BOOST_NO_CXX11_AUTO_MULTIDECLARATIONS

The compiler does not support type char16_t.BOOST_NO_CXX11_CHAR16_T

The compiler does not support type char32_t.BOOST_NO_CXX11_CHAR32_T

The compiler does not support template aliases.BOOST_NO_CXX11_TEMPLATE_ALIASES

The compiler does not support constexpr.BOOST_NO_CXX11_CONSTEXPR

The compiler does not support decltype.BOOST_NO_CXX11_DECLTYPE

The compiler does not support the extension to decltype de-
scribed in N3276, accepted in Madrid, March 2011.

BOOST_NO_CXX11_DECLTYPE_N3276

The compiler does not support defaulted (= default) functions.BOOST_NO_CXX11_DEFAULTED_FUNCTIONS

The compiler does not support deleted (= delete) functions.BOOST_NO_CXX11_DELETED_FUNCTIONS

The compiler does not support explicit conversion operators
(explicit operator T()).

BOOST_NO_CXX11_EXPLICIT_CONVERSION_OPERATORS

The compiler does not support explicit instantiation forward
declarations for templates (extern template ...).

BOOST_NO_CXX11_EXTERN_TEMPLATE

The compiler does not support default template arguments for
function templates.

BOOST_NO_CXX11_FUNCTION_TEMPLATE_DEFAULT_ARGS

The compiler does not support Lambdas.BOOST_NO_CXX11_LAMBDAS

The compiler does not allow to pass local classes as template
parameters (this macro intentionally does not control passing
of unnamed types as template parameters, see also N2657).

BOOST_NO_CXX11_LOCAL_CLASS_TEMPLATE_PARAMETERS

The compiler does not support long long.BOOST_NO_LONG_LONG

The compiler does not support noexcept.BOOST_NO_CXX11_NOEXCEPT

The compiler does not support nullptr.BOOST_NO_CXX11_NULLPTR

The compiler does not support range-based for statements.BOOST_NO_CXX11_RANGE_BASED_FOR

The compiler does not support raw string literals.BOOST_NO_CXX11_RAW_LITERALS

24

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3276.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The compiler does not support ref-qualifiers on member func-
tions as described in N2439.

BOOST_NO_CXX11_REF_QUALIFIERS

The compiler does not support r-value references.BOOST_NO_CXX11_RVALUE_REFERENCES

The compiler does not support scoped enumerations (enum
class).

BOOST_NO_CXX11_SCOPED_ENUMS

The compiler does not support static_assert.BOOST_NO_CXX11_STATIC_ASSERT

The standard library does not support <unordered_map> and
<unordered_set>.

BOOST_NO_CXX11_STD_UNORDERED

The compiler does not support the new function result type
specification syntax (e.g. auto foo(T) -> T;).

BOOST_NO_CXX11_TRAILING_RESULT_TYPES

The compiler does not support Unicode (u8, u, U) literals.BOOST_NO_CXX11_UNICODE_LITERALS

The compiler does not support the C++11 Unified Initialization
Syntax.

BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX

The compiler does not support user defined literals.BOOST_NO_CXX11_USER_DEFINED_LITERALS

The compiler does not support variadic templates.BOOST_NO_CXX11_VARIADIC_TEMPLATES

The compiler does not support variadic macros.BOOST_NO_CXX11_VARIADIC_MACROS

Macros that allow use of C++11 features with C++03 compilers
The following macros allow use of C++11 features even with compilers that do not yet provide compliant C++11 support.

25

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
http://en.wikipedia.org/wiki/C%2B%2B0x#Uniform_initialization
http://en.wikipedia.org/wiki/C%2B%2B0x#Uniform_initialization
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Some compilers don't support the alignas keyword but provide
other means to specify alignment (usually, through compiler-

BOOST_ALIGNMENT(X), BOOST_NO_ALIGNMENT

specific attributes). The macro BOOST_ALIGNMENT(X) will
expand to the alignas(X) keyword if the compiler supports
it or to some compiler-specific attribute to achieve the specified
alignment. If no such compiler-specific attribute is known then
BOOST_ALIGNMENT(X) will expand to nothing and
BOOST_NO_ALIGNMENT will be defined. Unlike native alignas,
X must always be a compile-time integer constant. The macro
can be used to specify alignment of types and data:

struct BOOST_ALIGNMENT(16) my_data
{

char c[16];
};
BOOST_ALIGNMENT(8) int arr[32];

Some compilers don't support the use of constexpr. This macro
expands to nothing on those compilers, and constexpr else-

BOOST_CONSTEXPR

where. For example, when defining a constexpr function or
constructor replace:

constexpr tuple();

with:

BOOST_CONSTEXPR tuple();

Some compilers don't support the use of constexpr. This macro
expands to const on those compilers, and constexpr else-
where. For example, when defining const expr variables replace:

static constexpr UIntType xor_mask = a;

BOOST_CONSTEXPR_OR_CONST

with:

static BOOST_CONSTEX↵
PR_OR_CONST UIntType xor_mask = a;

This is a shortcut for static BOOST_CONSTEXPR_OR_CONST.
For example, when defining const expr variables replace:

static constexpr UIntType xor_mask = a;

BOOST_STATIC_CONSTEXPR

with:

BOOST_STATIC_CONSTEXPR UIntType xor_mask = a;

26

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

This macro is intended to be used within a class definition in
order to declare a default implementation of function fun. For
the compilers that do not support C++11 defaulted functions
the macro will expand into an inline function definition with
the body implementation. For example:

struct my_struct
{

BOOST_DEFAULTED_FUNCTION(my_struct(), {})
};

is equivalent to:

struct my_struct
{

my_struct() = default;
};

or:

struct my_struct
{

my_struct() {}
};

BOOST_DEFAULTED_FUNCTION(fun, body)

27

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

This macro is intended to be used within a class definition in
order to declare a deleted function fun. For the compilers that
do not support C++11 deleted functions the macro will expand
into a private function declaration with no definition. Since the
macro may change the access mode, it is recommended to use
this macro at the end of the class definition. For example:

struct noncopyable
{

BOOST_DELETED_FUNCTION(noncopyable(noncopy↵
able const&))

BOOST_DELETED_FUNCTION(noncopyable& oper↵
ator= (noncopyable const&))
};

is equivalent to:

struct noncopyable
{

noncopyable(noncopyable const&) = delete;
noncopyable& operator= (noncopy↵

able const&) = delete;
};

or:

struct noncopyable
{
private:

noncopyable(noncopyable const&);
noncopyable& operator= (noncopy↵

able const&);
};

BOOST_DELETED_FUNCTION(fun)

28

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

If BOOST_NO_CXX11_NOEXCEPT is defined (i.e. C++03 compli-
ant compilers) these macros are defined as:

#define BOOST_NOEXCEPT
#define BOOST_NOEXCEPT_OR_NO↵
THROW throw()
#define BOOST_NOEXCEPT_IF(Predic↵
ate)
#define BOOST_NOEXCEPT_EXPR(Ex↵
pression) false

If BOOST_NO_CXX11_NOEXCEPT is not defined (i.e. C++11
compliant compilers) they are defined as:

#define BOOST_NOEXCEPT noexcept
#define BOOST_NOEXCEPT_OR_NO↵
THROW noexcept
#define BOOST_NOEXCEPT_IF(Predic↵
ate) noexcept((Predicate))
#define BOOST_NOEXCEPT_EXPR(Ex↵
pression) noexcept((Expression))

BOOST_NOEXCEPT
BOOST_NOEXCEPT_OR_NOTHROW
BOOST_NOEXCEPT_IF(Predicate)
BOOST_NOEXCEPT_EXPR(Expression)

For Microsoft Visual C++ 2012, enable the C++11 features
supplied by the November 2012 Community Technology Pre-
view. These features are not automatically enabled because the
CTP is non-supported alpha code that is not recommended for
production use. This macro must be defined before including
any Boost headers, and must be defined for all translation units
in the program, including Boost library builds. This macro will
no longer have any effect once an official Microsoft release
supports the CTP features.

BOOST_MSVC_ENABLE_2012_NOV_CTP

Boost Helper Macros
The following macros are either simple helpers, or macros that provide workarounds for compiler/standard library defects.

29

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

This macro is used where a compiler specific workaround is
required that is not otherwise described by one of the other
Boost.Config macros. To use the macro you must first

#include <boost/detail/workaround.hpp>

BOOST_WORKAROUND

usage is then:

#if BOOST_WORKAROUND(MACRONAME, CONDITION)
// workaround code goes here...

#else
// Standard conforming code goes here...

#endif

where MACRONAME is a macro that usually describes the version
number to be tested against, and CONDITION is a comparison
operator followed by a value. For example BOOST_WORK-
AROUND(BOOST_INTEL, <= 1010) would evaluate to 1 for
Intel C++ 10.1 and earlier.

The macro can also be used with BOOST_TESTED_AT if all
current compiler versions exhibit the issue, but the issue is ex-
pected to be fixed at some later point.

For example BOOST_WORKAROUND(__BORLANDC__,

BOOST_TESTED_AT(0x590)) would normally evaluate to 1
for all values of __BORLANDC__ unless the macro BOOST_DE-
TECT_OUTDATED_WORKAROUNDS is defined, in which case
evaluates to (__BORLANDC__ <= 0x590).

Note: the ultimate source of documentation for this macro is in
boost/detail/workaround.hpp.

Sometimes you have a function name with the same name as a
C macro, for example "min" and "max" member functions, in

BOOST_PREVENT_MACRO_SUBSTITUTION

which case one can prevent the function being expanded as a
macro using:

someclass.min BOOST_PREVENT_MACRO_SUBSTITU↵
TION(arg1, arg2);

The following also works in most, but not all, contexts:

(someclass.max)(arg1, arg2);

Some compilers don't support the use of typename for dependent
types in deduced contexts. This macro expands to nothing on

BOOST_DEDUCED_TYPENAME

those compilers, and typename elsewhere. For example, replace:
template <class T> void f(T, typename T::type);

with: template <class T> void f(T, BOOST_DE-

DUCED_TYPENAME T::type);

30

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/detail/workaround.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The header to include to get the SGI hash_map class. This
macro is only available if BOOST_HAS_HASH is defined.

BOOST_HASH_MAP_HEADER

The header to include to get the SGI hash_set class. This
macro is only available if BOOST_HAS_HASH is defined.

BOOST_HASH_SET_HEADER

The header to include to get the SGI slist class. This macro
is only available if BOOST_HAS_SLIST is defined.

BOOST_SLIST_HEADER

The namespace used for std library extensions (hashtable classes
etc).

BOOST_STD_EXTENSION_NAMESPACE

On compilers which don't allow in-class initialization of static
integral constant members, we must use enums as a workaround
if we want the constants to be available at compile-time. This
macro gives us a convenient way to declare such constants. For
example instead of:

struct foo{
static const int value = 2;

};

use:

struct foo{
BOOST_STATIC_CONSTANT(int, value = 2);

};

BOOST_STATIC_CONSTANT(Type, assignment)

Normally evaluates to nothing, but evaluates to return x; if the
compiler requires a return, even when it can never be reached.

BOOST_UNREACHABLE_RETURN(result)

31

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

The BOOST_FALLTHROUGH macro can be used to annotate
implicit fall-through between switch labels:

switch (x) {
case 40:
case 41:

if (truth_is_out_there) {
++x;
BOOST_FALLTHROUGH; // Use instead ↵

of/along with annotations in
// comments.

} else {
return x;

}
case 42:

...

As shown in the example above, the BOOST_FALLTHROUGH
macro should be followed by a semicolon. It is designed to
mimic control-flow statements like 'break;', so it can be placed
in most places where 'break;' can, but only if there are no state-
ments on the execution path between it and the next switch label.

When compiled with Clang >3.2 in C++11 mode, the
BOOST_FALLTHROUGH macro is expanded to
[[clang::fallthrough]] attribute, which is analysed when
performing switch labels fall-through diagnostic ('-Wimplicit-
fallthrough'). See clang documentation on language extensions
for details.

When used with unsupported compilers, the BOOST_FALL-
THROUGH macro has no effect on diagnostics.

In either case this macro has no effect on runtime behavior and
performance of code.

BOOST_FALLTHROUGH

32

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough
http://clang.llvm.org/docs/LanguageExtensions.html#clang__fallthrough
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Some compilers silently "fold" different function template in-
stantiations if some of the template parameters don't appear in
the function parameter list. For instance:

#include <iostream>
#include <ostream>
#include <typeinfo>

template <int n>
void f() { std::cout << n << ' '; }

template <typename T>
void g() { std::cout << typeid(T).name() << ' ↵
'; }

int main() {
f<1>();
f<2>();

g<int>();
g<double>();

}

incorrectly outputs 2 2 double double on VC++ 6. These
macros, to be used in the function parameter list, fix the problem
without effects on the calling syntax. For instance, in the case
above write:

template <int n>
void f(BOOST_EXPLICIT_TEM↵
PLATE_NON_TYPE(int, n)) { ... }

template <typename T>
void g(BOOST_EXPLICIT_TEM↵
PLATE_TYPE(T)) { ... }

Beware that they can declare (for affected compilers) a dummy
defaulted parameter, so they

a) should be always invoked at the end of the parameter list

b) can't be used if your function template is multiply declared.

Furthermore, in order to add any needed comma separator, an
APPEND_* version must be used when the macro invocation
appears after a normal parameter declaration or after the invoc-
ation of another macro of this same group.

BOOST_EXPLICIT_TEMPLATE_TYPE(t) BOOST_EXPLI-

CIT_TEMPLATE_NON_TYPE(t,v) BOOST_APPEND_EXPLI-

CIT_TEMPLATE_TYPE(t) BOOST_APPEND_EXPLICIT_TEM-

PLATE_NON_TYPE(t,v)

When the standard library does not have a conforming
std::use_facet there are various workarounds available, but
they differ from library to library. This macro provides a consist-
ent way to access a locale's facets. For example, replace:
std::use_facet<Type>(loc); with: BOOST_USE_FA-

CET(Type, loc); Note do not add a std:: prefix to the front
of BOOST_USE_FACET.

BOOST_USE_FACET(Type, loc)

33

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

When the standard library does not have a comforming
std::has_facet there are various workarounds available, but
they differ from library to library. This macro provides a consist-
ent way to check a locale's facets. For example, replace:
std::has_facet<Type>(loc); with: BOOST_HAS_FA-

CET(Type, loc); Note do not add a std:: prefix to the front
of BOOST_HAS_FACET.

BOOST_HAS_FACET(Type, loc)

Member templates are supported by some compilers even though
they can't use the A::template member<U> syntax, as a
workaround replace: typedef typename A::template

rebind<U> binder; with: typedef typename

A::BOOST_NESTED_TEMPLATE rebind<U> binder;

BOOST_NESTED_TEMPLATE

Converts the parameter X to a string after macro replacement
on X has been performed.

BOOST_STRINGIZE(X)

This piece of macro magic joins the two arguments together,
even when one of the arguments is itself a macro (see 16.3.1 in
C++ standard). This is normally used to create a mangled name
in combination with a predefined macro such a __LINE__.

BOOST_JOIN(X,Y)

This macro can be used in place of the inline keyword to in-
struct the compiler that the function should always be inlined.
Overuse of this macro can lead to significant bloat, while good
use can increase performance in certain cases, such as computa-
tion-intensive code built through generative programming
techniques.

Usage example:

template<class T>
BOOST_FORCEINLINE T& f(T& t)
{

return t;
}

Note that use of this macro can lead to cryptic error messages
with some compilers. Consider defining it to inline before
including the Boost.Config header in order to be able to debug
errors more easily.

BOOST_FORCEINLINE

This macro can be used in place of the inline keyword to in-
struct the compiler that the function should never be inlined.
One should typically use this macro to mark functions that are
unlikely to be called, such as error handling routines.

Usage example:

BOOST_NOINLINE void handle_er↵
ror(const char* descr)
{

// ...
}

BOOST_NOINLINE

34

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

This macro can be used before the function declaration or
definition to instruct the compiler that the function does not re-
turn normally (i.e. with a return statement or by leaving the
function scope, if the function return type is void). The macro
can be used to mark functions that always throw exceptions or
terminate the application. Compilers that support this markup
may use this information to specifically organize the code sur-
rounding calls to this function and suppress warnings about
missing return statements in the functions enclosing such calls.

Usage example:

BOOST_NORETURN void on_error_oc↵
curred(const char* descr)
{

throw std::runtime_error(descr);
}

If the compiler does not support this markup, BOOST_NORETURN
is defined empty and an additional macro BOOST_NO_NORETURN
is defined.

BOOST_NORETURN

These macros communicate to the compiler that the conditional
expression X is likely or unlikely to yield a positive result. The
expression should result in a boolean value. The result of the
macro is an integer or boolean value equivalent to the result of
X.

The macros are intended to be used in branching statements.
The additional hint they provide can be used by the compiler to
arrange the compiled code of the branches more effectively.

Usage example:

if (BOOST_UNLIKELY(ptr == NULL))
handle_error("ptr is NULL");

BOOST_LIKELY(X) BOOST_UNLIKELY(X)

Boost Informational Macros
The following macros describe boost features; these are, generally speaking the only boost macros that should be tested in user code.

35

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionHeaderMacro

Describes the boost version number in
XYYYZZ format such that:

<boost/version.hpp>BOOST_VERSION

(BOOST_VERSION % 100) is the sub-
minor version, ((BOOST_VERSION /

100) % 1000) is the minor version, and
(BOOST_VERSION / 100000) is the
major version.

Defined if there are no 64-bit integral
types: int64_t, uint64_t etc.

< b o o s t / c s t d i n t . h p p >

<boost/stdint.h>

BOOST_NO_INT64_T

Defined if int64_t as defined by
<boost/cstdint.hpp> is not usable in
integral constant expressions.

< b o o s t / c s t d i n t . h p p >

<boost/stdint.h>

BOOST_NO_INTEGRAL_INT64_T

Defined if the compiler is really Microsoft
Visual C++, as opposed to one of the

<boost/config.hpp>BOOST_MSVC

many other compilers that also define
_MSC_VER. Has the same value as
_MSC_VER.

Defined to a normalised 9 digit version
of _MSC_FULL_VER (which sometimes

<boost/config.hpp>BOOST_MSVC_FULL_VER

only has 8 digits), the macro has the form
VVMMPPPPP where VV is the major
version number, MM is the minor version
number, and PPPPP is the compiler build
number.

Defined if the compiler is really GCC, as
opposed to one of the many other com-

<boost/config.hpp>BOOST_GCC

pilers that also define __GNUC__. Has the
value: __GNUC__ * 10000 +

__GNUC_MINOR__ * 100 +

__GNUC_PATCHLEVEL__.

Defined if the compiler is an Intel com-
piler, takes the same value as the compiler
version macro.

<boost/config.hpp>BOOST_INTEL

Defined to 1 if the compiler is the Clang
compiler.

<boost/config.hpp>BOOST_CLANG

Defined if the Windows platform API is
available.

<boost/config.hpp>BOOST_WINDOWS

Defined if the dinkumware standard lib-
rary is in use, takes the same value as the

<boost/config.hpp>BOOST_DINKUMWARE_STDLIB

Dinkumware library version macro _CP-
PLIB_VER if defined, otherwise 1.

Defined if the regex library does not sup-
port wide character regular expressions.

<boost/regex.hpp>BOOST_NO_WREGEX

36

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionHeaderMacro

Defined as a string describing the name
and version number of the compiler in
use. Mainly for debugging the configura-
tion.

<boost/config.hpp>BOOST_COMPILER

Defined as a string describing the name
and version number of the standard library
in use. Mainly for debugging the config-
uration.

<boost/config.hpp>BOOST_STDLIB

Defined as a string describing the name
of the platform. Mainly for debugging the
configuration.

<boost/config.hpp>BOOST_PLATFORM

Boost Deprecated Macros
The following have been deprecated; please use the replacements instead. They will be removed in a future version of boost.

37

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When removedWhen deprecatedReplacementDeprecated Macro

Boost 1.50BOOST_NO_CXX11_HDR_AR-

RAY

BOOST_NO_0X_HDR_ARRAY

Boost 1.50BOOST_NO_CXX11_HDR_CHRONOBOOST_NO_0X_HDR_CHRONO

Boost 1.50BOOST_NO_CXX11_HDR_CO-

DECVT

BOOST_NO_0X_HDR_CODECVT

Boost 1.50BOOST_NO_CXX11_HDR_CON-

DITION_VARIABLE

BOOST_NO_0X_HDR_CONDI-

TION_VARIABLE

Boost 1.50BOOST_NO_CXX11_HDR_FOR-

WARD_LIST

BOOST_NO_0X_HDR_FOR-

WARD_LIST

Boost 1.50BOOST_NO_CXX11_HDR_FU-

TURE

BOOST_NO_0X_HDR_FUTURE

Boost 1.50BOOST_NO_CXX11_HDR_INI-

TIALIZER_LIST

BOOST_NO_0X_HDR_INITIAL-

IZER_LIST

Boost 1.50BOOST_NO_CXX11_HDR_INI-

TIALIZER_LIST

BOOST_NO_INITIAL-

IZER_LISTS

Boost 1.50BOOST_NO_CXX11_HDR_MU-

TEX

BOOST_NO_0X_HDR_MUTEX

Boost 1.50BOOST_NO_CXX11_HDR_RAN-

DOM

BOOST_NO_0X_HDR_RANDOM

Boost 1.50BOOST_NO_CXX11_HDR_RA-

TIO

BOOST_NO_0X_HDR_RATIO

Boost 1.50BOOST_NO_CXX11_HDR_REGEXBOOST_NO_0X_HDR_REGEX

Boost 1.50BOOST_NO_CXX11_HDR_SYS-

TEM_ERROR

BOOST_NO_0X_HDR_SYS-

TEM_ERROR

Boost 1.50BOOST_NO_CXX11_HDR_THREADBOOST_NO_0X_HDR_THREAD

Boost 1.50BOOST_NO_CXX11_HDR_TUPLEBOOST_NO_0X_HDR_TUPLE

Boost 1.50BOOST_NO_CXX11_HDR_TYPE_TRAITSBOOST_NO_0X_HDR_TYPE_TRAITS

Boost 1.50BOOST_NO_CXX11_HDR_TYPEIN-

DEX

BOOST_NO_0X_HDR_TYPEIN-

DEX

Boost 1.50BOOST_NO_CXX11_HDR_UN-

ORDERED_SET

BOOST_NO_0X_HDR_UN-

ORDERED_SET

Boost 1.50BOOST_NO_CXX11_HDR_UN-

ORDERED_MAP

BOOST_NO_0X_HDR_UN-

ORDERED_MAP

Boost 1.50BOOST_NO_CXX11_HDR_UN-

ORDERED_SET

BOOST_NO_STD_UNORDERED

38

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When removedWhen deprecatedReplacementDeprecated Macro

Boost 1.51BOOST_NO_CXX11_AUTO_DE-

CLARATIONS

BOOST_NO_AUTO_DECLARA-

TIONS

Boost 1.51BOOST_NO_CXX11_AUTO_MUL-

TIDECLARATIONS

BOOST_NO_AUTO_MULTIDE-

CLARATIONS

Boost 1.51BOOST_NO_CXX11_CHAR16_TBOOST_NO_CHAR16_T

Boost 1.51BOOST_NO_CXX11_CHAR32_TBOOST_NO_CHAR32_T

Boost 1.51BOOST_NO_CXX11_TEM-

PLATE_ALIASES

BOOST_NO_TEMPLATE_ALI-

ASES

Boost 1.51BOOST_NO_CXX11_CONSTEX-

PR

BOOST_NO_CONSTEXPR

Boost 1.51BOOST_NO_CXX11_DECLTYPEBOOST_NO_DECLTYPE

Boost 1.51BOOST_NO_CXX11_DECL-

TYPE_N3276

BOOST_NO_DECLTYPE_N3276

Boost 1.51BOOST_NO_CXX11_DEFAUL-

TED_FUNCTIONS

BOOST_NO_DEFAULTED_FUNC-

TIONS

Boost 1.51BOOST_NO_CXX11_DE-

LETED_FUNCTIONS

BOOST_NO_DELETED_FUNC-

TIONS

Boost 1.51BOOST_NO_CXX11_EXPLI-

CIT_CONVERSION_OPERAT-

ORS

BOOST_NO_EXPLICIT_CON-

VERSION_OPERATORS

Boost 1.51BOOST_NO_CXX11_EX-

TERN_TEMPLATE

BOOST_NO_EXTERN_TEM-

PLATE

Boost 1.51BOOST_NO_CXX11_FUNC-

TION_TEMPLATE_DE-

FAULT_ARGS

BOOST_NO_FUNCTION_TEM-

PLATE_DEFAULT_ARGS

Boost 1.51BOOST_NO_CXX11_LAMBDASBOOST_NO_LAMBDAS

Boost 1.51BOOST_NO_CXX11_LOC-

AL_CLASS_TEMPLATE_PARA-

METERS

B O O S T _ N O _ L O C -

AL_CLASS_TEMPLATE_PARA-

METERS

Boost 1.51BOOST_NO_CXX11_NOEXCEPTBOOST_NO_NOEXCEPT

Boost 1.51BOOST_NO_CXX11_NULLPTRBOOST_NO_NULLPTR

Boost 1.51BOOST_NO_CXX11_RAW_LIT-

ERALS

BOOST_NO_RAW_LITERALS

Boost 1.51BOOST_NO_CXX11_RVALUE_REF-

ERENCES

BOOST_NO_RVALUE_REFER-

ENCES

Boost 1.51BOOST_NO_CXX11_SCOPED_ENUMSBOOST_NO_SCOPED_ENUMS

39

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When removedWhen deprecatedReplacementDeprecated Macro

Boost 1.51BOOST_NO_CXX11_STAT-

IC_ASSERT

BOOST_NO_STATIC_ASSERT

Boost 1.51BOOST_NO_CXX11_STD_UN-

ORDERED

BOOST_NO_STD_UNORDERED

Boost 1.51BOOST_NO_CXX11_UNI-

CODE_LITERALS

BOOST_NO_UNICODE_LITER-

ALS

Boost 1.51BOOST_NO_CXX11_UNI-

FIED_INITIALIZATION_SYN-

TAX

BOOST_NO_UNIFIED_INI-

TIALIZATION_SYNTAX

Boost 1.51BOOST_NO_CXX11_VARIAD-

IC_TEMPLATES

BOOST_NO_VARIADIC_TEM-

PLATES

Boost 1.51BOOST_NO_CXX11_VARIAD-

IC_MACROS

BOOST_NO_VARIADIC_MAC-

ROS

Boost 1.51BOOST_NO_CXX11_NUMER-

IC_LIMITS

BOOST_NO_NUMERIC_LIM-

ITS_LOWEST

Boost 1.53BOOST_NO_CXX11_STAT-

IC_ASSERT (negated)
BOOST_HAS_STATIC_ASSERT

Boost 1.53BOOST_NO_CXX11_VARIAD-

IC_TEMPLATES (negated)
BOOST_HAS_VARIADIC_TMPL

Boost 1.53BOOST_NO_CXX11_RVALUE_REF-

ERENCES (negated)
BOOST_HAS_RVALUE_REFS

Boost 1.53BOOST_NO_CXX11_CHAR16_T

(negated)
BOOST_HAS_CHAR16_T

Boost 1.53BOOST_NO_CXX11_CHAR32_T

(negated)
BOOST_HAS_CHAR32_T

Macros for libraries with separate source code
The following macros and helper headers are of use to authors whose libraries include separate source code, and are intended to address
several issues:

• Controlling shared library symbol visibility

• Fixing the ABI of the compiled library

• Selecting which compiled library to link against based upon the compilers settings

See Guidelines for Authors of Boost Libraries Containing Separate Source

Macros controlling shared library symbol visibility

Some compilers support C++ extensions that control which symbols will be exported from shared libraries such as dynamic shared
objects (DSO's) on Unix-like systems or dynamic-link libraries (DLL's) on Windows.

40

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/wiki/Guidelines/Separate
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Microsoft VC++ compiler has long supplied __declspec(dllexport) and __declspec(dllimport) extensions for this
purpose, as do virtually all other compilers targeting the Windows platform.

Modern versions of the GNU GCC compiler provide the __attribute__((visibility("default"))) extension to indicate
that a symbol should be exported. All other symbols may be hidden by using the -fvisibility-hidden or -fvisibility-ms-com-
pat compiler switches.

Boost supplies several macros to make it easier to manage symbol visibility in a way that is portable between compilers and operating
systems.

DescriptionMacro

Defines the syntax of a C++ language extension that indicates
a symbol is to be exported from a shared library. If the compiler
has no such extension, the macro is defined with no replacement
text.

BOOST_SYMBOL_EXPORT

Defines the syntax of a C++ language extension that indicates
a symbol is to be imported from a shared library. If the compiler
has no such extension, the macro is defined with no replacement
text.

BOOST_SYMBOL_IMPORT

Defines the syntax of a C++ language extension that indicates
a symbol is to be globally visible. If the compiler has no such
extension, the macro is defined with no replacement text. Needed
for classes that are not otherwise exported, but are used by RTTI.
Examples include class for objects that will be thrown as excep-
tions or used in dynamic_casts, across shared library boundaries.
For example, a header-only exception class might look like this:

class BOOST_SYMBOL_VISIBLE my_exception : pub↵
lic std::runtime_error { ... };

Without BOOST_SYMBOL_VISIBLE, it would be impossible
to catch my_exception thrown from a shared library compiled
by GCC with the -fvisibility=hidden option.

BOOST_SYMBOL_VISIBLE

The compiler has C++ extensions __declspec(dllexport)
and __declspec(dllimport) to control export/import of
symbols from shared libraries. Deprecated. This macro is no
longer necessary since BOOST_SYMBOL_EXPORT and
BOOST_SYMBOL_IMPORT are now supplied. It is provided
to support legacy code.

BOOST_HAS_DECLSPEC

Typical usage:

boost/foo/config.hpp

41

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

...
#if defined(BOOST_ALL_DYN_LINK) || defined(BOOST_FOO_DYN_LINK)
if defined(BOOST_FOO_SOURCE)
define BOOST_FOO_DECL BOOST_SYMBOL_EXPORT
else
define BOOST_FOO_DECL BOOST_SYMBOL_IMPORT
endif
#else
define BOOST_FOO_DECL
#endif
...

boost/foo/foo.hpp

#include <boost/foo/config.hpp>
...
class BOOST_FOO_DECL bar { ... };
...
void BOOST_FOO_DECL f();
...

boost/libs/foo/src/foo.cpp

#define BOOST_FOO_SOURCE
#include <boost/foo/foo.hpp>
...
void BOOST_FOO_DECL f()
{
...

}
...

ABI Fixing

When linking against a pre-compiled library it vital that the ABI used by the compiler when building the library matches exactly the
ABI used by the code using the library. In this case ABI means things like the struct packing arrangement used, the name mangling
scheme used, or the size of some types (enum types for example). This is separate from things like threading support, or runtime
library variations, which have to be dealt with by build variants. To put this in perspective there is one compiler (Borland's) that has
so many compiler options that make subtle changes to the ABI, that at least in theory there 3200 combinations, and that's without
considering runtime library variations. Fortunately these variations can be managed by #pragma's that tell the compiler what ABI
to use for the types declared in your library. In order to avoid sprinkling #pragma's all over the boost headers, there are some prefix
and suffix headers that do the job. Typical usage is:

my_library.hpp

42

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#ifndef MY_INCLUDE_GUARD
#define MY_INCLUDE_GUARD

// all includes go here:
#include <boost/config.hpp>
#include <whatever>

#include <boost/config/abi_prefix.hpp> // must be the last #include

namespace boost {

// your code goes here

}

#include <boost/config/abi_suffix.hpp> // pops abi_prefix.hpp pragmas

#endif // include guard

my_library.cpp

...
// nothing special need be done in the implementation file
...

The user can disable this mechanism by defining BOOST_DISABLE_ABI_HEADERS, or they can define BOOST_ABI_PREFIX and/or
BOOST_ABI_SUFFIX to point to their own prefix/suffix headers if they so wish.

Automatic library selection

It is essential that users link to a build of a library which was built against the same runtime library that their application will be built
against -if this does not happen then the library will not be binary compatible with their own code- and there is a high likelihood that
their application will experience runtime crashes. These kinds of problems can be extremely time consuming and difficult to debug,
and often lead to frustrated users and authors alike (simply selecting the right library to link against is not as easy as it seems when
their are 6-8 of them to chose from, and some users seem to be blissfully unaware that there even are different runtimes available to
them).

To solve this issue, some compilers allow source code to contain #pragma's that instruct the linker which library to link against, all
the user need do is include the headers they need, place the compiled libraries in their library search path, and the compiler and linker
do the rest. Boost.config supports this via the header <boost/config/auto_link.hpp>, before including this header one or more
of the following macros need to be defined:

BOOST_LIB_NAME Required: An identifier containing the basename of the library, for example 'boost_regex'.

BOOST_DYN_LINK Optional: when set link to dll rather than static library.

BOOST_LIB_DIAGNOSTIC Optional: when set the header will print out the name of the library selected (useful for debugging).

If the compiler supports this mechanism, then it will be told to link against the appropriately named library, the actual algorithm
used to mangle the name of the library is documented inside <boost/config/auto_link.hpp> and has to match that used to
create the libraries via bjam 's install rules.

my_library.hpp

43

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

...
//
// Don't include auto-linking code if the user has disabled it by
// defining BOOST_ALL_NO_LIB, or BOOST_MY_LIBRARY_NO_LIB, or if this
// is one of our own source files (signified by BOOST_MY_LIBRARY_SOURCE):
//
#if !defined(BOOST_ALL_NO_LIB) && !defined(BOOST_MY_LIBRARY_NO_LIB) && !defined(BOOST_MY_LIB↵
RARY_SOURCE)
define BOOST_LIB_NAME boost_my_library
ifdef BOOST_MY_LIBRARY_DYN_LINK
define BOOST_DYN_LINK
endif
include <boost/config/auto_link.hpp>
#endif
...

my_library.cpp

// define BOOST_MY_LIBRARY_SOURCE so that the header knows that the
// library is being built (possibly exporting rather than importing code)
//
#define BOOST_MY_LIBRARY_SOURCE

#include <boost/my_library/my_library.hpp>
...

44

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Standard Integer Types

Overview
The header <boost/cstdint.hpp> provides the typedef's useful for writing portable code that requires certain integer widths. All
typedef's are in namespace boost.

The specifications for these types are based on the ISO/IEC 9899:1999 C Language standard header <stdint.h>. The 64-bit types
required by the C standard are not required in the boost header, and may not be supplied for all platforms/compilers, because long
long is not [yet] included in the C++ standard.

See cstdint_test.cpp for a test program.

Rationale
The organization of the Boost.Integer headers and classes is designed to take advantage of <stdint.h> types from the 1999 C standard
without causing undefined behavior in terms of the 1998 C++ standard. The header <boost/cstdint.hpp> makes the standard integer
types safely available in namespace boost without placing any names in namespace std. The intension is to complement rather
than compete with the C++ Standard Library. Should some future C++ standard include <stdint.h> and <cstdint>, then
<boost/cstdint.hpp> will continue to function, but will become redundant and may be safely deprecated.

Because these are boost headers, their names conform to boost header naming conventions rather than C++ Standard Library header
naming conventions.

Caveat emptor
As an implementation artifact, certain C <limits.h> macro names may possibly be visible to users of <boost/cstdint.hpp>. Don't use
these macros; they are not part of any Boost-specified interface. Use boost::integer_traits<> or std::numeric_limits<>
instead.

As another implementation artifact, certain C <stdint.h> typedef names may possibly be visible in the global namespace to users of
<boost/cstdint.hpp>. Don't use these names, they are not part of any Boost-specified interface. Use the respective names in namespace
boost instead.

Exact-width integer types
The typedef int#_t, with # replaced by the width, designates a signed integer type of exactly # bits; for example int8_t denotes
an 8-bit signed integer type. Similarly, the typedef uint#_t designates an unsigned integer type of exactly # bits.

These types are optional. However, if a platform supports integer types with widths of 8, 16, 32, 64, or any combination thereof,
then <boost/cstdint.hpp> does provide the corresponding typedefs.

The absence of int64_t and uint64_t is indicated by the macro BOOST_NO_INT64_T.

Minimum-width integer types
The typedef int_least#_t, with # replaced by the width, designates a signed integer type with a width of at least # bits, such that
no signed integer type with lesser size has at least the specified width. Thus, int_least32_t denotes the smallest signed integer
type with a width of at least 32 bits. Similarly, the typedef name uint_least#_t designates an unsigned integer type with a width
of at least # bits, such that no unsigned integer type with lesser size has at least the specified width.

The following minimum-width integer types are provided for all platforms:

• int_least8_t

• int_least16_t

45

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/cstdint.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../test/cstdint_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• int_least32_t

• uint_least8_t

• uint_least16_t

• uint_least32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is not defined:

• int_least64_t

• uint_least64_t

All other minimum-width integer types are optional.

Fastest minimum-width integer types
The typedef int_fast#_t, with # replaced by the width, designates the fastest signed integer type with a width of at least # bits.
Similarly, the typedef name uint_fast#_t designates the fastest unsigned integer type with a width of at least # bits.

There is no guarantee that these types are fastest for all purposes. In any case, however, they satisfy the signedness and width require-
ments.

The following fastest minimum-width integer types are provided for all platforms:

• int_fast8_t

• int_fast16_t

• int_fast32_t

• uint_fast8_t

• uint_fast16_t

• uint_fast32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is not defined:

• int_fast64_t

• uint_fast64_t

All other fastest minimum-width integer types are optional.

Greatest-width integer types
The typedef intmax_t designates a signed integer type capable of representing any value of any signed integer type.

The typedef uintmax_t designates an unsigned integer type capable of representing any value of any unsigned integer type.

These types are provided for all platforms.

Integer Constant Macros
The following macros are always defined after inclusion of this header, these allow integer constants of at least the specified width
to be declared: INT8_C, UINT8_C, INT16_C, UINT16_C, INT32_C, UINT32_C, INTMAX_C, UINTMAX_C.

The macros INT64_C and UINT64_C are also defined if the the macro BOOST_NO_INT64_T is not defined.

46

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The C99 macro __STDC_CONSTANT_MACROS is also defined as an artifact of the implementation.

For example:

#include <boost/cstdint.hpp>

// Here the constant 0x1FFFFFFFF has the correct suffix applied:
static const boost::uint64_t c = INT64_C(0x1FFFFFFFF);

47

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Guidelines for Boost Authors
The <boost/config.hpp> header is used to pass configuration information to other boost files, allowing them to cope with platform
dependencies such as arithmetic byte ordering, compiler pragmas, or compiler shortcomings. Without such configuration information,
many current compilers would not work with the Boost libraries.

Centralizing configuration information in this header reduces the number of files that must be modified when porting libraries to
new platforms, or when compilers are updated. Ideally, no other files would have to be modified when porting to a new platform.

Configuration headers are controversial because some view them as condoning broken compilers and encouraging non-standard
subsets. Adding settings for additional platforms and maintaining existing settings can also be a problem. In other words, configuration
headers are a necessary evil rather than a desirable feature. The boost config.hpp policy is designed to minimize the problems and
maximize the benefits of a configuration header.

Note that:

• Boost library implementers are not required to "#include <boost/config.hpp>", and are not required in any way to support
compilers that do not comply with the C++ Standard (ISO/IEC 14882).

• If a library implementer wishes to support some non-conforming compiler, or to support some platform specific feature, "#include
<boost/config.hpp>" is the preferred way to obtain configuration information not available from the standard headers such
as <climits>, etc.

• If configuration information can be deduced from standard headers such as <climits>, use those standard headers rather than
<boost/config.hpp>.

• Boost files that use macros defined in <boost/config.hpp> should have sensible, standard conforming, default behavior if the
macro is not defined. This means that the starting point for porting <boost/config.hpp> to a new platform is simply to define
nothing at all specific to that platform. In the rare case where there is no sensible default behavior, an #error message should describe
the problem.

• If a Boost library implementer wants something added to config.hpp, post a request on the Boost mailing list. There is no
guarantee such a request will be honored; the intent is to limit the complexity of config.hpp.

• The intent is to support only compilers which appear on their way to becoming C++ Standard compliant, and only recent releases
of those compilers at that.

• The intent is not to disable mainstream features now well-supported by the majority of compilers, such as namespaces, exceptions,
RTTI, or templates.

Disabling Compiler Warnings
The header <boost/config/warning_disable.hpp> can be used to disable certain compiler warnings that are hard or impossible
to otherwise remove.

Note that:

• This header should never be included by another Boost header, it should only ever be used by a library source file or a test
case.

• The header should be included before you include any other header.

• This header only disables warnings that are hard or impossible to otherwise deal with, and which are typically emitted by one
compiler only, or in one compilers own standard library headers.

Currently it disables the following warnings:

48

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

WarningCompiler

C4996: Error 'function': was declared deprecatedVisual C++ 8 and later

Warning 1786: relates to the use of "deprecated" standard library
functions rather like C4996 in Visual C++.

Intel C++

Adding New Defect Macros
When you need to add a new defect macro - either to fix a problem with an existing library, or when adding a new library - distil the
issue down to a simple test case; often, at this point other (possibly better) workarounds may become apparent. Secondly always
post the test case code to the boost mailing list and invite comments; remember that C++ is complex and that sometimes what may
appear a defect, may in fact turn out to be a problem with the authors understanding of the standard.

When you name the macro, follow the BOOST_NO_SOMETHING naming convention, so that it's obvious that this is a macro reporting
a defect.

Finally, add the test program to the regression tests. You will need to place the test case in a .ipp file with the following comments
near the top:

// MACRO: BOOST_NO_FOO
// TITLE: foo
// DESCRIPTION: If the compiler fails to support foo

These comments are processed by the autoconf script, so make sure the format follows the one given. The file should be named
"boost_no_foo.ipp", where foo is the defect description - try and keep the file name under the Mac 30 character filename limit
though. You will also need to provide a function prototype "int test()" that is declared in a namespace with the same name as
the macro, but in all lower case, and which returns zero on success:

namespace boost_no_foo {
int test()
{

// test code goes here:
//
return 0;

}

}

Once the test code is in place in libs/config/test, updating the configuration test system proceeds as:

• cd into libs/config/tools and run bjam. This generates the .cpp file test cases from the .ipp file, updates the libs/con-
fig/test/all/Jamfile.v2, config_test.cpp and config_info.cpp.

• cd into libs/config/test/all and run bjam MACRONAME compiler-list, where MACRONAME is the name of the
new macro, and compiler-list is a space separated list of compilers to test with.
The xxx_pass_test and the xxx_fail_test should both report **passed**.
If MACRONAME is not defined when it should be defined, xxx_pass_test will not report **passed**. If MACRONAME is
defined when it should not be defined, xxx_fail_test will not report **passed**.

• cd into libs/config/test and run bjam config_info config_test compiler-list. config_info should build and
run cleanly for all the compilers in compiler-list while config_test should fail for those that have the defect, and pass for
those that do not.

Then you should:

• Define the defect macro in those config headers that require it.

49

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://msdn2.microsoft.com/en-us/library/ttcz0bys(VS.80).aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Document the macro in this documentation (please do not forget this step!!)

• Commit everything.

• Keep an eye on the regression tests for new failures in Boost.Config caused by the addition.

• Start using the macro.

Adding New Feature Test Macros
When you need to add a macro that describes a feature that the standard does not require, follow the convention for adding a new
defect macro (above), but call the macro BOOST_HAS_FOO, and name the test file "boost_has_foo.ipp". Try not to add feature
test macros unnecessarily, if there is a platform specific macro that can already be used (for example _WIN32, __BEOS__, or __linux)
to identify the feature then use that. Try to keep the macro to a feature group, or header name, rather than one specific API (for example
BOOST_HAS_NL_TYPES_H rather than BOOST_HAS_CATOPEN). If the macro describes a POSIX feature group, then add boilerplate
code to <boost/config/suffix.hpp> to auto-detect the feature where possible (if you are wondering why we can't use POSIX feature
test macro directly, remember that many of these features can be added by third party libraries, and are not therefore identified inside
<unistd.h>).

Modifying the Boost Configuration Headers
The aim of boost's configuration setup is that the configuration headers should be relatively stable - a boost user should not have to
recompile their code just because the configuration for some compiler that they're not interested in has changed. Separating the
configuration into separate compiler/standard library/platform sections provides for part of this stability, but boost authors require
some amount of restraint as well, in particular:

<boost/config.hpp> should never change, don't alter this file.

<boost/config/user.hpp> is included by default, don't add extra code to this file unless you have to. If you do, please remember to
update libs/config/tools/configure.in as well.

<boost/config/suffix.hpp> is always included so be careful about modifying this file as it breaks dependencies for everyone. This
file should include only "boilerplate" configuration code, and generally should change only when new macros are added.

<boost/config/select_compiler_config.hpp>, <boost/config/select_platform_config.hpp> and <boost/config/select_stdlib_config.hpp>
are included by default and should change only if support for a new compiler/standard library/platform is added.

The compiler/platform/standard library selection code is set up so that unknown platforms are ignored and assumed to be fully
standards compliant - this gives unknown platforms a "sporting chance" of working "as is" even without running the configure script.

When adding or modifying the individual mini-configs, assume that future, as yet unreleased versions of compilers, have all the defects
of the current version. Although this is perhaps unnecessarily pessimistic, it cuts down on the maintenance of these files, and exper-
ience suggests that pessimism is better placed than optimism here!

50

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../tools/configure.in
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/user.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_compiler_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_platform_config.hpp
http://www.boost.org/doc/libs/release/libs/config/doc/html/../../../../boost/config/select_stdlib_config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rationale
The problem with many traditional "textbook" implementations of configuration headers (where all the configuration options are in
a single "monolithic" header) is that they violate certain fundamental software engineering principles which would have the effect
of making boost more fragile, more difficult to maintain and more difficult to use safely. You can find a description of the principles
from the following article.

The problem
Consider a situation in which you are concurrently developing on multiple platforms. Then consider adding a new platform or
changing the platform definitions of an existing platform. What happens? Everything, and this does literally mean everything, recom-
piles. Isn't it quite absurd that adding a new platform, which has absolutely nothing to do with previously existing platforms, means
that all code on all existing platforms needs to be recompiled?

Effectively, there is an imposed physical dependency between platforms that have nothing to do with each other. Essentially, the
traditional solution employed by configuration headers does not conform to the Open-Closed Principle:

"A module should be open for extension but closed for modification."

Extending a traditional configuration header implies modifying existing code.

Furthermore, consider the complexity and fragility of the platform detection code. What if a simple change breaks the detection on
some minor platform? What if someone accidentally or on purpose (as a workaround for some other problem) defines some platform
dependent macros that are used by the detection code? A traditional configuration header is one of the most volatile headers of the
entire library, and more stable elements of Boost would depend on it. This violates the Stable Dependencies Principle:

"Depend in the direction of stability."

After even a minor change to a traditional configuration header on one minor platform, almost everything on every platform should
be tested if we follow sound software engineering practice.

Another important issue is that it is not always possible to submit changes to <boost/config.hpp>. Some boost users are currently
working on platforms using tools and libraries that are under strict Non-Disclosure Agreements. In this situation it is impossible to
submit changes to a traditional monolithic configuration header, instead some method by which the user can insert their own config-
uration code must be provided.

The solution
The approach taken by boost's configuration headers is to separate configuration into three orthogonal parts: the compiler, the
standard library and the platform. Each compiler/standard library/platform gets its own mini-configuration header, so that changes
to one compiler's configuration (for example) does not affect other compilers. In addition there are measures that can be taken both
to omit the compiler/standard library/platform detection code (so that adding support to a new platform does not break dependencies),
or to freeze the configuration completely; providing almost complete protection against dependency changes.

51

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgements
Beman Dawes provided the original config.hpp and part of this document.

Vesa Karvonen provided a description of the principles (see rationale) and put together an early version of the current configuration
setup.

John Maddock put together the configuration current code, the test programs, the configuration script and the reference section of
this document.

Matias Capeletto converted the docs to quickbook format.

Numerous boost members, past and present, have contributed fixes to boost's configuration.

52

Boost.Config

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Config
	Table of Contents
	Configuring Boost for Your Platform
	Using the default boost configuration
	The <boost/config.hpp> header
	Using the configure script
	User settable options
	Advanced configuration usage
	Example 1: creating our own frozen configuration
	Example 2: skipping files that you don't need
	Example 3: using configure script to freeze the boost configuration

	Testing the boost configuration

	Boost Macro Reference
	Macros that describe C++03 defects
	Macros that describe optional features
	Macros that describe possible C++ future features
	Macros that describe C++11 features not supported
	Macros that allow use of C++11 features with C++03 compilers
	Boost Helper Macros
	Boost Informational Macros
	Boost Deprecated Macros
	Macros for libraries with separate source code
	Macros controlling shared library symbol visibility
	ABI Fixing
	Automatic library selection

	Standard Integer Types
	Overview
	Rationale
	Caveat emptor
	Exact-width integer types
	Minimum-width integer types
	Fastest minimum-width integer types
	Greatest-width integer types
	Integer Constant Macros

	Guidelines for Boost Authors
	Disabling Compiler Warnings
	Adding New Defect Macros
	Adding New Feature Test Macros
	Modifying the Boost Configuration Headers

	Rationale
	The problem
	The solution

	Acknowledgements

