The mixed volume of a polynomial system provides an upper bound on the number of complex isolated roots without zero components.
i1 : R=QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : S={y-x^2,z-x^3,x+y+z-1} 2 3 o2 = {- x + y, - x + z, x + y + z - 1} o2 : List |
i3 : m=mixedVolume(S) using temporary file name /tmp/M2-7482-1PHCinput o3 = 3 |