next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: findTrivialMasseyOperation

findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)

Synopsis

Description

This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]

o1 = Q

o1 : PolynomialRing
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)

o2 = ideal (x x , x x , x x , x x , x x )
             3 5   4 5   1 6   3 6   4 6

o2 : Ideal of Q
i3 : R = Q/I

o3 = R

o3 : QuotientRing
i4 : A = koszulComplexDGA(R)

o4 = {Ring => R                                      }
      Underlying algebra => R[T , T , T , T , T , T ]
                               1   2   3   4   5   6
      Differential => {x , x , x , x , x , x }
                        1   2   3   4   5   6
      isHomogeneous => true

o4 : DGAlgebra
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 :      -- used 0.00795906 seconds
Computing generators in degree 2 :      -- used 0.0204924 seconds
Computing generators in degree 3 :      -- used 0.018995 seconds

o5 = true
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00143042 seconds
Computing generators in degree 2 :      -- used 0.0451025 seconds
Computing generators in degree 3 :      -- used 0.01225 seconds
Computing generators in degree 4 :      -- used 0.00611065 seconds
Computing generators in degree 5 :      -- used 0.00540821 seconds
Computing generators in degree 6 :      -- used 0.0049397 seconds

o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
       5 4   5 3   6 4   6 3   6 1    6 1 3    5 3 4    6 3 4    6 1 4   
     ------------------------------------------------------------------------
     x T T  + x T T , - x T T  + x T T , x T T T , x T T T  - x T T T }
      6 4 5    5 4 6     6 3 5    5 3 6   6 1 3 4   6 3 4 5    5 3 4 6

o6 : List
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 :      -- used 0.00131461 seconds
Computing generators in degree 2 :      -- used 0.012167 seconds
Computing generators in degree 3 :      -- used 0.012369 seconds
Computing generators in degree 4 :      -- used 0.00115007 seconds
Computing generators in degree 5 :      -- used 0.00117145 seconds
Computing generators in degree 6 :      -- used 0.0011788 seconds

o7 = {{3} | 0    0 0   0    0 0    0    0    0    0    |, {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    -x_6 0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    -x_6 |  {4} | x_6 0 0   0 0
      {3} | 0    0 0   0    0 0    -x_6 0    0    0    |  {4} | 0   0 x_6 0 0
      {3} | 0    0 0   0    0 0    0    0    -x_6 0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | -x_5 0 x_6 -x_6 0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 -x_6 0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
     ------------------------------------------------------------------------
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 x_6 0 0 0 0 0   0 -x_6 0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 x_6 0 0    0 -x_6 0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   x_6 0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 x_5 0 x_6 0   -x_5 0 -x_6 0
     ------------------------------------------------------------------------
     0   |, {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |,
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |
     0   |
     x_6 |
     0   |
     0   |
     0   |
     0   |
     0   |
     0   |
     ------------------------------------------------------------------------
     0, 0}

o7 : List
i8 : assert(tmo =!= null)
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]

o9 = Q

o9 : PolynomialRing
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)

              3   3   3   2 2 2
o10 = ideal (x , y , z , x y z )

o10 : Ideal of Q
i11 : R = Q/I

o11 = R

o11 : QuotientRing
i12 : A = koszulComplexDGA(R)

o12 = {Ring => R                          }
       Underlying algebra => R[T , T , T ]
                                1   2   3
       Differential => {x, y, z}
       isHomogeneous => true

o12 : DGAlgebra
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 :      -- used 0.0061278 seconds
Computing generators in degree 2 :      -- used 0.0128891 seconds
Computing generators in degree 3 :      -- used 0.0118047 seconds

o13 = false
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00102494 seconds
Computing generators in degree 2 :      -- used 0.00799975 seconds
Computing generators in degree 3 :      -- used 0.0078855 seconds

        2     2     2       2 2       2 2       2   2         2 2     
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
          1     2     3         1         1 2         1 2         1 3 
      -----------------------------------------------------------------------
         2 2         2   2         2 2
      x*y z T T T , x y*z T T T , x y z*T T T }
             1 2 3         1 2 3         1 2 3

o14 : List
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 :      -- used 0.00103891 seconds
Computing generators in degree 2 :      -- used 0.00800278 seconds
Computing generators in degree 3 :      -- used 0.00787884 seconds

Ways to use findTrivialMasseyOperation :