next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2     2    2    2 2      2   2       2   2 2    2 2 
o2 = ideal (h*o*r - x , b*m  - l o, r w  - l*o , j l*t - f , g n  - a w ,
     ------------------------------------------------------------------------
      2 2    2    2 2 2
     e l  - s t, n q v x - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 3 3 3    3     3 4   3 2   2 4 3 4    2 2 4 
o3 = ideal (d g h j w  - c k*p*r v , e f h*j s u w  - a o t ,
     ------------------------------------------------------------------------
      2 3 4     3 4 4    2 3   3 4 4 2 3 2 4    4 2 2
     a g l n*o*s w x  - f r , c e g j n s x  - i u v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous