i1 : R = ZZ/101[x_1..x_10] o1 = R o1 : PolynomialRing |
i2 : A = koszulComplexDGA(R) o2 = {Ring => R } Underlying algebra => R[T , T , T , T , T , T , T , T , T , T ] 1 2 3 4 5 6 7 8 9 10 Differential => {x , x , x , x , x , x , x , x , x , x } 1 2 3 4 5 6 7 8 9 10 isHomogeneous => true o2 : DGAlgebra |
i3 : C = toComplex A 1 10 45 120 210 252 210 120 45 10 1 o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R 0 1 2 3 4 5 6 7 8 9 10 o3 : ChainComplex |