/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file brw_fs_generator.cpp * * This file supports generating code from the FS LIR to the actual * native instructions. */ #include "brw_eu.h" #include "brw_fs.h" #include "brw_cfg.h" static enum brw_reg_file brw_file_from_reg(fs_reg *reg) { switch (reg->file) { case ARF: return BRW_ARCHITECTURE_REGISTER_FILE; case FIXED_GRF: case VGRF: return BRW_GENERAL_REGISTER_FILE; case MRF: return BRW_MESSAGE_REGISTER_FILE; case IMM: return BRW_IMMEDIATE_VALUE; case BAD_FILE: case ATTR: case UNIFORM: unreachable("not reached"); } return BRW_ARCHITECTURE_REGISTER_FILE; } static struct brw_reg brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst, fs_reg *reg, bool compressed) { struct brw_reg brw_reg; switch (reg->file) { case MRF: assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); /* Fallthrough */ case VGRF: if (reg->stride == 0) { brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0); } else { /* From the Haswell PRM: * * "VertStride must be used to cross GRF register boundaries. This * rule implies that elements within a 'Width' cannot cross GRF * boundaries." * * The maximum width value that could satisfy this restriction is: */ const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type)); /* Because the hardware can only split source regions at a whole * multiple of width during decompression (i.e. vertically), clamp * the value obtained above to the physical execution size of a * single decompressed chunk of the instruction: */ const unsigned phys_width = compressed ? inst->exec_size / 2 : inst->exec_size; /* XXX - The equation above is strictly speaking not correct on * hardware that supports unbalanced GRF writes -- On Gen9+ * each decompressed chunk of the instruction may have a * different execution size when the number of components * written to each destination GRF is not the same. */ if (reg->stride > 4) { assert(reg != &inst->dst); assert(reg->stride * type_sz(reg->type) <= REG_SIZE); brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0); brw_reg = stride(brw_reg, reg->stride, 1, 0); } else { const unsigned width = MIN2(reg_width, phys_width); brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0); brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride); } if (devinfo->gen == 7 && !devinfo->is_haswell) { /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13): * "Each DF (Double Float) operand uses an element size of 4 rather * than 8 and all regioning parameters are twice what the values * would be based on the true element size: ExecSize, Width, * HorzStride, and VertStride. Each DF operand uses a pair of * channels and all masking and swizzing should be adjusted * appropriately." * * From the IvyBridge PRM (Special Requirements for Handling Double * Precision Data Types, page 71): * "In Align1 mode, all regioning parameters like stride, execution * size, and width must use the syntax of a pair of packed * floats. The offsets for these data types must be 64-bit * aligned. The execution size and regioning parameters are in terms * of floats." * * Summarized: when handling DF-typed arguments, ExecSize, * VertStride, and Width must be doubled. * * It applies to BayTrail too. */ if (type_sz(reg->type) == 8) { brw_reg.width++; if (brw_reg.vstride > 0) brw_reg.vstride++; assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1); } /* When converting from DF->F, we set the destination stride to 2 * because each d2f conversion implicitly writes 2 floats, being * the first one the converted value. IVB/BYT actually writes two * F components per SIMD channel, and every other component is * filled with garbage. */ if (reg == &inst->dst && get_exec_type_size(inst) == 8 && type_sz(inst->dst.type) < 8) { assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1); brw_reg.hstride--; } } } brw_reg = retype(brw_reg, reg->type); brw_reg = byte_offset(brw_reg, reg->offset); brw_reg.abs = reg->abs; brw_reg.negate = reg->negate; break; case ARF: case FIXED_GRF: case IMM: assert(reg->offset == 0); brw_reg = reg->as_brw_reg(); break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case ATTR: case UNIFORM: unreachable("not reached"); } /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0> * region, but on IVB and BYT DF regions must be programmed in terms of * floats. A <0,2,1> region accomplishes this. */ if (devinfo->gen == 7 && !devinfo->is_haswell && type_sz(reg->type) == 8 && brw_reg.vstride == BRW_VERTICAL_STRIDE_0 && brw_reg.width == BRW_WIDTH_1 && brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) { brw_reg.width = BRW_WIDTH_2; brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1; } return brw_reg; } fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, struct brw_stage_prog_data *prog_data, unsigned promoted_constants, bool runtime_check_aads_emit, gl_shader_stage stage) : compiler(compiler), log_data(log_data), devinfo(compiler->devinfo), prog_data(prog_data), promoted_constants(promoted_constants), runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false), stage(stage), mem_ctx(mem_ctx) { p = rzalloc(mem_ctx, struct brw_codegen); brw_init_codegen(devinfo, p, mem_ctx); /* In the FS code generator, we are very careful to ensure that we always * set the right execution size so we don't need the EU code to "help" us * by trying to infer it. Sometimes, it infers the wrong thing. */ p->automatic_exec_sizes = false; } fs_generator::~fs_generator() { } class ip_record : public exec_node { public: DECLARE_RALLOC_CXX_OPERATORS(ip_record) ip_record(int ip) { this->ip = ip; } int ip; }; bool fs_generator::patch_discard_jumps_to_fb_writes() { if (devinfo->gen < 6 || this->discard_halt_patches.is_empty()) return false; int scale = brw_jump_scale(p->devinfo); /* There is a somewhat strange undocumented requirement of using * HALT, according to the simulator. If some channel has HALTed to * a particular UIP, then by the end of the program, every channel * must have HALTed to that UIP. Furthermore, the tracking is a * stack, so you can't do the final halt of a UIP after starting * halting to a new UIP. * * Symptoms of not emitting this instruction on actual hardware * included GPU hangs and sparkly rendering on the piglit discard * tests. */ brw_inst *last_halt = gen6_HALT(p); brw_inst_set_uip(p->devinfo, last_halt, 1 * scale); brw_inst_set_jip(p->devinfo, last_halt, 1 * scale); int ip = p->nr_insn; foreach_in_list(ip_record, patch_ip, &discard_halt_patches) { brw_inst *patch = &p->store[patch_ip->ip]; assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT); /* HALT takes a half-instruction distance from the pre-incremented IP. */ brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale); } this->discard_halt_patches.make_empty(); return true; } void fs_generator::generate_send(fs_inst *inst, struct brw_reg dst, struct brw_reg desc, struct brw_reg ex_desc, struct brw_reg payload, struct brw_reg payload2) { const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE && dst.nr == BRW_ARF_NULL; const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE; uint32_t desc_imm = inst->desc | brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size); uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen); if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) { /* If we have any sort of extended descriptor, then we need SENDS. This * also covers the dual-payload case because ex_mlen goes in ex_desc. */ brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2, desc, desc_imm, ex_desc, ex_desc_imm, inst->eot); if (inst->check_tdr) brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC); } else { brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm, inst->eot); if (inst->check_tdr) brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC); } } void fs_generator::fire_fb_write(fs_inst *inst, struct brw_reg payload, struct brw_reg implied_header, GLuint nr) { uint32_t msg_control; struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); if (devinfo->gen < 6) { brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_8); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); brw_set_default_compression_control(p, BRW_COMPRESSION_NONE); brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1), offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1)); brw_pop_insn_state(p); } if (inst->opcode == FS_OPCODE_REP_FB_WRITE) { assert(inst->group == 0 && inst->exec_size == 16); msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED; } else if (prog_data->dual_src_blend) { assert(inst->exec_size == 8); if (inst->group % 16 == 0) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01; else if (inst->group % 16 == 8) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23; else unreachable("Invalid dual-source FB write instruction group"); } else { assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16)); if (inst->exec_size == 16) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE; else if (inst->exec_size == 8) msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01; else unreachable("Invalid FB write execution size"); } /* We assume render targets start at 0, because headerless FB write * messages set "Render Target Index" to 0. Using a different binding * table index would make it impossible to use headerless messages. */ const uint32_t surf_index = inst->target; brw_inst *insn = brw_fb_WRITE(p, payload, retype(implied_header, BRW_REGISTER_TYPE_UW), msg_control, surf_index, nr, 0, inst->eot, inst->last_rt, inst->header_size != 0); if (devinfo->gen >= 6) brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16); } void fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload) { if (devinfo->gen < 8 && !devinfo->is_haswell) { brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); } const struct brw_reg implied_header = devinfo->gen < 6 ? payload : brw_null_reg(); if (inst->base_mrf >= 0) payload = brw_message_reg(inst->base_mrf); if (!runtime_check_aads_emit) { fire_fb_write(inst, payload, implied_header, inst->mlen); } else { /* This can only happen in gen < 6 */ assert(devinfo->gen < 6); struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD)); /* Check runtime bit to detect if we have to send AA data or not */ brw_push_insn_state(p); brw_set_default_compression_control(p, BRW_COMPRESSION_NONE); brw_set_default_exec_size(p, BRW_EXECUTE_1); brw_AND(p, v1_null_ud, retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD), brw_imm_ud(1<<26)); brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ); int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store; brw_pop_insn_state(p); { /* Don't send AA data */ fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1); } brw_land_fwd_jump(p, jmp); fire_fb_write(inst, payload, implied_header, inst->mlen); } } void fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst, struct brw_reg payload) { assert(inst->size_written % REG_SIZE == 0); struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); /* We assume that render targets start at binding table index 0. */ const unsigned surf_index = inst->target; gen9_fb_READ(p, dst, payload, surf_index, inst->header_size, inst->size_written / REG_SIZE, prog_data->persample_dispatch); } void fs_generator::generate_mov_indirect(fs_inst *inst, struct brw_reg dst, struct brw_reg reg, struct brw_reg indirect_byte_offset) { assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD); assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE); assert(!reg.abs && !reg.negate); assert(reg.type == dst.type); unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr; if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) { imm_byte_offset += indirect_byte_offset.ud; reg.nr = imm_byte_offset / REG_SIZE; reg.subnr = imm_byte_offset % REG_SIZE; brw_MOV(p, dst, reg); } else { /* Prior to Broadwell, there are only 8 address registers. */ assert(inst->exec_size <= 8 || devinfo->gen >= 8); /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ struct brw_reg addr = vec8(brw_address_reg(0)); /* The destination stride of an instruction (in bytes) must be greater * than or equal to the size of the rest of the instruction. Since the * address register is of type UW, we can't use a D-type instruction. * In order to get around this, re retype to UW and use a stride. */ indirect_byte_offset = retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW); /* There are a number of reasons why we don't use the base offset here. * One reason is that the field is only 9 bits which means we can only * use it to access the first 16 GRFs. Also, from the Haswell PRM * section "Register Region Restrictions": * * "The lower bits of the AddressImmediate must not overflow to * change the register address. The lower 5 bits of Address * Immediate when added to lower 5 bits of address register gives * the sub-register offset. The upper bits of Address Immediate * when added to upper bits of address register gives the register * address. Any overflow from sub-register offset is dropped." * * Since the indirect may cause us to cross a register boundary, this * makes the base offset almost useless. We could try and do something * clever where we use a actual base offset if base_offset % 32 == 0 but * that would mean we were generating different code depending on the * base offset. Instead, for the sake of consistency, we'll just do the * add ourselves. This restriction is only listed in the Haswell PRM * but empirical testing indicates that it applies on all older * generations and is lifted on Broadwell. * * In the end, while base_offset is nice to look at in the generated * code, using it saves us 0 instructions and would require quite a bit * of case-by-case work. It's just not worth it. */ brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset)); if (type_sz(reg.type) > 4 && ((devinfo->gen == 7 && !devinfo->is_haswell) || devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) || !devinfo->has_64bit_types)) { /* IVB has an issue (which we found empirically) where it reads two * address register components per channel for indirectly addressed * 64-bit sources. * * From the Cherryview PRM Vol 7. "Register Region Restrictions": * * "When source or destination datatype is 64b or operation is * integer DWord multiply, indirect addressing must not be used." * * To work around both of these, we do two integer MOVs insead of one * 64-bit MOV. Because no double value should ever cross a register * boundary, it's safe to use the immediate offset in the indirect * here to handle adding 4 bytes to the offset and avoid the extra * ADD to the register file. */ brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0), retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D)); brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1), retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D)); } else { struct brw_reg ind_src = brw_VxH_indirect(0, 0); brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type)); if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE && !inst->get_next()->is_tail_sentinel() && ((fs_inst *)inst->get_next())->mlen > 0) { /* From the Sandybridge PRM: * * "[Errata: DevSNB(SNB)] If MRF register is updated by any * instruction that “indexed/indirect” source AND is followed * by a send, the instruction requires a “Switch”. This is to * avoid race condition where send may dispatch before MRF is * updated." */ brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH); } } } } void fs_generator::generate_shuffle(fs_inst *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg idx) { /* Ivy bridge has some strange behavior that makes this a real pain to * implement for 64-bit values so we just don't bother. */ assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4); /* Because we're using the address register, we're limited to 8-wide * execution on gen7. On gen8, we're limited to 16-wide by the address * register file and 8-wide for 64-bit types. We could try and make this * instruction splittable higher up in the compiler but that gets weird * because it reads all of the channels regardless of execution size. It's * easier just to split it here. */ const unsigned lower_width = (devinfo->gen <= 7 || type_sz(src.type) > 4) ? 8 : MIN2(16, inst->exec_size); brw_set_default_exec_size(p, cvt(lower_width) - 1); for (unsigned group = 0; group < inst->exec_size; group += lower_width) { brw_set_default_group(p, group); if ((src.vstride == 0 && src.hstride == 0) || idx.file == BRW_IMMEDIATE_VALUE) { /* Trivial, the source is already uniform or the index is a constant. * We will typically not get here if the optimizer is doing its job, * but asserting would be mean. */ const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0; brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0)); } else { /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ struct brw_reg addr = vec8(brw_address_reg(0)); struct brw_reg group_idx = suboffset(idx, group); if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) { /* Things get grumpy if the register is too wide. */ group_idx.width--; group_idx.vstride--; } assert(type_sz(group_idx.type) <= 4); if (type_sz(group_idx.type) == 4) { /* The destination stride of an instruction (in bytes) must be * greater than or equal to the size of the rest of the * instruction. Since the address register is of type UW, we * can't use a D-type instruction. In order to get around this, * re retype to UW and use a stride. */ group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W); } /* Take into account the component size and horizontal stride. */ assert(src.vstride == src.hstride + src.width); brw_SHL(p, addr, group_idx, brw_imm_uw(_mesa_logbase2(type_sz(src.type)) + src.hstride - 1)); /* Add on the register start offset */ brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr)); if (type_sz(src.type) > 4 && ((devinfo->gen == 7 && !devinfo->is_haswell) || devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) { /* IVB has an issue (which we found empirically) where it reads * two address register components per channel for indirectly * addressed 64-bit sources. * * From the Cherryview PRM Vol 7. "Register Region Restrictions": * * "When source or destination datatype is 64b or operation is * integer DWord multiply, indirect addressing must not be * used." * * To work around both of these, we do two integer MOVs insead of * one 64-bit MOV. Because no double value should ever cross a * register boundary, it's safe to use the immediate offset in the * indirect here to handle adding 4 bytes to the offset and avoid * the extra ADD to the register file. */ struct brw_reg gdst = suboffset(dst, group); struct brw_reg dst_d = retype(spread(gdst, 2), BRW_REGISTER_TYPE_D); brw_MOV(p, dst_d, retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D)); brw_MOV(p, byte_offset(dst_d, 4), retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D)); } else { brw_MOV(p, suboffset(dst, group), retype(brw_VxH_indirect(0, 0), src.type)); } } } } void fs_generator::generate_quad_swizzle(const fs_inst *inst, struct brw_reg dst, struct brw_reg src, unsigned swiz) { /* Requires a quad. */ assert(inst->exec_size >= 4); if (src.file == BRW_IMMEDIATE_VALUE || has_scalar_region(src)) { /* The value is uniform across all channels */ brw_MOV(p, dst, src); } else if (devinfo->gen < 11 && type_sz(src.type) == 4) { /* This only works on 8-wide 32-bit values */ assert(inst->exec_size == 8); assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); assert(src.vstride == src.width + 1); brw_set_default_access_mode(p, BRW_ALIGN_16); struct brw_reg swiz_src = stride(src, 4, 4, 1); swiz_src.swizzle = swiz; brw_MOV(p, dst, swiz_src); } else { assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); assert(src.vstride == src.width + 1); const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0)); switch (swiz) { case BRW_SWIZZLE_XXXX: case BRW_SWIZZLE_YYYY: case BRW_SWIZZLE_ZZZZ: case BRW_SWIZZLE_WWWW: brw_MOV(p, dst, stride(src_0, 4, 4, 0)); break; case BRW_SWIZZLE_XXZZ: case BRW_SWIZZLE_YYWW: brw_MOV(p, dst, stride(src_0, 2, 2, 0)); break; case BRW_SWIZZLE_XYXY: case BRW_SWIZZLE_ZWZW: assert(inst->exec_size == 4); brw_MOV(p, dst, stride(src_0, 0, 2, 1)); break; default: assert(inst->force_writemask_all); brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1); for (unsigned c = 0; c < 4; c++) { brw_inst *insn = brw_MOV( p, stride(suboffset(dst, c), 4 * inst->dst.stride, 1, 4 * inst->dst.stride), stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0)); brw_inst_set_no_dd_clear(devinfo, insn, c < 3); brw_inst_set_no_dd_check(devinfo, insn, c > 0); } break; } } } void fs_generator::generate_urb_read(fs_inst *inst, struct brw_reg dst, struct brw_reg header) { assert(inst->size_written % REG_SIZE == 0); assert(header.file == BRW_GENERAL_REGISTER_FILE); assert(header.type == BRW_REGISTER_TYPE_UD); brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD)); brw_set_src0(p, send, header); brw_set_src1(p, send, brw_imm_ud(0u)); brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB); brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ); if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT) brw_inst_set_urb_per_slot_offset(p->devinfo, send, true); brw_inst_set_mlen(p->devinfo, send, inst->mlen); brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE); brw_inst_set_header_present(p->devinfo, send, true); brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset); } void fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload) { brw_inst *insn; /* WaClearTDRRegBeforeEOTForNonPS. * * WA: Clear tdr register before send EOT in all non-PS shader kernels * * mov(8) tdr0:ud 0x0:ud {NoMask}" */ if (inst->eot && p->devinfo->gen == 10) { brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0)); brw_pop_insn_state(p); } insn = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, insn, brw_null_reg()); brw_set_src0(p, insn, payload); brw_set_src1(p, insn, brw_imm_ud(0u)); brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB); brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE); if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT || inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true); if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED || inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true); brw_inst_set_mlen(p->devinfo, insn, inst->mlen); brw_inst_set_rlen(p->devinfo, insn, 0); brw_inst_set_eot(p->devinfo, insn, inst->eot); brw_inst_set_header_present(p->devinfo, insn, true); brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset); } void fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload) { struct brw_inst *insn; insn = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW)); brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW)); brw_set_src1(p, insn, brw_imm_ud(0u)); /* Terminate a compute shader by sending a message to the thread spawner. */ brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER); brw_inst_set_mlen(devinfo, insn, 1); brw_inst_set_rlen(devinfo, insn, 0); brw_inst_set_eot(devinfo, insn, inst->eot); brw_inst_set_header_present(devinfo, insn, false); brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */ brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */ /* Note that even though the thread has a URB resource associated with it, * we set the "do not dereference URB" bit, because the URB resource is * managed by the fixed-function unit, so it will free it automatically. */ brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */ brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE); } void fs_generator::generate_barrier(fs_inst *, struct brw_reg src) { brw_barrier(p, src); brw_WAIT(p); } bool fs_generator::generate_linterp(fs_inst *inst, struct brw_reg dst, struct brw_reg *src) { /* PLN reads: * / in SIMD16 \ * ----------------------------------- * | src1+0 | src1+1 | src1+2 | src1+3 | * |-----------------------------------| * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)| * ----------------------------------- * * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys: * * ----------------------------------- * | src1+0 | src1+1 | src1+2 | src1+3 | * |-----------------------------------| * |(x0, x1)|(y0, y1)| | | in SIMD8 * |-----------------------------------| * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16 * ----------------------------------- * * See also: emit_interpolation_setup_gen4(). */ struct brw_reg delta_x = src[0]; struct brw_reg delta_y = offset(src[0], inst->exec_size / 8); struct brw_reg interp = src[1]; brw_inst *i[2]; /* fs_visitor::lower_linterp() will do the lowering to MAD instructions for * us on gen11+ */ assert(devinfo->gen < 11); if (devinfo->has_pln) { if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) { /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane": * * "[DevSNB]: must be even register aligned. * * This restriction is lifted on Ivy Bridge. * * This means that we need to split PLN into LINE+MAC on-the-fly. * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so * we have to split into SIMD8 pieces. For gen4 (!has_pln), the * coordinate registers are laid out differently so we leave it as a * SIMD16 instruction. */ assert(inst->exec_size == 8 || inst->exec_size == 16); assert(inst->group % 16 == 0); brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_8); /* Thanks to two accumulators, we can emit all the LINEs and then all * the MACs. This improves parallelism a bit. */ for (unsigned g = 0; g < inst->exec_size / 8; g++) { brw_inst *line = brw_LINE(p, brw_null_reg(), interp, offset(delta_x, g * 2)); brw_inst_set_group(devinfo, line, inst->group + g * 8); /* LINE writes the accumulator automatically on gen4-5. On Sandy * Bridge and later, we have to explicitly enable it. */ if (devinfo->gen >= 6) brw_inst_set_acc_wr_control(p->devinfo, line, true); /* brw_set_default_saturate() is called before emitting * instructions, so the saturate bit is set in each instruction, * so we need to unset it on the LINE instructions. */ brw_inst_set_saturate(p->devinfo, line, false); } for (unsigned g = 0; g < inst->exec_size / 8; g++) { brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1), offset(delta_x, g * 2 + 1)); brw_inst_set_group(devinfo, mac, inst->group + g * 8); brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod); } brw_pop_insn_state(p); return true; } else { brw_PLN(p, dst, interp, delta_x); return false; } } else { i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x); i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y); brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod); /* brw_set_default_saturate() is called before emitting instructions, so * the saturate bit is set in each instruction, so we need to unset it on * the first instruction. */ brw_inst_set_saturate(p->devinfo, i[0], false); return true; } } void fs_generator::generate_get_buffer_size(fs_inst *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg surf_index) { assert(devinfo->gen >= 7); assert(surf_index.file == BRW_IMMEDIATE_VALUE); uint32_t simd_mode; int rlen = 4; switch (inst->exec_size) { case 8: simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; break; case 16: simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; default: unreachable("Invalid width for texture instruction"); } if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) { rlen = 8; dst = vec16(dst); } brw_SAMPLE(p, retype(dst, BRW_REGISTER_TYPE_UW), inst->base_mrf, src, surf_index.ud, 0, GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO, rlen, /* response length */ inst->mlen, inst->header_size > 0, simd_mode, BRW_SAMPLER_RETURN_FORMAT_SINT32); } void fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg surface_index, struct brw_reg sampler_index) { assert(devinfo->gen < 7); assert(inst->size_written % REG_SIZE == 0); int msg_type = -1; uint32_t simd_mode; uint32_t return_format; /* Sampler EOT message of less than the dispatch width would kill the * thread prematurely. */ assert(!inst->eot || inst->exec_size == dispatch_width); switch (dst.type) { case BRW_REGISTER_TYPE_D: return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32; break; case BRW_REGISTER_TYPE_UD: return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; break; default: return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; break; } /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type * is set as part of the message descriptor. On gen4, the PRM seems to * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is * gone from the message descriptor entirely and you just get UINT32 all * the time regasrdless. Since we can really only do non-UINT32 on gen4, * just stomp it to UINT32 all the time. */ if (inst->opcode == SHADER_OPCODE_TXS) return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; switch (inst->exec_size) { case 8: simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; break; case 16: simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; default: unreachable("Invalid width for texture instruction"); } if (devinfo->gen >= 5) { switch (inst->opcode) { case SHADER_OPCODE_TEX: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE; } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS; } break; case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case SHADER_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; case SHADER_OPCODE_TXD: assert(!inst->shadow_compare); msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; break; case SHADER_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_CMS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_LOD: msg_type = GEN5_SAMPLER_MESSAGE_LOD; break; case SHADER_OPCODE_TG4: assert(devinfo->gen == 6); assert(!inst->shadow_compare); msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4; break; case SHADER_OPCODE_SAMPLEINFO: msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO; break; default: unreachable("not reached"); } } else { switch (inst->opcode) { case SHADER_OPCODE_TEX: /* Note that G45 and older determines shadow compare and dispatch width * from message length for most messages. */ if (inst->exec_size == 8) { msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE; if (inst->shadow_compare) { assert(inst->mlen == 6); } else { assert(inst->mlen <= 4); } } else { if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE; assert(inst->mlen == 9); } else { msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE; assert(inst->mlen <= 7 && inst->mlen % 2 == 1); } } break; case FS_OPCODE_TXB: if (inst->shadow_compare) { assert(inst->exec_size == 8); assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case SHADER_OPCODE_TXL: if (inst->shadow_compare) { assert(inst->exec_size == 8); assert(inst->mlen == 6); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE; } else { assert(inst->mlen == 9); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually */ assert(inst->exec_size == 8); assert(inst->mlen == 7 || inst->mlen == 10); msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS; break; case SHADER_OPCODE_TXF: assert(inst->mlen <= 9 && inst->mlen % 2 == 1); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; case SHADER_OPCODE_TXS: assert(inst->mlen == 3); msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; break; default: unreachable("not reached"); } } assert(msg_type != -1); if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) { dst = vec16(dst); } assert(sampler_index.type == BRW_REGISTER_TYPE_UD); /* Load the message header if present. If there's a texture offset, * we need to set it up explicitly and load the offset bitfield. * Otherwise, we can use an implied move from g0 to the first message reg. */ struct brw_reg src = brw_null_reg(); if (inst->header_size != 0) { if (devinfo->gen < 6 && !inst->offset) { /* Set up an implied move from g0 to the MRF. */ src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW); } else { assert(inst->base_mrf != -1); struct brw_reg header_reg = brw_message_reg(inst->base_mrf); brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_8); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_compression_control(p, BRW_COMPRESSION_NONE); /* Explicitly set up the message header by copying g0 to the MRF. */ brw_MOV(p, header_reg, brw_vec8_grf(0, 0)); brw_set_default_exec_size(p, BRW_EXECUTE_1); if (inst->offset) { /* Set the offset bits in DWord 2. */ brw_MOV(p, get_element_ud(header_reg, 2), brw_imm_ud(inst->offset)); } brw_pop_insn_state(p); } } uint32_t base_binding_table_index; switch (inst->opcode) { case SHADER_OPCODE_TG4: base_binding_table_index = prog_data->binding_table.gather_texture_start; break; default: base_binding_table_index = prog_data->binding_table.texture_start; break; } assert(surface_index.file == BRW_IMMEDIATE_VALUE); assert(sampler_index.file == BRW_IMMEDIATE_VALUE); brw_SAMPLE(p, retype(dst, BRW_REGISTER_TYPE_UW), inst->base_mrf, src, surface_index.ud + base_binding_table_index, sampler_index.ud % 16, msg_type, inst->size_written / REG_SIZE, inst->mlen, inst->header_size != 0, simd_mode, return_format); } /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input * looking like: * * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br * * Ideally, we want to produce: * * DDX DDY * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) * (ss0.br - ss0.bl) (ss0.tr - ss0.br) * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) * (ss1.br - ss1.bl) (ss1.tr - ss1.br) * * and add another set of two more subspans if in 16-pixel dispatch mode. * * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result * for each pair, and vertstride = 2 jumps us 2 elements after processing a * pair. But the ideal approximation may impose a huge performance cost on * sample_d. On at least Haswell, sample_d instruction does some * optimizations if the same LOD is used for all pixels in the subspan. * * For DDY, we need to use ALIGN16 mode since it's capable of doing the * appropriate swizzling. */ void fs_generator::generate_ddx(const fs_inst *inst, struct brw_reg dst, struct brw_reg src) { unsigned vstride, width; if (devinfo->gen >= 8) { if (inst->opcode == FS_OPCODE_DDX_FINE) { /* produce accurate derivatives */ vstride = BRW_VERTICAL_STRIDE_2; width = BRW_WIDTH_2; } else { /* replicate the derivative at the top-left pixel to other pixels */ vstride = BRW_VERTICAL_STRIDE_4; width = BRW_WIDTH_4; } struct brw_reg src0 = byte_offset(src, type_sz(src.type));; struct brw_reg src1 = src; src0.vstride = vstride; src0.width = width; src0.hstride = BRW_HORIZONTAL_STRIDE_0; src1.vstride = vstride; src1.width = width; src1.hstride = BRW_HORIZONTAL_STRIDE_0; brw_ADD(p, dst, src0, negate(src1)); } else { /* On Haswell and earlier, the region used above appears to not work * correctly for compressed instructions. At least on Haswell and * Iron Lake, compressed ALIGN16 instructions do work. Since we * would have to split to SIMD8 no matter which method we choose, we * may as well use ALIGN16 on all platforms gen7 and earlier. */ struct brw_reg src0 = stride(src, 4, 4, 1); struct brw_reg src1 = stride(src, 4, 4, 1); if (inst->opcode == FS_OPCODE_DDX_FINE) { src0.swizzle = BRW_SWIZZLE_XXZZ; src1.swizzle = BRW_SWIZZLE_YYWW; } else { src0.swizzle = BRW_SWIZZLE_XXXX; src1.swizzle = BRW_SWIZZLE_YYYY; } brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_16); brw_ADD(p, dst, negate(src0), src1); brw_pop_insn_state(p); } } /* The negate_value boolean is used to negate the derivative computation for * FBOs, since they place the origin at the upper left instead of the lower * left. */ void fs_generator::generate_ddy(const fs_inst *inst, struct brw_reg dst, struct brw_reg src) { const uint32_t type_size = type_sz(src.type); if (inst->opcode == FS_OPCODE_DDY_FINE) { /* produce accurate derivatives. * * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU) * "Register Region Restrictions", Section "1. Special Restrictions": * * "In Align16 mode, the channel selects and channel enables apply to * a pair of half-floats, because these parameters are defined for * DWord elements ONLY. This is applicable when both source and * destination are half-floats." * * So for half-float operations we use the Gen11+ Align1 path. CHV * inherits its FP16 hardware from SKL, so it is not affected. */ if (devinfo->gen >= 11 || (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) { src = stride(src, 0, 2, 1); brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_4); for (uint32_t g = 0; g < inst->exec_size; g += 4) { brw_set_default_group(p, inst->group + g); brw_ADD(p, byte_offset(dst, g * type_size), negate(byte_offset(src, g * type_size)), byte_offset(src, (g + 2) * type_size)); } brw_pop_insn_state(p); } else { struct brw_reg src0 = stride(src, 4, 4, 1); struct brw_reg src1 = stride(src, 4, 4, 1); src0.swizzle = BRW_SWIZZLE_XYXY; src1.swizzle = BRW_SWIZZLE_ZWZW; brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_16); brw_ADD(p, dst, negate(src0), src1); brw_pop_insn_state(p); } } else { /* replicate the derivative at the top-left pixel to other pixels */ if (devinfo->gen >= 8) { struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size); struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size); brw_ADD(p, dst, negate(src0), src1); } else { /* On Haswell and earlier, the region used above appears to not work * correctly for compressed instructions. At least on Haswell and * Iron Lake, compressed ALIGN16 instructions do work. Since we * would have to split to SIMD8 no matter which method we choose, we * may as well use ALIGN16 on all platforms gen7 and earlier. */ struct brw_reg src0 = stride(src, 4, 4, 1); struct brw_reg src1 = stride(src, 4, 4, 1); src0.swizzle = BRW_SWIZZLE_XXXX; src1.swizzle = BRW_SWIZZLE_ZZZZ; brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_16); brw_ADD(p, dst, negate(src0), src1); brw_pop_insn_state(p); } } } void fs_generator::generate_discard_jump(fs_inst *) { assert(devinfo->gen >= 6); /* This HALT will be patched up at FB write time to point UIP at the end of * the program, and at brw_uip_jip() JIP will be set to the end of the * current block (or the program). */ this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn)); gen6_HALT(p); } void fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src) { /* The 32-wide messages only respect the first 16-wide half of the channel * enable signals which are replicated identically for the second group of * 16 channels, so we cannot use them unless the write is marked * force_writemask_all. */ const unsigned lower_size = inst->force_writemask_all ? inst->exec_size : MIN2(16, inst->exec_size); const unsigned block_size = 4 * lower_size / REG_SIZE; assert(inst->mlen != 0); brw_push_insn_state(p); brw_set_default_exec_size(p, cvt(lower_size) - 1); brw_set_default_compression(p, lower_size > 8); for (unsigned i = 0; i < inst->exec_size / lower_size; i++) { brw_set_default_group(p, inst->group + lower_size * i); brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0), retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD)); brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf), block_size, inst->offset + block_size * REG_SIZE * i); } brw_pop_insn_state(p); } void fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst) { assert(inst->exec_size <= 16 || inst->force_writemask_all); assert(inst->mlen != 0); brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf), inst->exec_size / 8, inst->offset); } void fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst) { assert(inst->exec_size <= 16 || inst->force_writemask_all); gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset); } void fs_generator::generate_uniform_pull_constant_load(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { assert(type_sz(dst.type) == 4); assert(inst->mlen != 0); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.ud; assert(offset.file == BRW_IMMEDIATE_VALUE && offset.type == BRW_REGISTER_TYPE_UD); uint32_t read_offset = offset.ud; brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf), read_offset, surf_index); } void fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg payload) { assert(index.type == BRW_REGISTER_TYPE_UD); assert(payload.file == BRW_GENERAL_REGISTER_FILE); assert(type_sz(dst.type) == 4); if (index.file == BRW_IMMEDIATE_VALUE) { const uint32_t surf_index = index.ud; brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_pop_insn_state(p); brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE); brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD)); brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD)); brw_set_desc(p, send, brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written, REG_SIZE), true) | brw_dp_read_desc(devinfo, surf_index, BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size), GEN7_DATAPORT_DC_OWORD_BLOCK_READ, BRW_DATAPORT_READ_TARGET_DATA_CACHE)); } else { struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD)); brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); /* a0.0 = surf_index & 0xff */ brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND); brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1); brw_set_dest(p, insn_and, addr); brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD))); brw_set_src1(p, insn_and, brw_imm_ud(0x0ff)); /* dst = send(payload, a0.0 | ) */ brw_send_indirect_message( p, GEN6_SFID_DATAPORT_CONSTANT_CACHE, retype(dst, BRW_REGISTER_TYPE_UD), retype(payload, BRW_REGISTER_TYPE_UD), addr, brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written, REG_SIZE), true) | brw_dp_read_desc(devinfo, 0 /* surface */, BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size), GEN7_DATAPORT_DC_OWORD_BLOCK_READ, BRW_DATAPORT_READ_TARGET_DATA_CACHE), false /* EOT */); brw_pop_insn_state(p); } } void fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst, struct brw_reg dst, struct brw_reg index) { assert(devinfo->gen < 7); /* Should use the gen7 variant. */ assert(inst->header_size != 0); assert(inst->mlen); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.ud; uint32_t simd_mode, rlen, msg_type; if (inst->exec_size == 16) { simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; rlen = 8; } else { assert(inst->exec_size == 8); simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8; rlen = 4; } if (devinfo->gen >= 5) msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; else { /* We always use the SIMD16 message so that we only have to load U, and * not V or R. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD; assert(inst->mlen == 3); assert(inst->size_written == 8 * REG_SIZE); rlen = 8; simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16; } struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_inst_set_compression(devinfo, send, false); brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER); brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW)); brw_set_src0(p, send, header); if (devinfo->gen < 6) brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf); /* Our surface is set up as floats, regardless of what actual data is * stored in it. */ uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; brw_set_desc(p, send, brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) | brw_sampler_desc(devinfo, surf_index, 0, /* sampler (unused) */ msg_type, simd_mode, return_format)); } void fs_generator::generate_pixel_interpolator_query(fs_inst *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg msg_data, unsigned msg_type) { const bool has_payload = inst->src[0].file != BAD_FILE; assert(msg_data.type == BRW_REGISTER_TYPE_UD); assert(inst->size_written % REG_SIZE == 0); brw_pixel_interpolator_query(p, retype(dst, BRW_REGISTER_TYPE_UW), /* If we don't have a payload, what we send doesn't matter */ has_payload ? src : brw_vec8_grf(0, 0), inst->pi_noperspective, msg_type, msg_data, has_payload ? 2 * inst->exec_size / 8 : 1, inst->size_written / REG_SIZE); } /* Sets vstride=1, width=4, hstride=0 of register src1 during * the ADD instruction. */ void fs_generator::generate_set_sample_id(fs_inst *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { assert(dst.type == BRW_REGISTER_TYPE_D || dst.type == BRW_REGISTER_TYPE_UD); assert(src0.type == BRW_REGISTER_TYPE_D || src0.type == BRW_REGISTER_TYPE_UD); const struct brw_reg reg = stride(src1, 1, 4, 0); const unsigned lower_size = MIN2(inst->exec_size, devinfo->gen >= 8 ? 16 : 8); for (unsigned i = 0; i < inst->exec_size / lower_size; i++) { brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8), offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) * (i * lower_size / (1 << src0.width))) * type_sz(src0.type) / REG_SIZE), suboffset(reg, i * lower_size / 4)); brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1); brw_inst_set_group(devinfo, insn, inst->group + lower_size * i); brw_inst_set_compression(devinfo, insn, lower_size > 8); } } void fs_generator::generate_pack_half_2x16_split(fs_inst *, struct brw_reg dst, struct brw_reg x, struct brw_reg y) { assert(devinfo->gen >= 7); assert(dst.type == BRW_REGISTER_TYPE_UD); assert(x.type == BRW_REGISTER_TYPE_F); assert(y.type == BRW_REGISTER_TYPE_F); /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16: * * Because this instruction does not have a 16-bit floating-point type, * the destination data type must be Word (W). * * The destination must be DWord-aligned and specify a horizontal stride * (HorzStride) of 2. The 16-bit result is stored in the lower word of * each destination channel and the upper word is not modified. */ struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2); /* Give each 32-bit channel of dst the form below, where "." means * unchanged. * 0x....hhhh */ brw_F32TO16(p, dst_w, y); /* Now the form: * 0xhhhh0000 */ brw_SHL(p, dst, dst, brw_imm_ud(16u)); /* And, finally the form of packHalf2x16's output: * 0xhhhhllll */ brw_F32TO16(p, dst_w, x); } void fs_generator::generate_shader_time_add(fs_inst *, struct brw_reg payload, struct brw_reg offset, struct brw_reg value) { assert(devinfo->gen >= 7); brw_push_insn_state(p); brw_set_default_mask_control(p, true); assert(payload.file == BRW_GENERAL_REGISTER_FILE); struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0), offset.type); struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0), value.type); assert(offset.file == BRW_IMMEDIATE_VALUE); if (value.file == BRW_GENERAL_REGISTER_FILE) { value.width = BRW_WIDTH_1; value.hstride = BRW_HORIZONTAL_STRIDE_0; value.vstride = BRW_VERTICAL_STRIDE_0; } else { assert(value.file == BRW_IMMEDIATE_VALUE); } /* Trying to deal with setup of the params from the IR is crazy in the FS8 * case, and we don't really care about squeezing every bit of performance * out of this path, so we just emit the MOVs from here. */ brw_MOV(p, payload_offset, offset); brw_MOV(p, payload_value, value); brw_shader_time_add(p, payload, prog_data->binding_table.shader_time_start); brw_pop_insn_state(p); } void fs_generator::enable_debug(const char *shader_name) { debug_flag = true; this->shader_name = shader_name; } int fs_generator::generate_code(const cfg_t *cfg, int dispatch_width) { /* align to 64 byte boundary. */ while (p->next_insn_offset % 64) brw_NOP(p); this->dispatch_width = dispatch_width; int start_offset = p->next_insn_offset; int spill_count = 0, fill_count = 0; int loop_count = 0; struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg); foreach_block_and_inst (block, fs_inst, inst, cfg) { struct brw_reg src[4], dst; unsigned int last_insn_offset = p->next_insn_offset; bool multiple_instructions_emitted = false; /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the * "Register Region Restrictions" section: for BDW, SKL: * * "A POW/FDIV operation must not be followed by an instruction * that requires two destination registers." * * The documentation is often lacking annotations for Atom parts, * and empirically this affects CHV as well. */ if (devinfo->gen >= 8 && devinfo->gen <= 9 && p->nr_insn > 1 && brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH && brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW && inst->dst.component_size(inst->exec_size) > REG_SIZE) { brw_NOP(p); last_insn_offset = p->next_insn_offset; } if (unlikely(debug_flag)) disasm_annotate(disasm_info, inst, p->next_insn_offset); /* If the instruction writes to more than one register, it needs to be * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the * hardware figures out by itself what the right compression mode is, * but we still need to know whether the instruction is compressed to * set up the source register regions appropriately. * * XXX - This is wrong for instructions that write a single register but * read more than one which should strictly speaking be treated as * compressed. For instructions that don't write any registers it * relies on the destination being a null register of the correct * type and regioning so the instruction is considered compressed * or not accordingly. */ const bool compressed = inst->dst.component_size(inst->exec_size) > REG_SIZE; brw_set_default_compression(p, compressed); brw_set_default_group(p, inst->group); for (unsigned int i = 0; i < inst->sources; i++) { src[i] = brw_reg_from_fs_reg(devinfo, inst, &inst->src[i], compressed); /* The accumulator result appears to get used for the * conditional modifier generation. When negating a UD * value, there is a 33rd bit generated for the sign in the * accumulator value, so now you can't check, for example, * equality with a 32-bit value. See piglit fs-op-neg-uvec4. */ assert(!inst->conditional_mod || inst->src[i].type != BRW_REGISTER_TYPE_UD || !inst->src[i].negate); } dst = brw_reg_from_fs_reg(devinfo, inst, &inst->dst, compressed); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_predicate_control(p, inst->predicate); brw_set_default_predicate_inverse(p, inst->predicate_inverse); /* On gen7 and above, hardware automatically adds the group onto the * flag subregister number. On Sandy Bridge and older, we have to do it * ourselves. */ const unsigned flag_subreg = inst->flag_subreg + (devinfo->gen >= 7 ? 0 : inst->group / 16); brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2); brw_set_default_saturate(p, inst->saturate); brw_set_default_mask_control(p, inst->force_writemask_all); brw_set_default_acc_write_control(p, inst->writes_accumulator); unsigned exec_size = inst->exec_size; if (devinfo->gen == 7 && !devinfo->is_haswell && (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) { exec_size *= 2; } brw_set_default_exec_size(p, cvt(exec_size) - 1); assert(inst->force_writemask_all || inst->exec_size >= 4); assert(inst->force_writemask_all || inst->group % inst->exec_size == 0); assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen)); assert(inst->mlen <= BRW_MAX_MSG_LENGTH); switch (inst->opcode) { case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_AVG: brw_AVG(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_MACH(p, dst, src[0], src[1]); break; case BRW_OPCODE_LINE: brw_LINE(p, dst, src[0], src[1]); break; case BRW_OPCODE_MAD: assert(devinfo->gen >= 6); if (devinfo->gen < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_MAD(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_LRP: assert(devinfo->gen >= 6 && devinfo->gen <= 10); if (devinfo->gen < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_LRP(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_F32TO16: assert(devinfo->gen >= 7); brw_F32TO16(p, dst, src[0]); break; case BRW_OPCODE_F16TO32: assert(devinfo->gen >= 7); brw_F16TO32(p, dst, src[0]); break; case BRW_OPCODE_CMP: if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell && dst.file == BRW_ARCHITECTURE_REGISTER_FILE) { /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround * implemented in the compiler is not sufficient. Overriding the * type when the destination is the null register is necessary but * not sufficient by itself. */ assert(dst.nr == BRW_ARF_NULL); dst.type = BRW_REGISTER_TYPE_D; } brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CSEL: assert(devinfo->gen >= 8); if (devinfo->gen < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_CSEL(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFREV: assert(devinfo->gen >= 7); brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_FBH: assert(devinfo->gen >= 7); brw_FBH(p, retype(dst, src[0].type), src[0]); break; case BRW_OPCODE_FBL: assert(devinfo->gen >= 7); brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_LZD: brw_LZD(p, dst, src[0]); break; case BRW_OPCODE_CBIT: assert(devinfo->gen >= 7); brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_ADDC: assert(devinfo->gen >= 7); brw_ADDC(p, dst, src[0], src[1]); break; case BRW_OPCODE_SUBB: assert(devinfo->gen >= 7); brw_SUBB(p, dst, src[0], src[1]); break; case BRW_OPCODE_MAC: brw_MAC(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFE: assert(devinfo->gen >= 7); if (devinfo->gen < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_BFE(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFI1: assert(devinfo->gen >= 7); brw_BFI1(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFI2: assert(devinfo->gen >= 7); if (devinfo->gen < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_BFI2(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_IF: if (inst->src[0].file != BAD_FILE) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(devinfo->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { brw_IF(p, brw_get_default_exec_size(p)); } break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, brw_get_default_exec_size(p)); break; case BRW_OPCODE_BREAK: brw_BREAK(p); break; case BRW_OPCODE_CONTINUE: brw_CONT(p); break; case BRW_OPCODE_WHILE: brw_WHILE(p); loop_count++; break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); if (devinfo->gen >= 6) { assert(inst->mlen == 0); assert(devinfo->gen >= 7 || inst->exec_size == 8); gen6_math(p, dst, brw_math_function(inst->opcode), src[0], brw_null_reg()); } else { assert(inst->mlen >= 1); assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8); gen4_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src[0], BRW_MATH_PRECISION_FULL); } break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: case SHADER_OPCODE_POW: assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); if (devinfo->gen >= 6) { assert(inst->mlen == 0); assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) || inst->exec_size == 8); gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]); } else { assert(inst->mlen >= 1); assert(inst->exec_size == 8); gen4_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src[0], BRW_MATH_PRECISION_FULL); } break; case FS_OPCODE_LINTERP: multiple_instructions_emitted = generate_linterp(inst, dst, src); break; case FS_OPCODE_PIXEL_X: assert(src[0].type == BRW_REGISTER_TYPE_UW); src[0].subnr = 0 * type_sz(src[0].type); brw_MOV(p, dst, stride(src[0], 8, 4, 1)); break; case FS_OPCODE_PIXEL_Y: assert(src[0].type == BRW_REGISTER_TYPE_UW); src[0].subnr = 4 * type_sz(src[0].type); brw_MOV(p, dst, stride(src[0], 8, 4, 1)); break; case SHADER_OPCODE_SEND: generate_send(inst, dst, src[0], src[1], src[2], inst->ex_mlen > 0 ? src[3] : brw_null_reg()); break; case SHADER_OPCODE_GET_BUFFER_SIZE: generate_get_buffer_size(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_TEX: case FS_OPCODE_TXB: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXF_CMS: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: case SHADER_OPCODE_LOD: case SHADER_OPCODE_TG4: case SHADER_OPCODE_SAMPLEINFO: assert(inst->src[0].file == BAD_FILE); generate_tex(inst, dst, src[1], src[2]); break; case FS_OPCODE_DDX_COARSE: case FS_OPCODE_DDX_FINE: generate_ddx(inst, dst, src[0]); break; case FS_OPCODE_DDY_COARSE: case FS_OPCODE_DDY_FINE: generate_ddy(inst, dst, src[0]); break; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: generate_scratch_write(inst, src[0]); spill_count++; break; case SHADER_OPCODE_GEN4_SCRATCH_READ: generate_scratch_read(inst, dst); fill_count++; break; case SHADER_OPCODE_GEN7_SCRATCH_READ: generate_scratch_read_gen7(inst, dst); fill_count++; break; case SHADER_OPCODE_MOV_INDIRECT: generate_mov_indirect(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_URB_READ_SIMD8: case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT: generate_urb_read(inst, dst, src[0]); break; case SHADER_OPCODE_URB_WRITE_SIMD8: case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT: case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED: case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT: generate_urb_write(inst, src[0]); break; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: assert(inst->force_writemask_all); generate_uniform_pull_constant_load(inst, dst, src[0], src[1]); break; case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: assert(inst->force_writemask_all); generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]); break; case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4: generate_varying_pull_constant_load_gen4(inst, dst, src[0]); break; case FS_OPCODE_REP_FB_WRITE: case FS_OPCODE_FB_WRITE: generate_fb_write(inst, src[0]); break; case FS_OPCODE_FB_READ: generate_fb_read(inst, dst, src[0]); break; case FS_OPCODE_DISCARD_JUMP: generate_discard_jump(inst); break; case SHADER_OPCODE_SHADER_TIME_ADD: generate_shader_time_add(inst, src[0], src[1], src[2]); break; case SHADER_OPCODE_MEMORY_FENCE: assert(src[1].file == BRW_IMMEDIATE_VALUE); brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud); break; case SHADER_OPCODE_INTERLOCK: assert(devinfo->gen >= 9); /* The interlock is basically a memory fence issued via sendc */ brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false); break; case SHADER_OPCODE_FIND_LIVE_CHANNEL: { const struct brw_reg mask = brw_stage_has_packed_dispatch(devinfo, stage, prog_data) ? brw_imm_ud(~0u) : stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() : brw_dmask_reg(); brw_find_live_channel(p, dst, mask); break; } case SHADER_OPCODE_BROADCAST: assert(inst->force_writemask_all); brw_broadcast(p, dst, src[0], src[1]); break; case SHADER_OPCODE_SHUFFLE: generate_shuffle(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_SEL_EXEC: assert(inst->force_writemask_all); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, dst, src[1]); brw_set_default_mask_control(p, BRW_MASK_ENABLE); brw_MOV(p, dst, src[0]); break; case SHADER_OPCODE_QUAD_SWIZZLE: assert(src[1].file == BRW_IMMEDIATE_VALUE); assert(src[1].type == BRW_REGISTER_TYPE_UD); generate_quad_swizzle(inst, dst, src[0], src[1].ud); break; case SHADER_OPCODE_CLUSTER_BROADCAST: { assert(src[0].type == dst.type); assert(!src[0].negate && !src[0].abs); assert(src[1].file == BRW_IMMEDIATE_VALUE); assert(src[1].type == BRW_REGISTER_TYPE_UD); assert(src[2].file == BRW_IMMEDIATE_VALUE); assert(src[2].type == BRW_REGISTER_TYPE_UD); const unsigned component = src[1].ud; const unsigned cluster_size = src[2].ud; struct brw_reg strided = stride(suboffset(src[0], component), cluster_size, cluster_size, 0); if (type_sz(src[0].type) > 4 && (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) { /* IVB has an issue (which we found empirically) where it reads * two address register components per channel for indirectly * addressed 64-bit sources. * * From the Cherryview PRM Vol 7. "Register Region Restrictions": * * "When source or destination datatype is 64b or operation is * integer DWord multiply, indirect addressing must not be * used." * * To work around both of these, we do two integer MOVs insead of * one 64-bit MOV. Because no double value should ever cross a * register boundary, it's safe to use the immediate offset in the * indirect here to handle adding 4 bytes to the offset and avoid * the extra ADD to the register file. */ brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0), subscript(strided, BRW_REGISTER_TYPE_D, 0)); brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1), subscript(strided, BRW_REGISTER_TYPE_D, 1)); } else { brw_MOV(p, dst, strided); } break; } case FS_OPCODE_SET_SAMPLE_ID: generate_set_sample_id(inst, dst, src[0], src[1]); break; case FS_OPCODE_PACK_HALF_2x16_SPLIT: generate_pack_half_2x16_split(inst, dst, src[0], src[1]); break; case FS_OPCODE_PLACEHOLDER_HALT: /* This is the place where the final HALT needs to be inserted if * we've emitted any discards. If not, this will emit no code. */ if (!patch_discard_jumps_to_fb_writes()) { if (unlikely(debug_flag)) { disasm_info->use_tail = true; } } break; case FS_OPCODE_INTERPOLATE_AT_SAMPLE: generate_pixel_interpolator_query(inst, dst, src[0], src[1], GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE); break; case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: generate_pixel_interpolator_query(inst, dst, src[0], src[1], GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET); break; case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: generate_pixel_interpolator_query(inst, dst, src[0], src[1], GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET); break; case CS_OPCODE_CS_TERMINATE: generate_cs_terminate(inst, src[0]); break; case SHADER_OPCODE_BARRIER: generate_barrier(inst, src[0]); break; case BRW_OPCODE_DIM: assert(devinfo->is_haswell); assert(src[0].type == BRW_REGISTER_TYPE_DF); assert(dst.type == BRW_REGISTER_TYPE_DF); brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F)); break; case SHADER_OPCODE_RND_MODE: assert(src[0].file == BRW_IMMEDIATE_VALUE); brw_rounding_mode(p, (brw_rnd_mode) src[0].d); break; default: unreachable("Unsupported opcode"); case SHADER_OPCODE_LOAD_PAYLOAD: unreachable("Should be lowered by lower_load_payload()"); } if (multiple_instructions_emitted) continue; if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) { assert(p->next_insn_offset == last_insn_offset + 16 || !"conditional_mod, no_dd_check, or no_dd_clear set for IR " "emitting more than 1 instruction"); brw_inst *last = &p->store[last_insn_offset / 16]; if (inst->conditional_mod) brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod); brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear); brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check); } } brw_set_uip_jip(p, start_offset); /* end of program sentinel */ disasm_new_inst_group(disasm_info, p->next_insn_offset); #ifndef NDEBUG bool validated = #else if (unlikely(debug_flag)) #endif brw_validate_instructions(devinfo, p->store, start_offset, p->next_insn_offset, disasm_info); int before_size = p->next_insn_offset - start_offset; brw_compact_instructions(p, start_offset, disasm_info); int after_size = p->next_insn_offset - start_offset; if (unlikely(debug_flag)) { fprintf(stderr, "Native code for %s\n" "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d" " bytes (%.0f%%)\n", shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count, spill_count, fill_count, promoted_constants, before_size, after_size, 100.0f * (before_size - after_size) / before_size); dump_assembly(p->store, disasm_info); } ralloc_free(disasm_info); assert(validated); compiler->shader_debug_log(log_data, "%s SIMD%d shader: %d inst, %d loops, %u cycles, " "%d:%d spills:fills, Promoted %u constants, " "compacted %d to %d bytes.", _mesa_shader_stage_to_abbrev(stage), dispatch_width, before_size / 16, loop_count, cfg->cycle_count, spill_count, fill_count, promoted_constants, before_size, after_size); return start_offset; } const unsigned * fs_generator::get_assembly() { return brw_get_program(p, &prog_data->program_size); }