The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.1
X Consortium Standard

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

Will Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital EqQuipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SlowKeys acceptance delay

Function definitions XkbColorPXkbAddGeomColor(geomspegpixel)
Function references XkbAddGeomColor

Parameters or arguments geom

Structure definitions XkbGeometryRec

Structure references XkbGeonet r yRec

References to fields in a data structurekey_aliases
References to masks, modifiers, controlgnor e@ oupLock

November 10, 1997 Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

OVEBIVIBW ...ttt oottt e e e e e et e e e e e e e et it eeeeeeesta e eeeeeasaaaeeeeeesananaeeeeennes 1
1.1 Core X Protocol Support for Keyboardseeeeeiiieiiiiiiiiiiiie e 1
1.2 Xkb Keyboard Extension Support for Keyboards............occviiiiiiiiiiiieeee s 1
1.3 XKD EXIENSION COMPONENTS ...cciiiitiiiieiitiitee ettt ee e e sttt e e e sttt e e s sbbe e e e s s sbbe e e e e s ssbreeeesabbneeeeaanns 1
1.3.1 Groups and Shift LEVEIS..........uuiiiiiiiiiiee e 3
S T ¥ Vo [(ol €] o 10 o 1 SO T PP PP PP PPPRPPPPP 3
1.4 L@ 1= o A 177 =S 3
15 Compatibility With the Core ProtoCOL............coouiiiiiii e 4
1.6 Additional ProtOCOI EITOIS ...ttt e e e e e e s s e e e e e e e e e as 4
1.7 EXtension LIBrary FUNCHONSciiiiiie et e e e ee e e e e e e e e e 4
O 0 R = o T gl [o 1o LT LS PP 4
Initialization and General Programming Information...............ccccuuviiiiiiiinneeeee, 6
21 EXtENSION HEAAEK FIlES. et e e e e e e e e e s e e snneenes 6
2.2 EXLENSION NAME ...ttt ettt e e e sttt e e s ettt e e e e s nbbe e e e s abbeeeeeenneee 6
2.3 Determining Library CompatibDilityoeeoiiiiiiiiiii e 6
2.4 Initializing the Keyboard EXIENSIONcooiiiiiiiiiiie e 7
25 Disabling the Keyboard EXIENSIONuuuuiiiiiiieeeiie it e e e e s s s e e e e e e e s e s snnnereneeees 8
2.6 [o] (e ol]l = g (o] =P TP TP PPPPPPPPR 9
2.7 Display and Device Specifications in Function Callsccoceeiniiiiiiiniiie e, 9
DaAta STIUCTUIES ...ttt et e e e e et e e e e et e e e et e e e et neeees 11
3.1 Allocating XKD Data SITUCIUIESvvviriiiiiiiiie e e e ee e n e e e e e e e 11
3.2 Adding Data and Editing Data SIHUCLUIESeeieiiiiiiieiiiiiiee e 11
3.3 Making Changes to the Server's Keyboard Descriptioncccccceveeeeveiiinciiiiiiineeee e 12
3.4 Tracking Keyboard Changes in the Server............cccco i, 12
3.5 Freeing Data SITUCLUIESuiiie ittt e et e e e b e e e s annnne e s 13
DT =T o £ USSP 14
4.1 XKD EVENE TYPES ..ttt ettt e e e e e ettt e e e e e e e e e s e bbb e beeeeaeaeeas 14
4.2 XKD EVENE DAtA SIUCTUIESveeiiiiieeee ettt e et e e e e e e s st eeeaaaeeeeeeannnnnnes 15
4.3 SeleCting XKD EVENLS ...oviiiiiei ittt e e e e s e e s e e e e e e e e e e s e s eeeeeeeas 15
4.3 1 EVENEIMASKS ..o eeiiie ittt 17
4.4 UNified XKD EVENT TYPE ...ttt e e e e e e e e e e e e aanees 18
()Y 10 = 0 IS = (= PRSP 19
5.1 Keyboard State DeSCHPLION.uiiie ittt e st e e s e e e e s anes 19
5.2 Changing the Keyboard STAte.............uuuiiiiiiiiiae e 22
L% R O o T- TaTo [T o 117 (o o [11= PPN 22
5.2.2 ChangiNng GrOUPSuuutieieiiiaaaaaeiaaittt ettt e e e e e e s e st e et e e e e e e s s e aanbbebreeeeaaaeeeaaaaans 23
5.3 Determining Keyboard Stateooooiiiiiiiiiiiiie e 23
5.4 Tracking Keyboard STALEeiiiiiiiiiiie et 24
Complete Keyboard DeSCHPLION..........ccuuiuiiiiiiiieaee e 27
6.1 The XKDDESCREC SHIUCIUIE ...ttt e e e e e e e e e s s reeeees 27
6.2 Obtaining a Keyboard Description from the Server..........cccccooociiiiiiie e 28
6.3 Tracking Changes to the Keyboard Description in the Server..........cccoccccveeeiiiiiiiiiiineen 28
6.4 Allocating and Freeing a Keyboard DeSCHPLONcccoiiiiiiiiiiiiiiees e 28
Virtual MOGIfIEIS ... e e as 30
7.1 Virtual Modifier Names and MaSKScooiiiiiiiiiiie e 30

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-1

The X Keyboard Extension

10

7.2 MOAIfIEr DEFINITIONSevviiiieieeee e e e e e e e e et e e e e e aebaans 30
7.3 Binding Virtual Modifiers to Real MOdIfiers ... 31
7.4 Virtual Modifier KEY MaPPINGcceieeeiiiiiiiiiiieiie e ee e s e s st ieaee e e e e e e e e e s s ssnnneeeeeeeeeeeeesenannns 31
7.4.1 INACVE MOIfIEr SIS ..iiiiiii i e e e e e e e e e e e e e e e eeeeaaanes 32
7.5 (070] 017721 o1 1 o] o PP UPRRRSPPRIN 32
7.6 EXAMIPIO e e e e e e b e e e e e e e e a 32
FaTo [Tor=1 (o] ¢ USSP 34
8.1 [aTo [Tor=1 (o] gl \\ = Ty g LTS PSP PPPPPRRRPPNt 34
8.2 INICALOr DAta STIUCTUIEScviiii ettt e e e e e et ie e e e e s e esb e e e eesessbaseeeeees 34
8.2.1 XKBINAICAIOIREC ...uu ettt ettt e e e e et e e e e e e erbe s e e e eeeaaes 34
8.2.2 XKDBINAICAIOIMEAPREC.....ccciiiiiiie et e 35
8.3 Getting Information AbOULt INAICALOrS........ccccviiiiiiiiee e 39
8.3.1 Getting INdICAtOr STAEc.eviiiieiieeee e —————— 40
8.3.2 Getting Indicator Information by INAeX.........ccccvviiiiiieriee e 40
8.3.3 Getting Indicator Information by Namecccccvvveeeiiiiicciece e 40
8.4 Changing Indicator Maps and Statecoeiieiiiiiiiiiiiii e 41
8.4.1 Effects of Explicit Changes on INdIiCatOrsS...........cccoiiiiiiiiiiiiiiiiiiiee e 41
8.4.2 Changing Indicator Maps by INdeX..........cccuuiiiiiiiiiiiii e 42
8.4.3 Changing Indicator Maps by Nameueeiiiiiiii e 43
8.4.4 The XkbIndicatorChangesSReC SIrUCLUIeocvviiviviiriiiiiirere e 43
8.5 Tracking Changes to Indicator State Or Map...........uuueiiiiiieiiiiiiiiieeee e 44
8.6 Allocating and Freeing INdiCator MapS........uvieeeiii i e e 45
B IIS e et a e e ara s 47
9.1 BEIINAMIES ...eeieeeee ettt e et e e e e et e e e e e e e st e e e e s eebba e e eeererab e eeeeeraen 47
9.2 AUIDIE BEIIS......ceeeeieieiitcceee ettt ettt r e e s e s e e e e e e e aeaeaeeeeeeeeeeeararararaaa 48
9.3 BEIIFUNCLIONS ...viiiciieeie et e e e e et e e e e e s b s e e e e e et e e e e e eabannees 48
9.3.1 Generating Named BellS...........uuuuuiiiiiiiii e 49
9.3.2 Generating Named Bell EVENLS...........uuuiiiiiiiii e 50
9.3.3 Forcing a Server-Generated Bell.............ooooriirriie e 51
9.4 DEeteCting BElIScooieeiieei e 51
()Y L0 =T o I @] o1 o] F 53
10.1 Controls that Enable and Disable Other CoNntrolSccoooovvviiiiieiieiieie e, 54
10.1.1 The EnabledControls CONtrol........c..cooviiiiiiiiieiiiie e 54
10.1.2 The AULORESEL CONLIOLccvuuiiieeiiiic e e e et e a e 55
10.2 (Ofo] 0 (o] I (o g =T= |l ST=T aT= AV o] ORI 56
10.2.1 The AudIibIEBEIl CONIOL.......cvvveieieeiieice e 56
10.3 Controls for Repeat K&Y BENAVIONuuuiiiiiieeiiiiccciiiiee e e e 56
10.3.1 The PerKeyRepeat CONLIOl.......c.c.uuuiiiiiieieeeiieiiiiiieeee e e e e e s s e e e e e e e e e s enneees 56
10.3.2 The RepeatKeys CONtrol.........cccuviiiiiiiiiee e r e e e e e e e e eanenes 56
10.3.3 The DetectableAutorepeat CONtrol...........cccuvviiieiieeee e 57
10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)..........c.cccevvvvvvvvnnnnnn. 58
10.5 Controls for Using the Mouse from the Keyboard............occeeiiiiiiiiiiiiiiiecc e, 59
10.5.1 The MOUSEKEYS CONMIOL.......oiiiiiiiiieiiiiiie ettt 59
10.5.2 The MouseKeySACCEl CONLIOL..........cuuiiiiiiiiiiiie et 59
10.6 Controls for Better Keyboard Access by Physically Impaired Persons..............cccocoevuaee. 61
10.6.1 The AccesSXKEYS CONLIOL........uuiiiiiiiiiee i s s e e e e e e 62
10.6.2 The AccessSXTIMEOUL CONIOluiiiiiiiiiiiieieieeeeeeeeeeeeeeee e 62
10.6.3 The AccessXFeedback CONtrOl...............ooovvvviiiiiiiiiiiiiiiee e e e ee e e eeeens 63
10.6.4 ACCESSXNOLIfY EVENLS ..cccceiiiiiieee et e e e e e e 64

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-2

The X Keyboard Extension

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events............ccccceeieiiiiiiiiiiieeeen. 65
10.6.6 The SIOWKEYS CONLIOL........ccceeiieiiieie s e e e e e e e e e e e e e e e e eeeeaeaaaaeens 65
10.6.7 The BouNCeKEYS CONLIOL........cceviiiiiiiiiiiiiceeee s e e 66
10.6.8 The StickyKeys CONtrOl.........uuuuumiiiiiii i 67
10.7 Controls for General Keyboard Mapping.........ueeeeiiirieeeiiiiieeee sttt sireeee e 68
10.7.1 The GroupSWrap CONIOLcccoiiiiiiiiiiiiiee ettt 69
10.7.2 The IgNoreLoCKMOdS CONIOLcuviiiiiiiiiiie et 69
10.7.3 The IgnoreGroupLock CONLIOlcuviiiiiiiiiiie e 70
10.7.4 The InternalMods CONrol............uuuiiiiiiiiiee e 70
10.8 The XKDCONLIOISREC SIIUCIUIEeeeiiiiiiieiie ettt 71
10.9 L@ 111 oY1 o [0o 11 {0 LSRR 77
10.10 Changing CONIIOIS.ceiiiiiiiiiee ittt ettt e e s e e e e nbn e e e e s snnnneeas 77
10.10.1 The XkbControlsChangeSREC STIUCIUIEccuviiieiiiiiiee e 78
10.11 Tracking Changes to Keyboard CONtrOlSccoovviiiiviiiiiiiiee e ee e e e 79
10.12 Allocating and Freeing an XKbCONLIOISRECcccoeeiiiiiiiiiieeeee e 80
10.13 The Miscellaneous Per-client CONLIOISeeiiiiieeiiiiiiiiiiiieee e 81
11 X LIBrary CONMIOIS......uuueeiii i e e e e e e e eaes 82
11.1 Controls Affecting Keycode-to-String Translationccccooveiiiiiiieeeveeee, 82
11.1.1 ForcelatinILOOKUP.......ccocuiiiiiiiiiiicci e 82
11.1.2 CoNSUMELOOKUPMOUScceeiiiiiiiiiiiiee ittt ettt e e e e e e e e e e 82
11.1.3 AlwaysConsumeShiftANALOCKuuiiiiiiiieiiiaie e 83
11.2 Controls Affecting CompPOSE PrOCESSING ...ccvivieeiiiiiiiiiiiiiiieee et e e 83
11.2.1 ConsumeKeysONCOMPOSEFAIlooiiiiiiiiiiiiiiiiie e 83
11.2.2 COMPOSELED. s 84
11.2.3 BeepONCOMPOSERAIl.........ciiiiiiiiiieiiiiit ettt 84
11.3 Controls Effecting EVENt DEIIVEIYovviiieeeii i e e e e 84
11.3.1 IgNOreNewKeYDOArdsccooiiiiiiiiiiiiii s 84
11.4 Manipulating the Library CONtrolS.........cocuuiiiiiiiiei e 85
11.4.1 Determining Which Library Controls are Implemented...........c.cccccoovviiiiinnnnen. 85
11.4.2 Determining the State of the Library Controls ..., 85
11.4.3 Changing the State of the Library CONtrolsooocciiiiiiiiiiiii e 85
12 Interpreting KeY BEVENTSoooii it 87
12.1 Effects of Xkb on the Core X LibBrary ..o 87
12.1.1 Effects of Xkb 0N EVENE State........cooiiiiiiiiiiiiiiee e 87
12.1.2 Effects of Xkb on MappingNotify EVENLScoccveiiiiiiiiiiiiiiiiice e, 87
12.1.3 X Library Functions Affected by XKDcooooiiiiiii e 88
12.2 Xkb Event and Keymap FUNCHONS.........coiiiiiiiiiieieee e 89
13 ()Y 1o =T o I CT=To] 1 4[] 1 oY 2RSSR 92
13.1 Shapes and OULIINESuuiiiiiiieec e e e e e e s s s r e e aee e e e e annnnnreeneees 94
13.2 ST=Tod 110 o TP PPPPTPPT 95
13.3 ROWS 8NGO KBYS ...ttt ettt et e e s bbb et e e s aabb e e e e e annneeee s 95
134 D ToToTo F= 1o £ T PP OTPPPPRPTPPRRN 96
13.5 Overlay ROWS and OVErlIay KEYScooviviiiiiiiiiiiiiiisis s s e e e e s 96
13.6 Drawing a Keyboard Representation.............cc.ueiieiiiiieiiiiiiiee et 97
13.7 GeomeEtry Data STIUCTUMNESeeeeeeeiieiiieteesas e e e e e e e e e e e e e e e e et e e e e e e eeeeaeter e s a e e e e e e eaeeaeees 98
13.8 Getting Keyboard Geometry From the SEerver ... 104
13.9 UsiNg Keyboard GEOMELIYocuuiiiieiiiiiie ettt 105
13.10 Adding Elements to a Keyboard GEOMELrY.........ccuvieeeiiiiiiiiiiiiiiiiieee e ee e e e e 106

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-3

The X Keyboard Extension

14

15

16

13.11 Allocating and Freeing Geometry COMPONENTS.......cceviiiiiiiiiiiiiiiieee e eriiireeeeee e e e e e e 110
XKkb Keyboard Mapping........ccoouiiiiiiiiiiiiiiiee ettt 116
141 Notation and TerMINOIOGY........coei ittt e e e e eaeeas 116
14.1.1 Core IMPIEMENTALIONueiiiiiiiiii e e 117
14.1.2 XKD IMPIEMENTALION ..o 117
14.2 Getting Map Components from the SEIVET ... 118
14.3 Changing Map Components in the SEIVEN ...t 120
14.3.1 The XkbMapChangesREC STIUCIUIEcoicuiiiieiiiiiiiee e 120
14.4 Tracking Changes to Map COMPONENTScceiiiiiiieiiiiiiie ettt e e 122
14.5 Allocating and Freeing Client and Server Mapscccvvvveeeieiieeiniiiiiieeee e 123
14.5.1 Allocating an Empty ClHent Mapoooiiiiiiiiiiiiiiee e 123
14.5.2 Freeing a CHent Mapoooiiiiiiieeeee e 124
14.5.3 Allocating an Empty Server Mapcoooiiiiiiiiiiiieeeee et 124
14.5.4 FreeinNg @ SEIVEI MAP......cuciiiii ittt e e bbb eae e e as 125
Xkb Client Keyboard Mappingccceeeeeriiieeeeiiiiiiiiiiesesee e e e e eeeeeeeeeeeeeensnennns 126
151 The XKbClentMapREC STIUCIUIEviiiiiiiiiiie ettt sareee e 127
15.2 (NG VA 1Y 0= S PP PP PP PRUPRPPP 127
15.2.1 The Canonical KeY TYPEScoiiiiiiiiiiiieiie ettt e e e e e e e 129
15.2.2 Getting Key Types from the SErverccuuuiiiiiiiiiiie e 131
15.2.3 Changing the Number of Levels in a Key TYPe.....cccceeeieiiiiiiiiiiiiiiiieieeeeeeeee 132
15.2.4 COPYING KBY TYPES...uuiiiiiiiiieeeiie ittt ettt e e e e e e e eee e e e e e e e aaaans 132
15.3 (TS 1] o 1o I =T o PP UP PRSP 133
15.3.1 Per-Key Key TYPE INAICESuuuiiiiiiiieiiiiiiiieiee et 133
15.3.2 Per-Key Group INformationuuueiiiiiiioi e 134
15.3.3 KEY WILLN ceeiiiiiiiee ettt e e st e e et e e e e s srraaaeeaaes 135
15.3.4 Offset in t0 the SYMDOI MaPuuiiiiiiiiii e 135
15.3.5 Getting the Symbol Map for Keys from the Server...........ccccooviiieiiniiins 136
15.3.6 Changing the Number of Groups and Types Bound to a Key...........ccccceeveeennn. 137
15.3.7 Changing the Number of Symbols Bound to a Key...........ccccvviiiieeiiieeniiniinns 138
15.4 The Per-Key MOdIifiler Mapuuuiiiiiiieeee e e e e e e s e nr e e e e e e e 138
15.4.1 Getting the Per-Key Modifier Map from the Server.........cccocccceveeeeei e, 139
Xkb Server Keyboard Mappingcooeeeiiiiiiiiiiiineeeee e 140
16.1 KBY ACLIONS ...ttt ettt et e st e e e e e e e e e e 141
16.1.1 The XKDACLON SEIUCLUIEcoiiiiiieeiee et e e e e e 142
16.1.2 The XKDANYACHON SIMUCIUIEeeiiiiiiiiie ettt 143
16.1.3 Actions for Changing Modifiers’ Statecccccevviiieieiiiiiiee e 143
16.1.4 Actions for Changing Group STate...........ccoiiriiiiiiiiiie e 145
16.1.5 Actions for Moving the POINLENcccoiiiiiiiiiiiiiee e 147
16.1.6 Actions for Simulating Pointer Button Press and Release...........cccccccceeeviinnns 148
16.1.7 Actions for Changing the Pointer Button Simulatedccccceeeviiiiieenninn. 149
16.1.8 Actions for Locking Modifiers and GrouUp............cccovuvriieriiiieeee e 150
16.1.9 Actions for Changing the ACtive SCreen..........cccoocviviiiiiiiiii e 153
16.1.10 Actions for Changing Boolean Controls State.............cccccveiiiiieiiniiieeee i 154
16.1.11 Actions for Generating MESSAUESuuiieiiuiiiieiiiiiiee et 155
16.1.12 Actions for Generating a Different Keycodeccoceeeiiiiiiiiiiiiiieceiiieeeee 156
16.1.13 Actions for Generating DeviceButtonPress and DeviceButtonRelease............ 158
16.1.14 Actions for Simulating Events from Device Valuators............ccccceeeviiiereennnnen. 159
16.1.15 Obtaining Key Actions for Keys from the Server...........ccoocceviiiiiiiiine e, 160
16.1.16 Changing the Number of Actions Bound to a Keyccccveiviiiiieiiniiienennee, 160
16.2 [V 2 1= = 1Y/ T PP 161
T R = - To [[0 T €1 01U 1 161

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-4

The X Keyboard Extension

16.2.2 The XKbBehavior SIrUCLUIEoooiiiiiieieee e 161
16.2.3 Obtaining Key Behaviors for Keys from the Server...........cccccovvvvvvveiiiivvivnnnnnnn. 162
16.3 Explicit Components—Avoiding Automatic Remapping by the Server............cccocee... 163
16.3.1 Obtaining Explicit Components for Keys from the Server..........cccccccovvieeennns 163
16.4 Virtual Modifier MaPPING «...vvveeeeeieee e r e e e e e e s e s s rreeeeeeaeeannnnes 164
16.4.1 Obtaining Virtual Modifier Bindings from the Server.........cccccccceeeviviiicniinnnnen. 165
16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server 166
17 The Xkb CompatiDility Mapoioiiieeeee s 167
17.1 The XKDCOMPAIMEAP STTUCTUIEooiuviiieei ittt ettt e e e e e 169
17.1.1 Xkb State to Core Protocol State Transformationcccoceeiviiiiniinnnnne 169
17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 170
17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations........... 173
17.2 Getting Compatibility Map Components From the Serverccccccvvvciiivieeeveeee e, 174
17.3 Using the CompatiDility Mapcooiiiiiiiiiiei e 175
17.4 Changing the Server’'s Compatibility Map.......cccoooiiiiiiiiiiiiiie e 177
17.5 Tracking Changes to the Compatibility Mapccoooiiiiiiiiiiiiee e 178
17.6 Allocating and Freeing the Compatibility Map.........cccoiiiiiiiiiiiieeeee 179
18 SYMDBDONIC NAIMES ...ttt e e e e e e e e e e e e 180
18.1 The XKDNAMESREC STIUCIUIciiveiiieiiiiiiee et 180
18.2 SYMDOIC NAMES MASKSeuuiiiiiiii i e e e e e e e e e e e aaaaeaeeaeeeaaanes 182
18.3 Getting Symbolic Names From the Server..........cocci i 183
18.4 Changing Symbolic Names 0N the SErVEr............ooiciiiieiiiiee e 183
18.5 Tracking Name ChanQESuuuuiuiiiiiiiiie et a e e e aaaaeas 185
18.6 Allocating and Freeing Symbolic NameS...........vviiiiiiiiiiii e 186
19 Replacing a Keyboard “Onthe Fly”oooriiiiiieeee e 187
20 Server Database of Keyboard COmMpPONENtscoovvvviiiiiiiiiiiiinie e 190
20.1 COMPONENT NAMES ..oeiiiieiiii e e e e e e e s e e neee e s 191
20.2 Listing the Known Keyboard COMPONENLScceeeeiiiiiciiiiiiiireee e e e e e s sssrinieeeeeeee e e e e e sennnns 191
20.3 COMPONENT HINS....oiiiiiiiiii ettt e e e e e e e s e b e e eaeaaeeeeeas 192
20.4 Building a Keyboard Description Using the Server Databaseccccccccieeiiinines 193
21 Attaching Xkb Actions to X Input Extension DevViCesccccoeeeeevvvveveeiviinnnnnn. 198
21.1 XKDDEVICEINTOREC ...ttt e e e e e e e e e e e e 199
21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices............ccoccvveeeennee. 200
21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure............ccccceveee.... 203
21.4 Setting Xkb Features for Non-KeyClass Input Extension DeviCes..........cccccccveeeeeiinnnnes 204
21.5 XKbEXtensionDeViCENOLIfY EVENTocuiiiiiiiiiie et 206
21.6 Tracking Changes to EXtENSION DEVICESccveiiiii it 207
22 DebUQGQING AIS ...t e e aa e 210
TADIE 22. 1 GI0SSAIY ...ttt 211

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-5

The X Keyboard Extension

Figure 1.1

Figure 5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure 17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overall XKD STrUCIUIEccooiiieieeee e e e 2
XKD StALE.... e e 19
MoUSEKEYS ACCEIEIAtiONcceeeeeeeeiiieee e e e 61
Rotated Keyboard SECHONS..........uiiiiiiiiiiiiieeeeeee e 92
Keyboard with FOUr SECHIONS..........cuuuuiiiiiiie e 94
ROWS 1N @ SECHON....ciiiiiiieiei it 95
Xkb Geometry Data StrUCIUIESuuuiiiiiiiiiiiiiiie e 98
Xkb Geometry Data Structures (Do0dads)ccoovvvvveeiiiiriiiiiiiiinneeee e 99
Xkb Geometry Data Structures (Overlays)..........cccceeeevviveveiiiiiiiccceeeenn. 100
Key Surface, Shape Outlines, and Bounding BOXc.ccccceevevvviiiiiiennnnns 105
Shift LEVEIS @Nd GrOUPS.....uuueiiiiiiieee e e eeeeeeeeeiitiiie e e e e e e e eeeeeaeeeanna 117
XKD CHENE MAP.....coiieeeeeeece e e e e e e e e e e e e e 126
Server Map RelationShipsuuuieiiiiiiii e 140
Virtual Modifier RelationShipS...........eiiii e 165
Server Interaction with Types of Clients............cooovvviiiiiiicii e, 167
Server Derivation of State and Keyboard Mapping Components............ 168
Xkb Compatibility Data StrUCIUIES.........ueiieiiieeee e 169
Building a New Keyboard Description from the Server Database 196

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOF-12

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns Due to Extension Problems..............cccovviiiiiiiiiiieeeeee, 4
XKD ProtOCOI EITOIS ...ttt e e e e e e e e e s 9
BadKeyboard Protocol Error resource_id Valuesccccoooeeeeeiiiiiiiiiiiiiiiiee, 9
XKD EVENT TYPES ..ttt e e e e e e e e e e e e e e e e s e e e aaans 14
XkbSelectEvents Mask CONSLANTScoooiiiiiiiiiiiiiiiei e 17
Real MOdIfier MASKS..........ooeeieiiiiiieiee s e e e e e e e e e e e e e ane e 22
SYMDBDOIIC GroUP NAMESot eaeeas 23
XkbStateNotify Event Detail Masks............ooouuuiiiiiiiiiieeeeeeeeeii e 24
XkbDescRec Component REferenCesS........coooeeviviiiiieiiiiccccce e 27
Mask Bits for XKDDESCRECcuvuviriiiiiiiiiee e e e e e ee ettt e e e e e e e e e e eeeeeeannnnne 28
XkbIndicatorMapRec flags Field.............ouuuuiiiiiii e 35

XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indicator...37
XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard...37

XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator 38
XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard 39
Predefined BelIS ..o e 48
Bell Sounding and Bell Event Generatingcoooeveeeeiiiiiieiiiiiiiiicene e 49
Xkb Keyboard CONtrolScoooiiiiiiiieecce e e e e e 53
MOUSEKEYSACCEI FIEIAS ... 59
AcCCESSXFEedDACK MaASKS.uuuiiiiii i 63
ACCESSXNOLIFY EVENIS ..ot 64
AccessXNOtiIfy EVENt DetallSccoooviiiiiiiiiiii e 65
XKD CONLIOIS ...t e e e e e e e e eeeeeaeees 72
CONLIOIS MASK BIS ...vvvviiiiiiiiiiiiieee ettt 73
GroupsWrap options (groups_wrap field) ... 74
Access X Enable/Disable Bits (ax_options field)eeeiiiiiiiiniiiiiiiiiiiiiies 75
Library Control MaskS.........coooeeeiiiiieeeee e 85
Do ToT0 F=To I 1Y/ 012 J PR P PP TTPRPPRP 96
Xkb Mapping Component Masks and Convenience Functions........................ 118
XkbMapChangesSREC MaSKS........ccocoieiiiiiiiieee e 121
XKDAIOCCHENTMAP MASKScvviiiiiiiiiiieeee et 123
XKDAIIoCServerMap MasKS........ccooo oo 124
EXAMPIE KEY TYPE ... ettt ettt e e e e e e e e e e e e e e eeeaneanaees 128
group_info Range Normalizationccccuvuiiiiiiiiiiiiiieieee e 134
Group INAeX CONSEANTSiiiiiiiee et a s 137
ACHION TYPES ettt ettt e e e e e e e e e e e e e et e e et et e e s e e e aaeeaaeeeeaannnnne 143
MOAIfIEr ACHON TYPES ..oeeieiiiiieee ettt e e 144
Modifier ACHON FIAgScooi i a e 145
GrOUP ACHION TYPES ..uuiiii it e e e e e e e et e e e e e e e e aaaeaaees 146
Group ACLION FIAGS.....cooiiiiiieieee e e e as 146
o 10T g o i o] o I Y/ o 1= TSR 147

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table 17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 21.1
Table 22.1

Pointer BUtton ACHION TYPES....coiiiiiiiiiiiititt et 149
Pointer Button ACtION FIAgSueuoiiiiiiieee e 149
Pointer Default FIags ..o 150
ISO Action Flags when XkbSA_ ISODFItISGroup is Setccccceevveeiiieeeeeennenne. 151
ISO Action Flags when XkbSA_ISODfltIsGroup is Not Setcccoeeveeeeeennn. 152
ISO Action Affect Field ValUESoooiiiiiiiiiiieeeeee e 152
Switch Screen ACHION FIAgScvvvviiiiiiiii e 153
CONLrOlS ACLION TYPES ..eeiiiiiiiiiiieiiira e e e e e e e et ettt s e e e e e e e e e e e eeeeeeessnnnee 154
Control ACHION FIagS......cooe et e e e e e e e e e e eeaeanes 154
Message ACHION FIAagSoooiiiiiiii s 155
Device BUtton ACHION TYPEScooe et 158
Device Button ACtioN FIagS..........uuuiieiiiiiiii e 158
Device Valuator v<n>_what High BitS ValUeseeeviiiiiiiiiiiiiiiiiis 159
S =12 0 F= Y o £ PR 161
EXplicit COMPONENt MASKS.......ccceeiiiiiieeeee e 163
Symbol Interpretation Match Criteria........cccovveeeiiiiiiiiiieee e 172
Compatibility Map Component MasksS.........ccooveeiiiiiiiiiiiiiiii e 174
Symbolic NameES MaSKS..........ccoiiiiiiiiec e a e e e 182
XKbNameChanges Fields...........oou i 184
XkbNewKeyboardNotifyEvent Detalils............ooooviiiiiiiiiiiiiieeeeeeiiiis 188
Server Database Keyboard COmMPONENtS...........uuuiiiiiiiiiieeeeieeeeeeeeeee e 190
XkbComponentNameRec FIags BitS..........cccciiiiiiiiiiiiiiieeeeee e 193
Want and Need Mask Bits and Required Names Components.............cceeeeeee... 195
XkbDescRec Components Returned for Values of Want & Needs 197
XkbDevicelNfoOREC MasK BitSccooviiiiieeiiiiiiiiieiiiiess e e e 200
Debug CoNtrol MASKSuuuueiiiiieee e 210

November 10, 1997

Library Version 1.0/Document Revision 1.1 LOT-2

The X Keyboard Extension 1 Overview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that$hef t , Cont r ol , andLock modifiers

and the modifiers bound to tiMode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with 1ISO9995, or a host of other national and international standards.

» A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

» Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» The lack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to a user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Revision 1.1 1

The X Keyboard Extension

1 Overview

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb Extension

Xkb-aware | | Xkb-capable| | Xkb-unaware
User User User
Application Application | | Application Keyboard
Core Xlib [X Server
Xkb Server Extension

Xkb CoreXlb |&« |-
Additons|] Client Map, Server Mad Compatlblllty Map

X | yyp Modifications | [T ot i

(Xkb to Core Xlib Controls| Indicator Map! Names Geometry
functions) functions ' :

!

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the
server maintains lkeyboard descriptiothat includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Revision 1.1 2

The X Keyboard Extension 1 Overview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
groupXkbKB_Radi oG oup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with a version of Xlib
that includes Xkb and indirectly benefit from some of Xkb's features.

November 10, 1997 Library Version 1.0/Document Revision 1.1 3

The X Keyboard Extension 1 Overview

15

1.6

1.7

1.7.1

» Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require
Xkb's functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol efBaKeyboar d, to the core protocol error
set. See section 2.6 for a discussion ofBh@Keyboar d protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of thiBatkt;

cess andBadMat ch (due to incompatible versions) protocol errors should normally not

be generated.

Table 1.1 Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

November 10, 1997 Library Version 1.0/Document Revision 1.1 4

The X Keyboard Extension 1 Overview

Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

e <X11/ XKBli b. h>
XKBl i b. h is the main header file for Xkb; it declares constants, types, and functions.
o <X11/ext ensi ons/ XKBstr. h>
XKBst r. h declares types and constants for Xkb. It is included automatically from
<X11/ XKBl i b. h>; you should never need to reference it directly in your application
code.
» <X11/ ext ensi ons/ XKB. h>
XKB. h defines constants for Xkb. It is included automatically frod 1/ XKB-
st r. h>; you should never need to reference it directly in your application code.
« <X11/ ext ensi ons/ XKBgeom h>
XKBgeom h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension is giverxiXiL1l/ ext ensi ons/ Xkb. h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calihgitExtensiorand passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should noXtalExtensiondirectly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, &&bLibraryVersion

Bool XkbLibraryVersion (lib_major_in_outlib_minor_in_ou}
int* lib_major_in_out; /* specifies and returns the major Xkb library version. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic valutkbMaj or Ver si on in lib_major_in_outandXkbM nor Ver -

si oninlib_minor_in_out These arguments represent the version of the library used at
compile time. TheXkbLibraryVersiorfunction backfills the major and minor version
numbers of the library used at run timdin major_in_outandlib_minor_in_out If the

November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compaXkla,ibraryVersion
returnsTr ue, otherwise, it returnBal se.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. UseXkbQueryExtensioto do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtensioto check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism funciki@edryExtensioand XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must callXkbQueryExtensioar XkbOpenDisplaypefore using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions anékblgnoreExtensigrXkbLibraryVersionand a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cauadAccess protocol errors.

XkbQueryExtensioboth determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_ou}

Display * dpy; [* connection to the X server */

int * opcode_rtrn * backfilled with the major extension opcode */

int * event_rtrn [* backfilled with the extension base event code */

int * error_rtrn; /* backfilled with the extension base error code */

int * major_in_out /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtensiofunction determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is pxédeptie-
ryExtensiorreturnsTr ue; otherwise, it returnbal se.

If a compatible version of Xkb is preseKkbQueryExtensiomitializes the extension. It
backfills the major opcode for the keyboard extensiamprode_rtrnthe base event code

in event_rtrn the base error code émror_rtrn, and the major and minor version numbers

of the extension imajor_in_outandminor_in_out The major opcode is reported in the
req_majorfields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the funck&hOpenDisplayo perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char display_namg /* hardware display hame, which determines the display and
communications domain to be used */
int* event_rtrn /* backfilled with the extension base event code */
int* error_rtrn; /* backfilled with the extension base error code */
int* major_in_ouf /* compile time lib major version in, server major version out */
int* minor_in_ouf /* compile time lib minor version in, server minor version out */
int* reason_rtrn /* backfilled with a status code */

XkbOpenDisplays a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon retason_rtrncontains a status value
indicating success or the type of failuremi&jor_in_outandminor_in_outare notN\NULL,
XkbOpenDisplayirst callsXkbLibraryVersiorto determine whether the client library is
compatible, passing it the values pointed tartajor_in_outandminor_in_out If the

library is incompatibleXkbOpenDisplaypackfillsmajor_in_outandminor_in_outwith

the major and minor extension versions of the library being used and mdtluindf the
library is compatibleXkbOpenDisplayext callsXOpenDisplaywith thedisplay _name

If this fails, the function returnSULL. If successfulXkbOpenDisplagalls XkbQueryEx-
tensionand backfills the major and minor Xkb server extension version numbers in
major_in_outandminor_in_out If the server extension version is not compatible with the
library extension version or if the server extension is not preskb©penDisplagloses

the display and returidJLL. When successful, the function returns the display connec-
tion.

The possible values foeason_rtrnare:

« XkbCD BadLi br ar yVer si on indicatesxkbLibraryVersiorreturnedral se.

« XkbCD Connect i onRef used indicates the display could not be opened.

« XkbCD BadSer ver Ver si on indicates the library and the server have incompatible
extension versions.

« XkbCD NonXkbSer ver indicates the extension is not present in the X server.

« XkbCD Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the prexXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtensioto prevent core X library keyboard functions from using the X
Keyboard Extension. You must cXlkblgnoreExtensiobefore you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore /* Tr ue means ignore the extension */

November 10, 1997 Library Version 1.0/Document Revision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

XkblgnoreExtensiotells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignofe i, the library does not initial-

ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore igal se, the library treats subsequent callXt©penDisplaynormally

and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabledXkblgnoreExtensioreturnsFal se if it was unable to apply

the ignore request.

2.6 Protocol Errors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this documentBasi¥xx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table 2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not a valid core or input extension device

Badimplementation Invalid reply from server

BadAlloc Unable to allocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadValue An argument is out of range

BadAtom A name is neither a valid AtomNone

BadDevice Device, Feedback Class, or Feedback ID invalid

The Xkb extension adds a single protocol efBaKeyboar d, to the core protocol error

set. This error code will be reported aséhn®r_rtrn whenXkbQueryExtensiois called.

When aBadKeyboar d error is reported in aker r or Event , additional information is
reported in theesource_idield. The most significant byte of tmesource_ids a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found device ID
XkbErr_BadClass Oxfe device found, but it is of the wrong class class ID
XkbErr_Badld Oxfd device found, class ok, but device does rieedback ID

contain a feedback with the indicated ID

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPt r is also passed as an argument, the Display* argument must madigly the
field of theXkbDescRec pointed to by thekbDescPt r argument, or else trapyfield

of theXkbDescRec must beNULL. If they don’t match or thdpyfield is notNULL, a

November 10, 1997 Library Version 1.0/Document Revision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMat ch error is returned (either in the return value or a backfitest us variable).
Upon successful return, tiopyfield of theXkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display *dpy) and a device identifier (unsigned ddvice _spéec In some cases, the
device identifier is implicit and is taken as thevice_spetield of anXkbDescRec struc-

ture passed as an argument.

The device identifier can specify any X input extension device wWiiyaCl ass compo-
nent, or it can specify the constaxitbUseCor eKbd. The use okkbUseCor ekKbd

allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument adibBascPt r is also
passed as an argument, if either the argument okibhigescRec device spetield is
XkbUseCor eKbd, and if the function returns successfully, ¥kdDescPt r device_spec
field will have been converted frofkbUseCor eKbd to a real Xkb device ID. If the func-
tion does not complete successfully, texice_spebeld remains unchanged. Subse-
guently, the device id argument must matchdixece speéeld of theXkbDescPt r
argument. If they don’t match,BadMat ch error is returned (either in the return value or
a backfilledSt at us variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when yoMkimdseCor eKbd,
XkbUseCor eKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s aXkbResizeKeyTyganction.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed &%/, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixedbyspecifies

November 10, 1997 Library Version 1.0/Document Revision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

» Call the allocator function with some arbitrary size, as a hint.
» For those arrays that have X¥kb...Add..function, call it each time you want to add
new data to the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapes in this geometry.” This makes sure that
sz_shapesnum_shapes= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksstheandnum_fields of the array, resizes the
array if necessary, adds the entry to the array, and then updatesrthigeld.

Making Changes to the Server’'s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate speahhngesiata structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the fordkbNote{Component}ChangaeshereComponents the name of a

major Xkb component such B&ap or NamesWhen you want to copy these changes from

the server into a local copy of the keyboard description, use the correspghting
Get{Component}Changdanction passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directlymeécto allocate Xkb data structures,

you should not free Xkb data structures or components directly fusagy Xfree Xkb
provides functions to free the various data structures and their compgxiesmtgs use

the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed byree or Xfree

November 10, 1997 Library Version 1.0/Document Revision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the key]board.

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling)@ih®elect-
Eventsor XkbSelectEventDetailXkbSelectEventequests Xkb events by their event type

and causes them to be reported to your client application under all circumstances. You can
specify a finer granularity for event reporting by usiidpSelectEventDetajls this case

events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type

is defined by two fields in the X event data structure. One ig/fiedield, containing the

base event cod@his base event code is a value the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event code in
thetypefield identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtensioar XkbOpenDisplayThe second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the headexM&1/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined inXkb.h Each event is described in more detail in the section referenced for that
event.

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboar dNot i fy Keyboard geometry; keycode range change 19 187
XkbMapNot i fy Keyboard mapping change 14.4 122
XkbSt at eNot i fy Keyboard state change 5.4 25
XkbCont rol sNoti fy Keyboard controls state change 10.11 79
Xkbl ndi cat or St at eNot i fy Keyboard indicators state change 8.5 45
Xkbl ndi cat or MapNot i fy Keyboard indicators map change 8.5 45
XkbNamesNot i fy Keyboard name change 18.5 185
XkbConpat MapNot i fy Keyboard compatibility map change 17.5 178
XkbBel | Noti fy Keyboard bell generated 9.4 52

1. The one exception to this rule is tebExt ensi onDevi ceNot i f y event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbAct i onMessage Keyboard action message 16.1.11 155
XkbAccessXNot i fy AccessX state change 10.6.4 65
XkbExt ensi onDevi ceNot i f y Extension device change 21.6 207

Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described ind&i®AnyEvent structure:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /At ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not bé&bUseCor eKbd */

} XkbAnyEvent;

For any Xkb event, thiypefield is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension eventss&hal, send_evenanddisplay

fields are as described for all X11 events. fimefield is set to the time when the event
was generated and is expressed in millisecondsxHRineypefield contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. Thelevicefield contains the keyboard device identifier associated with the
event. This is nevexkbUseCor eKbd, even if the request that generated the event speci-
fied a device oXkbUseCor eKbd. If the request that generated the event specified
XkbUseCor eKbd, devicecontains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extensiondiswoee,
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Events

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb ewékiSelect-
Eventsallows you to select or deselect delivery of more than one Xkb event type at once.
Events selected usirkkbSelectEventre delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, u¥&bSelectEventDetailXkbSelectEventDetaitmly

allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, usékbSelectEvents

Bool XkbSelectEventgdisplay, device_spec, bits_to_change, values_foi)_bits
Display * display, /* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned long inbits_to_changd¥ determines events to be selected / deselected */
unsigned long invalues_for_bitg* 1=>select, 0->deselect; for eventshits_to_changé/

This request changes the Xkb event selection mask for the keyboard specified by
device_spec

Each Xkb event that can be selected is represented by a bitditsthie _changand
values_for_bitsnasks. Only the event selection bits specified byitseto change

parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in ltits_to_changg@arameter and set the corre-
sponding bit in thealues_for_bitgparameter. To turn off event selection for an event, set
the bit for the event in thigits_to_chang@arameter and do not set the corresponding bit

in thevalues_for_bitpparameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in thbits_to_changgarameter, but the corresponding bit is set in the
values_for_bitparameter, BadMat ch protocol error results. If an undefined bit is set in
either thebits_to_changer thevalues_for_bitparameter, 8adVal ue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another Xih8e-
lectEvents

XkbSelectEventgturnsFal se if the Xkb extension has not been initilialized dmdie
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client XldgSelectEventDetail3 his allows you

November 10, 1997 Library Version 1.0/Document Revision 1.1 16

The X Keyboard Extension 4 Xkb Events

43.1

to exercise a finer granularity of control over delivery of Xkb events MittSelect-
Events

Bool XkbSelectEventDetail¢display, device_spec, event_type, bits_to_charadees_for_bits
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int event_type /* Xkb event type of interest */
unsigned long inbits_to_changg* event selection details */
unsigned long inwvalues_for_bitg* values for bits selected tyits_to_changé/

While XkbSelectEventllows multiple events to be selecté#bSelectEventDetails
changes the selection criteria for a single type of Xkb event. The interpretation of the
bits_to_changeandvalues_for_bitsnasks depends on the event type in question.

XkbSelectEventDetaitshanges the Xkb event selection mask for the keyboard specified
by device_speand the Xkb event specified byent_typeTo turn on event selection for
an event detail, set the bit for the detail inbite_to_chang@arameter and set the corre-
sponding bit in thealues_for_bitparameter. To turn off event detail selection for a
detail, set the bit for the detail in tbés_to_chang@arameter and do not set the corre-
sponding bit in thealues_for_bitparameter.

If an invalid event type is specifiedBadVal ue protocol error results. If a bit is not set in
thebits_to_chang@arameter, but the corresponding bit is set irvithees_for_bits
parameter, 8adMat ch protocol error results. If an undefined bit is set in either the
bits_to_changer thevalues_for_bitgparameter, 8adVal ue protocol error results.

For each type of Xkb event, the legal event details that you can specifyXkliBelect-
EventDetailgequest are listed in the chapters that describe each event in detail.
Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call X&bSelectEventsr XkbSelectEventDetailSpecify the event
types in which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified witkiiSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboar dNot i f yMask (1L<<0) Keyboard geometry change
XkbMapNot i f yMask (1L<<1) Keyboard mapping change
XkbSt at eNot i f yMask (1L<<?) Keyboard state change
XkbCont r ol sNot i f yMask (1L<<3) Keyboard control change

Xkbl ndi cat or St at eNot i f yMask (1L<<4) Keyboard indicator state change
Xkbl ndi cat or MapNot i f yMask (1L<<5b) Keyboard indicator map change
XkbNamesNot i f yMask (1L<<6) Keyboard name change
XkbConpat MapNot i f yMask (1L<<7) Keyboard compat map change
XkbBel | Not i f yMask (1L<<8) Bell

XkbAct i onMessageMask (1L<<9) Action message
XkbAccessXNot i f yMask (1L<<10) AccessX features

XkbExt ensi onDevi ceNot i fyMask (1L<<11) Extension device

November 10, 1997 Library Version 1.0/Document Revision 1.1 17

The X Keyboard Extension 4 Xkb Events

4.4

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbAl | Event sMask (OXFFF) All Xkb events

Unified Xkb Event Type

TheXkbEvent structure is a union of the individual structures declared for each Xkb

event type and for the core protod&vent type. Given aixkbEvent structure, you may

use thaypefield to determine if the event is an Xkb evegpéequals the Xkb base event

code; see section 2.4). If the event is an Xkb event, you may then asg/tkidb _type

field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {

int type;
XkbAnyEvent any;
XkbStateNotifyEvent state;
XkbMapNotifyEvent map;
XkbControlsNotifyEvent ctrls;
XkbIndicatorNotifyEvent indicators;
XkbBellNotifyEvent bell;
XkbAccessXNotifyEvent accessx;
XkbNamesNotifyEvent names;
XkbCompatMapNotifyEvent compat;
XkbActionMessageEvent message;

XkbExtensionDeviceNotifyEvent device;
XkbNewKeyboardNotifyEvent new_kbd,;
XEvent core;

} XkbEvent;

This unified Xkb event type includes a norrx&vent as used by the core protocol, so it

is straightforward for applications that use Xkb events to call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare a variable of typé&kbEvent and call:

XNextEvent(dpy,&xkbev.core);

November 10, 1997 Library Version 1.0/Document Revision 1.1 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group mE

| Compatibility Lookup State

D

| Effective Modifiers

Locked Modifiers [

™| Compatibility Grab State

L ;
Locked Group — Effective Group

Latched Modifiers [~

| | ookup State

!
3

Latched Group —

| Grab State [Tt

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupLock

Figure 5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locked group and locked modifiers
The latched group and latched modifiers
The base group and base modifiers

The effective group and effective modifiers
The state of the core pointer buttons

November 10, 1997 Library Version 1.0/Document Revision 1.1 19

The X Keyboard Extension 5 Keyboard State

ThemodifiersareShi f t, Lock, Cont r ol , andMbd1-Mobd5, as defined by the core proto-

col. A modifier can be thought of as a toggle that is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support kmysym groupsas defined by 1ISO9995:

Group A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

Thepointer buttonsareBut t onl - But t on5, as defined by the core protocol.

Thebase groupandbase modifiersepresent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.

Theeffective modifierare the bitwise union of the locked, latched, and the base modifiers.

Theeffective groups the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<=n <=4
0 <= any of locked, latched, or base group <n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applications will actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keys may be logically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.

November 10, 1997 Library Version 1.0/Document Revision 1.1 20

The X Keyboard Extension 5 Keyboard State

1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings ofgtloeips_wragfield of thexXkbCon-
t r ol sRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event only is determined using treup_infofield of the key symbol mapping
(XkbSyniapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols that the key can generate when it is pressed. The set
of all possible keysyms for a keyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When a key is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits O - 14 of
the state field of events that report modifier and button state. Such a client is said to be
Xkb-capableA client that does explicitly call Xkb functions is Akb-awareclient. The

Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
» grab state: grab group and grab modifiers

Thelookup modifier@ndlookup groupare represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. FéeyPr ess andKeyRel ease events, the lookup modifiers are
computed as:

((base | latched | locked) &erver_internal_modifiejs
Otherwise the lookup modifiers are computed as:

(((base | latched | (locked &gnore_lock$) & ~server_internal_modifiejs
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use thieookup state— the lookup group and the lookup modifiers.

Thegrab stateis the state used when matching events to passive grabs. If the event acti-
vates a grab, thgrab modifiersandgrab groupare represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’'d gnor e@ oupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extensioXkb-unawareclients):

November 10, 1997 Library Version 1.0/Document Revision 1.1 21

The X Keyboard Extension 5 Keyboard State

5.2

5.2.1

» The compatibility modifier state
e The compatibility lookup modifier state
» The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

Changing the Keyboard State

Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the parameter
affect It is a bitwise inclusive OR of the legal modifier masks:

Table 5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Modl1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiersXbé ockModifiers:

Bool XkbLockModifiers (display, device_spec, affect, values

Display * display [* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of real modifiers whose lock state is to change */
unsigned int values /* 1 =>lock, 0 => unlock; only for modifiers selecteddffect*/

XkbLockModifiersends a request to the server to lock the real modifiers selected by both
affectandvaluesand to unlock the real modifiers selectedfigctbut not selected byal-

ues XkbLockModifiergloes not wait for a reply from the server. It retufnege if the

request was sent, akdl se otherwise.

To latch and unlatch any of the eight real keyboard modifierskiseatchModifiers:
Bool XkbLatchModifiers (display, device_spec, affect, valyes

Display * display, /* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of modifiers whose latch state is to change */
unsigned int values /* 1 => latch, 0 => unlatch; only for mods selectedalffgct*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 22

The X Keyboard Extension

5 Keyboard State

5.2.2

5.3

XkbLatchModifiersends a request to the server to latch the real modifiers selected by both
affectandvaluesand to unlatch the real modifiers selectectbigctbut not selected by
values XkbLatchModifiergloes not wait for a reply from the server. It returnge if the
request was sent, akdl se otherwise.
Changing Groups
Reference the keysym group indices with these symbolic constants:

Table 5.2 Symbolic Group Names

Symbolic Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3index 2
XkbGroup4index 3

To lock the keysym group, usékbLockGroup.

Bool XkbLockGroup (display, device_spec, group
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orxkbUseCor eKbd */
unsigned int group; /* index of the keysym group to lock */

XkbLockGroupsends a request to the server to lock the spegjf@gband does not wait
for a reply. It returndr ue if the request was sent aRdl se otherwise.

To latch the keysym group, uX&bLatchGroup.

Bool XkbLatchGroup (display, device_spec, group
Display * display, /* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int group /* index of the keysym group to latch */

XkbLatchGroupsends a request to the server to latch the specified group and does not wait
for a reply. It returngr ue if the request was sent aRdl se otherwise.

Determining Keyboard State
Xkb keyboard state may be represented iXlertt at eRec structure:

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

latched_group;

locked_group;
mods;
base _mods;

latched _mods;

typedef struct {
unsigned char group; [* effective group index */
unsigned char base_group; /* base group index */

/* latched group index */
/* locked group index */
[* effective modifiers */

[* base modifiers */

[* latched modifiers */

unsigned char locked_mods; * locked modifiers */
unsigned char compat_state; /* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */

unsigned char
unsigned char
unsigned char

compat_grab_mods;

lookup_mods;

/* mods used for compatibility mode grabs */
/* modifiers used to lookup symbols */

compat_lookup_mods;/* mods used for compatibility lookup */

November 10, 1997

Library Version 1.0/Document Revision 1.1 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_buttons; * 1 bit => corresponding pointer btn is down */
} XkbStateRec*XkbStatePtr;

To obtain the keyboard state, UddbGetState.
StatusXkbGetState(display device_specstate_returi

Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
XkbStatePtr state_return /* backfilled with Xkb state */

The XkbGetStatéunction queries the server for the current keyboard state, waits for a
reply, and then backfillstate_returnwith the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

Tracking Keyboard State
The Xkb extension repordékbSt at eNot i fy events to clients wanting notification

whenever the Xkb state changes. The changes reported include changes to any aspect of

the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb exkihiSt at eNot i fy
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (AL << 0)
XkbModifierBaseMask (AL << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (AL << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (IL << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (AL << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (AL << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)

XkbAllStateComponentsMask (0x3fff)

To track changes in the keyboard state for a particular device, select to Mdeive
St at eNot i fy events by calling eithetkbSelectEventsr XkbSelectEventDetai(see
section 4.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 24

The X Keyboard Extension 5 Keyboard State

To receiveXkbSt at eNot i fy events under all possible conditions, X&bSelectEvents
and paskbSt at eNot i f yMask in bothbits_to _changendvalues_for_bits

To receiveXkbSt at eNot i fy events only under certain conditions, Xs#dSelectEvent-
DetailsusingXkbSt at eNot i fy as theevent_typend specifying the desired state
changes imits_to_changandvalues_for_bitaising mask bits from Table 5.3.

The structure fokkbSt at eNot i fy events is:

typedef struct {
int type; /*