PipelineModel¶
-
class
pyspark.ml.PipelineModel(stages)[source]¶ Represents a compiled pipeline with transformers and fitted models.
New in version 1.3.0.
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
transform(dataset[, params])Transforms the input dataset with optional parameters.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
-
clear(param)¶ Clears a param from the param map if it has been explicitly set.
-
copy(extra=None)[source]¶ Creates a copy of this instance.
New in version 1.4.0.
- Parameters
extra – extra parameters
- Returns
new instance
-
explainParam(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getOrDefault(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam(paramName)¶ Gets a param by its name.
-
hasDefault(param)¶ Checks whether a param has a default value.
-
hasParam(paramName)¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined(param)¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet(param)¶ Checks whether a param is explicitly set by user.
-
classmethod
load(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
save(path)¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set(param, value)¶ Sets a parameter in the embedded param map.
-
transform(dataset, params=None)¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrametransformed dataset
Attributes Documentation
-
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-