The cora-macs Package

Tobias Ladner, Lukas Koller TUM - Cyber-Physical Systems Group tobias.ladner@tum.de, lukas.koller@tum.de

2024-10-25

Abstract

The cora-macs package provides tools for working with continuous sets, operations, neural networks, and color schemes tailored for use in the context of cyber-physical systems. This document serves as the official documentation for the package, detailing the available commands and options.

Contents

1	Introduction Installation		1 2
2			
3	Pac	kage Options	2
4	Commands and Environments		
	4.1	Sets (sets option)	2
	4.2	Operations (operations option)	3
	4.3	Neural Networks (nn option)	
	4.4	Colors (colors and tumcolors options)	3
5	Examples		4
	5.1	Set Notation	4
	5.2	Operations	4
		Neural Networks	
6	Concluding Remarks		4

1 Introduction

The cora-macs package is designed to assist in the representation and manipulation of various mathematical objects such as sets, intervals, zonotopes, and

operations often encountered in cyber-physical systems analysis. It also includes predefined color schemes based on the TUM corporate design and other custom colors.

2 Installation

To install the cora-macs package, follow these steps:

- 1. Place the cora.sty file in your working directory or in a directory where LaTeX can find it (e.g., in the local texmf tree).
- 2. Include the package in your LaTeX document with the command:

\usepackage{cora}

3 Package Options

The cora-macs package provides several options that can be passed when loading the package. These options control the inclusion of different sets of commands.

- sets: Includes commands for continuous set notation and operations.
- operations: Includes commands for various mathematical operations.
- nn: Includes commands for working with neural networks.
- colors: Defines a set of colors specific to the cora-macs package.
- tumcolors: Defines TUM-specific colors.

Example usage:

\usepackage[sets, operations]{cora}

4 Commands and Environments

4.1 Sets (sets option)

When the sets option is enabled, the package provides several commands for defining and manipulating continuous sets.

- \contSet{name}: Defines a set in calligraphic font, e.g., A.
- \shortContSet[abbr]{content}{set}: Defines a short-hand notation for continuous sets with optional abbreviation.

- \defContSet{elements}{conditions}: Defines a set using the format $\{x \mid \text{conditions}\}.$
- \defContSetSplit{elements}{conditions}: Defines a set with split conditions for better formatting in large equations.
- \shortI{a}{b}: Defines a closed interval [a, b].
- \defZ: Defines a zonotope.
- \defPZ: Defines a polynomial zonotope.

4.2 Operations (operations option)

Enabling the operations option introduces a variety of operations that are useful in mathematical and cyber-physical systems contexts.

- \operator{name}{args}: Defines a custom operator with the given name and arguments.
- \opEnclose{set1}{set2}: Encapsulates a set within another.
- \opIntervalEnclosure{interval}: Specifies an interval enclosure.
- \opProject{dimension}: Projects a set onto a given dimension.
- \diag{matrix}: Produces the diagonal matrix of the given input.

4.3 Neural Networks (nn option)

The nn option introduces commands related to neural networks, including notation for layers, inputs, outputs, and propagations.

- \NN: Represents the symbol for a neural network Φ .
- \nnLayer{layer}{input}: Represents a neural network layer with a specified input.
- \nnInput, \nnOutput: Notation for input and output points in a neural network.

4.4 Colors (colors and tumcolors options)

The colors and tumcolors options define a variety of colors that can be used in your documents.

- \definecolor{CORAcolorReachSet}: A predefined color for reachability sets (blue).
- \definecolor{TUMblue}: TUM corporate blue color.

5 Examples

Here are some examples demonstrating how to use the commands from the cora-macs package.

5.1 Set Notation

```
\contSet{X} = \shortContSet{a}{b}{X}
```

This code will produce $\mathcal{X} = \langle a, b \rangle_X$.

5.2 Operations

```
\displaystyle \{A\} = \operatorname{operator}\{A\}
```

This code will produce $\operatorname{diag}(A) = \operatorname{diag}(A)$.

5.3 Neural Networks

```
\NN(\nnInput) = \nnLayer{1}{\nnInput}
```

This code will produce $\Phi(x) = L_1(x)$.

6 Concluding Remarks

The cora-macs package offers a comprehensive set of tools for researchers working in cyber-physical systems. By providing a consistent notation and color scheme, this package simplifies the process of documenting complex mathematical objects and operations.

For more information, visit the TUM CPS Group website.